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SUMMARY 

The Australian tropical savannas are a unique and dynamic ecosystem, and thrive on the tight 

coexistence between the discontinuous woody overstorey and the continuous grass understorey. 

While the grass layer has control over the dynamics of this ecosystem, the long-living woody cover 

layer determines mainly the long-term trends in vegetation productivity. In order to get some insight 

in the future prospects of this ecosystem, given the ongoing climate change, understanding and 

quantifying the woody cover dynamics and how this changing vegetation responds to short-term 

climate anomalies is of utmost importance. In this perspective, this study focuses on Litchfield National 

Park, situated in northern Australia, and aims to (i) quantify the woody cover dynamics from 2002 to 

2016 using satellite observations and (ii) define the impact of these woody cover dynamics on the 

ecosystem’s stability in space and time. Woody cover dynamics were assessed using the Dry Season 

Index (DSI), developed by Brandt et al. (2016), and confirmed that woody thickening is taking place in 

Litchfield National Park with an overall slight increase in woody cover up to 2.29% of the overall mean 

woody cover. This growth can mainly be attributed to the variability in climate, a changing fire regime 

and a rising CO2 level. The short-term stability of the ecosystem was in this study characterized by the 

vegetation resilience and variance to Normalized Difference Vegetation Index (NDVI) anomalies. The 

impact of this woody cover increase on the resilience pointed towards a faster recovering and thus 

more resilient ecosystem. An increase in woody cover resulted moreover in an increase of the variance 

at the spatial level but was countered with a decreasing variance at the temporal level, giving no 

closure yet on this subject. As stability may be driven by other variables besides the woody cover (DSI), 

impacts of both fire frequency and bare soil coverage on the stability were analysed as well. Results of 

fire frequency at the spatial level indicated a lower resilience and a higher variance, corresponding to 

a higher susceptibility of the ecosystem, but could not be confirmed at the temporal level. Increases 

in bare soil coverage lastly had again a positive impact on the ecosystem as it fastened the recovery 

speed, making it more resilient, and decreased the variance, making it less susceptible to climate 

anomalies. It has however to be taken into account that woody cover, fire frequency and bare soil 

coverage are correlated, causing biased effects of each factor separately, and thus results from this 

study require to be addressed with caution. 
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ABRREVIATIONS AND SYMBOLS 

BRDF: Bidirectional Reflectance Distribution Function  

CRU: Climate Research Unit 

DSI: Dry Season Index 

ITCZ: Inter-Tropical Convergence Zone 

MAP: Mean Annual Precipitation 

MIR: Mid-Infrared part of spectrum (1 μm to 4 μm) 

MODIS: Moderate Resolution Imaging Spectroradiometer satellite 

NDVI: Normalized Difference Vegetation Index 

NIR: Near Infrared part of spectrum (700 nm to 1 μm) 

PAR: Photosynthetically Active Radiation 

RGB: Red, Green and Blue band of spectrum 

RMSE: Root Mean Square Error 

SPEI: Standardized Precipitation-Evapotranspiration Index 

SRTM: Shuttle Radar Topography Mission  

SWIR: Short Wave Infrared spectrum (1.25 μm to 2.6 μm) 

TIR: Thermal Infrared part of spectrum (4 μm to 15 μm) 

UV: Ultraviolet part of spectrum (10 nm to 400 nm) 

VCF: Vegetation Continuous Fields 

VI: Vegetation Indices 

VIF: Variance Inflation Factor 

VIS: Visible part of spectrum (400 nm to 700 nm) 

WGS84: World Geodetic System 1984 

 

λ: Reflectance of a certain band or range of spectrum 

: Estimated predictor variable 
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1 INTRODUCTION 

Ecosystem dynamics, the study of how ecosystems regulate themselves and change through time 

(Complexity Academy 2016), has become more and more a topic of global interest (Filatov et al. 2005; 

Keitt 2008; Hull et al. 2015). Ecosystems, as communities of fauna and flora in conjunction with their 

environment, are being steered through a network of biotic and abiotic interactions (Boundless 2016). 

Through negative and positive interaction loops, and with the aid of specific key drivers, these entities 

develop in certain directions. Disturbances however play a major role and are known as phenomena 

that ecosystems cannot counterbalance, they pull it outside of its normal operating parameters and 

can change the original direction entirely (Mori 2011; Complexity Academy 2016). With the ongoing 

climate change these disturbance events, also called climate extremes and anomalies, will occur more 

frequently and with higher intensity. The climate variability and the higher occurrence of these 

extremes such as heatwaves, droughts, floods, cyclones and wildfires reveals significant vulnerability 

and exposure of some ecosystems (IPCC 2014). To evaluate the stability of an ecosystem to such 

events, several indicators, focusing either on the magnitude, duration, frequency or change over space 

and time of the disturbance event, or the strength of the ecosystem, can be used to describe the 

ecological stability (Donohue et al. 2016). To describe the short-term stability of the Australian savanna 

ecosystem in this master thesis research the focus will be put on the resilience and variance of the 

ecosystem. In literature there is a difference made between ecological resilience and engineering 

resilience. The former is defined as the magnitude of disturbance that can be absorbed before the 

system changes its structure by adjusting the variables and processes that regulate its behaviour 

(Holling 1996). Engineering resilience expresses the rate at which an ecosystem recovers after the 

disturbance (van Rooijen et al. 2015; De Keersmaecker, Lhermitte, et al. 2015)1. Variance is the inverse 

of stability and is measured as the variability over space or time (Donohue et al. 2016). 

 

The ecosystem dynamics of the Australian savannas, that are known to already experience one of the 

most seasonal climates of the world’s savannas (Hutley & Beringer 2011), are significantly exposed to 

climate change. Rising temperature levels, more frequent cyclone events and increasing frequency and 

intensity of rainfall events cause serious impacts on this tropical ecosystem that is built on a tight 

relationship between the woody overstorey and the grass understorey (Laurance et al. 2011). While 

the grass layer controls the dynamics of this ecosystem, the long-term trends in vegetation productivity 

are mainly determined by the long-living woody upper layer (Brandt et al. 2016). Disturbance events 

that affect this relationship and thereby the tree-grass ratio can seriously disrupt the structure and 

functioning of this savanna ecosystem, and therefore also its resilience and variance. A lot of research 

                                                           
1 In the remainder of this thesis research engineering resilience will be referred to as ‘resilience’. 
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has yet been done on describing the phenology patterns of Australian savanna ecosystems (Bowman 

et al. 2001; O’Grady et al. 2000) as well as forecasting the directions the system will take. Is woody 

cover taking over or are fire events occurring more frequently and thus reducing the woody 

vegetation? Predictions are made about the future of the ecosystem which provides implicit 

information on the stability, but research on the direct influence of woody cover dynamics on the 

stability of the system are lacking. In this perspective, the aim of this master thesis research is to 

quantify the short-term stability of the Australian tropical savanna ecosystem and investigate which 

role woody cover dynamics have in this story. 

 

The magnitude of projects like this whereby dynamics over time have to be monitored does not allow 

anymore to only rely on field measurements, but needs also tools that enable frequent follow-ups of 

vegetation dynamics. The technology of remote sensing, known as the science of identifying, observing 

and measuring objects from a distance, has since the 1950’s (Cohen 2000) taken a bigger role in the 

surveillance of ecosystem dynamics. With the rapid evolution of imaging techniques and time series 

analysis, studying the evolution of biological entities using satellite observations has not only become 

easier, but it has also broadened the scope for more ambitious goals.  
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2 LITERATURE STUDY 

2.1 Savanna ecosystems  

According to the World Wildlife Fund (WWF) the terrestrial world can be subdivided into 14 biomes, 

which can be described as entities of fauna and flora that have common characteristics due to similar 

climatic conditions, and 8 biogeographic realms (Olson et al. 2001). Savannas, belonging to the tropical 

and subtropical grasslands, savannas and shrublands biome, cover around 33 million km² (or around 

22% of the land surface on Earth) of the world and appear mainly on three of the seven continents: 

Africa, Australia and South-America (Hill et al. 2012). Globally they contribute to approximately 30% of 

all terrestrial ecosystem gross primary productivity (House & Hall 2001) and on Australian level they 

form an undescribed component of the Australian carbon cycle (O’Grady et al. 2000). According to 

Ahlström et al. (2015) semi-arid ecosystems have a predominant role globally in driving the net biome 

flux and might even become more important given the future impacts of climate change. Although 

covering several continents, there exist enormous variations between the different continents based 

on the exact composition of the ecosystem. According to Lehmann et al. (2011) the presence of the 

savanna ecosystem depends on four determinant factors, namely effective rainfall, rainfall seasonality, 

soil fertility and to a lesser extent, the topographic complexity of landscapes. Looking at the rainfall 

patterns, savannas in South-America are considered to be the wettest (up to 2500 mm mean annual 

precipitation (MAP)) and show more seasonally concentrated annual rainfalls than the savannas on 

the African and Australian continent. The MAP range of the African savanna is the most narrow one 

and variates between 250 mm and 1750 mm, and the MAP of the Australian savannas ranges between 

150 mm and 2000 mm. Savanna ecosystems are generally known as highly seasonal ecosystems as 

there exist extreme fluctuations in rainfall patterns, resulting in the typical monsoonal climate with a 

dry and wet season. Due to the geographical distribution across the three continents, the timing of 

these seasons differs greatly. But even on a continent scale the dry-wet season pattern can differ as 

some countries in Africa, mainly on the eastern part of the continent, feature two rain seasons (Hill et 

al. 2012), i.e. a long and short rainy season.  

 

Focusing to the fertility factor, again the subdivision can be made between less fertile soils in the South-

American savannas (e.g. in Brazil and Venezuela) whereas the African and Australian soils enjoy a 

higher fertility (Lehmann et al. 2011). A last difference that can be noticed between the continents has 

to do with the fauna that habitats the ecosystem. With the elephant, buffalo, giraffe, zebra and a lot 

of antelopes walking around, the African savannas face an important disturbance event that the other 

continents are less acquainted with. These mega-herbivores have a tremendous impact on the 

vegetation and environment as the browsing and trampling processes of these species influences the 
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growth and coexistence between the woody plants and grass species (Asner et al. 2009; Lehmann et 

al. 2011). 

 

2.2 The Australian tropical savanna ecosystem 

Zooming in on Australia, the tropical savanna ecosystem covers almost one quarter of the country (Fox 

et al. 2001) and spreads from the Kimberley region in Western Australia over the northern half of the 

Northern Territory to the Gulf of Carpentaria in north Queensland (Hutley & Beringer 2011). According 

to Bowman & Prior (2005) the Australian savanna ecosystem behaves uniquely compared to the other 

savannas of the world.  With a dominance of evergreen species the Australian savannas go against all 

expectations of a typical deciduous overstorey in seasonally dry tropics. This can be partly explained 

by the particular climate of the northern part of the continent, that, based on a wet-dry gradient, 

causes again a subdivision in two biogeographical regions with distinct phenology patterns. The 

northern more coastal areas of the savanna ecosystem have an intensely seasonal climate, influenced 

by the annual movement of the Inter-Tropical Convergence Zone (ITCZ) (Bowman & Prior 2005; Hutley 

& Beringer 2011). This ITCZ drives the Australian summer monsoon, inducing high inter-annual 

variabilities in rainfall seasonality and intensity, and causing high air temperatures (Bowman & Prior 

2005). Hereby it creates a stark division between the rainy season and dry season and makes the 

savannas one of the most dynamic biomes (Ma et al. 2013). Moving to the south, the climate is steered 

by the El Niño/El Niña phenomenon, causing a less strict division between the rainy and dry season 

(Jacklyn et al. 2016), and in general a drier climate. Looking from a vegetation point of view, there is a 

transition visible from savannas in the north dominated by an overstorey of evergreen Eucalyptus and 

Corymbia species with an understorey dominated by C4 annual and perennial tussock grasses, towards 

a dominance of Acacia wood- and shrublands with hummock grasslands in the southern parts (Ma et 

al. 2013; Hutley & Beringer 2011). 

 

2.3 The dynamics of trees and grasses 

When observing the tree-grass relationship from different perspectives, it becomes clear that the 

coexistence of both plant types are key to the uniqueness of this ecosystem. From a biological 

perspective the Australian tropical savanna ecosystem can be described as a bioregion built up as a 

two-layer mixture of a discontinuous stratum of woody overstorey and a continuous layer of 

herbaceous understorey plants (Figure 2.1). The latter layer predominantly consists of annual and 

perennial grasses whereas the former layer ranges from substantial trees to shrubs and palms (Hill et 

al. 2012; Lehmann et al. 2014). As an ecosystem consisting primarily out of two contrasting lifeforms, 
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savannas can be seen as a point in a continuous spectrum with on the one side grasslands as extreme 

and on the other extreme forests (Accatino et al. 2010).  Looking at the temporal variations in 

greenness of vegetation of the Australian tropical savanna ecosystem, grasses can be defined as the 

seasonal component whereas trees are the persistent component of the green signal. With the 

beginning of the dry season in April, grasses will dry out and become non-photosynthetic while the 

trees are predominantly evergreen and stay photosynthetically active. The grass layer, controlling the 

dynamics of the ecosystem, will at the beginning of the wet season in November sprout again and 

contribute to the green scenery  (Guerschman et al. 2009; Zhou et al. 2016).  

 

 

Figure 2.1: Schematic representation of Australian tropical savanna structure (adapted from Muir et al. 2011). 

 

Trees and grasses interact with each other and the environment, and can either complement each 

other or compete with one another. Trees have lots of positive effects on grasses and herbal species 

but this has to be viewed in perspective, as  the herbaceous diversity and production in savannas may 

be greater where there are a few trees than where there are no trees, but the trend is reversed at high 

tree densities. When evaluating the effects of trees on grasses, the effects of climate also have to be 

accounted for. From a temperature perspective, trees can improve harsh environmental conditions by 

providing shade and thus lower soil temperatures, but they can also prohibit grasses from growing due 

to too much shade which does not allow the grasses to photosynthesize. Similarly from a water 

management point of view, herbaceous production can either be enhanced under tree canopies in 

drier regions but can also be very harmful for the herbaceous understory where annual rainfall exceeds 
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a certain level, depending on the flora species and climate (Scholes & Archer 1997). A beneficial effect 

of trees on grasses is that they provide extra nutritional resources for grasses. These latter only have 

roots in the topsoil layer whereas trees have both roots in the topsoil layer as well as the subsoil layer 

and hereby can pump nutrients to higher soil layers. This niche separation of the roots allows a stable 

coexistence between grasses and trees (Accatino et al. 2010). Grasses can have on their side impacts 

especially on the recruitment of the overstorey. They can either directly compete for light, nutrients 

and water, or indirectly influence the overstorey as the amount of grasses defines the fuel load and 

thus fire frequency and intensity in savanna ecosystems. The impact of grass effects on trees depends 

heavily on the grass composition that is influenced by external factors like climate fluctuations, grazing 

and succession strategy. Changes in this composition can intensify or  weaken  the effects on trees 

(Scholes & Archer 1997). 

 

2.4 Drivers of the tropical savanna ecosystem 

The spatial patterns and composition of savannas, defined as tropical grasslands with scattered trees 

(Fox et al. 2001), are regulated by complex and dynamic interactions among climate, competition and 

disturbance events (Kanniah et al. 2011; Beringer et al. 2011; Scholes & Archer 1997). Climatic factors, 

including light, rainfall, temperature, CO2 concentration and humidity,  control the productivity of an 

ecosystem by regulating its water and nutrient availability, and are therefore indispensable drivers of 

the savannas (Beringer et al. 2011). The combination of all these climatic factors creates a unique 

environment where fauna and flora can grow, but also where competition can take place between 

organisms.  

 

Every plant species is in need for light energy to grow and produce chemical energy via the 

photosynthesis process. As one of the basic ingredients, competition for light energy is ubiquitous 

between plant species, as between the herbaceous understorey and the evergreen overstorey layer in 

savannas. The herbaceous understorey, predominantly consisting of C4 grasses, cannot tolerate 

shading of sunlight to below a quarter of its open sky value, likely due to phylogenetic, environmental 

or physiological constraints. But at the hot conditions of the dry tropics, C4 grasses have a 

photosynthetic advantage which boosts a higher photosynthetic light-use efficiency than C3 types. 

Plants, utilizing this pathway, therefore started to dominate tropical grasslands and savannas. Besides 

competition for light energy, the understorey and overstorey vegetation also compete for nutrients 

and soil moisture in the upper soil layers (Osborne & Beerling 2006).  
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Disturbance events, as the third determinant component in the network of interactions, can create 

major impacts on the ecosystem by pulling it outside of its normal operating parameters. Savannas can 

suffer severely from cyclone events (Hutley et al. 2013), land clearing for agricultural purposes or fuel 

supply (Scholes & Archer 1997; Bristow et al. 2016), and grazing (Scholes & Archer 1997; Asner et al. 

2009; Lehmann et al. 2011). Fire events are the greatest natural and anthropogenic environmental 

disturbances, that influence both the biophysical and biochemical processes from leaf to landscape 

scale. They have brand marked the structure, composition and distribution of the Australian savannas, 

as these ecosystems have coevolved with fire events (Beringer et al. 2015; Bristow et al. 2016). Looking 

from a historical-cultural point of view, indigenous people in Australia have used fire to hunt large 

games or to increase fertility and maintain habitat mosaics to increase the abundance of animal and 

vegetable resources (Bowman & Prior 2005; Scholes & Archer 1997; Fox et al. 2001). Besides fires 

started by humans, wildfires take often place during the dry season and can destroy hectares of land. 

Fires in the early dry season (late April to June) are typically of low intensity whereas fires at the end 

of the dry season (August to September) have a much higher intensity and destruction capacity due to 

a built-up of fuel load throughout the whole season and more extreme weather conditions (Beringer 

et al. 2015; Beringer et al. 2007; Lehmann et al. 2014). At last, climate change can also be seen as a 

disturbance event, evolving through time. One of the most influential widespread impacts of climate 

change is the increasing frequency and magnitude of climate extremes and anomalies. These extremes 

and anomalies can seriously disrupt the floristic composition and structural attributes of savannas 

(IPCC 2014).  

 

2.5 Woody thickening of the Australian tropical savannas 

Over the last 15 years, there has been a growing interest towards the question if woody biomass of 

the Australian tropical savannas is increasing (Chen et al. 2003; Beringer et al. 2007; Bowman et al. 

2008; Lehmann et al. 2009). The vast majority of the studies reporting high rates of woody biomass 

increase over the past decades contrasts strongly with the studies of Lehman et al. (2009) and Murphy 

et al. (2014), who only remark a little net change in woody biomass. Judging from these observations 

it can be said that an increasing trend of woody cover has indeed taken place in the northern Australian 

savannas, but that the increase might not be as extensive as mentioned in a lot of studies. Factors that 

are being cited to cause this woody thickening phenomenon are overgrazing by domestic livestock and 

large-scale drivers like climate change (Murphy et al. 2014).  

 

As recently indicated, a reduction of grass biomass due to overgrazing will reduce fire frequency and 

intensity and hereby favours the establishment of woody plants (Murphy et al. 2014). Due to climate 
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change, the temperature, rainfall and atmospheric CO2 concentration, three basic ingredients for plant 

growth, have increased notably since the preindustrial time. Temperature and rainfall are two climatic 

factors that mark the length of the growing period, and thus influence the savanna productivity 

strongly. The CO2 concentration of the atmosphere influences photosynthetic rates of the C3 and C4 

plant species, their water-use efficiency and indirectly, the growing season length and reproduction of 

the whole system (Scheiter & Higgins 2009). As previously mentioned, an increase in the temperature 

levels favours the production of C4 plant species, that are omnipresent in the herbaceous understorey 

of the Australian savanna system. The augmenting frequency and intensity of rainfall events can have 

a positive impact on both C3 and C4 plant strategy groups. According to a study from Browning et al. 

(2008) in Arizona (USA), C4 grasses benefit from summer rains as only the upper soil layers get wetted 

at that moment due to a high evaporation rate at and a high interception rate from the tree leaves. C3 

trees on the opposite profit more from winter rains because in this case water can also percolate to 

the deeper soil layers as there is a lower evaporation rate and almost no canopy cover and thus no 

interception from the tree. Shifts in these patterns for example towards more winter rains can boost 

the woody biomass. Similar phenomena were observed in the tropical savannas of Australia. Here 

however it were not the winter nor summer rains but the yearly rainfalls increasing since the 1970’s 

according to (Bowman et al. 2001), that possibly explain a noticeable trend of rising woody biomass.   

 

Apart from transitions in rainfall events, atmospheric CO2 concentration plays also an important role 

in the wood encroachment of savannas. Naturally C4 grasses hold an advantage in savanna ecosystems 

over the C3 tree species. They feature a specialist mechanism to increase the CO2 concentration in cells 

of the thylakoid membrane that perform the light reaction of photosynthesis and thereby reduce the 

rate of photorespiration that is a major limitation on photosynthetic efficiency at high temperatures. 

As the atmospheric CO2 concentration increases, this specialist adaptation is less of an advantage as 

carbon saturation of the C4-photosynthesis takes place (Mitchard & Flintrop 2013; Scheiter & Higgins 

2009). Trees will take advantage of the lower pressure from the grasses and will seize the opportunity 

to grow more saplings and cover larger areas (Scheiter et al. 2014; Bowman et al. 2001). This will affect 

the tree-grass ratio of the savanna substantially. It is therefore important to gain understanding of 

these changes of tree-grass ratio through time and the impacts they have on the dynamics and 

functioning of the ecosystem. 
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2.6 Remote sensing as a tool to monitor vegetation dynamics 

2.6.1 Basics behind remote sensing 

Field measurements have their limitations and do not allow the large-scale and frequent follow-up of 

vegetation dynamics. The advent of remote sensing, bringing important benefits with it as the 

systematic revisits, the spatial coverage and the ability to derive vegetation features from spectral 

information,  allow to monitor the temporal and spatial dynamics of vegetative systems more intensely 

and with minimal environmental impact. Remote sensing is defined as  the acquisition and 

measurement of information about an object or phenomenon without making physical contact with 

the feature under surveillance, and thus in contrast to on-site observation (Jones & Vaughan 2010; 

Khorram et al. 2012). Treasuring many advantages as it is a non-contact and non-destructive method 

of gathering information, this technique is more and more often applied in terrestrial ecology. Remote 

sensing encompasses technologies ranging from classical satellite remote sensing capturing large 

geographical areas to airborne sensing, right down to close-range remote sensing of individual 

structures or phenomena (Jones & Vaughan 2010).   

 

Going into more detail into the physical aspect, this technique relies on the measurement of 

electromagnetic energy. Electromagnetic radiation consists of electromagnetic waves, which are 

synchronized oscillations of electric and magnetic fields that propagate at the speed of light through a 

vacuum. When a wavelength reaches an object it will interact with it as part of the signal will be 

transmitted through the object, part will be absorbed by the object and part will be reflected. This 

reflected signal can then be intercepted by a sensor. The law of conservation of energy states that the 

total amount of energy dissipated by reflection, transmission and absorption equals the incident 

energy. The human eye only responds to a small part of the electromagnetic continuum, called the 

visible (VIS) spectrum. This region corresponds to the photosynthetically active region (PAR) and 

stretches from 400 nm to 700 nm, which corresponds to the reflection of the violet-blue-green-yellow-

orange-red light. On the shorter wavelength side the VIS is flanked by the ultraviolet (UV) region, 

ranging from 10 nm to 400 nm. The longer wavelength side of the VIS extends towards the near 

infrared (NIR from 700 nm to 1 μm), the mid-infrared (MIR from 1 to 4 μm) and the thermal infrared 

(TIR from 4 to 15 μm). This latter region is often referred to as the thermal region whereas the other 

regions all belong to the optical region (Jones & Vaughan 2010).   

 

The quality of the sensing process of the reflectance signal depends heavily on the sensor and its 

spectral resolution, that is defined as the range of wavelengths that an imaging system can detect. 

Ranges can on the one hand be mentioned as the numerical wavelength interval, e.g. 450 nm to          
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495 nm, or can either be referred to as bands, which consists of a group of wavelengths, e.g. the blue 

band (Khorram et al. 2012). Increasing the spectral resolution, imaging systems can variate from simple 

broadband sensors, recording only the red, blue and green (RGB) bands, to multispectral sensors, 

capturing more than three bands, to hyperspectral sensors, capturing around 50 bands with a 

bandwidth of only a few nanometres (Jones & Vaughan 2010). 

 

2.6.2.The typical vegetation spectrum 

The reaction between the electromagnetic signal and any material creates a unique spectral response 

that provides information on the identity or condition of the feature and is therefore known as its 

spectral signature (Khorram et al. 2012). This explains why soil spectra differ from oceanic spectra or 

vegetation spectra, but also why the spectrum of an African baobab tree (Adansonia digitate L.) differs 

from the spectrum of an Australian boab tree (Adansonia gregorii F.M.). However all plant species 

share a basic format of spectral signature (Figure 2.2). This format is marked in the visible wavelengths 

by the chemical composition of the species, including photosynthetic pigments as chlorophyll, 

carotenoids, xanthophylls  and flavonoids. The dominant pigments, chlorophyll a and b, account for 

almost all the absorption in the red wavelengths and the bulk of the blue wavelengths, resulting in the 

reflectance of a green signal. Carotenoids and xanthophylls cover the blue-green absorption spectrum 

and generate a yellow-orange visual signal.  Absorption by the different pigments, enhanced 

somewhat by the internal scattering of radiation encountering air/water interfaces at the surface of 

cells with different refractive indices, generates a low reflectance signal. The NIR region is 

characterized by a high reflectance plateau due to the increased scattering  within the cellular micro 

structure of the leaf. Moving to the short wave infrared (SWIR, 1.25 μm to 2.6 μm) region, strong water 

absorption bands dominate the gradually decreasing reflectance signal of green vegetation. 

Developments in the composition, e.g. leaf senescing or as a result of environmental stress, or micro 

structure, e.g. maturation or as a result of water stress, of leaves influence the visible spectrum, i.e. 

leaf colour, and the mid infrared spectrum respectively (Jones & Vaughan 2010). 
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Figure 2.2: The typical format of a vegetative spectrum, here of an Eucalyptus miniata. The grey spectral bands 
mark interesting wavelengths in the visible, NIR and SWIR that are frequently used for vegetation indices. The 
chlorophyll pigment in plant leaves strongly absorbs visible light for use in the photosynthesis process, indicated 
by the two chlorophyll absorption arrows. SWIR light is greatly absorbed by the water concentration of the plant 
leaves and is visualized by the three water reflectance dips. 

 

2.6.3 Monitoring vegetative systems 

The spectral signature concept, introduced in previous paragraph, shows that the spectral signature of 

vegetation is defined by a set of biophysical parameters. The detection and calculation of these 

parameters happens through derivation of spectral band combinations that are known to be sensitive 

to these specific vegetation properties. The dimensionless measures that result from this are known 

as vegetation indices (VI) (Jones & Vaughan 2010). The abundance of VIs, especially present since 

hyperspectral remote sensing data became a standard element of vegetation monitoring, offered an 

immense range of band combinations (Mašková et al. 2008). 

 

A well-known vegetation index that is able to distinguish vegetation surfaces from bare soil or water 

surfaces as well as indicate the vegetation health and greenness, is the Normalized Difference 

Vegetation Index (NDVI) (Rouse et al. 1973). This index utilizes absorption by chlorophyll in the red 
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wavelength and scattering by cellulose in near-infrared wavelengths to indicate greenness of 

vegetation (Guerschman et al. 2009). Healthy vegetation absorbs most of the VIS wavelengths that hit 

the plant and reflects a large portion of the NIR radiation. In case of unhealthy vegetation, the 

difference between reflected radiation of the NIR and VIS wavelengths is lower as there is less visible 

light absorbed and less NIR radiation reflected. NDVI values range between -1 and +1 for all natural 

surfaces whereby values increasing from 0 to 1 correspond to increasing density of green/healthy 

leaves. Here one can also conclude that lower values above zero can coincide with sparser vegetation 

types like tundra, desert or grassland. Values below zero correspond with water surfaces. 

 

The repetitive acquisition of satellite imagery enables the establishment of time series of vegetation 

indices which allow to detect, quantify and characterize dynamics, changes and trends of biophysical 

processes over time (Lhermitte et al. 2011; De Keersmaecker et al. 2015). The spatial, spectral and 

temporal characteristics of the remote sensing data determine the performance of this time series 

analysis (Lhermitte et al. 2011). The temporal variation in NDVI is frequently used to characterize the 

phenological dynamics as it indicates when vegetation is sprouting, maturing or wilting in time. Time 

series of NDVI feature typically three main parts: (i) a seasonal component with a vegetation specific 

amplitude, timing and shape, related to the phenology of the vegetation, (ii) trends, which are gradual 

changes over time, and (iii) the anomaly, defined by the short-term response of vegetation biomass to 

environmental anomalies such as a drought period and noise (De Keersmaecker et al. 2015; van 

Rooijen et al. 2015). According to Verbesselt et al. (2010) and Lhermitte et al. (2011) phenological 

cycles may alter over the years which may be both associated with (i) gradual changes, i.e. interannual 

changes due to climate variability or gradual changes in land management/degradation, and with (ii) 

seasonal changes, driven by interactions between annual temperature and rainfall impacting plant 

phenology, or (iii) abrupt changes, caused by environmental disturbances. 

 

2.7 Remote monitoring of woody cover 

Given the increasing interest in the future vision of savanna ecosystems regarding the woody 

thickening phenomenon, several studies have examined the evolution of woody cover through time. 

Woody cover is in this research study defined as the projection of woody canopies on the ground 

surface. The NDVI, as a greenness indicator, is therefore often used as a proxy to estimate this mean 

foliage density of the present vegetation (Brandt et al. 2016). Highlighting however only the woody 

cover layer with the NDVI as a proxy is not always evident considering the vegetation structure of this 

ecosystem. This tropical savanna ecosystem is namely characterized by the tight relationship between 

the herbaceous understorey and the upper woody layer. Segregating both layers from a satellite image 
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based on the NDVI is not that easy as the NDVI gives only an indication of the greenness or healthiness 

of the vegetation. In this case, the outspoken dynamic seasonal character of this ecosystem offers the 

solution. While the tree layer might stay green and thus photosynthetically active the whole year 

through, the herbaceous understorey is solely abundant during the wet season and shows its 

senescence shortly after flowering towards the last rains. This makes the dry season the most suitable 

timing to estimate woody cover using satellite imagery.  

 

Over the years a trend has established to estimate woody cover percentages with high spatial 

resolution earth observation data like Quickbird (Rasmussen et al. 2011) or WorldView-1&2 (Karlson 

et al. 2014; Brandt et al. 2016). However the benefits from obtaining results at a few meters resolution 

are countered by the huge amount of data storage that is required, by the fee they charge to access 

these data and the fundamental question whether the analysis of a few images is representative for 

the continuous change of a highly dynamic ecosystem. In a study about the tiger bush in northern 

Senegal Rasmussen et al. (2011) used the eCognition software on Quickbird data to perform an object-

oriented classification to assess tree cover. This classification technique delineates and classifies the 

image into homogeneous patches based on spectral and spatial parameters as well as user defined 

functions regarding shape, texture, context and spectral information. Given the disadvantages of high 

spatial resolution imagery, opting for high temporal but low spatial resolution earth observation time 

series of plant phenology or NDVI seasonal metrics can be considered more appropriate for this 

research study (Brandt et al. 2016).  

 

In literature there are however a lot of studies found that also made use of aerial photography to tackle 

the assessment of woody canopy cover. Weisberg et al. (2007) used the eCognition software to 

perform an object-oriented classification on orthophotos from 1966 to 1995 to distinguish a certain 

tree type from the rest of the vegetation. Both Fensham et al. (2002) and Carreiras et al. (2006) made 

use of aerial photos to estimate woody canopy cover and overlaid them with a transparent grid of 

crosses or points respectively. Going over all the crosses/points the percentage of woody cover could 

be assessed as the number of tree crown crosses/points divided by the total number of grid 

crosses/points. There is however a risk of overestimation associated with this aerial photography 

technique that increases with decreasing scale of photography. Carreiras et al. (2006) approach was 

not only to estimate canopy cover based on aerial photography but compare this method with ordinary 

least squares linear regression models that make use of several indices including NDVI. In a study about 

the Kakadu National Park in Australia (Lehmann et al. 2009) tree cover was assessed using 

georeferenced digitized aerial photography from the years 1964, 1984 and 2004, and a stereoscope. 

The analysis gave satisfying results with an average of 62.7 % in 1964 and 67.6 % in 2004. 
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Concluding from the recommendations made in this subsection and given the interests of this research 

study, it is better to opt for high temporal resolution imagery instead of high spatial resolution images. 

Furthermore the outspoken seasonality of this dynamic ecosystem provides a tool to ease the 

distinction between the woody overstorey and the herbaceous understorey. Brandt et al. (2016) used 

this knowledge and introduced the dry season index (DSI), a NDVI based metric, to estimate woody 

cover based on MODIS satellite imagery. 

 

2.8 Stability of Ecosystems 

Characteristic to each ecosystem is that they provide a number of ecosystem services that determine 

the habitability and attractiveness of places and landscapes. Tropical savannas are not only considered 

to be a rich source of diversity, they also have a prominent role in climate regulation both at local and 

global scale by sequestering carbon in trees, shrubs and soils (Sangha 2006). The increased stress put 

on an ecosystem by environmental and anthropogenic disturbances can cause abrupt changes in the 

functioning of the ecosystem and the provisioning of these services (Gosling 2013). As the impact of 

disturbances are either described by their magnitude, duration, frequency or their change over space 

and time, the stability of an ecosystem can be likewise expressed in different ways. The general 

concept of ‘ecological stability’ tries to capture different facets of the ecosystem dynamics and how 

ecosystems react to these disturbances. The overall ecological stability can be subdivided in five main 

components, enlightening each their own vision on the concept of stability (Figure 2.3). As a measure 

of susceptibility, persistence gives an indication of how long a system maintains the same state before 

it changes in a certain direction (Donohue et al. 2016). Resistance is identified as the tendency of the 

system to remain close to its equilibrium state and withstand the environmental disturbance 

(Complexity Academy 2016) and is frequently measured as the dimensionless ratio of some ecosystem 

variable measured after, compared to before some disturbance event (Donohue et al. 2016). Resilience 

expresses the rate at which an ecosystem recovers after the disturbance (van Rooijen et al. 2015; De 

Keersmaecker, Lhermitte, et al. 2015). Robustness is a particular measure of resistance focused on the 

composition of the community. And at last, variance is the inverse of stability and is measured as the 

variability over space or time (Donohue et al. 2016).  
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a)        b) 

 

Figure 2.3: Schematic representation of the five main components of ecological stability, here used in an example 
with the biomass development of trees over time (Adapted from Donohue et al. 2016).(a) In the first situation the 
total tree biomass shows a small dip after which the ecosystem slowly recovers which results in a change of some 
tree species. This explains the high resistance, low resilience and moderate persistence. As the recovery of the 
biomass is successful, robustness is high. After  recovery there is still some small variability in biomass present; 
(b): The second situation shows a larger decrease in total biomass, resulting in a low resistance. The system 
recovers however faster and shows thus a higher resilience. There is no loss or change in tree species which 
corresponds to a high robustness and high persistence. After recovery though, there remains some higher 
variability in tree biomass. 

 

2.9 Quantification of vegetation resilience 

When disturbances take place, the ecosystem gets pulled out of its normal operating parameters. The 

system can either recover or it can lead to a tipping point at which a sudden shift in the dynamical 

regime takes place. In a study of Scheffer et al. (2009) a review is given on all sorts of indicators that 

act as early-warning signals for reaching critical transitions in certain scenarios. The most important 

and straightforward clues that have been suggested as indicators of whether a system is approaching 

a critical threshold are related to a phenomenon known in dynamical systems theory as ‘critical slowing 

down’ (Wissel 1984). As the pace of the system is critically slowing down, the recovery rate is 

decreasing smoothly to zero as well when getting close to the critical threshold which leads to an 

overall increasing recovery time from disturbances (Scheffer et al. 2009; Dai et al. 2015). This implies 

that the recovery rate after a disturbance event is a first indicator of how close a system is to the 

tipping point. A second indicator follows from the fact that slowing down causes the intrinsic rates of 

change in the system to diminish whereby the state of the system at any moment of time resembles 

more and more to the previous state. This translates itself in an increasing autocorrelation trend 

towards the critical transition point. The most straightforward calculation is the lag-1 autocorrelation, 

which can be directly interpreted as slowness of recovery. Slowing down not only causes an increasing 

autocorrelation signal but also a noticeable, increased variance in the pattern of fluctuations. Besides 

the critically slowing down process, other indicators regarding the asymmetry, and skewness also 

reveal how far the system is from the tipping point (Scheffer et al. 2009).  
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2.10 Scope of this master thesis research 

In this master thesis research the highly dynamic tropical savanna ecosystem of northern Australia, 

being steered by climatic, biological and anthropogenic drivers, will be the subject of this study. More 

specifically, this study will focus on the woody cover dynamics of the system monitored through 

analysis of satellite observations, and investigate its influence on the ecosystem’s short-term stability. 

To gain a deeper understanding of this relation, other influencing factors as bare soil coverage and fire 

frequency will also be looked in. 

 

The specific research questions of this study are: 

1. Quantifying woody cover dynamics: 

How is woody cover evolving over time in a tropical savanna ecosystem like Litchfield National 

Park from 2002 to 2016? Are woody thickening trends taking place in a tropical savanna 

ecosystem like Litchfield National Park? 

2. Relation woody cover dynamics and short-term stability: 

Do woody cover trends have an impact on the short-term stability of this savanna ecosystem? 

What is the influence of other driving factors of the savanna ecosystem like fire events and 

fractional coverage of bare soil? 
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3 MATERIALS 

3.1 Study area 

The study area of this master thesis research is situated in the Litchfield National Park in the Top End 

geographical region of Australia (Figure 3.1). A total area of approximately 700 km² of the park covers 

an open-forest savanna region and is according to the Land Zones Tropical savannas map of 

Brocklehurst (2008) located on Mesozoic to Proterozoic rocks-ranges hills and lowlands. The site is 

situated in the northern mesic tropics that has a typical monsoonal climate with an intense summer 

monsoon season. The average annual precipitation ranges between 1200 mm and 1600 mm, falling 

almost entirely in the wet season from November to March (Australian Bureau of Meteorology 2007a). 

Temperatures are high in the region, with records of 1996-2005 showing maximum temperatures 

variating between 36 °C and 39 °C in September and October, while minimum annual temperatures 

range between 18 °C and 21 °C (Australian Bureau of Meteorology 2007b). As one of the main drivers 

of the savanna ecosystem, fire events determine to a large extent the landscape and its vegetation 

structure. According to Bushfires NT (Murphy et al. 2014), around 51% of the Litchfield National Park, 

which extends over an area of 1464 km², burns every year. Since the declaration of a National Park in 

1986, controlled burning programs have been taking place at the beginning of the dry season in order 

to prevent major late dry season fires (Bowman et al. 2001).  
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Figure 3.1: Location of the study area (boundaries: upper left corner: 13.0890 ° S, 130.7144 ° E, lower right corner: 
13.5015 ° S, 130.9202 ° E), situated in the Top End of Australia. The study area is marked by the rectangle, filled 
with pixels that get a value according to the reflectance of the red band (620 nm – 670 nm) of the Moderate 
Resolution Imaging Spectroradiometer (MODIS) satellite. 

 

3.2 Vegetation structure Litchfield National Park 

This tropical savanna ecosystem within the Litchfield National Park is built up as a three layer mixture 

with an overstorey dominated by evergreen Eucalyptus tetrodonta and Eucalyptus miniata, a mid-

storey of pan tropical semi- to fully deciduous tree and shrub species and an understorey dominated 

by C4 annual and perennial grasses (Hutley & Beringer 2011). Next the vegetation structure will be 

unravelled layer by layer and a brief overview of each of the layers will be given. A field study on site 

showed that the understorey is to a large extent dominated by perennial tussock grasses like Sorghum 

plumosum, Heteropogon triticeus and annual Pseudopogonatherum grasses (Simon 2010), 

interspersed with some herbaceous plants like Cyperaceae sp. (Reznicek 2008) and subshrubs as 

Hibbertia brevipedunculata (Cowie 2013). The mid-storey reveals a high diversity and can be seen as a 

patchwork of small shrub and tree species, palms and juveniles of Eucalyptus tetrodonta and 

Eucalyptus miniata. In this patchwork species like Grevillea (G. pluricaulis and G. pteridifolia) with their 

brightly coloured flowers are present, accompanied by a diversity of trees of the genus Acacia (A. 

lamprocarpa, A. oncinocarpa, A. leptocarpa and A. tolmerensis), that are known to have evolved some 

fire resistance, as well as Buchanania obovata, also known as wild mango (Cowie 2013). Zooming in on 

the overstorey, savannas above the 1200 mm isohyet are mostly dominated by Eucalyptus miniata and 
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Eucalyptus tetrodonta, as in this case. Both tree species belong to the larger eucalypts, reaching heights 

around 15 to 25 meters (Werner et al. 2008), and show adaptations to the prevailing dry environment 

susceptible to wildfires. Eucalyptus tetrodonta, also known as Darwin Stringybark, has a typical rough 

and compact, long fibred bark layer that persists to the smaller branches. Eucalyptus miniata, or 

Darwin Woollybutt, on the other hand has a short-fibred and somewhat stringy or flaky-papery bark 

layer that sheds from the upper part of the trunk and branches in papery flakes. As these two species 

hold more than 90% of the upper layer, Erythrophleum chlorostachys covers the other 10% (Boland  et 

al. 2006). 

 

3.3 Data 

3.3.1 NDVI data (MCD43A4) 

To quantify woody cover dynamics and their influence on the short-term stability, NDVI time series 

were created over the study area using imagery from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) satellite. More specifically, data of the MCD43A4 product were used, a 

nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectance product with a spatial 

resolution of 500 m covering the VIS (459 nm – 670 nm), NIR (841 nm – 876 nm) and SWIR spectrum 

(1230 nm – 2155 nm) (Schaaf et al. 2002). Each 8 day composite selects the highest quality value from 

both Terra (overpass time 10 a.m.) and Aqua (overpass time 13 p.m.) satellites to minimize the 

influence of cloud coverage (Brandt, Hiernaux, Rasmussen, et al. 2016). The NDVI was calculated for 

the entire study area from November 2001 to September 2016 using the red band (620 nm – 670 nm) 

and NIR band (841 nm – 876 nm) of the MCD43A4 product (Frazier 2017). The NDVI is calculated as 

the ratio of the difference over the addition of the two bands (Rouse et al. 1973): 

NDVI =  
𝜆𝑁𝐼𝑅 − 𝜆𝑅𝐸𝐷

𝜆𝑁𝐼𝑅 + 𝜆𝑅𝐸𝐷 
                   (1) 

With λNIR : the reflectance of the NIR band (841 nm – 876 nm)  

         λRED : the reflectance of the red band (620 nm – 670 nm) 

In total 687 images, covering the whole study area, were collected for analysis and were reprojected 

from the sinusoidal coordinate system to the geographic coordinate system (° latitude, ° longitude) 

with WGS84 datum. Pixels with a low quality (based on fill values and magnitude inversion criteria of 

the MCD43A2 product) (Schaaf et al. 2002) for at least one of the two bands were masked out, which 

resulted in a data loss between 28.38% and  38.57% per pixel for the entire time series.  
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3.3.2 Surface cover data (MOD44B) 

In order to gain a better understanding on the ecosystem short-term stability dynamics, additional 

datasets were consulted as possible explanatory factors. The percentage tree and bare soil cover 

within each pixel were extracted from the  MOD44B product from 2002 to 2015, i.e. the Vegetation 

Continuous Fields (VCF) Yearly L3 Global product, having a spatial resolution of 250 m. The VCF product 

is produced using 16-day Land Surface Reflectance composites with a spatial resolution of 500 m, 

covering the Terra MODIS bands 1 to 7 (459 nm – 2155 nm), the Land Surface Temperature Data using 

MODIS bands 20 (3660  nm – 3840 nm), 31 (10780 nm – 11280 nm) and 32 (11770 nm – 12270 nm), 

and the MODIS Global 250 m Land/Water Map (Townshend et al. 2011). It contains proportional 

estimates of surface cover types such as tree cover, herbaceous vegetation and  bare soil cover (Liu et 

al. 2015). These data were first reprojected from the sinusoidal coordinate system to the geographic 

coordinate system with WGS84 datum after which they were resampled to the same spatial resolution 

as the NDVI data (0.0055°), calculating the average value of surrounding pixels, in order to enable the 

comparison between the different datasets.  

 

3.3.3 Burn data (MCD45A1) 

As fire events are considered to have an important impact on the dynamics of the Australian tropical 

savannas (Beringer et al. 2015; Bristow et al. 2016), monthly burned area data were consulted as well. 

The algorithm of the MCD45A1 product with a spatial resolution of 500 m analyses Terra and Aqua 

MODIS derived daily Surface Reflectance inputs to locate rapid changes. With that information it 

detects approximate dates of burning and maps only the spatial extents of recent fire events and 

excludes fires that occurred in previous seasons or years (Boschetti et al. 2013). Burn date imagery of 

the product were collected from 1 January 2002 to 31 December 2016 on a monthly basis with lack of 

June 2001 (due to prolonged outage of the MODIS instrument). These data were converted to fire 

frequencies first per month and afterwards per year for the entire region. Afterwards these data were 

converted to WGS84 datum and were resampled to the same grid as the BRDF adjusted reflectance 

and VCF data in order to facilitate further calculations. 
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4 METHODS 

4.1 Quantifying woody cover dynamics 

In order to quantify woody cover dynamics in the Litchfield National Park, the Dry Season Index (DSI) 

was used. Tree cover products have been developed over time (e.g. MODIS) to estimate dense forests. 

Savanna ecosystems however consist of diverse patches of trees interspersed between a continuous 

layer of grasses, whereby an adapted approach is required to calculate accurately the woody cover 

changes. The DSI, developed by Brandt et al. (2016) for dryland in the Sahel, relates to the mean foliage 

density and serves as a proxy for woody cover.   

 

The main rationale behind the DSI is the fact that grasses in the tropical Australian savannas wither 

during the dry season (Figure 4.1) whereby the NDVI signal is strongly determined by the woody cover, 

that stays green the whole year through. The main idea is therefore to use the dry season NDVI as a 

proxy for woody cover. Variations in water availability during the wet season though can cause 

fluctuations in greenness of the woody cover (and thus NDVI) during the dry season. Because such 

NDVI fluctuations are not directly corresponding to woody cover changes, a correction factor must be 

added. 

 
Figure 4.1: The seasonal pattern of the NDVI shows the growth dynamics over time. At the beginning of the 
growing period (start of the wet season) the NDVI curve will slowly increase which corresponds to the start of the 
seedlings growth. Next the signal goes over in a steep increase that will gradually flatten, coinciding with the time 
of maturation, and subsequently turn into a first slow and later sharp decreasing signal that expresses the 
withering phase of the herbaceous layer. This pattern can be related to the specific climatic conditions, which in 
this study show a stark division between the dry season (April – October) and the wet season (November – March). 
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Three main components are required to calculate the DSI: the mean dry season NDVI (proxy for the 

mean foliage density during the dry season), the wet season maximum NDVI (being a proxy for the 

growing conditions and vegetation heath state during the wet season) and the base level or mean 

annual minimum NDVI value (proxy for the minimum permanent leaf coverage) (Brandt, Hiernaux, 

Rasmussen, et al. 2016). Taking the temporal resolution of the MCD43A4 product into account, the dry 

season was set from 7 April to 24 October (or 6 April  to 23 October in a leap year) and the wet season 

from 1 November to 30 March (or 31 October to 29 March in a leap year). Wet season data from 1 

November 2001 to 30 March 2002 were attributed to the DSI calculation of 2002 given the fact that 

three of the five months are situated in 2002. 

 

First of all a smoothening was performed on the wet season parts of the NDVI time series. Due to a 

higher cloud cover during the rainy season a high percentage (66.25% - 87.50%) of the pixels were 

flagged as having a low quality value and were therefore masked. To reduce the number of these 

missing and residual low quality values, a running mean over 5 images was calculated. After 

smoothening, the mean dry season NDVI was derived for each year, serving as a proxy for the mean 

foliage density over the dry season.  

 

Yet inter-annual variability in growth conditions during the wet season may cause fluctuations in dry 

season NDVI that are not related to changes in woody cover. For example, a larger water availability 

during the wet season may result in a larger dry season NDVI while woody cover remains the same. 

Hence, the dry season NDVI should be corrected for this interference. If a significant linear relationship 

(p < 0.05) between the wet season maximum NDVI and the following mean dry season NDVI was 

present, the dry season NDVI was corrected using a correction factor. This correction factor consists 

of the difference between the predicted dry season NDVI (using the linear regression between dry and 

wet season NDVI) and the reference season, represented as the mean peak over the whole time span.  

 

The minimum permanent leaf coverage without any green herbaceous influence was ensured by 

calculating the mean annual minimum dry season value.  By including this component, singular major 

events, e.g. a wildfire but also remaining sensor noise and missing data caused by clouds, were 

attenuated. Piecing all these components together, the DSI was calculated as follows: 

DSI = (DS actual +(reference DS – predicted DS) + base level DS)/2                                     (2) 

With DS actual referring to the mean dry season NDVI, reference DS to the mean peak over the whole 

time series (15 years), predicted DS to the linear regression between mean dry season NDVI and wet 
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season maximum NDVI, and lastly base level DS corresponding to the mean annual minimum NDVI. In 

case no significant linear relationship between the mean dry season NDVI and the wet season 

maximum NDVI was found, the DSI was calculated without the correction factor as follows: 

DSI = (DS actual + base level DS)/2                                         (3) 

As a final step, a running mean over 2 years (averaging the current and the previous year) was applied 

on the DSI time series to minimise uncertainties caused by data gaps introduced by missing data or the 

masking of low quality data (Brandt et al. 2016). The final DSI results are an estimation of the woody 

cover with high DSI values corresponding to a high woody cover and low DSI values to a low woody 

cover. 

 

After calculating the DSI, an analysis of (i) spatial patterns in woody cover and (ii) temporal woody 

cover changes was performed.  Spatial patterns in woody cover were explored using the  average DSI 

and its inter-annual variability over the total time span of the DSI time series (2001 to 2016). Moreover, 

in order to gain insight in differences between the DSI and existing tree cover products, the average 

and inter-annual variability of the DSI and VCF tree cover were compared. In order to define if 

significant relationships were present between both variables, correlation tests were executed at the 

pixel level. Evaluation with the t-statistic stated the relevance of these correlations based on a 

significance threshold of 0.05. Subsequently, temporal woody cover changes were quantified using a 

linear trend analysis on the DSI time series.   

 

4.2 Short-term stability  

NDVI time series can be split up in three main parts: (i) a seasonal component with a vegetation specific 

amplitude, timing and shape, related to the phenology of the vegetation and the environmental 

conditions, (ii) trends, which represent the gradual changes over time, and (iii) the anomaly, defined 

by the short-term response of vegetation biomass to environmental anomalies such as a drought and 

noise (De Keersmaecker et al. 2015; van Rooijen et al. 2015). In order to characterize the short-term 

vegetation response (stability) of this savanna ecosystem, the anomaly component needed to be 

extracted from the NDVI signal. A first step was therefore to reconstruct the seasonality by taking the 

mean NDVI value for each day of the year. After subtracting this seasonality component from the NDVI 

signal, the data were detrended, if significant trends (p<0.05) were present, resulting in the anomaly 

component of the NDVI signal. Figure 4.2 and 4.3 give a representation of this decomposition process.  
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Two stability indicators were subsequently derived from the NDVI anomaly time series: the vegetation 

variance and the vegetation resilience to climate anomalies. Firstly,  vegetation variance was defined 

as the standard deviation of the NDVI anomaly signal. Higher absolute values of the standard 

deviations correspond to higher fluctuations, or climate anomalies, over time, whereas lower absolute 

values indicate that the data points tend to be close to the average value of the time series. From an 

ecological perspective it can therefore be said that high standard deviations point to a higher 

susceptibility of the system towards changes or climate anomalies. Secondly, the autocorrelation at 

lag-1 was calculated to define the speed of the recovery rate or vegetation resilience of the system. 

The autocorrelation at lag-1 is a metric that measures the relationship between a variable’s current 

value and its past values, and thus how much they are related. The size of the absolute value is in line 

with the traditional correlation, saying that higher absolute values indicate a higher resemblance (in 

case of a positive value)/perfect contrast (in case of a negative value) between the two time series. At 

an ecological point of view it can thence be understood that higher positive autocorrelation values 

indicate a slower recovery after a disturbance or change and thus a lower vegetation or ecosystem 

resilience. 

 

Next to deriving the two stability metrics over the entire time span in order to assess the short-term 

stability of this savanna ecosystem and its drivers, stability changes were assessed by comparing 

changes in the stability metrics over the first (November 2001 - December 2008) and second half 

(January 2009 - September 2016) of the time series. Subdividing these results in positive and negative 

changes and combining both indicators allowed to make a division in four classes according to the 

overall trends: (1) both autocorrelation and standard deviation increase between the two time periods, 

(2) the autocorrelation decreases and the standard deviation increases, (3) the autocorrelation 

increases and the standard deviation decreases, and (4) both indicators decrease. 
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Figure 4.2: An NDVI time series for pixel (13.1715 °S, 130.7630 °E), masked for low quality values, and its 
seasonality component, calculated as the mean NDVI value of every day of the year. There is a striking difference 
in presence of data points between the wet and dry season noticeable. 

 

Figure 4.3: Further decomposition of the anomaly and trend components of the NDVI time series of pixel at 
13.1715 °S and 130.7630 °E, masked for low quality values. In this case, a significant positive trend needed to be 
subtracted from the already deseasonalized NDVI signal to highlight the anomaly signal. 

 

4.3 Linking woody cover and ecosystem’s short-term stability 

The objective of this master thesis research is to investigate if and in what way woody cover dynamics 

influence the short-term stability, or more specifically the vegetation resilience and variance, of the 

Australian savannas. As mentioned in the literature review, this ecosystem knows more ecological 
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drivers than just woody biomass growth. That is why not only woody cover dynamics were taken into 

account but also the impact of bare soil and fire events. Both spatial and temporal comparisons were 

made between all the different datasets.  

 

Again, correlation tests were conducted between the two short-term stability metrics and the average 

DSI over time, the average bare soil cover over time and the total frequency of fire events to compare 

temporal variations at the pixel level. Secondly, in order to identify the determining factors of the 

short-term stability indicators, a multivariate linear regression analysis was performed on both stability 

indicators as response variables and with the average DSI, the average bare soil coverage and the total 

frequency of fire events as predictor variables: 

Stability = 0 + 1*DSI + 2*Fire Frequency + 3*Bare Soil                         (4) 

With Stability: the autocorrelation or standard deviation of the NDVI anomaly 

         0: the estimated intercept 

         1: the estimated regression coefficient of the DSI 

         2: the estimated regression coefficient of the fire frequency 

         3: the estimated regression coefficient of the VCF bare soil cover 

In order to prevent correlated results, a systematic sampling strategy was applied that selected one 

pixel out of every 5 x 5 subsample in the total study area and was repeated 25 times. Histograms of 

the significant estimates and the total Root Mean Square Error (RMSE) of the model were plotted and 

the mean values were calculated. Given the mutual variability in significance, percentages of repeats 

with a significant p value were provided for each predictor variable. 

 

To assess the effect of multicollinearity in this model, the variance inflation factor (VIF) was calculated. 

Multicollinearity occurs when predictor variables are highly correlated with other predictor variables, 

which complicates the eventual interpretation of the results of the model. This VIF is calculated as 

follows: 

VIFi =
1

1−Ri
2  

With Ri² the coefficient of determination from a regression of predictor i on the remaining predictors. 

A VIF of one corresponds to no multicollinearity among the predictor variables (Martz 2013). When 

the variation of a predictor is on the other hand largely explained by a linear combination of the other 

predictors, Ri² is close to 1, and the VIF for that predictor is correspondingly large. Generally there is a 
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threshold set that a VIF between 1 and 5 corresponds to moderately correlated predictor variables. If 

the VIF exceeds 5, there exists a real problem of multicollinearity as predictor variables are highly 

correlated and so the model contains redundant variables.   

  

To observe the temporal stability changes and its determining factors, a multinomial logistic regression 

analysis (Krishnapuram et al. 2005) was performed on the categoric stability change classes (i.e. using 

four classes indicating combined increases and decreases in autocorrelation and standard deviation) 

with the DSI, burn frequency and VCF bare soil coverage as predictor variables. Characteristic to a 

multinomial logistic regression is that the response variable is expressed as a comparison of the 

categories (classes) to one reference category. As there are four categories in this case, three linear 

relationships will be calculated with the three categories over one reference category as response 

variable. The estimates of these relationships express the effects of the predictor variables on the log 

odds of being in one category versus the reference category. A positive value of one of the predictor 

variables indicates that the probability of being in the first category is the exponential of that positive 

value higher than being in the reference category, whereas negative values express a higher probability 

to be situated in the reference category. Here the reference category was set as the negative trends 

for both short-term stability metrics. Again the systematic sampling strategy was applied that selected 

one pixel out of every 5 x 5 subsample in the total study area and was repeated 25 times. 
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5 RESULTS 

5.1 Woody cover estimation 

Woody cover estimations based on the DSI calculation were made at an annual scale for the years 2002 

to 2016. The next subsections aim for a deeper understanding and better view on the spatial patterns 

and temporal changes in woody cover of the Litchfield National Park.  

 

5.1.1 Spatial patterns 

Over the total spatial extent of the study area in Litchfield National Park, the average estimated woody 

cover (2002–2016) varies between a DSI of 0.2461 and 0.5685 with an overall mean DSI (± standard 

deviation) of 0.3794 ± 0.0168. At first sight there are two patches visible with higher woody cover, 

one in the mid to south west border and one at the top in the middle (Figure 5.1, a). Woody cover in 

these areas ranges roughly between a DSI of 0.45 and 0.55 with the maximum coverage at 13.4135 °S, 

130.7792 °E. The two zones are separated by a passage of lower woody cover that starts at the north 

west corner and proceeds to the mid to south east corner. The area with the least amount of woody 

coverage is situated at 13.4410 °S, 130.8926 °E. Looking at the variability of the DSI over the years 

(Figure 5.1, b), values fluctuate between 0.0057 (1.50% of the mean DSI) and 0.0450 (11.86% of the 

mean DSI). Areas with the highest inter-annual variability in DSI are situated around the 13.14 °S 

latitude.  

a)           b) 

 

Figure 5.1 (a): Average DSI values for the total study area over the years 2002 to 2016. The higher the DSI, the 
higher the woody cover percentage; (b): The standard deviation gives a representation of the variability of the 
DSI over time. Lower values indicate small fluctuations over the years, whereas higher values indicate larger 
fluctuations.   
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5.1.2 Comparison with VCF tree cover product 

The average tree cover over the 2002-2015 time span derived from the VCF tree cover product shows 

spatially similar patterns to the DSI  (Figure 5.2, a). An overall average tree cover percentage is 

estimated at 10.83% ± 3.55%. Focusing on the standard deviation term (Figure 5.2, b), the spatial 

patterns here differ greatly from the DSI estimated inter-annual variability. Whereas they did not show 

many differences in the previous situation, they show now a spatial pattern that almost completely 

follows the DSI and VCF tree cover patterns. Areas where woody cover and tree cover are higher 

correspond to areas with a standard deviation varying roughly between 0.72% (6.65% of the mean VCF 

tree cover) and 9.00% (83.10% of the mean VCF tree cover). 

a)            b) 

   

Figure 5.2 (a): Average tree cover values, according to the MOD44B VCF MODIS product, for the total study area 
over the years 2002 to 2015. Together with the bare soil cover product and non-tree cover product, they sum up 
to 1, corresponding to 100% coverage; (b): The standard deviation gives a representation of the variability of the 
tree cover over time. Spatial patterns resemble greatly to the spatial patterns of the DSI (see Figure x, a) and tree 
cover product. 

 

The average DSI woody cover estimation and the average VCF tree cover product show a significant   

positive correlation over the years with a coefficient of 0.47. The scatter plot and the histograms of 

both woody cover estimations are presented in Figure 5.3. 
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a)          b)         c) 

 

Figure 5.3 (a): The histogram of the average DSI from 2002 to 2016; (b): Plotting the average VCF tree cover 
product and the average DSI displays a positive relationship between both variables with a correlation coefficient 
of 0.4741 (p = 1.50E-155); (c): The histogram of the average VCF tree cover product from 2002 to 2015. 

 

5.1.3 Temporal patterns 

Trend analysis of the DSI woody cover estimations shows for some pixels a clear trend from 2002 to 

2016 (Figure 5.4). The highest R² values (Figure 5.4, a) are located in the centre of the region with the 

maximum value of 0.8864 at 13.3255 °S, 130.8278 °E. Most of the trends (Figure 5.4, b) show small 

increments to maximally a DSI of 0.0087 (2.29% of the mean DSI), whereas some single pixels and 

clusters around the 13.14 °S and 13.36 °S latitude show very small decreasing trends up to a DSI of         

-0.0052 (1.37% of the mean DSI). 

a)           b) 

    

Figure 5.4 (a): The R² values are plotted in case a significant trend of the DSI between 2002 and 2016 was present. 
At first sight there are more significant trends present in the upper parts of the study region; (b): The regression 
coefficients of the trends are plotted in case a significant trend of the DSI between 2002 and 2016 was present. 
Positive values indicate an increment in woody cover over time whereas negative values correspond to a decrease. 
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5.2 Short-term stability 

The short-term stability of the Litchfield National Park savanna ecosystem is in this study described by 

the autocorrelation and standard deviation of the anomaly signal of the NDVI time series from 

November 2001 to September 2016. Spatial patterns and temporal changes of both stability indicators 

are assessed in this subsection. 

 

5.2.1 Autocorrelation 

The autocorrelation at lag-1 of the NDVI anomaly  -  a first measure of the short-term stability - shows 

values fluctuating between 0.504 and 0.892 (Figure 5.5) with an average value of 0.788. In the study 

area there are four spots that reveal a higher autocorrelation: a minor cluster in the north (A), a larger 

patch a bit more south (B), a more diverse patch in the south west corner (C) and lastly a large area on 

the eastern border (D). These high autocorrelation values point to a slow recovery of the vegetation 

after possible disturbance events given that the similarity between the current and past NDVI anomaly 

is high. These areas have thus a low resilience. Autocorrelation values below the average value, 

corresponding to regions with a faster recovery speed and so a higher resilience, are situated in the 

north west to south east diagonal of the study area. 

 

Figure 5.5: The autocorrelation of the NDVI anomaly time series is used as an indicator of the resilience of the 
savanna system. The higher the autocorrelation, the lower the resilience of the ecosystem as it corresponds to a 
longer recovery time. 
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5.2.2 Standard deviation 

The standard deviation of the NDVI anomaly - a second indicator for the short-term stability of the 

system - varies between 0.024 and 0.060 with an overall average value of 0.040 for the total area. 

Figure 5.6 displays three spots (region A, B and C) with a higher standard deviation, revealing that the 

vegetation in these regions is more susceptible to disturbance or change events and as a consequence 

reacts stronger than less susceptible areas. Region B is surrounded by a cloud of lower standard 

deviations that merge in the centre of the image and follow a trail to the south east corner. This means 

that the vegetation in these areas is less susceptible to climate anomalies. Region D is this time 

characterized by above average standard deviations but does not show maximal values as for the 

autocorrelation. 

 

Figure 5.6: The standard deviation of the anomaly signal of the NDVI time series is a second metric for the short-
term stability of the study region. The higher the standard deviation, the higher the temporal NDVI anomaly 
fluctuations and so the more susceptible the vegetation is in that area to disturbances. 

 

5.2.3 Comparison short-term stability metrics 

When comparing the autocorrelation (Figure 5.5) and standard deviation (Figure 5.6) of the NDVI 

anomaly signal, similar spatial patterns appear for both metrics. Yet, differences can be noticed on the 

eastern side of the study area (region D). Autocorrelation scores fairly high, indicating that it takes a 

lot of time for the vegetation to recover after disturbance events or changes. The standard deviation 

on the other hand shows no maximum values,  indicating that the vegetation in this region is less 

susceptible to changes or disturbances than in the areas A, B or C. The high spatial comparison 

translates itself in a high positive correlation coefficient of  0.68 between the two short-term stability 

indicators (Figure 5.7).  
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a)       b)           c) 

  

Figure 5.7 (a): The histogram of the average autocorrelation from November 2001 to September 2016; (b): 
Plotting the average autocorrelation versus the average standard deviation displays a high positive relationship 
between both variables with a correlation coefficient of 0.6765 (p = 0); (c): The histogram of the average standard 
deviation from November 2001 to September 2016. 

 

Splitting up the data in the first (November 2001 – December 2008) and second half (January 2009 -

September 2016) of the time series in order to observe temporal stability changes, and calculating the 

difference between both, results in an overall increasing trend of 0.0152 for the autocorrelation (Figure 

5.8, a) and 0.0043 for the standard deviation (Figure 5.8, b). An increase in autocorrelation corresponds 

to a slower recovering vegetation and makes it therefore more susceptible to changes or disturbances. 

The increasing standard deviation confirms this hypothesis as it indicates a higher susceptibility and/or 

stronger reaction of the vegetation. Patterns for the autocorrelation show diverse patches that 

increase over the second half of the total time span with the highest increases on the east side of the 

study area at a latitude of 13.16 °S and 13.42 °S. The standard deviation of the NDVI anomaly signal 

shows also most increases at the 13.16 °S latitude as well as around the 13.36 °S latitude. Notable 

decreases in the autocorrelation and standard deviation, corresponding to a more resilient and less 

susceptible ecosystem respectively, are located mostly on the west side and the south east corner of 

the study area. 
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a)           b) 

   

Figure 5.8 (a): Difference between the autocorrelation of the first half (November 2001 – December 2008) and 
second half (January 2009 – September 2016) of the time series. Positive values correspond to an increase in 
autocorrelation over time, whereas negative values to a decreasing autocorrelation over time; (b): Difference 
between the standard deviation of the first half and second half of the time series. Positive values correspond to 
an increase in standard deviation over time, whereas negative values to a decreasing standard deviation over 
time.   

 

Plotting the stability change classes (Figure 5.9) indicates that more than half of the study area 

(53.72%) increases in autocorrelation and standard deviation between the first (2001-2008) and 

second half (2009-2016) of the time series. 24.77% shows a decreasing autocorrelation trend and an 

increasing standard deviation, 16.07% reveals a decreasing trend in both indicators and only 5.44% 

shows a decreasing standard deviation and increasing autocorrelation signal over time. 
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Figure 5.9: Four categories can be made from the combination of the autocorrelation and standard deviation 
trends between the first (2001-2008) and second (2009-2016) half of the time series. 53.72% of the study area 
increases in both autocorrelation and standard deviation (yellow), 24.77% decreases in autocorrelation and 
increases in standard deviation (green), 16.07% decreases for both indicators (blue) and lastly 5.44% decreases 
in standard deviation and increases in autocorrelation (magenta). 

 

The spatial patterns of the stability change classes (Figure 5.10) display a domination of the increasing 

trends of both autocorrelation and standard deviation, corresponding to a decreasing vegetation 

resilience and higher susceptibility to climate anomalies. Decreasing trends of both indicators, so a 

higher resilience and lower susceptibility of the ecosystem, are mostly visible on the west side of the 

study area and in the south east corner. Areas with a decrease in autocorrelation and increase in 

standard deviation are mostly located on the east side of the study area, but show also a fairly 

scattered pattern. Areas with a decreasing standard deviation and increasing autocorrelation between 

the two time periods cover the smallest area with a concentration around the 13.32 °S latitude.  
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Figure 5.10: Four categories can be made from the combination of the autocorrelation and standard deviation 
trends between the first (2001-2008) and second (2009-2016) half of the time series. Yellow areas indicate an 
increase in both metrics, green marks the areas with a decrease in autocorrelation and an increase in standard 
deviation, blue the areas with a decrease for both metrics, and magenta an increase in autocorrelation and a 
decrease in standard deviation. 

 

5.3 Linking woody cover and ecosystem’s short-term stability 

The aim of this thesis research is to gain a deeper understanding on the relationship between woody 

cover dynamics and the ecosystem’s short-term stability. Therefore spatial and temporal patterns of 

both variables are compared and analysed. Furthermore, the dynamics of fire frequency and bare soil 

coverage in the area are also looked into in this subsection as possible extra explanatory variables of 

the ecosystem’s short-term stability dynamics. 

 

5.3.1 Spatial patterns 

Comparing the spatial patterns of both short-term stability metrics, namely the autocorrelation (Figure 

5.5) and standard deviation (Figure 5.6) of the NDVI anomaly signal, and the average DSI (Figure 5.1, 

a) over the total time span (November 2001 – September 2016) shows some interesting similarities 

and contrasts. The areas that show a higher DSI value (region A, B and C) correspond to the higher 

autocorrelation and standard deviation regions. Remarkably, the region around 13.4190 °S, 130.7684 

°E which appears to have one of the highest average DSI values, shows lower values for both metrics 

and goes so against the recently stated hypothesis. A second contrast to be noticed is region D on the 

east side that has one of the highest autocorrelation values and a high standard deviation, but shows 

exclusively low to average DSI values. Plotting the DSI against both indicators displays a significant 
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positive relationship between the DSI and the standard deviation (Figure 5.11, a) with a correlation 

coefficient of 0.15 and a significant negative relationship between the DSI and the autocorrelation 

(Figure 5.11, b) with correlation coefficient -0.12. 

a)         b) 

 

Figure 5.11 (a): There exists a positive relationship between the DSI and the standard deviation with a significant 
(p<0.05) correlation coefficient of 0.1491 (p = 2.87E-15). The DSI versus the autocorrelation reveals a negative 
influence on each other with a significant (p: 4.88E-10) correlation coefficient of -0.1178. 

 

Given that the DSI does not completely explain the spatial patterns of the stability metrics, spatial 

patterns of fire frequency and bare soil coverage are also examined. When observing the fire frequency 

of the area over the total time series (Figure 5.12, a), it is striking that there exists a large contrast 

between areas that did not burn the entire time whereas other areas burned up to 16 times in the 15 

year time span.  The area showing a low fire frequency further coincides with a bare soil coverage 

above roughly 20% (Figure 5.12, b). The overall mean bare soil coverage for the total study area is 

10.39% ± 5.59%. 

a)          b) 

  

Figure 5.12 (a): The total amount of fire events that took place in the area between 2002 and 2016 ranges 
between 0 and 16; (b): The average VCF bare soil coverage over the total area from 2002 to 2016 shows higher 
bare soil coverage at the diagonal from the north west corner to the south east border. 
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A comparison between the fire frequency from 2002 to 2016 (Figure 5.13) and the short-term stability 

indicators shows more or less resembling spatial patterns between the three. This is expressed in the 

significant positive correlation coefficients of 0.45 for the standard deviation and 0.31 for the 

autocorrelation. Again a higher correlation is at stake for the standard deviation metric than for the 

autocorrelation. 

a)         b) 

   

Figure 5.13 (a): Scatterplot of the standard deviation (2001-2016) and the fire frequency from 2002 to 2016 
displays a positive relationship between both variables with a significant (p = 8.05E-142) correlation coefficient 
of 0.4549; (b): The fire frequency from 2002 to 2016 has a positive effect on the autocorrelation (2001-2016) with 
a significant (p = 6.20E-64) correlation coefficient of 0.3125.   

 

A scatter plot between the VCF average bare soil cover and the two short-term stability indicators 

(Figure 5.14) illustrates two times a negative relation. The correlation coefficient for the relationship 

between the average bare soil coverage and the standard deviation is -0.45, and for the relationship 

with the autocorrelation it returns a correlation coefficient of -0.32. Comparing these correlation 

coefficients with those of the fire frequency and the stability indicators reveals almost completely 

contrasting results. Whereas the fire frequency had a positive relationship with the standard deviation 

of 0.45, the VCF bare soil cover has a negative relationship of -0.45. Similar for the autocorrelation, the 

absolute values of the relationship versus the fire frequency and versus the bare soil coverage are 

almost alike, but differ in sign. 
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a)            b) 

   

Figure 5.14 (a): The average bare soil (2002-2015) shows a negative relationship with  the standard deviation 
(2001-2016) with a significant (p = 2.54E-140) correlation coefficient of -0.4527; (b) The average bare soil cover 
(2002-2015) has a negative impact on the autocorrelation (2001-2016), as the significant (p = 1.38E-66) 
correlation coefficient is here -0.3188. 

 

Now that the potential driving factors of the ecosystem’s short-term stability have been characterised, 

a multivariate linear regression model is defined for each of the stability indicators. Figure 5.15 displays 

the distribution of all the significant (p<0.05) estimates and the overall mean estimate of every 

predictor variable on the autocorrelation. From this it can be observed that both the DSI and bare soil 

coverage have a negative impact on the autocorrelation whereas the fire frequency has a positive 

effect on the autocorrelation. From an ecological perspective it can thus be said that the DSI and bare 

soil make the ecosystem more resilient as they fasten the recovery speed of the vegetation whereas 

the fire frequency increases the recovery time of the vegetation and so makes it less resilient. For this 

model the VIF values ranged between 6.69 and 377.92, marking highly correlated predictor variables. 

a)        b) 
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c)        d) 

      

Figure 5.15 (a): Distribution of the significant (p<0.05) estimated intercepts for the autocorrelation and the overall 
mean value; (b): Distribution of the significant estimated DSI predictor variables and its overall mean value; (c):  
Distribution of the significant estimated fire frequency predictor variables and its overall mean value; (d): 
Distribution of the significant estimated bare soil predictor variables and its overall mean value. 

 

In the case of the standard deviation, the distributions of the DSI and fire frequency illustrate a positive 

effect on the standard deviation whereas only bare soil shows to have a decreasing effect on the 

standard deviation. So, the DSI and fire frequency increase the susceptiblity of the vegetation whereas 

the bare soil coverage strengthens the ecosystem and makes it more insensitive to changes or 

disturbances. The distributions of all the estimates of the predictor variables are presented in Figure 

5.16. Table 5.1 gives for every predictor variable the percentage of repeats with a significant (p<0.05) 

estimated value and Figure 5.17 illustrates the distribution of the Root Mean Square Errors (RMSE) of 

both models and their mean value. Also this time the VIF values of the predictor variables indicate a 

high correlation between the predictor variables as they range between 5.85 and 113.64.  

a)         b) 
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c)        d) 

   

Figure 5.16 (a): Distribution of the significant (p<0.05) estimated intercepts for the standard deviation and the 
overall mean value; (b): Distribution of the significant estimated DSI predictor variables and its overall mean 
value; (c):  Distribution of the significant estimated fire frequency predictor variables and its overall mean value; 
(d): Distribution of the significant estimated bare soil predictor variables and its overall mean value. 

 

Table 5.1: For every variable of the autocorrelation and standard deviation models the percentage of repeats with 
a significant p value (p<0.05) are represented. 

 Percentage significant 

 Autocorrelation Standard deviation 

Estimated intercept 100% 100% 

Estimated DSI 76% 68% 

Estimated Fire frequency 84% 100% 

Estimated Bare soil 100% 100% 

 

a)                b)

        
Figure 5.17 (a): Histogram of the RMSE’s for the 25 repeats of the multivariate linear regression model with the 
autocorrelation as response variable; (b) Histogram with the RMSE’s for the 25 repeats of the multivariate linear 
regression model of  the standard deviation. 
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5.3.2 Temporal patterns 

As clear differences are noticed between the stability metrics over the first and second half of the time 

series (Figure 5.8), a closer look was also taken into the temporal trends of the predictor variables. The 

changes in the DSI (Figure 5.18, a) vary from increments up to 0.0068 to decreases up to -0.045, with 

both extremes located in the north west. The area with maximal positive change is surrounded by 

several patches that also show increases whereas the north east corner is characterized by decreasing 

DSI trends over time. Woody cover in the southern areas changes in smaller proportions and shows a 

more scattered pattern. The VCF bare soil coverage (Figure 5.18, b) shows over the total extent a higher 

percentage of pixels where the bare soil coverage increased over time. Though, a larger patch of 

decreasing bare soil trends is visible on the eastern border of the study area. Figure 5.18, c reveals a 

noticeable higher amount of fire events (3 to 7) on the east side of the study area for the second time 

period. Two spots on the left at the 13.16 °S and the 13.36 °S latitude also show more fire events 

between 2009 and 2016 than between 2002 and 2008. Patches were less fire events found place in 

the second time period are more dispersed over the total study area.  

a)           b) 
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c) 

 

Figure 5.18 (a): The difference in DSI displays the woody cover trend between two time intervals (2001-2008 and 
2009-2016) for every pixel. Positive values indicate an increase in woody cover between the two time periods 
whereas negative values represent a decreasing woody cover; (b): The difference in VCF bare soil coverage reveals 
the increasing or decreasing trend of bare soil coverage between the time periods 2002-2008 and 2009-2015 for 
every pixel; (c): The difference in fire frequency displays the increasing or decreasing trend in amount of fire events 
between the two time periods (2002-2008 and 2009-2016) for every pixel. 

 

Putting all these variables in a multinomial logistic regression allows to get an idea how the predictor 

variables have an influence on the temporal trends of the autocorrelation and standard deviation. The 

estimates express the effects of the predictor variables on the log odds of being in one category versus 

the reference category. It must be noted though that in this situation (Table 5.2) conclusions have to 

be made with caution as the obtained results have changing reliabilities. For some variables even no 

conclusions can be made as there were no replications with a p value below the significance threshold 

of 0.05. For the DSI it can stated with a reliability of 36% that the estimated coefficient of -4.6851 

indicates that the probability of being in the first category (increasing autocorrelation and standard 

deviation) compared to the probability of being in the third category (decreasing autocorrelation and 

standard deviation) decreases exp(-4.6851) times for each unit increase in DSI, given all else equal. 

When comparing the second category (decreasing autocorrelation and increasing standard deviation) 

and the third category, again a higher probability of being in the third category is at stake. The intercept 

on the other hand has in both situations, so first category versus third category and second category 

versus third category, a higher probability with each unit increase for the non-reference category. 

Comparing the response variables mutually, there exists a lot of variation in reliability. The estimated 

coefficients of fire frequency and bare soil only receive a maximal reliability of 8%.  
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Table 5.2: Multinomial logistic regression analysis with the DSI, fire frequency and bare soil coverage as predictor 
variables and the categories of combined autocorrelation and standard deviation trends as response variables.  
A+ corresponds to an increasing autocorrelation trend between the first (2001-2008) and second (2009-2016) 
time period, A- to a decreasing autocorrelation trend. SD+ expresses an increasing standard deviation and SD- a 
decreasing standard deviation over time. The percentage of repeats with a significant p value (p<0.05) according 
to the t-statistic is first presented for every predictor variable and the intercept, followed by the mean estimate, 
the standard error (SE) and the t-statistic. Positive estimates correspond to a higher probability of being in the 
category of the numerator whereas negative estimates correspond to a higher probability of being in the category 
of the denominator. 

  Intercept DSI Fire Frequency Bare Soil 

𝐀+, 𝐒𝐃 +

𝐀−, 𝐒𝐃 −
 

Percentage 72% 36% 8% 0% 

Estimate 3.5083 -4.6851 -0.2000  

SE 1.1051 1.9743 0.0792  

t-Statistic 3.3028 -2.3502 -2.5281  

𝐀−, 𝐒𝐃 +

𝐀−, 𝐒𝐃 −
 

Percentage 64% 60% 8% 0% 

Estimate 3.9246 -5.8653 -0.1844  

SE 1.0913 2.0648 0.0836  

t-Statistic 3.6902 -2.8165 -2.2095  

𝐀+, 𝐒𝐃 −

𝐀−, 𝐒𝐃 −
 

Percentage 0% 0% 4% 8% 

Estimate   -0.1814 -14.8739 

SE   0.0833 5.9820 

t-Statistic   -2.1782 -2.4870 
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6 DISCUSSION 

6.1 Woody cover estimation  

This study assesses the woody cover dynamics in Litchfield National Park using the Dry Season Index 

(DSI). With the ongoing climate change, future prospects of this national park, situated in the 

Australian tropical savannas, are to a large extent depending on the relationship between woody cover 

and the ecosystem’s short-term stability (Hughes 2003; IPCC 2014; Brandt et al. 2016). This study aims 

to provide insight in this relationship.  

 

The DSI is introduced by Brandt et al. (2016) as an improved proxy for woody cover by including 

vegetation metrics covering various stages of the growing season cycle. Choosing a high temporal 

resolution for the assessment of woody cover is considered to be a valuable asset in semi-arid to arid 

regions where vegetation is marked by a phenological cycle that is driven by the interaction of a dry 

and wet season (Brandt et al. 2016). In the area that is subject of this study, the climate is known to 

have a highly seasonal character with summer monsoons that involve high inter-annual variabilities in 

rainfall seasonality and intensity, and high air temperatures (Bowman & Prior 2005). As a consequence, 

the availability of relevant data that are not affected by clouds, varies. In particular for the wet season, 

66.25% to 87.50% of the data in this study were labelled as low quality data. As the DSI takes both dry 

season and wet season into account, smoothening and interpolation was needed to reduce the 

influence of these missing and low quality data.  

 

6.1.1 Spatial patterns 

Tropical savannas thrive by the constant interaction between disturbance events like fires and cyclones 

and its consecutive recovery. Within such dynamic ecosystem, regional variations in woody cover can 

occur. According to the average DSI over the total study area, there are two regions in Litchfield 

National Park where woody cover is roughly a DSI of 0.10 to 0.20 higher than the overall mean DSI of 

0.3794. The environmental elements summed below, are identified as major influential factors to this 

regional variation in woody cover. Fire is a first important driver in woody cover dynamics. Although 

intense fires have the power to decimate patches of trees and growing seedlings, simultaneously a lot 

of savanna tree species feature physical characteristics adapted to the frequent occurrence of fire. In 

Litchfield National Park eucalypts dominate the upper storey and are characterized by a specific bark 

layer that protects them against fire events (Lawes et al. 2011). A second important explanatory factor 

of the regional variation in woody cover is the rainfall gradient, increasing from the south to the north 

of the park (Lawes et al. 2011). Thirdly, variability in soil type and rain water redistribution patterns 
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have also been put forth as contributing factors (Brandt et al. 2016). Moreover, in a study on the impact 

of feral buffalo on woody cover growth in Kakadu National Park, 170 km east of Litchfield National 

Park, Bowman et al. (2008) concluded that buffalos had a minor influence on the woody cover 

dynamics. For eucalypt savannas, the presence of buffalos, be it in low densities, was found to yield 

the highest canopy cover increases. A last explanatory factor was found from mapping the digital 

elevation model from NASA’s Shuttle Radar Topography Mission (SRTM) imagery with a spatial 

resolution of  90 m (Figure 6.1) (Tom et al. 2008). The spatial patterns of this elevation model rise the 

assumption that the higher woody cover areas are located on areas were topography is less complex 

and so more gentle. Furthermore, it is also possible that there exist interactions between some of 

these factors, for example that buffalos are more present at certain altitudes or that they mostly graze 

at gentle sloping areas. 

 

Figure 6.1: Digital elevation model from NASA’s SRTM imagery of the study area in Litchfield National Park, 
ranging from 32 metres to 229 metres. 

 

6.1.2 Comparison with VCF tree cover product 

Comparing the average DSI and average VCF tree cover product over the total extent of the study area 

in Litchfield National Park reveals highly resembling spatial patterns. Both variables assess the woody 

cover of the study area but are expressed in a different way. The VCF tree cover product, as part of a 

surface cover product, assesses the percentage of tree cover in the area. The DSI is not expressed as a 
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cover percentage, but as a unitless index related to woody cover (i.e. the DSI increases when woody 

cover rises). Apart from the different ways in expression, there is also a distinction to be noticed in 

what they exactly measure. While the DSI is developed to be a proxy for woody cover in semi-arid 

regions (Brandt et al. 2016), the VCF tree cover product only detects tree canopies above 5 metres and 

does not take woody canopies of small trees, shrubs and bushes into account (Hansen et al. 2002; 

Townshend et al. 2011). This causes a fair underestimation of the total woody cover present in the 

Litchfield National Park when solely relying on the VCF tree cover product. Similar observations were 

found in the study of Brandt et al. (2016) for their study sites in Senegal and Mali. The VCF tree cover 

product is hence developed to detect deforestations or increments of tree canopies in (dense) forests. 

Savannas on the other hand are typically characterized having a continuous layer of grasses and herbs, 

interspersed with patches of trees and shrubs, and are therefore not at all dense. This discontinuous 

layer is however considered very important to savanna ecosystems as they define for the largest part 

the productivity of this ecosystem (Brandt et al. 2016).      

 

The inter-annual variability of the VCF tree cover and DSI woody cover estimates exposes a higher 

susceptibility to changes of the VCF tree cover product compared to the DSI. The ratios of the standard 

deviations over the overall mean value have not only a wider range but reach also a higher maximum 

for the VCF tree cover. This higher variability can largely be attributed to the inter-annual smoothening 

process that was performed on the DSI calculations and not on the VCF tree cover product. Going over 

all the years separately, DSI values fluctuate little around the average value and spatial patterns do not 

change that much, whereas VCF tree cover percentages fluctuate heavily and reveal changing spatial 

patterns almost every year. Additional explanations for this fickle behaviour can be the difference in 

temporal resolution between both variables and possible confusion with a dense mid-storey of lower 

lying shrubs and palms (MODIS Land Team 2016). A lower temporal resolution (16 days against 8 days) 

causes a higher uncertainty which in this situation results in a higher variability of the end product.  

 

6.1.3 Temporal patterns  

Over the total study area only 25.26% of the pixels show a significant trend in woody cover (DSI) over 

the total time series (2002-2016), varying from a loss of woody cover (5.54%) up to a DSI of -0.0052 to 

an increasing DSI (19.72%) of 0.0087. Increases in foliage density may be attributed to a combination 

of driving factors that steer this tropical ecosystem. Firstly, variability in climate, as a consequence of 

climate change and of the El Niño Southern Oscillation periodical variation, causes high inter-annual 

variability in rainfall. However, an overall increasing trend in rainfall across Australia has been 

witnessed over the past century. Across northern Australia however, this tendency has been more 
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outspoken as of the 1970’s period (Figure 6.2, a) (Bowman et al. 2001; Hughes 2003). This higher 

rainfall is the result of an increment in the number of rain days and heavy rainfall events. Besides an 

increase in rainfall, annual temperatures have also been found to increase since the past century 

(Figure 6.2, b), although less outspoken than the rainfall increase (Hughes 2003).  

 

Secondly, changes in fire regime with cessation of the Aboriginal landscape burning practices and 

introduction of controlled burning programs (Bowman et al. 2001) are put forth as one of the primary 

causes (Lehmann et al. 2009; Laurance et al. 2011). Fires can have a destructive force, or in cases of 

low intensity destroy the herbaceous layer which allows a quick regrowth or further expansion of tree 

seedlings, fuelled by the extra nutrients of the ashes. Murphy et al. (2014) however warn that high fire 

frequencies or intense fires are able to destroy all vegetation, including upper woody cover layers, and 

hereby reverse the woody thickening trends. An additional danger that can contribute to this reverse 

in woody cover is the alarming spread of invasive weeds and grasses like Gamba grass (Andropogon 

gayanus). Besides transforming fire regimes, they are also able to alter other fundamental ecosystem 

attributes such as carbon storage and nitrogen cycling (Laurance et al. 2011). 

 

Furthermore, the overall rising CO2 level has also been listed as a contributing factor of vegetation 

growth in water limited environments (Donohue et al. 2009). Elevated CO2 levels namely reduce the 

stomatal conductance and hereby enhance the water use efficiency of plant species (Hughes 2003), 

mitigating survival in drier conditions. Increases in CO2 level can also be linked with fire as they increase 

the fuel load through enhancement of the primary productivity (Donohue et al. 2009). The magnitude 

of this increasing plant growth phenomenon, also referred to as ‘CO2 fertilization effect’, is however 

strongly dependent on the availability of water and nutrients like nitrogen and phosphorus, and causes 

therefore some uncertainty (Hughes 2003).  

 

Given that increases in woody cover (DSI) in the study area are (i) occurring more frequently (19.72% 

versus 5.54%) and (ii) larger in magnitude than losses of woody cover (up to 2.29% against 1.37%), are 

an indication that woody thickening is taking place in Litchfield National Park. The overall results of a 

slight increase in woody cover correspond to the observations of Lehman et al. (2009) in their study 

on Kakadu National Park and of Murphy et al. (2014) studying woody biomass dynamics in Kakadu, 

Nitmiluk and Litchfield National Park, in which both only remark little net changes in woody biomass.  
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Figure 6.2 (a): Trend in annual rainfall of the Northern Territory between 1970 and 2015, expressed in mm per 10 
years. The study site, situated in Litchfield National Park, is marked by a red star; (b): Trend in mean temperature 
of the Northern Territory between 1970 and 2016, expressed in °C per 10 years. The study site is again marked by 
a red star. 

   

6.2 Impact of woody cover on ecosystem’s short-term stability 

6.2.1 Spatial patterns 

In order to characterize the short-term stability of the Australian tropical savanna ecosystem, time 

series of the DSI and of the autocorrelation and standard deviation of the NDVI anomaly were 

investigated on a spatial and temporal level across our study area in Litchfield National Park. As stability 

may be driven by other variables besides the woody cover (DSI) , both fire frequency and bare soil 

coverage were added as extra explanatory factors. From the multivariate linear regression model and 

the mutual correlation plots (Figure 5.11),  a positive relationship between woody cover (DSI) and the 

variance (standard deviation of the NDVI anomaly) of the ecosystem can be observed. So this means 

that an increase in woody cover enlarges the variance of the ecosystem and makes it therefore more 

susceptible to changes or disturbances. Woody cover and autocorrelation on the other hand have a 

negative relationship, meaning that an increment of the woody cover results in a more resilient 

ecosystem as it fastens the recovery speed. Fire frequency has a positive relationship with both 

standard deviation and autocorrelation (Figure 5.13), indicating that the susceptibility of the 

ecosystem towards changing events increases and that the recovery speed decreases after such 

events, corresponding to a declining resilience. Lastly, bare soil coverage has the opposite effect of fire 

frequency as it decreases the variance, making the ecosystem more insensitive to changes, and speeds 

up the recovery after disturbances or changes, making it more resilient (Figure 5.14).  
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6.2.2 Uncertainties about the explanatory factors 

When analysing the woody cover estimations, it has to be taken into account that the applied 

methodology of the DSI, developed by Brandt et al. (2016), is based on several assumptions and 

involves choices which may introduce uncertainties. Firstly, the DSI assesses woody cover through 

calculation of the greenness intensity of the foliage of woody plants, assuming that woody biomass 

only consists of one layer. Secondly, the assumption is made that in a time period of 15 years (2002-

2016) meaningful and linear trends may be observed. Short-term variations in foliage density are 

however present and are the effect of climatic and anthropogenic factors (Broich et al. 2014), including 

short-term variability in rainfall due to the influence of the El Niño Southern Oscillation (Nicholls et al. 

1997), grazing pressure and burning practices. As a consequence, they create uncertainties in the 

identification of longer-term woody cover trends (Brandt et al. 2016). Thirdly, uncertainties are also 

introduced through the fact that fluctuations in dry season NDVI, caused by inter-annual variabilities 

in growth conditions during the wet season, are only attenuated when a significant (p<0.05) 

relationship between the wet season maximum NDVI and the following mean dry season NDVI was 

present. In case no significant relationship existed, no correction factor was applied, leading to 

uncertainties in these regions.   

 

In addition, there always exists some correlation between the explanatory factors. If this correlation is 

close to one (i.e. minimal), the impact is negligible but if factors are highly correlated, it reduces the 

reliability of the entire model. This statistical phenomenon of multicollinearity complicates the 

interpretation of the final model as it increases the standard errors of the coefficients and can likewise 

result into insignificant variables when they should actually be significant (Martz 2013). To assess how 

much the standard deviation of an estimated regression coefficient increases if predictors are 

correlated, the variance inflation factor (VIF) can be calculated. The statistics of this study show that 

the predictor variables are faced with multicollinearity, which obstructs to some extent the final 

interpretation of the effects each factor has on the eventual short-term stability metrics. A solution to 

deal with multicollinearity is to remove highly correlated predictors from the model one by one. 

An alternative method is to use partial least squares regression or principal components analysis 

to reduce the number of predictors to a smaller set of uncorrelated components (Martz 2013). 

 

6.2.3 Temporal changes 

Analysing the combined changes of the vegetation variance (standard deviation) and resilience 

(autocorrelation at lag-1) between the first half of the time series (November 2001 – December 2008) 
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and the second half (January 2009 – December 2016), reveals that more than half of the study area in 

Litchfield National Park has gotten less resilient and more sensitive to fluctuations in NDVI anomaly. 

Combining these results with the changes in woody cover (DSI), fire frequency and bare soil via the 

multinomial logistic regression allows to make predictions on the impact of a temporal change of any 

of these factors on the variance and resilience. From these analyses many relationships were not 

significant which do not allow to make solid statements. Nevertheless, it can be concluded that an 

increasing woody cover over time most likely results in a more resilient ecosystem as the 

autocorrelation decreases, and in an ecosystem less susceptible to changes or disturbances as the 

standard deviation decreases as well. With a maximal significance percentage of 8% the same can be 

said about the fire frequency, namely that an increasing fire frequency most likely would lead to a 

more resilient and less susceptible ecosystem. These results however do not have knowledge on the 

intensity of these fire events. For bare soil it can only be stated with a significance percentage of 8% 

that an increase in bare soil would rather lead to a more resilient ecosystem that is more insensitive 

to changes than to a less resilient ecosystem but still more insensitive to fluctuations caused by 

disturbances or changes.    

 

Comparing the results at the temporal and spatial level reveals interesting contrasts. Whereas the 

increase in woody cover corresponded to an increment of the ecosystem variance at the spatial level, 

it showed a negative relationship at the temporal level. These differing results can possibly be 

attributed to a lower percentage of significant relationships which creates a higher uncertainty. Fire 

frequency displays completely contrasting results between the spatial and temporal level. Here of 

course, the reliability of the temporal change results is smaller as there were only 8% of the 

relationships significant against 84% and 100% for the spatial variability. Bare soil on the other hand 

showed as only explanatory factor similar results at both the spatial and temporal scale. Here again 

however, the significance percentage is not favourable and does not allow yet to make firm 

conclusions. 

 

Since there is a general consent about the woody thickening of the Australian savannas given the 

current influences of climate change (Bowman et al. 2001; Donohue et al. 2009; Lehmann et al. 2009; 

Ahlström et al. 2015), it can be predicted that this increase in woody cover most likely would lead to a 

more resilient ecosystem. The overall results of the variance cannot straightforwardly be interpreted 

and therefore need further observation.  

 

 



55 
 

6.2.4 Proposed improvements 

As this study is faced with some uncertainties regarding the assessment of the woody cover via the DSI 

and regarding the mutual correlation of woody cover, fire frequency and bare soil coverage, further 

improvements can be made to better assess the impact of woody cover dynamics on the variance and 

resilience of this Australian tropical savanna ecosystem. This dynamic ecosystem is driven by multiple 

climatic, biological and anthropogenic factors, causing a number of possible explanatory factors that 

might be involved in this woody cover short-term stability story. Already pointed out as an important 

driver of this ecosystem, climate variability might be a crucial factor that can further optimize this 

relationship between woody cover and the ecosystem’s short-term stability. This variability is to a large 

extent caused by the variability in rainfall which defines if there is an excess or deficit of water every 

year, and so controls the productivity of the ecosystem. According to Gallant et al. (2013) there is a 

trend since 1911 towards less frequent, shorter and less severe droughts in northern Australia. 

Monitoring the inter-annual variability in rainfall can therefore tell if drought was a limiting factor at 

any moment in time or not. At the spatial extent it is likely though that as this is a relatively detailed 

study on Litchfield National Park, this gives only minor variations. An index that provides this specific 

information is for example the Standardized Precipitation-Evapotranspiration Index (SPEI). A short 

analysis on our study area with the global SPEIbase dataset, developed using the Global 0.5° gridded 

Climate Research Unit (CRU) TS3 monthly precipitation and mean temperature data (Vicente-Serrano 

et al. 2010), implies with an average SPEI value of -0.0748 that there is a deficit of water in the period 

from 2002 to 2008. From 2009 to 2016 on the other hand the average SPEI has a value of 0.2951 which 

indicates an excess of water. Other factors that might have an impact on the relationship between 

woody cover and the ecosystem’s variance and resilience, and have to be further looked into are the 

topography and the ground water level (Liu et al. 2009). 
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7 CONCLUSION 

Monitoring the woody cover dynamics via satellite observations of Litchfield National Park, a tropical 

savanna ecosystem in northern Australia, reveals an overall slight positive growth of the woody 

biomass from 2002 to 2016. Several factors might be at the base of this increase, including climate 

variability, a changing fire regime and a rising CO2 level. Linking this increase of woody cover with the 

impact on the ecosystem’s short-term stability, shows that an increment of woody cover most likely 

results in a more resilient ecosystem. A growth in woody cover resulted moreover in an increase of the 

ecosystem’s variance at the spatial level but was countered with a decreasing variance at the temporal 

level. Exploring moreover the spatial impacts of an increase in fire frequency on the stability of the 

ecosystem point towards a less resilient and more susceptible ecosystem. These results however could 

also not be confirmed at the temporal level. Increases in bare soil coverage on the contrary lead again 

to a more resilient ecosystem with a low variance. The explanatory factors are however faced with 

multicollinearity, which complicates an unbiased vision on each factor separately, and therefore 

results from this study require to be addressed with caution.    
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9 VULGARIZING SUMMARY 

The Australian tropical savannas are a unique and dynamic ecosystem, thriving on the tight coexistence 

between the continuous grass layer that is seasonally changing and thus controlling the dynamics of 

this ecosystem, and the scattered woody cover layer that lies at the base of the productivity of this 

ecosystem. With the ongoing climate change more extremes such as heatwaves, droughts, floods, 

cyclones and wildfires will occur more frequently and at higher intensities. These climate extremes and 

anomalies reveal significant vulnerability and exposure of some ecosystems, among which the 

Australian tropical savannas. In order to define the future prospects of this ecosystem, understanding 

and quantifying the woody cover dynamics and how this changing vegetation responds to short-term 

climate anomalies is of utmost importance. In this perspective, this study focuses on Litchfield National 

Park, situated in northern Australia, and aims to (i) quantify the woody cover dynamics from 2002 to 

2016 using satellite observations and (ii) define the impact of these woody cover dynamics on the 

ecosystem’s short-term stability in space and time. Woody cover was found to slightly increase up to 

2.29% of the overall mean woody cover in this time period, confirming that woody thickening is taking 

place in Litchfield National Park. This increase in woody cover can mainly be attributed to the variability 

in climate, a changing fire regime and a rising CO2 level. The short-term stability is in this study 

quantified as the vegetation resilience and variance to short-term climate anomalies, highlighting how 

quick vegetation recovers from these anomalies or how susceptible it is to these anomalies 

respectively. The impact of this woody cover increase on the resilience pointed towards a faster 

recovering and thus more resilient ecosystem. A growth in woody cover gave on the other hand 

contrasting results in space and time, with an overall increase in variance at the spatial level and a 

decreasing variance at the temporal level, giving no closure yet on this subject. As stability may be 

driven by other variables besides the woody cover, impacts of both fire frequency and bare soil 

coverage on the stability were analysed as well. Results of fire frequency at the spatial level indicated 

a lower resilience and a higher variance, corresponding to a higher susceptibility of the ecosystem, but 

could not be confirmed at the temporal level. Increases in bare soil coverage lastly had again a positive 

impact on the ecosystem as it fastened the recovery speed, making it more resilient, and decreased 

the variance, making it less susceptible to climate anomalies. It has however to be taken into account 

that woody cover, fire frequency and bare soil coverage are correlated, causing biased effects of each 

factor separately, and thus results from this study require to be addressed with caution.  

 


