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1Introduction

1.1 Complexity and Emergent Collective
Behaviour

Complexity describes how, for some systems, local interactions between
the parts can account for emergent global behaviour [BY02]. In general, a
complex system consists of many components that interact with one another
locally. Rather than being governed by a central mechanism, the behaviour
of complex systems follows out of the interactions between the parts and
with the environment. Complex systems are often non-linear so that small
changes in their state can have a drastic effect on their behaviour [Cha01].
Our world is rife with examples of complex systems: neural systems, social
media, human cultures, stock markets and so on [Say15].

For a system to be complex, it must show emergent behaviour. Emergence
connects the relation between properties of the system on different scales –
the macroscopic behaviour of a complex system cannot be predicted from the
behaviour of every component in isolation. The whole is more than the sum
of its parts. Complex systems often self-organize, as they spontaneously order
themselves and often display a certain symmetry. Examples of emergent
behaviour are ant colonies, consciousness emerging from the interaction of
neurons, ecosystems, traffic patterns and – the topic of this work – collective
motion [Cha01].

1.2 Phase Transitions

The theory of phase transitions describes how a system changes its properties
as it goes to a different phase under the influence of an external process. The
best-known example is the transition from the solid to liquid to gas phase
in a material as a result of changes in temperature and/or pressure. Many
physicists are also well-acquainted with the phase transition between order
and disorder in ferromagnetic models such as the Ising model. In general, a
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phase transition can be described by an order and a control parameter. The
former is used to characterize the nature of the phase transition and should
be markedly different for both phases. The order parameter is often defined
so that it is zero in one phase and non-zero in the other phase. Common
examples of order parameters are the average magnetization per spin in
the Ising model and the difference between liquid and gas density in the
liquid-gas transition. The control parameter is the external variable that
determines the phase of the system, e.g. the temperature in the Ising model.
Around the transition point – where the change in the a system’s phase occurs
–, a small change in the control parameter can drastically change the physical
properties, as well as the symmetry, of the system.

A phase transition is categorized depending on how the order parameter
changes between the two phases. If the change is continuous, the transition is
said to be a “second-order” (or continuous) transition. On the other hand, if
the order parameter has a discontinuity at the transition point, the transition
is “first-order” (or discontinuous). Both phases coexist at this point. Assessing
whether a phase transition is continuous or discontinuous is often hampered
by the limited size of systems under study. If this is the case, one has to resort
to measuring functions derived from the order parameter.

1.3 Collective Motion

Collective motion is ubiquitous in nature. One of the most eye-catching
examples is the formation of murmurations, in which thousands of starlings
flock together (Fig. 1.1a). Birds in such a flock collectively make the decision
to change their direction or land to feed. Fish can form highly mobile schools
to evade nearby predators (Fig. 1.1b). Another notable example is the
mass migration of insects such as locusts (Fig. 1.1c). This kind of collective
behaviour is also observed in humans – pedestrian behaviour, car traffic
and even heavy metal fans [Sil+13] are all examples. However, collective
motion is not limited to the animal kingdom: bacterial colonies, such as E.
coli (Fig. 1.1d), and other types of cells also display it. The observation of
collective motion in non-living systems is even more astonishing. For instance,
collective motion is observed in self-propelled particles such as light-powered
micromotors in water [Ibe+09] and in vibrated granular rods [Bla+03].
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(a) (b)

(c) (d)

Fig. 1.1.: Examples of systems displaying collective motion: (a) the flocking of
starlings, (b) a school of yellowstripe scad, (c) a locust swarm, (d) an E.
coli colony.

The origin of the establishment of collective motion is different in each of
these examples. Units can form groups out of self-defence, for improved
decision making or more efficient exploration [VZ12]. While interesting in
its own right, if the patterns of motion would be distinct for every example
mentioned previously, the system-specific study of them would perhaps be
better suited to specialized branches of biology, sociology or chemistry. One
could think that the establishment of collective motion is dependent on the
collective goal, the way of communication and information transfer between
the units, the nature of the interactions and so on.

Surprisingly, observations indicate that – even though the systems studied
here are so different – the patterns of collective motion can be divided into a
few distinct regimes, which makes the study of collective motion attractive
to physicists [Vic08]. Following a bottom-up approach, a more general
underlying mechanism could explain why the same patterns are observed on
such different size scales. The search for an explanation of this apparently
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universal behaviour has led to the creation of a great many models over the
past decades, some of which are discussed in the following section.

1.4 Modelling Approaches

The Lagrangian (or individual-based) approach is a natural way of modelling
a phenomenon that occurs due to the interaction between many particles.
It is important to mention that obtaining analytical results is very difficult
with this method, and one has to resort to extensive numerical studies. These
are often computationally expensive and not always optimal to gain a deep
understanding of the general behaviour of the system [RSG12]. Because
of this, mesoscopic descriptions have been attempted for collective motion,
relying on models of hydrodynamics. Though they are more rigorous, the
possible analytical deductions for a complex system are limited.

While the units involved can appear to be quite simple, setting up a detailed
and faithful model is still incredibly complicated. Instead, to study collective
motion a minimal model is employed. This is a model with as little detail as
possible, only equipped with the basic features to produce collective motion
[Gré+03; Gin16]. Such a model is optimal for studying the behaviour at
large wavelengths and frequencies.

Most models for collective motion involve a ‘social’ force, which aligns a par-
ticle’s velocity with the average velocity of the particles in its neighbourhood.
This neighbourhood can either be the metric or the topological neighbour-
hood. With a metric neighbourhood, particles only interact with others if
they are within a certain distance of each other. In the most common imple-
mentation of the topological neighbourhood, every particle interacts with a
fixed amount of neighbouring particles.

The first popular model implementing such an alignment rule was the “boids”
model (short for bird-oid object) by Craig Reynolds that aimed to capture
the motion patterns of small flocks of birds [Rey87]. The boids in this model
move according to three simple rules: they aim to avoid collisions with
neighbouring particles, change their velocity to match the velocity of their
neighbours and tend to move towards the center-of-mass of the flock to which
they belong.
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While the boids model, with its three simple rules, already displays the
patterns observed in nature, it does not allow for a quantitative study. To this
aim, Vicsek et al. established a model following a statistical physics approach,
which is now widely known as the Vicsek model [Vic+95]. In this model,
particles also align their velocity to the mean velocity of their neighbours,
but an additional stochastic component is added to this average. This noise
represents the error a unit can make in estimating the average velocity of its
neighbours or in choosing its own direction. The competition between the
noise and the velocity-aligning force determines whether collective motion
can be established in the system. In the absence of noise, the particles will
align perfectly. If, on the other hand, the noise is too strong, the particles
will not be able to match their velocity, resulting in random movement. As
the Vicsek model is central to this thesis, it will be discussed in depth in the
following chapter.

Models involving an explicit alignment rule are most common, but it is
important to mention that some of the patterns of collective motion can also
be found in models where the alignment occurs indirectly, for instance in a
system of self-propelled particles that are attracted to the center-of-mass of
their neighbours [Str11].

1.4 Modelling Approaches 5





2The Vicsek Model

2.1 Description of the Model

As mentioned in the first chapter, the Vicsek model is a minimal model that
was pivotal in the development of the study of collective motion [Vic+95].
The model describes a system consisting of a great many ‘active’ or self-
propelled Brownian particles. Active particles are capable of developing
motion, for instance by converting the energy from their surroundings or
through an internal mechanism. As a result, they move at an average speed
v0 6= 0. The original Vicsek model studies overdamped active Brownian
particles, which means that their speed is the constant v0.

The particles in this model are subjected to short-range interactions that seek
to align the directions of motion to those of the neighbouring particles. Vicsek
introduced a ‘temperature’ component to the model by adding a stochastic
element to the alignment interaction between the particles. In the original
Vicsek model, which describes a 2D system, the propagation of the particle
positions and the directions of their velocity over a time step ∆t is given by

xi(t+ ∆t) = xi(t) + vi(t)∆t,
θi(t+ ∆t) = 〈θ(t)〉i,R0

+ ∆θ,
(2.1)

where the magnitude of the velocity for each particle is equal to v0 so that
vi(t) = v0e

iθi(t). Here, 〈θ(t)〉i,R0
is the direction of the average velocity of all

the particles within a metric1 distance R0 of particle i. The term ∆θ denotes
the stochastic component of this model. It is a uniformly distributed number
within the interval [−ηπ, ηπ] and represents the error agents make in deciding
on their new direction. Note that momentum is not conserved under the
alignment interactions. Galilean invariance is broken in the Vicsek model, as
the particles are defined to move at a speed v0 with regard to the reference
frame.

1Additionally, a topological version of the Vicsek model also exists, with an alternate choice
for the definition of the neighbourhood. This is discussed in section 2.7.
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The Vicsek model can be defined by only three parameters: the particle
density ρ, the speed of the particles v0 and the magnitude of the noise η. It is
essentially the competition between the short-range velocity-aligning ‘social’
forces and the stochastic element (temperature or noise) that determines
which flow regime is observed in the system: randomly moving particles or
collective motion. In the absence of noise, the particles align perfectly and
the combined macroscopic velocity equals the microscopic velocity. When
subjected to strong noise, the particles are unable to align their velocities and
follow a random walk. The macroscopic velocity equals zero as the individual
microscopic velocities are randomly distributed and cancel each other out.
The establishment of collective motion can be studied by measuring the
order parameter Λ(t) =

∣∣∣ 1
Nv0

∑N
i=1 vi(t)

∣∣∣. This scalar parameter corresponds
to the direction of motion of the flock’s center-of-mass. Once the social forces
overcome the effect of the noise, spontaneous symmetry breaking occurs as
the initially isotropic system develops collective motion and Λ adopts a finite
value [Gin16].

Fig. 2.1.: Representation of the alignment force in the metric Vicsek model: the cen-
tral particle (dark blue) interacts with every particle in its neighbourhood
of radius R0.

This model is analogous to the spin models of ferromagnetism, albeit in
a non-equilibrium situation. The rules to update the direction of motion
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in the Vicsek model are similar to the Hamiltonian that aligns the spins in
the ferromagnetic systems, and the magnitude of the noise in the Vicsek
model can be be related to the temperature in the case of the ferromagnetic
equivalent [CV00]. The Vicsek model is closest to the XY model – a lattice
model in which the orientation of the spins takes on continuous values and
becomes aligned with the orientation of its neighbours. The Hamiltonian for
such a 2D system with nearest-neighbour interactions and no external fields
is given by [Jen03]

H = −J
∑
〈i,j〉
si · sj

= −J
∑
〈i,j〉

cos (θi − θj) ,
(2.2)

where the summation is over all the neighbouring lattice sites, s is a 2D unit
vector, the constant J denotes the strength of the coupling between spins
and θ is the angle of the spin. This Hamiltonian tries to align the spins, just
like the alignment force in the Vicsek model tries to align the direction of
motion of the particles.

The emergence of long-range order in the Vicsek model, present in the col-
lectively moving phase, is not trivial. The Mermin-Wagner Theorem (MWT)
states that, in dimensions of two or less, the breaking of a continuous sym-
metry in an equilibrium system cannot produce long-range order [MW66].
For the Vicsek model, in contrast, the non-equilibrium nature allows for the
establishment of collective motion – even in 2D systems. The movement of
particles is the only major difference between the Vicsek model and equilib-
rium spin systems. Hence, the answer as to why long-range order is observed
in 2D systems must be explained by it. While theoretical considerations using
renormalization groups have accounted for this difference [Ton+05], it is in-
structive to compare how errors in alignment caused by thermal fluctuations
spread throughout the system [Gin16].

With a lattice model, such as the XY model, spreading of the fluctuations is a
diffusive process [Gin16]. For such a process in 2D, it can be proven that the
correlation between two spins decays algebraically (i.e., like a power-law)
to zero with distance, so that long-range order cannot be established. Note
that in the 2D XY model, the correlation function decreases like a power-law
with distance for a set of temperature values. The system is then said to
be quasi-ordered. On the other hand, the motion of a particle in the Vicsek
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model introduces a different mechanism for the spreading of information
throughout the system. As an error on a particle’s orientation causes particles
to move further apart, both diffusion and particle motion can account for the
dispersion of fluctuations. It can be shown that for systems with a dimension
less than 4, the effect of particle motion dominates over the diffusive process
[Gin16]. The spreading of the error on a particle’s orientation due to motion
results in the disappearance of fluctuations on a large spatial scale for d > 1,
and long-range order can be established.

2.2 Limiting Cases

Several interesting limiting cases exist for the Vicsek model [Gin16]. In
the limit of v0 → 0, the XY model of ferromagnetism is recovered, as the
positions of the particles – and hence their neighbours – are fixed. In the
limit of v0 → ∞, the neighbours of a particle change at every time step
so that, from a network perspective, the connectivity matrix is randomly
rewired. When R0 → ∞, the connectivity matrix is static, as all particles
interact with one another. Hence, in these limits motion is decoupled from
alignment. These limiting cases were shown to be singular [Cha+07] and
no conclusions for the general behaviour of the Vicsek model can be drawn
from their properties. As will be explained in section 2.4, a strong feedback
mechanism exists between local density and order, induced by the motion
of the particles. A static or randomly rewired connectivity matrix cannot
account for the effect caused by the motion of the particles.

2.3 Angular versus Vectorial Noise

Changing the implementation of adding noise to the motion of the particles
was vital in determining the nature of the phase transition. This modification
was first introduced by Grégoire and Chaté [GC04]. Instead of adding to the
noise the new direction of the agents (dubbed “angular noise"), they opted
for “vectorial noise”. Here, the stochastic part is added to the calculation
of the local average direction of motion, which the authors deemed more
realistic. This is in contrast to the original Vicsek model, where every unit
could perfectly calculate the average direction of its neighbours, but made
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an error on choosing its own new direction. The updating rule for every
particle’s orientation is then given by

θi(t+ ∆t) = arg

 ∑
j∈ΩR0 (xi)

eiθj(t) + ηNR0(i)eiξi(t)

 , (2.3)

where the summation runs over every particle within radius R0 of the central
particle i, NR0(i) is the current number of these neighbours, ξ is delta-
correlated white noise between −π and π and η is again the noise strength
[GC04]. It is important to mention that this new implementation of the noise
is not merely a different convention. With this updating rule, locally ordered
regions will be subjected to relatively weaker noise than disordered regions
in comparison with the angular noise Vicsek model.

2.4 The Nature of the Phase Transition

In the Vicsek model, a discontinuous phase transition occurs between a
disordered state with no net current and a state with long-range order and
collective motion. Many papers have been devoted to the nature of this phase
transition. At first, the transition between order and disorder was believed to
be continuous. Vicsek et al. derived critical exponents for this phase transition
in their original paper on the model [Vic+95]. The continuous nature of the
phase transition was later cast in doubt, and this crucial problem took more
than a decade of active research to resolve (see e.g. [Ald+07; BA08; BA09a;
BA09b; Cha+08a; Gré+03; GC04; Nag+07]).

The first indications of a discontinuous transition were provided by Grégoire
and Chaté, who first used the vectorial implementation of the noise [GC04].
Further questions were then raised on whether the discontinuity in the phase
transition was an artefact of the new noise implementation or really a feature
of the Vicsek model. Nagy et al. and Aldana et al. both refuted the claim of
a discontinuous transition in the original Vicsek model [Nag+07; Ald+07].
The former concluded from numerical results that the nature of the phase
transition depends on the preferred velocity v0 of the agents, while the latter
used network theory to make a case for the distinction between the two types
of noise in the system. In the network version of the Vicsek model, agents
were allowed to interact with a fixed set of other agents. They applied the
updating rules of the Vicsek model, both for vectorial and angular noise,
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coming to the conclusion that the nature of the phase transition is dependent
on the way the noise is introduced into the system. As mentioned earlier, this
last study is a singular case and conclusions cannot be drawn from it since it
ignores the crucial coupling between local density and order [Cha+07].

In fact, through extensive numerical simulations, Chaté et al. showed that
a “crossover” system size L∗ exists for the Vicsek model, beyond which a
minimum can be observed in the Binder cumulant, characteristic for dis-
continuous phase transitions (for a discussion on the Binder cumulant, see
section 3.2)[Cha+08a]. L∗ is highly dependent on whether the vectorial or
scalar noise is implemented. In the case of Vicsek’s angular noise, the speed
v0 is also a deciding factor for the nature of the phase transition. While the
discontinuous nature is easily observed in the vectorial noise model, the an-
gular noise model requires very large systems and hence extensive numerical
studies for it to be evident. The conclusions drawn from the simulations by
Chaté et al. are that, while both implementations of the noise in the system
display different finite size behaviour, they yield the same asymptotic results:
the phase transition in the Vicsek model is discontinuous.

For systems larger than L∗, phase separation can be observed. This phase
separation can be understood by considering the feedback between local
order and local density for moving particles. In zones with higher local
density, particles will find it easier to align their velocities, while particles
in lower density zones in the same system move in a disorderly fashion.
This shows that increased density has a positive feedback on the alignment
between units. Hydrodynamic models have shown that it is this feedback that
leads to phase separation near the onset of collective motion [Ber+09], as a
long-wavelength instability appears around this point. The long-wavelength
instability also explains why the transition appears to be continuous in
smaller systems since the cross-over size L∗ must be larger than the instability
wavelength for phase separation to appear. Phase separation is clearest when
looking at travelling bands (2D) or sheets (3D): high-density zones that
are ordered internally and travel collectively across the system, stretched
perpendicular to the direction of motion. These are surrounded by zones of
lower density, where particles move in a disorderly fashion. On very long
time scales, the bands are regularly spaced (micro-phase separation) and
have well-defined density profiles [Sol+15].
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Recent research by Solon et al. on this phase transition has indicated that it is
possible to describe it as a liquid-gas transition [Sol+15]. The phase at high
noise and low density can be seen as a disordered gas, while a polar liquid
is found at low noise and high density values. Similarly to the liquid-gas
transition, an intermediate region is found in the phase diagram where the
two phases coexist – here, it takes the form of the ordered bands travelling
through a disordered gas. However, as shown in Fig. 2.2, it is not possible
to go continuously from the liquid to the gas phase. The critical point of the
liquid-gas transition is then found at ρc =∞.

Fig. 2.2.: Phase diagram for the Vicsek model, taken from [Sol+15]. The two
binodals ρl and ρh bound the region where phase coexistence occurs.

To conclude, the diagram of the discontinuous phase transition in the Vicsek
model has three distinct regions. At high noise values, the system shows
disorder and particles move randomly. At low noise values, the rotational
symmetry of the system is broken and the system displays order with collec-
tive motion. In between these phases, a region of micro-phase separation
exists, and the system displays ordered bands (2D) or sheets (3D) moving
through a disorderly gas. The system is bistable at the transition point and
can quickly jump between disorder and a single moving band or sheet. This
transition is schematically visualized in Fig. 2.3.

If long-range order is to arise, it is necessary that information gets transferred
throughout the whole system. The interactions between the particles allow
for information transfer, but the stochastic force impedes the communication
between the agents in a local neighbourhood. In the case of dilute systems, a
simple relation marks the transition point between disorderly and collective
motion: the persistence length for isolated particles, which is the distance
they can travel without ‘forgetting’ their initial motion, varies as v0/η, while
the interparticle distance scales as 1/ρ1/d [Cha+08a]. If an ordered state is to
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Fig. 2.3.: Schematic summary of the phases in the Vicsek model. The figures of the
ordered and disordered phases are taken from [Vic+95], the micro-phase
separation from [Cha+08b] and the plot showing the bistability from
[Ald+09].

occur, the persistence length must be greater than the average interparticle
distance. Hence, the transition noise amplitude is expected to scale as

ηc ∼ v0ρ
1/d, (2.4)

which has been verified in both the 2D and 3D case.

2.5 Role of the Boundary Conditions

The patterns of collective motion appearing in the Vicsek model are highly
dependent on the choice of boundary conditions. In the original Vicsek
model, periodic boundary conditions (PBC) are applied to mitigate edge
effects. This means that, for a 2D system, the particles move on a torus. For
open boundary conditions, the system displays no collective motion on large
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time scales. Indeed, fluctuations tend to diffuse the particles over a larger
and larger distance scale [GC04; Gré+03]. To study collective motion with
open boundary conditions, the addition of a short-range force that causes
attraction between the particles is required. This will be briefly discussed in
section 2.7.

Boundary conditions play an important role in the behaviour of the bands
that form for values of the coupling factor right above the transition point.
While bands are formed easier in systems with PBC – and preferably travel
parallel or diagonally to one of the boundaries – frustrating boundaries such
as reflective boundaries will disintegrate these bands. However, they still
appear in the bulk of the system [Gin16]. Conversely, reflective boundaries
facilitate the formation of vortices which are for instance observed in some
bacterial colonies [Czi+96].

2.6 Langevin Description

The stochastic updating rules used in the previous sections already demon-
strated how collective motion can be established with active particles. It
is often useful from a physics point of view to work with continuous-time
equations of motion for the particles under study. Such a framework allows
for the introduction of physical quantities such as temperature and entropy
into the Vicsek model. Furthermore, allowing some fluctuations around the
speed v0 eases the constraint that all the agents should move at the same
speed. To model these last two features, an underdamped equivalent of
the original Vicsek model’s updating rules was set up, following Langevin
dynamics. Langevin dynamics describe the motion of a Brownian particle
using stochastic differential equations. The equation of motion for particle i
is given by [Gro+12]

dxi
dt

= vi, (2.5a)

m
dvi
dt

= Fi − γ(|vi|)vi +
√

2Dξi. (2.5b)
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The first term in Eq. (2.5b) describes the velocity-aligning force acting on
particle i. A frequently used form of this force is

Fi = Γ(fi,R0 − vi), (2.6)

where fi,R0 is the average velocity of all particles within distance R0 of
particle i. The parameter Γ indicates the strength of the alignment force and
describes how fast the particles can align their direction of motion to the
direction of their neighbourhood.

The second term in Eq. (2.5b) is a frictional force. As the particles described
here are active, the frictional coefficient γ depends on |vi| and can adopt
positive and negative values. If the speed of a particle is lower than preferred,
γ(|vi|) becomes negative and accelerates the particle until its speed reaches v0.
Likewise, for speeds higher than v0, γ(|vi|) is positive and reduces the speed
of the particle. Several forms of the frictional force are possible [Rom+12].
The Rayleigh-Helmholtz friction is defined as

− γ(|vi|)vi = (α− βv2
i )vi, (2.7)

where α and β are positive constants so that v0 =
√
α/β. The term pro-

portional to α causes the acceleration of low-speed particles, and the term
proportional to β is the damping for faster-moving particles. This is a non-
linear frictional force. A linear frictional force that describes active particles
is also possible, such as the Schienbein–Gruler friction:

− γ(|vi|)vi = −α
(

1− v0

|vi|

)
vi. (2.8)

Finally, the last term in Eq. (2.5b) is the stochastic force in this equation of
motion. It is a Gaussian white noise, with its magnitude depending on the
diffusion coefficient D, and with uncorrelated components ξk(t) such that
〈ξk(t)〉 = 0 and 〈ξk(t)ξl(t′)〉 = δklδ(t− t′).

2.7 Extensions

The Vicsek model served as inspiration for many studies that combine mod-
elling and experimental results. While the original Vicsek model already
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displays the patterns found in many natural systems, its minimal nature is
limiting when it is compared to experimental data. As mentioned earlier, it
fails to describe collective motion in systems with open boundary conditions.
Early attempts to include cohesion between the agents were made using
long-range – or even global – attractive forces, which pull the units to the
group’s center-of-mass [Shi+96]. However, it turned out that this – perhaps
unrealistic – long-range interaction is not required to keep the flock together:
adding a Lennard-Jones-type short-range force proved sufficient to explain
how cohesive flocks can form in nature [GC04; Gré+03]. To this aim, the
updating rule of Eq. (2.3) was modified to

θi(t+∆t) = arg

α ∑
j∈ΩR(xi)

eiθj(t) + β
∑

j∈ΩR(xi)
fije

iθij(t) + ηNR(i)eiξi(t)

 , (2.9)

where α and β denote the strength of the alignment and the Lennard-Jones-
type force, and θij is the direction of the vector that links particle i and j.
The force fij acting on particles separated by a distance rij is given by

fij =


−∞ rij < rc,
1
4
rij − re
ra − re

rc < rij < ra,

1 ra < rij < r0,

(2.10)

where the modelling choices rc = 0.2, re = 0.5, ra = 0.8 and r0 = 1.0 were
made. This force has a hard core for distances less than rc: after taking
the argument as in Eq. (2.9), the −∞ term in the force (2.10) ensures
that particles separated by a distance less than rc will move in the opposite
direction in the next time step. The particles in this model have a physical size,
unlike the point-particles in Vicsek’s original model. The force is repulsive for
distances less than an equilibrium distance re. At the equilibrium distance,
no cohesive force is exerted on the particles. For separations greater than
the equilibrium distance, the force is attractive up to the cut-off interaction
range r0. For a fixed noise strength, the collective behaviour observed in
the system is dependent on the parameters α and β. For small values of β,
cohesion cannot be maintained and, in an open system, the flock eventually
disintegrates for any value of α. For large enough values of β, a flock can
take on either a gas, liquid or solid form. In this case, the value of α decides
whether this cohesive group is static or in motion. Note that this transition
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point depends on the phase of the flock. The phase diagram drawn from this
is shown in Fig. 2.4 [Gré+03].

Fig. 2.4.: Phase diagram for collective motion with cohesion, taken from [Gré+03],
in function of the parameters α and β. G, L and S denote the gas, liquid
and solid phase. The dashed line shows the transition to collective motion
(M).

Recently, experimental studies on flocks of starlings have shown that the
interaction between these birds may not be dependent on their metric dis-
tance, as in the original Vicsek model [Bal+08]. Instead, the nature of the
interactions could be topological: every starling only considers its six or seven
nearest neighbours. A version of the Vicsek model with such interactions was
studied by Ginelli and Chaté [GC10]. In this topological model, the system
is divided into cells using Voronoi tessellation and particles interact with
those in neighbouring cells. The topological Vicsek model shows markedly
different behaviour when compared to the metric version. As the strong
feedback between local density and order is no longer present, phase coexis-
tence does not occur at the transition point and the phase transition becomes
continuous.
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The two modifications discussed above can be seen as vital for modelling
natural systems. Many more extensions to the Vicsek model have been
made resulting in more realistic behaviour and a better fit to experimental
observations. Examples include, but are far from limited to, adding informed
individuals to the group [Cou+05], studying the effect of turbulence in the
ambient fluid [Cha+08b] and the role of dissenters in breaking up ordered
swarms [YM17].
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3Collective Motion without
Self-Propulsion

3.1 The Vicsek Model for Passive
Particles

Although self-propulsion was long deemed a vital component of collective
motion, the question was raised whether a system of passive particles can
also show this emergent feature. Furthermore, observations have shown that
the overdamped approximation for the trajectories of the agents in these
systems is not always justified and inertia can play a role in the establishment
of collective motion [Nag+15]. Sevilla et al. developed a model with passive
Brownian particles following Langevin dynamics [Sev+14]. Similarly to the
discussion in section 2.6, the stochastic differential equation describing such
a system is given by 

dxi
dt

= vi, (3.1a)

m
dvi
dt

= Fi − γ(v)vi + ξi. (3.1b)

The second term on the right-hand side of Eq. (3.1b) is the dissipative friction
term. In the case of passive Brownian particles, the frictional coefficient
is given by γ(v) = γ. The vector ξi is the stochastic term of this model.
Its components, ξi,µ(t), are Gaussian white noises with zero mean and an
autocorrelation function of

〈ξi,µ(t)ξj,ν(t+ τ)〉 = 2γkBTδi,jδµ,νδ(τ), (3.2)

where kB is the Boltzmann constant and T is the temperature of the heat
bath. The diffusion coefficient D is here given by γkBT , according to the
fluctuation-dissipation theorem.
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In the model by Sevilla et al., the short-range social force is given by

Fi = Γv̂i × (f i × v̂i) (3.3)

= Γ[fi − v̂i(v̂i · f i)]. (3.4)

Γ is a coupling factor that controls the rate at which particles align their
direction to the direction of their neighbours. v̂i is the unit vector of vi and
fi corresponds to the average direction of motion of particles within the
neighbourhood ΩR(xi) of a radius R of particle i:

fi = 1
NR(i)

∑
j∈ΩR(xi)

v̂j. (3.5)

The denominator NR(i) equals the number of neighbours of particle i. This
force was chosen as it turns every particle’s direction of motion towards the
average direction of their neighbours, but does not impose any self-propelling
effect. The non-propelling nature of this force can be verified, as Fi · vi = 0.
Hence, the force on each particle is perpendicular to its velocity and does no
work. By denoting the angle between v̂i and fi as θ, the magnitude of the
force Fi can be written as

|Fi| = Γ
√
|fi|2(1− cos2(θ))

= Γ|fi|| sin(θ)|.
(3.6)

This implies that when the velocity of a particle and the mean velocity of its
neighbours are anti-aligned, no force is exerted on the agent. However, this
is not a stable state as the thermal fluctuations lead to the eventual alignment
of the velocities if the coupling factor is high enough.

By rewriting the equation of motion Eq. (3.1b) in polar coordinates [DS15],
it becomes clear that one can speak of thermal propulsion instead of self-
propulsion:

m
dvi
dt

= −γvi + kBTγ

m

1
vi

+ ξvi
, (3.7)

mvi
dφi
dt

= Γ
NR(i)

∑
j∈ΩR(xi)

sin (φj − φi) + ξφi
. (3.8)
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The Gaussian white noises ξvi
and ξφi

are obtained from a rotation of the
Cartesian components of ξi. The second term in Eq. (3.7) is obtained from
Ito calculus and indicates the thermal propulsion.

The number of independent parameters in this model can be reduced by
introducing dimensionless variables:

t̃ = t

t0
, ṽ = v

v0
and r̃ = r

r0
= r

v0t0
, (3.9)

where

t0 = m

γ
and v0 =

√
2kBT
m

. (3.10)

The original equation of motion (3.1b) can now, after dividing by γv0, be
reduced to

dṽi
dt̃

= Γ̃[fi − v̂i(v̂i · f i)]− ṽi +
√
δ(τ̃)N(0, 1), (3.11)

where Γ̃ = Γ
γv0

and N(0, 1) is a number drawn from a Gaussian distribution

with zero mean and unit variance. This dimensionless version of the coupling
factor describes the ratio between two different time scales: one for the
alignment rate between the particles and the other corresponding to the
stochastic motion of the Brownian particles. As such, it is a logical choice for
the control parameter when modelling this system at a fixed density.

By switching to dimensionless variables, only three independent parameters
remain: the dimensionless coupling constant Γ̃, the dimensionless density
ρ̃ = N

Ld and the dimensionless interaction range R0. Here, the dimensionless
version of the system size L is given by L = L

r0
and d is the dimension. The

dimensionless interaction range is R0 = R
r0

. From here on out, R0 = 1 is
fixed without any loss of generality, as the spatial dimensions can always be
rescaled to obtain this value for the interaction range.

The system is initialized with positions uniformly distributed over the coor-
dinate space and velocities drawn from a Maxwell-Boltzmann distribution:
each component of the velocity vector is drawn from a Gaussian distribution
with zero mean and variance kT

m
. This is the equilibrium distribution in the

case of Γ = 0.
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3.2 Observables

Order parameter

To monitor the different phases in the system, the accumulated order parame-
ter 〈Λ〉 is assessed. This is the time-averaged value of the instantaneous order
parameter Λ(t) = 1

N
|∑N

i=1 v̂i(t)|. For an infinite system, Λ equals zero as the
particles move disorderly and the directions of the velocity cancel each other
out. 〈Λ〉 adopts a positive value when collective motion has been established.
For the systems simulated here, the directions do not exactly cancel each
other out and 〈Λ〉 ∝

√
1
N

in the disordered phase.

The way in which 〈Λ〉 changes from zero to a positive value depends on the
nature of the phase transition. For a continuous phase transition, the change
is smooth. For a discontinuous phase transition, 〈Λ〉 shows a discontinuity
at the transition value, which is marked by the coexistence of both phases.
As in the active Vicsek model, size effects play an important role in these
simulations, making it difficult to determine the nature of the phase transition.
The following three observables help in making the distinction between the
two types of transitions.

Distribution of the order parameter

One method to determine the nature of the phase transition is to look at the
distribution of Λ when the coupling factor’s value is around the transition
point Γ̃c. For a first-order phase transition, the coexistence of two phases
implies that the distribution of the order parameter becomes bimodal at this
point. For a second-order phase transition, a single peak is observed at the
transition point.

Binder cumulant

The Binder cumulant G plays an important role in deciding whether the
phase transition is continuous or discontinuous [Bin81]. It is defined as

G = 1− 〈Λ4〉
3 〈Λ2〉2

, (3.12)
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where 〈Λ2〉 and 〈Λ4〉 are the second and fourth moments of the distribution
of the instantaneous order parameter Λ. As for a Gaussian distribution
〈Λ4〉 = 3 〈Λ2〉2 so that G = 0, the Binder cumulant is a measure of how
much the distribution of the order parameter deviates from a Gaussian
distribution.

For the disordered phase, the velocity components are random vectors with
components drawn from a zero-mean Gaussian with standard deviation
σ =

√
kbT/m. The norm of d standard normally distributed variables is a χ-

distribution with d degrees of freedom, so that its probability density function
is

P (x, d) = 21− d
2xd−1e−

d2
2

Γ
(
d
2

) , (3.13)

for which 〈x4〉 = d(d + 2) and 〈x2〉 = d. After rescaling the velocity compo-
nents by σ so that the standard deviation on the components also becomes
unity, it follows that σΛ is distributed according to Eq. (3.13). This implies
that the Binder cumulant is 1

3 in the disordered phase of a 2D system. It is
expected that 〈Λ4〉 = 〈Λ2〉2 for high values of the coupling factor, because the
noise has little effect in this regime. Consequently, G ≈ 2

3 for these values of
Γ.

In between these two extremal cases, the value of the Binder cumulant de-
pends on the nature of the phase transition. If the transition is continuous,
the Binder cumulant varies smoothly between its values for order and disor-
der. At the critical point of a continuous transition, G takes on a universal
value independent of system size. For a discontinuous phase transition, the
appearance of two peaks in the distribution of the order parameter at the
transition point causes 〈Λ4〉 to take on a higher value than 3 〈Λ2〉2 so that the
Binder cumulant shows a distinct minimum at the transition between the
two phases [Ach99].

Susceptibility

For the Vicsek model, the susceptibility of the order parameter is defined as

χ = Ld
(〈

Λ2
〉
− 〈Λ〉2

)
= Ld Var(Λ). (3.14)
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While its interpretation is different from the susceptibility in equilibrium
systems, it has been shown that for non-equilibrium systems the phase
transition also occurs at its peak value and its shape is also determined by
the nature of this transition [Sid+98].

3.3 Results

To verify the results obtained by Dossetti and Sevilla [DS15], the accumulated
order parameter 〈Λ〉 is plotted against the dimensionless coupling factor Γ̃
in Fig. 3.1 for a density ρ̃ = 2 and in Fig. 3.2 for ρ̃ = 4. These results were
obtained by averaging over 3-7 initial configurations and 4-10 · 106 time steps
after reaching the steady state, depending on how close the coupling factor is
to the transition value. Details on the numerical integration of the equation
of motion can be found in section A.1. It is clear that the development of
collective motion requires a larger coupling factor as the density decreases.
This can be expected, since higher density implies more interactions (i.e.
passing of information), which facilitates the establishment of long-range
order. The scaling of 〈Λ〉 with the system size L is also shown. For lower
values of L, finite size effects are apparent. This results in the ‘rounding’
of the curve for small systems. Similarly to the original Vicsek model, the
discontinuous nature only becomes visible for larger system sizes.
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L = 24

L = 72

L = 144

L = 192

Fig. 3.1.: Time-averaged order parameter 〈Λ〉 in function of the dimensionless
coupling factor Γ̃ for ρ̃ = 2.
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Fig. 3.2.: Time-averaged order parameter 〈Λ〉 in function of the dimensionless
coupling factor Γ̃ for ρ̃ = 4.

The discontinuous nature of the phase transition is at its clearest when
looking at the Binder cumulant (Fig. 3.3 and 3.4) and the distribution of the
order parameter (Fig. 3.5). While the Binder cumulant remains continuous
for the smaller system sizes, a distinct minimum (G� 1/3) appears for the
largest system size (L = 192) under study. This implies that, similarly to the
case of active particles, the discontinuity of the phase transition only becomes
apparent for very large system sizes. The distribution of the order parameter
is bimodal around the transition point for the largest system sizes, as the
system is bistable and alternates between disorder and a single moving band.
This can be identified in the time evolution of the order parameter.
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Fig. 3.3.: The Binder cumulant G in function of the dimensionless coupling factor
Γ̃ for ρ̃ = 2.
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Fig. 3.4.: The Binder cumulant G in function of the dimensionless coupling factor
Γ̃ for ρ̃ = 4.
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Fig. 3.5.: Time evolution (first row) and probability density function (second row)
of the order parameter for a system with L = 192 and ρ̃ = 2.

3.3.1 Long-range order

To illustrate the existence of long-range order (LRO) above the transition
value Γ̃c, Fig. 3.6 shows 〈Λ〉 for Γ̃ = 8 > Γ̃c, with density ρ̃ = 4 and
system sizes L = 24, 48, 72, 96, 120, 144 . For a coupling constant below the
transition point, 〈Λ〉 quickly decays to zero. However, it can be seen that for
a coupling constant for which collective motion is present, 〈Λ〉 decays to a
positive value, although the decay is algebraic (i.e. like a power-law) rather
than exponential. This shows that this model achieves true LRO. This is in
contrast with the observations in the 2D XY model, where the MWT holds
and only quasi long-range order is achieved, as the order parameter decays
algebraically to zero [Gin16].
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Fig. 3.6.: Decay of 〈Λ〉 with number of particles. For the upper graph, a value
〈Λ〉N=∞ = 0.797 has been subtracted from 〈Λ〉. The fitted line shows the
slow decay of 〈Λ〉 to 〈Λ〉N=∞.

3.3.2 Giant number fluctuations

A feature of collective motion is the greatly increased fluctuations in local
density, often called ‘giant density fluctuations’ or ‘giant number fluctuations’
(GNF). When dividing the system in boxes of linear size l, the expected
amount of particles present in a box is 〈n〉 = ρld, where d is the dimension
of the system. In equilibrium, it follows from the central limit theorem that
the standard deviation on the number of particles in such a box scales with
the square root of the average: ∆n =

√
〈n2〉 − 〈n〉2 ∝

√
〈n〉. However, both

simulations and analytical considerations have shown that, in the phase
where collective motion is present, this relation no longer holds [Cha+08a;
TT98]. Instead, the observed fluctuations are much larger and ∆n ∝ nα with
α > 1

2 . For active particles, this exponent α = 1
2 + d+1

5d , so that α = 0.8 in a
2D system [Gin16]. Dossetti and Sevilla noted that for collectively moving
passive particles, these fluctuations are even greater [DS15]. This result is
verified in Fig. 3.7. To calculate the GNF, the system is divided in boxes of
size l = L/2, l = L/4,... The amount of particles in each box is then counted,
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and the standard deviation is calculated with respect to ρl2. This process was
repeated for a large amount of time steps (≈ 105). As can be seen in Fig. 3.7,
the same exponent as in the equilibrium situation is measured (within the
margin of error) for a system in a disorderly state. When the system develops
collective motion in the form of bands, GNF appear with an exponent α ≈ 0.9.
The fluid phase exhibits the same behaviour. Note that system size has a
large effect on the observed GNF: fluctuations for increasing box sizes will
become smaller, as they contain a significant portion of the whole system.

102 103 104

〈n〉

102

103

104

∆
n

α = 0.51

α = 0.92

Γ̃ = 2.0

Γ̃ = 3.5

Fig. 3.7.: Expected number of particles in a box versus the fluctuations on this
number, measured in a system with L = 192 and ρ̃ = 4 for two different
values of the coupling factor. The dash-dotted lines are fits of ∆n ∝ 〈n〉α.

3.3.3 Distribution of the velocity components

The distribution of the velocity components is shown in Fig. 3.8 for several
values of the coupling factor Γ̃. These components are projected on the
direction of the center-of-mass velocity for the system (v‖) and the direction
perpendicular to this (v⊥). Their distributions P (v‖) and P (v⊥) are given, as
well as the combined probability P (v‖, v⊥). The black curve plotted alongside
the distributions of P (v‖) and P (v⊥) is the Maxwell-Boltzmann distribution
from which each system initially starts. For the system considered here, the
transition to collective motion happens at Γ̃ ≈ 2.72. For values of the coupling
factor that are greater than zero but well below the critical value such as in
Fig. 3.8a, the Maxwell-Boltzmann distribution is retained, indicating that the
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particles do not have time to align their motion before noise again randomizes
it. For values of Γ̃ just below the transition value (Fig. 3.8b), the peak of
P (v‖) is slightly shifted towards a positive value, which can be explained by
size effects. For values of the coupling factor above the transition value, the
peak strongly shifts toward a positive value, as in Fig 3.8c. Note that P (v‖)
becomes asymmetrical: negative values of v‖ are increasingly unbalanced.
The distribution of v⊥ stays symmetrical with zero mean.

The time evolution of the entropy associated with the velocity distribution1 of
a single particle, Sv, is shown in Fig. 3.9. The system starts from a completely
disordered situation and evolves to display collective motion (〈Λ〉 ≈ 0.7).
The development of order is reflected in Sv: it is maximal when the system is
in complete disorder and decreases as order develops.

1A general introduction to entropy is given in section 5.1.
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Fig. 3.8.: Distribution of the velocity components for several values of the coupling
factor, for a system with L = 96 and ρ̃ = 4. The upper and right figure
show the distribution of the component parallel and perpendicular to the
average direction of motion, respectively. The black line on these figures
is the initial distribution. The 2D density plot is the combined probability.
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Fig. 3.9.: Time evolution of the entropy associated with the one-particle velocity
distribution Sv and the order parameter 〈Λ〉 for a system with L = 96,
Γ̃ = 4.5 and ρ̃ = 4.

3.3.4 Velocity autocorrelation

The velocity autocorrelation function (VACF) shows the correlation between
the velocity of a particle at a reference time t′ and some later time t. It is
defined as

Cvv(t) = 1
N

N∑
i=1

〈vi(t′) · vi(t′ + t)〉t′
〈vi(t′) · vi(t′)〉t′

, (3.15)

where 〈�〉t′ denotes taking an average over the reference times t′. The amount
of particles involved in these simulations makes calculating autocorrelations
a computationally expensive procedure, but by using Fast Fourier Transforms
this can be done efficiently (briefly explained in A.3)[NB99]. The decay of
this function indicates how quickly a particle forgets its initial motion, as the
velocity becomes independent of its initial value.

Fig. 3.10 shows the VACF for several values of the coupling factor. Note
that for values of Γ̃ that are smaller than the transition value, the VACF
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Fig. 3.10.: Velocity autocorrelation function versus time in a system with L = 192
and ρ̃ = 4.

decays as e−t̃. The same decay is expected for non-interacting Brownian
particles: the particles do not have time to align their motion and thus move
around randomly. For values of Γ̃ above the transition point, motion is more
persistent. On a short time scale the VACF still shows a strong decay. This
can be explained by considering the particles that do not belong to a band
or cluster: these particles still move randomly and their contribution to the
VACF is an exponential decay. The contribution of the other particles causes
the long tail in the total VACF of the system.

3.3.5 Particle diffusion

Due to the Brownian dynamics, initially neighbouring particles in the system
move further apart as simulation time increases. To investigate particle
diffusion, the relative mean square displacement of initially neighbouring
particles is measured. By looking at the relative displacement, the effect of
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the global motion – should it be present – is largely subtracted. The relative
mean square displacement is defined as

〈
∆r2

Nb(t)
〉

= 1
Np

Np∑
i=1

(rNb,i(t)− rNb,i(0))2 , (3.16)

in which the sum on the right-hand side runs over allNp initially neighbouring
pairs. For Brownian motion (“normal diffusion”), this scales as [BG90]

〈
∆r2

Nb(t)
〉
∼ tν with ν = 1, (3.17)

whereas in the case of super-diffusion,

〈
∆r2

Nb(t)
〉
∼ tν with ν > 1. (3.18)

Nagy et al. have shown that the diffusion of self-propelled particles is
anisotropic with regard to the mean direction of motion [Nag+07]. To
measure this anisotropy, the mean squared displacement was projected par-
allel to the mean direction of motion,

〈
∆r2

Nb,‖(t)
〉
, as well as perpendicular

to this direction,
〈
∆r2

Nb,⊥(t)
〉
. For active agents, the anisotropy A, measured

as

A =

〈
∆r2

Nb,⊥(t)
〉

〈
∆r2

Nb,‖(t)
〉 , (3.19)

was found to be highly dependent on the constant speed v0 of the self-
propelled particles, as A ≈ 1 in the low-speed regime (v0 < 0.1) and A > 1
for greater speeds (v0 > 0.3). Measurements of the diffusion of initially neigh-
bouring passive particles are shown in Fig. 3.11. In the disordered phase,
normal diffusion occurs with an exponent ν ≈ 1, while for the ordered phase
ν ≈ 4

3 and super-diffusion is observed over long simulation periods. For small
simulation times, the scaling is different as the particles are still subjected
to each other’s strong alignment interaction [Nag+07]. The diffusion in the
ordered phase is measured for a very high value of the coupling factor. For
lower values of Γ̃, the average velocity shows larger fluctuations making a
projection on the parallel and perpendicular direction impossible for long
simulation times. As can be seen in Fig. 3.11b, the diffusion of initially neigh-
bouring particles is still anisotropic but, contrary to self-propelled particles,
diffusion is now faster in the direction parallel to the center-of-mass velocity,
so that A < 1. A possible explanation for this difference could be that in the
case of passive particles, the speed of the agents in the direction parallel to
the direction of motion is a broad distribution (Fig. 3.8d). For the active
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particles, it could be expected that this velocity distribution is more peaked
around the self-propelled speed v0 for the strong alignment interactions con-
sidered here. Passive particles that move in the same direction can have a
markedly different parallel velocity component, which gives an additional
contribution to the mean square displacement in this direction compared to
the active particle model.
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Fig. 3.11.: (a) Relative mean square displacement of initially neighbouring particles
versus time in a system with L = 96, ρ̃ = 4 and Γ̃ = 1.5. The dotted line
∼ t̃ν indicates the best fit for the exponent ν. (b) Same as in (a) but
with Γ̃ = 10.
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3.4 Globally-Coupled Version

Finally, the results for a globally-coupled version of this model are discussed
here, as a verification of the work of Sevilla et al. [Sev+14]. In the globally-
coupled version of this model, the interaction range is no longer a parameter
so that the system size can always be rescaled to obtain ρ̃ = 1. Only one
parameter remains: the dimensionless coupling factor Γ̃.

Fig. 3.12 show the results for varying numbers of particles. Note that, in
contrast to the short-range model, the Binder cumulant (Fig. 3.12b) shows
no minimum, but is instead continuous around the transition point. This
indicates a second-order phase transition. The size effects can be seen by the
shifting of the peak of the susceptibility (located at the transition point) to
lower values of Γ̃ for larger systems.
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Fig. 3.12.: (a) Order parameter, (b) Binder cumulant and (c) susceptibility for a
globally-coupled system.
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4Spatial Structure and
Correlations

4.1 Visualization

Fig. 4.1 shows the possible spatial configurations for the model introduced in
chapter 3. For values of the coupling factor well below the transition value,
the system is more or less homogeneous and the particles move randomly
(Fig. 4.1a). For values right below the transition point, as in Fig. 4.1b,
clusters start to appear on small distance-scales, but these still move around
randomly and are pulled apart easily due to the fluctuations. Bands appear
right above the transition point, Fig. 4.1c and Fig. 4.1d, and move in a fixed
direction, while particles outside these bands still move randomly. The highly
increased density in these bands can be quantified by projecting the density
on the direction parallel and perpendicular to the projection of motion as in
Fig. 4.2. As mentioned by Dossetti and Sevilla, these bands are not as dense
and much wider than those observed in the original Vicsek model (Fig. 2.3)
[DS15]. A possible explanation for the bands being more spread out in this
model is that, even though they move in the same direction, the particles can
move at highly varying speeds so that the slower particles will lag behind
and the bands become elongated. For very high coupling factors, clustering
is stronger so that the bands disappear and the whole system will move in
one direction (Fig. 4.1e).
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(a) Γ̃ = 2.00

(b) Γ̃ = 2.64

42 Chapter 4 Spatial Structure and Correlations



(c) Γ̃ = 2.90

(d) Γ̃ = 3.50
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(e) Γ̃ = 8.00

Fig. 4.1.: Particle density ρ and direction θ of particles in a system with L = 192 and
ρ̃ = 4, for different values of the coupling factor. The colourbar on right
denotes a particle’s direction, measured counter-clockwise with regard to
the horizontal.
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Fig. 4.2.: Density projected on the axis perpendicular to the mean direction of
motion, ρ̃⊥ and projected on the axis parallel to it, ρ̃‖, for the system
shown in Fig. 4.1c.
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4.2 Spatial Correlations

4.2.1 Spatial correlation of the direction of motion.

Due to the aligning force, nearby particles will adopt the same direction
of motion. For low values of the coupling factor, the aligning force will
be cancelled out by the noise and its effect does not reach far beyond the
interaction range. On the other hand, for a very strong social force, all
particles will move in the same direction. This effect can be described by the
following correlation function, which measures the alignment of particles
separated by a distance r̃ij:

Cθ(r̃ij) =
〈
ṽi · ṽj
ṽiṽj

〉
i,j

. (4.1)

The average is taken over all particle pairs (i, j) that are separated by the
distance r̃ij. The correlation function gives an indication of whether a change
in direction of a particle has an effect on another particle separated a distance
r̃ij. It is equal to 1 for perfectly aligned particles, -1 if the particles are anti-
aligned and 0 for uncorrelated particles [RL13]. Fig. 4.3 shows how this
correlation function varies with the strength of the aligning force. The results
shown are averaged over 100 snapshots sampled out of a simulation of 104

time steps after reaching steady state.
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Fig. 4.3.: Time-averaged correlation function Cθ(r̃) of the particle orientations in
function of the distance r̃, for a system with L = 192 and ρ̃ = 4.

Even when no collective motion is present on a macroscopic scale, the particle
orientations are correlated on a small distance-scale, which increases with
Γ̃. The correlations are small in this regime and the orientation of particles
separated by a distance of a few times the interaction range – indicated by
the vertical line – become independent of one another. After the transition to
collective motion (Γ̃ ≈ 2.72), the orientation of particles separated by a large
distance is still correlated and decays slowly.

4.2.2 Radial distribution function

To quantify the structure that gets formed due to the alignment interaction,
the radial distribution function g(r) is introduced in this section. This func-
tion measures the spatial correlation in the density of the particles. For
uncorrelated particles, the probability of finding a particle at a distance r is
simply proportional to the density ρ. Should spatial correlations appear in
the system, g(r) is a measure for the non-uniformity of the spatial distribu-
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tion. When choosing one particular particle as the origin and working in 2
dimensions, ρg(r)d2r is defined to be the average number of particles within
a distance r and r + dr of the origin.

To calculate g(r), a reference particle is chosen and concentric circles, sepa-
rated by a distance dr, are drawn around it [GT10]. The number of particles,
n(r), in every shell is counted and then divided by the area of the shell and
the average particle density. The radial distribution function g(r) can then be
found by averaging this over all particles:

g(r) = 〈n(r)〉
2πρrdr . (4.2)

Fig. 4.4 shows the measured radial distribution function. As expected, it
remains unity when Γ̃ = 0 as the particles are non-interacting. For small
but non-zero values of the coupling factor, the radial distribution function
is greater than one for a small zone around the origin. The size of this zone
grows as the coupling factor increases and extends the interaction range
(indicated by the vertical line) even when no collective motion is yet present.
In this phase, the clusters being formed are not long-lived since the alignment
effect is weaker than the fluctuations. The system is still uniform on a large
scale, which causes the radial distribution function g(r) to decay back to
one. Once the system develops collective motion in the form of bands, g(r) is
highly increased for a large range around the origin. The decay to values less
than unity can be understood by considering that the ‘average’ particle is part
of the band, so that at large radii the low density sea of disorderly moving
particles is probed. For coupling factors that are higher still, the decay of
g(r) is faster since the clusters in this phase do not extend across the whole
system.
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Fig. 4.4.: Time-averaged radial distribution function g(r̃) in function of the distance
r̃, for a system with L = 192 and ρ̃ = 4.

4.3 Cluster Size Distribution

4.3.1 Observations

For values of the coupling factor above the transition value, the particles in
the system will align their motion and will move in clusters as a result. These
clusters are dynamic, as they can split up due to stochastic fluctuations or
merge with one another. In this section, the cluster size distribution in the
bands phase of the Vicsek model for passive particles is discussed. Following
the work of Huepe and Aldana, a cluster is defined recursively: two particles
belong to the same cluster if they are within one another’s interaction range
or if there is a path of particles that connects them [HA04].

A significant difference with results obtained for the cluster size distribution
in the active Vicsek model is that, for the model studied here, the much wider
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Fig. 4.5.: Distribution of cluster sizes (excluding the band) for (a) ρ̃ = 4 and Γ̃ = 3.5
and (b) ρ̃ = 3 and Γ̃ = 3.8.

band will form one giant cluster. For the densities studied here, it will contain
the majority of the total particles: approximately 85% for ρ̃ = 4 and 82% for
ρ̃ = 3. Nevertheless, there still is some structure to be found in the sea of
particles in which these bands move. The cluster size distribution P (n) gives
the probability to find a cluster containing n particles in the system (where
the band is not included). This distribution is shown for several system
sizes in Fig. 4.5 in the case of ρ̃ = 4 and ρ̃ = 3. For both of the densities
shown here, the coupling factor was chosen so that 〈Λ〉 ≈ 0.5. Using the
‘powerlaw’ package for Python [Als+14], a power-law distribution1 gives
an excellent fit for 4 ≤ n� N . The power-law exponent is dependent on
the system size as, for example, it varies between µ ≈ 1.92 for the smallest
system and µ ≈ 1.84 for the largest system studied with ρ̃ = 4. However,
all these distributions display a sharp cut-off in their tail. Such a cut-off is
expected, as the the largest cluster that can be formed is dependent on the
total number of particles. To search for the underlying distribution of these
cluster sizes, a finite-size scaling analysis is performed in the next section.

1A short summary on the basic properties of power-law distributions is given in Append B.
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4.3.2 Finite-size scaling

To explain the size-effects of the previous section and find the underlying
distribution of the cluster sizes, a finite-size scaling ansatz of the following
form can be proposed [CM05]:

P (n, L) ∝ n−µG
(
n

nc

)
,

nc(L) ∝ LD,
(4.3)

where the cluster dimension D and a cut-off cluster size nc were introduced.
G is the scaling function, and should decay rapidly when n is greater than
the cut-off cluster size.

The cluster-size exponent µ and dimension D can be found by comparing
how the moments

〈
nk
〉

vary with the system size L [DM+98; CM05]. The
k-th moment is defined as

〈
nk
〉

=
∞∑
n=1

nkP (n, L). (4.4)

Using the finite-size scaling ansatz from Eq. 4.3, this can be rewritten as
[CM05]

〈
nk
〉

=
∞∑
n=1

nk−µG
(
n

LD

)
∝
∫ ∞

1
nk−µG

(
n

LD

)
dn

=
∫ ∞

1/LD

(
θLD

)k−µ
G(θ)LDdθ

= LD(1+k−µ)
∫ ∞

1/LD
θk−µG(θ)dθ.

(4.5)

In the second-to-last line, the change of variable n→ θ = n/LD was made.
The rapid decay of G(θ) has as effect that this integral converges in the upper
limit, while if k is chosen so that µ < 1 + k, it is ensured to converge in the
lower limit as well. Taking the logarithm on both sides of Eq. (4.5) allows
one to write

log
〈
nk
〉

= D(1 + k − µ) logL+ C, (4.6)

with C a constant. When measuring the k-th moment in function the system
size L and then plotting this on a logarithmic scale, the slope of this line gives
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Fig. 4.6.: (a) Scaling of the moments of the cluster size distribution with system
size (b) Estimation of D and µ using the moments analysis.

an estimate for D(1 + k− µ). By plotting these estimates for every moment k
measured, a straight line with slope D is obtained. This line intersects the
k-axis at k = µ− 1, so that the cluster-size exponent µ can be found from this.
Fig. 4.6 shows this analysis for ρ̃ = 4. From this, the power-law exponent
µ = 1.69± 0.02 and the cluster dimension D = 2.01± 0.01 were calculated. A
similar analysis for ρ̃ = 3 leads to µ = 1.67± 0.02 and D = 2.00± 0.02. This
means that for both system sizes, the cut-off cluster size scales linearly with
the number of particles.

Fig. 4.7 and Fig. 4.8 show a data collapse of the cluster size distribution
measured for three system sizes. First, the distribution is multiplied by nµ

so that the distinctive tail is vertically aligned. When rescaling the variable
n → θ = n/LD, the distribution of the three system sizes falls on the same
line.
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Fig. 4.7.: Data collapse of the cluster size distribution for ρ̃ = 4 and Γ̃ = 3.5. (a)
shows P (n)nµ in function of the cluster size n, while (b) shows this in
function of the rescaled cluster size n/LD.
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Fig. 4.8.: Data collapse of the cluster size distribution for ρ̃ = 3 and Γ̃ = 3.8. (a)
shows P (n)nµ in function of the cluster size n, while (b) shows this in
function of the rescaled cluster size n/LD.
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Judging by the obtained data collapse, the scaling ansatz suggested in Eq.
(4.3) seems to explain the finite-size effects observed in the measurements
for the three sizes studied. This would indicate that in the limit L→∞, the
cluster size is distributed according to a power-law with an exponent less
than 2, so that the mean cluster size would diverge. Yet, it is dangerous to
draw a conclusion from the measurements made here. For systems larger
than those taken under study, the original Vicsek model displays several
evenly spaced bands rather than a single one. A further investigation would
have to be made to observe if the bands also split up for the model by Dossetti
and Sevilla and whether this has any effect on the cluster size distribution.
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5Entropy Production

5.1 Entropy and (ir)reversibility

If a system has a discrete set of microstates, labeled as i, and pi is the
probability for the microstate i to occur, then the Gibbs entropy is given by

S = −kb
∑
i

pi ln pi, (5.1)

where kb is the Boltzmann constant. The entropy is related to disorder, as it
increases with the amount of microstates. The second law of thermodynamics
states that the entropy of a closed system does not decrease:

∆S ≥ 0. (5.2)

The equality must hold for a reversible process: should the entropy produc-
tion for such a process be positive, ∆S > 0, then the reversed process would
have ∆S < 0 – a clear violation of the second law. In a non-equilibrium
system, entropy can be produced constantly, which is discussed in the next
section.

5.2 Introduction to Non-Equilibrium
Entropy Production

An instructive example of entropy production can be found in an overdamped
Brownian particle, moving in one dimension and subjected to a position- and
time-dependent force F [Sei05]. The equation of motion1 for such a particle
is given by

γ
dx
dt

= F (x, t) + ξ(t), (5.3)

1In the remainder of this chapter, the Boltzmann constant kB is set to unity.
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where γ is the friction coefficient and ξ is Gaussian white noise with zero
mean and 〈ξ(t)ξ(t′)〉 = 2γTδ(t− t′). The force F is a combination of an
external driving force and a force derived from a conservative potential, V .

The definition of the non-equilibrium Gibbs entropy at time τ is given by

S(τ) = −
∫

dx p(x, τ) ln p(x, τ). (5.4)

Here, p(x, τ) is the probability to find the particle at a position x and time
τ . This definition allows one to write the trajectory-dependent entropy as
[Sei05; Sah+09]

s(τ) = − ln p(x(τ), τ), (5.5)

where p(x, τ) is evaluated along the stochastic trajectory x(t). As for all
trajectories, s(τ) will depend on the initial configuration p0(x), this contains
information on the whole ensemble. The Gibbs entropy can be recovered by
averaging over all trajectories:

S(τ) = 〈s(τ)〉 . (5.6)

For a particle obeying the equation of motion given by Eq. (5.3) with a force
only dependent on position and time, the entropy production is a combination
of the system and the environmental entropy production [Sah+09]. The
system entropy production for a trajectory of duration τ is given by

∆ssys = − ln p(x(τ), τ) + ln p0(x(0), 0) = − ln p(x(τ), τ)
p0(x(0), 0) , (5.7)

where p0(x, 0) is the initial distribution of the particle positions at t = 0 and
p(x, τ) is the distribution at t = τ evolving from the initial positions.

The work applied to the system consists of a contribution from the change in
potential energy and the application of the external force [Sei08]. Sekimoto
showed that an equation similar to the first law of thermodynamics can be
constructed from the energy balance of the whole system: [Sek98]

dW = dV + dQ, (5.8)

where dW is the work applied to the system along the followed trajectory
and dQ is the heat discarded2 from the system to the heat bath. Furthermore,

2Note that the sign convention used in this definition is opposite to what is usually found
in literature on macroscopic thermodynamics.
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by considering the energetics of the Langevin equation, he proved that this
heat can be written as

Q = −
(
−γdx

dt
+ ξ

)
dx. (5.9)

The heat dissipation into the bath will produce an increase in the environ-
mental entropy equal to

∆senv = Q

T
. (5.10)

The increase in environmental entropy can be written in the stochastic
trajectory framework used here as [Kur98]

∆senv = Q

T
= ln P [x(t)|x(0)]

PR[x(τ − t)|x(τ)] , (5.11)

where P [x(t)|x(0)] is the conditional path probability of the particle evolving
along the trajectory x(t) during a time τ when starting at x(0) for t = 0.
The denominator is the time-reversed version of this, so that their ratio is
a measure for the reversibility of the process. In an equilibrium process,
time-reversibility means that Eq. (5.11) will be equal to zero.

The total entropy production, ∆stot, is given by the sum of Eqs. (5.7) and
(5.11):

∆stot = ln P [x(t)|x(0)]p0(x(0), 0)
PR[x(τ − t)|x(τ)]p(x(τ), τ) . (5.12)

The expected value of e−∆stot can be written as [Sei05]

〈
e−∆stot

〉
=

∑
x(t),x(0)

P [x(t)|x(0)]p0(x(0), 0)e−∆stot , (5.13)

in which the sum averages over the initial distribution and the following
stochastic trajectories. Using Eq. (5.12), this can be written as〈

e−∆stot

〉
=

∑
x(τ−t),x(τ)

PR[x(τ − t)|x(τ)]p(x(τ), τ)

= 1,
(5.14)
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which is a consequence of the normalization of the probabilities. Jensen’s
inequality states that for a convex function f and a random variable x the
relation 〈f(x)〉 ≥ f (〈x〉) holds, so it follows from Eq. (5.14) that

〈∆stot〉 ≥ 0. (5.15)

Eq. (5.14) is called the integral fluctuation theorem. This universal theorem
holds for any time duration and initial condition [Sei08]. It implies that if
entropy-producing trajectories exist in a system, there must also be trajec-
tories with a negative entropy production so that Eq. (5.14) still holds: the
second law of thermodynamics is a statistical one.

5.3 Unconventional Entropy Production

The equation for the total entropy production,

∆Stot = ∆Ssys + ∆Senv

= ∆Ssys + Q

T
,

(5.16)

as derived in the previous section, only holds if the force is not depen-
dent on variables that have odd-parity under time-reversal such as the mo-
mentum of the particle. If the particles in the system are subjected to
momentum-dependent forces, the environmental entropy production is not
solely given by the heat Q transferred to the reservoir. Instead, an additional
term, called the unconventional entropy production (∆Sunc) appears so that
∆Senv = ∆Sres + ∆Sunc [Kwo+16]. Here, ∆Sres is the entropy production
related to the heat transfer. For some systems it was shown that ∆Sres is in
fact negative, so that the addition of ∆Sunc is required for ∆Stot to follow the
second law. The study of unconventional entropy production is a very recent
one, and no intuitive explanation has been provided for it as of yet.

To derive the unconventional entropy production, one starts from a general
Langevin equation


dx
dt

= p

m
,

dp
dt

= F (q;λ(t))− γ p
m

+ ξ,
(5.17)
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where q = (x,p) denotes the state in phase space of the particle and λ(t) is an
arbitrary time-dependent function on which the force depends. It is important
to consider how the system behaves under time-reversal: εq denotes the
behaviour of q under this operation. Since the positional coordinates have
even parity under time-reversal, it follows from p ∼ dx

dt that the parity of the
momentum under time-reversal is odd, so that εq = (x,−p). The force F
can consist of a reversible and irreversible part under time-reversal

F = F rev + F ir,

where

F rev(q) = 1
2(F (q) + F (εq)),

F ir(q) = 1
2(F (q)− F (εq)).

(5.18)

With this definition, F rev(εq) = F rev(q) and F ir(εq) = −F ir(q) [Kwo+16].

The total entropy production for a trajectory from t = 0 to t = τ is again
given by

∆stot = ln P [q(t);λ(t)|q(0)]p(q(0), 0)
PR[εq(τ − t);λ(τ − t)|εq(τ)]p(q(τ), τ) . (5.19)

Here, the system starts from a configuration q(0) at time t = 0 and follows
the stochastic path q(t). P [q(t);λ(t)|q(0)] is the conditional probability that
this path is followed when starting from the configuration q(0). Combining
this with the probability to find the initial value, p(q(0), 0), provides an
expression for the forward path probability. The denominator is the time-
reversed version of this. As the system entropy production over a time τ is
given by

∆ssys = − ln p(q(0), 0) + ln p(q(τ), τ), (5.20)

the environmental entropy production can be identified by the logarithm of
the ratio of the two conditional path probabilities.

An expression for the environmental entropy production is found by consid-
ering the change in the environmental entropy during a short time interval
of length dt [Kwo+16; Yeo+16]. This quantity is given by

dSenv = ln Γ(q′, t+ dt|q, t)
Γ(εq, t+ dt|εq′, t) , (5.21)
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where Γ(q′, t+ dt|q, t) stands for the conditional probability to evolve from
the state q at time t to q′ at time t + dt. Following Markovian dynamics,
the conditional probability P over the entire time interval can be recovered
from the product of these Γ’s and taking the limit dt→ 0. These transition
probabilities can be calculated using a Fokker-Planck equation. Consequently,
it can be shown that Eq. (5.21) can be rewritten as [Yeo+16]

dSenv = dt
D

(
ṗ− F rev(q̄)

)(
−γ p̄

m
+ F ir(q̄)

)
− dt ∂pF rev(q̄). (5.22)

Here, D is the diffusion coefficient, q̇ = (q′ − q)/dt and q̄ = (q′ + q)/2. The
position and momentum are thus evaluated at the mid-point, following the
Stratonovich convention.

5.4 Entropy Production for Collective
Motion

Shim et al. raised a question about the relation between the entropy pro-
duction on a microscopic and macroscopic level, which they studied for
a globally-coupled Vicsek model [Shi+16]. On a microscopic scale, the
time-irreversibility caused by the momentum-dependent force implies the
production of entropy on this level. One could expect that, for both the
disordered and ordered phase, the entropy produced by each particle adds
up to a macroscopic amount. However, if one takes a macroscopic point
of view, all configurations in the disordered phase are equally likely. This
would imply that irreversibility is not present in the disordered phase and
the entropy production is only sub-extensive – which is to say that it does not
linearly increase with the amount of particles.

For the model introduced in chapter 3, the force is purely momentum-
dependent so that F rev = 0. The environmental entropy production rate
of Eq. (5.22) becomes

dSenv
dt

= − ṗ
T
· p̄
m

+ ṗ

γT
· F (p̄), (5.23)
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in which the Einstein relation D = γT is used. The environmental entropy
production for the whole system during a time τ can be rewritten as

∆Senv = −m
T

N∑
i=1

∫ τ

0
vi(t) ◦ dvi(t) + m

γT

N∑
i=1

∫ τ

0
Fi(t) ◦ dvi(t). (5.24)

The summation runs over all particles in the system and the integrals are
Stratonovich integrals. This is because the phase-space variables have to be
evaluated at the mid-point between two time steps. An example of such an
integral is

∫ τ

0
Fi(t) ◦ dvi(t) =

n−1∑
j=0

Fi((j + 1)∆t) + Fi(j∆t)
2 · (vi((j + 1)∆t)− vi(j∆t)) ,

(5.25)

where the time interval τ was split up in n equal parts of length ∆t, and the
limit ∆t→ 0 has to be taken.

By using mdvi = (mdvi − Fidt) + Fidt, Eq. (5.24) can be written as

∆Senv =− 1
T

N∑
i=1

∫ τ

0
vi(t) ◦ (mdvi − Fidt)−

1
T

N∑
i=1

∫ τ

0
vi(t) ◦ Fidt

+ m

γT

N∑
i=1

∫ τ

0
Fi(t) ◦ dvi(t). (5.26)

The second term in this equation is zero as the force does no work. Eq. (5.26)
illustrates that the environmental production is not merely equal to the heat
flow into the reservoir. This term is given by (see Eq. (5.9))

Q = −
N∑
i=1

∫ τ

0
vi(t) ◦ (−γvi + ξi)dt

= −
N∑
i=1

∫ τ

0
vi(t) ◦

(
m

dvi
dt
− Fi

)
dt, (5.27)

so that the first term in Eq. (5.26) is equal to
Q

T
. Additionally, a third term is

added to the entropy production: the unconventional entropy production,
introduced in the previous section. The total entropy production can be
written as

∆Stot = ∆Ssys + Q

T
+ ∆Sunc. (5.28)
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The change in energy of the system is just the change in the kinetic energy of
the particles. The velocity distribution is stationary in steady state, so that the
energy change is zero. As no work is being done on the system either, the first
law of thermodynamics implies that the heat transfer Q in Eq. (5.28) is zero
in steady state, which means that there is no reservoir entropy production. In
this state, the spatial distribution is stationary too, so that the system entropy
production will vanish likewise. The only entropy-producing term remaining
of Eq. (5.28) in the steady state is the unconventional entropy production,
∆Sunc.

From the previous calculations, the entropy production rate per particle, s,
can be determined:

s = 1
N

〈
dStot

dt

〉
= m

γT

1
N

N∑
i=1

〈
Fi ◦

dvi
dt

〉
, (5.29)

where 〈�〉 denotes the steady state average and the Stratonovich product
appearing here is given by

Fi ◦
dvi
dt

= Fi(t+ dt) + Fi(t)
2 · vi(t+ dt)− vi(t)

dt
. (5.30)

5.4.1 Global interactions

As it is interesting to compare the results with a short-range version of
the Vicsek model, the results for the entropy production in the case of a
globally-coupled system are shown below (as in [Shi+16]). Note that the
entropy production rate per particle remains very small until Γ̃ ≈ 2.0 and
then increases. This transition point coincides with the onset of collective
motion, as discussed for the globally-coupled model in section 3.4.

Furthermore, the fluctuation of the entropy production is calculated, which
is defined as

χS(τ) = 1
τN

[〈
∆S2

〉
− 〈∆S〉2

]
, (5.31)

where ∆S is the entropy produced during a time τ . This τ is chosen so that
χS(τ ′) converges to the same value for τ ′ ≥ τ [Shi+16]. The observation of
the sharp peak, which slightly shifts with system size, is another indication of
a continuous phase transition.
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Fig. 5.1.: (a) The entropy production rate per particle s in function of the dimen-
sionless coupling factor. (b) Susceptibility of the entropy production
during a time τ = 200.

Fig. 5.2 shows that the entropy production rate per particle is sub-extensive
below the critical point, since s scales as 1/N [Shi+16]. As collective motion
sets in, s remains at a constant value, indicating that the entropy production
is extensive in this regime. To conclude, the entropy production rate in
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the globally-coupled version of the model by Sevilla et al. displays a phase
transition itself, changing from being sub-extensive to extensive at the onset
of collective motion.

102 103 104 105

N

10−4

10−3

10−2

10−1

s

Γ̃ = 1.86

Γ̃ = 2.25

Fig. 5.2.: Scaling of the entropy production rate per particle, s, withN for a globally-
coupled system. The dash-dotted line has a slope of -1.

5.4.2 Short-range interactions

When changing from global interactions – as in the previous section – to
local interactions, the entropy production is drastically different. The entropy
production rate per particle, s, is shown for a short-range model in Fig. 5.3.
While the entropy production was sub-extensive for the disordered phase in
the globally-coupled model, it is now extensive – so that s is independent
of the system size. In addition, its value in this phase is much larger. At the
transition to collective motion, s varies with the system size, but converges
to a single value. This last effect can be understood by comparing the
phase diagram of the short-range and globally-coupled model (Fig. 3.1
and Fig. 3.12). While the order parameter quickly converges to a value
independent of the system size for the latter, this is not the case for the short-
range model – which explains the size-dependence of the entropy production
rate.
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Fig. 5.3.: Entropy production rate per particle s in function of the dimensionless
coupling factor Γ̃, for a system with ρ̃ = 2.

The spatial correlations in the system could possibly explain the change from a
sub-extensive to an extensive entropy production rate in the disordered phase.
In the globally-coupled model, there are no such correlations as the alignment
is independent of a particle’s position. As discussed in section 4.2, however,
the short-range force causes the directions of particles to be correlated over
a small distance scale. Even though order is absent on a global level in the
disordered phase of the short-range model, the denser zones in the system
are locally more ordered than sparsely-packed zones. Since the previous
section indicated that the onset of order was the cause of time-irreversibility,
a hypothesis to explain the results obtained for the short-range model is the
following: the extensive entropy production found in the disordered phase
may be caused by the contribution of particles in the denser, locally ordered
zones.

To test this hypothesis, the system was divided into square boxes of linear size
l. The density, local order parameter and contribution to the unconventional
entropy production of particles in a box were calculated. This local order
parameter is defined as the norm of the average velocity in the box. The
density and local order parameter are – just like the entropy production –
measured at the mid-point between two time steps. If the hypothesis pro-
posed in the previous section were to hold true, it is expected that a particle
in a box with a high value of the local order parameter will, on average, also
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have a relatively high contribution to the unconventional entropy production.
To this aim, measurements were conducted for the system shown in Fig. 4.1b.
While still not collectively moving, this system shows highly increased spatial
correlations. Fig. 5.4 displays the results obtained from these measurements.
Unlike what would be expected from the hypothesis, the local entropy pro-
duction does not seem to increase with higher local order. The obtained
results suggest that the reason for the change in the nature of the entropy
production when introducing short-range interactions may lie elsewhere.
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Fig. 5.4.: Local entropy production sl, in function of the local order parameter Λl,
for the system shown in Fig. 4.1b. These results were obtained by dividing
the system in boxes of linear size l = 8.
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6Mean-Field Model for
Passive Particles

6.1 From a Fokker-Planck Equation to
Dynamical Moment Equations

The probability density function P (r,v, t) describes the probability of finding
a particle with coordinates between r and r + dr, and a velocity between
v and v + dv at time t. The knowledge of this probability density function
allows for the calculation of the various moments of the velocity distribution.
The n-th moment of the velocity component along the direction k is defined
as

〈vnk 〉 = 1
ρ(r, t)

∫
dvvnkP (r,v, t). (6.1)

Here, the spatial particle density ρ(r, t) is equal to the zeroth moment and
provides the normalization when integrating over all velocities

ρ(r, t) =
∫

dvP (r,v, t). (6.2)

Dynamical equations for these velocity moments can be expressed using the
distribution P (r,v, t), by multiplying Eq. (6.1) with the particle density and
taking the time derivative

∂

∂t
(ρ 〈vnk 〉) =

∫
dvvnk

∂P

∂t
. (6.3)

To obtain analytical expressions for the dynamics of these moments, working
along the lines of [RE10; RSG12], the equation of motion in dimensionless
variables is first considered

dṽi
dt̃

= Γ̃[fi − v̂i(v̂i · f i)]− ṽi + ξ̃i. (6.4)
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The Fokker-Planck equation is a partial differential equation that describes
the time evolution of P . With the equation of motion Eq. (6.4), it is given by
[Ris84]

∂P

∂t̃
= −ṽ · ∇r̃P −∇ṽ

[
−ṽP + Γ̃P (fi − v̂i(v̂i · f i))

]
+ D̃∆ṽP, (6.5)

where P ≡ P (r̃, ṽ, t̃). D, the diffusion coefficient, equals 1
2 in the dimen-

sionless variables used here. Eq. (6.5) describes a non-linear Fokker-Planck
equation. This non-linearity stems from the fact that the average direction of
motion of the neighbours, f , is itself dependent on the distribution P (r̃, ṽ, t̃)
through the following relation:

f(r̃, t̃) = 1∫
ΩR0 (r̃) ρ(r̃′, t̃)dr̃′

∫
ΩR0 (r̃)

dr̃′
∫

dṽ′v̂′P (r̃′, ṽ′, t̃). (6.6)

Here, the spatial integrals extend over the neighbourhood defined by radius
R0. In the following analysis all variables are considered to be dimension-
less.

Working in 2D with k = x, y, Eq. (6.3) and Eq. (6.5) are combined to obtain
the equation for the dynamics of the velocity moments:

∂

∂t
(ρ 〈vnx〉) =

∫
dvvnx

[
−vx

∂P

∂x
− vy

∂P

∂y
+ ∂

∂vx
(Pvx) + ∂

∂vy
(Pvy)

− Γ ∂

∂vx

(
fxP −

vx
v2
x + v2

y

(fxvx + fyvy)P
)

− Γ ∂

∂vy

(
fyP −

vy
v2
x + v2

y

(fxvx + fyvy)P
)

+ 1
2

(
∂2P

∂v2
x

+ ∂2P

∂v2
y

)]
.

(6.7)

In the limit of vk → ±∞, the distribution P becomes the probability to find
a particle with infinite speed and is thus equal to zero. Eq. (6.7) can be
partially integrated, eliminating all the terms containing derivatives with
respect to vy. This simplifies Eq. (6.7) to
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∂

∂t
(ρ 〈vnx〉) =− ∂

∂x

(
ρ
〈
vn+1
x

〉)
− ∂

∂y
(ρ 〈vnxvy〉)

− nρ 〈vnx〉+ nρΓfx
〈
vn−1
x

〉
− nρΓfx

〈
vn+1
x

v2
x + v2

y

〉

− nρΓfy
〈

vnxvy
v2
x + v2

y

〉
+ 1

2n(n− 1)ρ
〈
vn−2
x

〉
.

(6.8)

The n-th moment of the velocity distribution is dependent on higher-order
moments, so that Eq. (6.8) describes a coupled set of differential equations.
To obtain analytical expressions for these moments, the non-Gaussian dis-
tribution will have to be approximated by a limited amount of its moments.
A closed set of equations for the velocity moments can only be achieved by
making the approximation that the contribution of a certain cut-off moment
can be neglected.

6.2 A Mean-Field Model

To obtain analytical expressions from the equations derived in the previous
section, a mean-field model is constructed based on the framework set up
in [RE10; RSG12]. In such a mean-field model, every particle interacts with
an averaged velocity field instead of with its local neighbours. The velocity
vector for a particle can be written as v = u+ δv, where u is the mean-field
velocity and δv is a vector of deviations around this mean. The assumption is
made that the deviations in different directions are independent so that

〈
δvnk1δv

m
k2

〉
=
〈
δvnk1

〉 〈
δvmk2

〉
for k1 6= k2. (6.9)

This implies that the covariance matrix in two dimensions for these deviations
is given by  〈

δv2
k1

〉
〈δvk1δvk2〉

〈δvk2δvk1〉
〈
δv2

k2

〉  =
Tk1 0

0 Tk2

 . (6.10)

Tk1 and Tk2 are commonly referred to as the “temperature” components along
each direction as they are related to the second moment of the velocity
distribution. Romanczuk and Schimansky-Geier have shown that in the case
of active particles, it is a gair approximation to treat these deviations as
symmetrical and thus considering 〈vax〉 as zero for odd a [RSG12]. A first
attempt of a mean-field model is made following this approach. As will
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become clear, the asymmetry of the velocity distribution plays an important
role in the mean-field phase transition and odd-power moments should be
included in the calculation of the velocity moments, which will be discussed
in section 6.4.

6.3 Symmetrical Velocity Distribution

In the case of a symmetrical velocity distribution, the following moments can
easily be written down

〈vx〉 = ux,〈
v2
x

〉
= u2

x + Tx,〈
v2
x

〉
= u3

x + 3uxTx.

(6.11)

The mixed moments can be calculated in the same way

〈vxvy〉 = uxuy,〈
v2
xvy

〉
= u2

xuy + Txuy.
(6.12)

Combining these with Eq. (6.8) allows for the calculation of the dynamical
equations for the velocity moments. For n = 0, this results in

∂ρ

∂t
= −∇r(ρu), (6.13)

which is a continuity equation. Doing the same for n = 1 and utilizing the
continuity equation will only result in a closed expression when the following
approximation is made, as done in [RSG12]〈

vnx√
v2
x + v2

y

〉
≈ 〈vnx〉〈√

v2
x + v2

y

〉
≈ 〈vnx〉√〈

v2
x + v2

y

〉
≈ 〈vnx〉√

u2
x + u2

y + Tx + Ty
≡ 〈v

n
x〉
vT

,

(6.14)
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which then results in

∂ux
∂t

+ u · ∇rux =− ux + Γfx − Γfx
u2
x + Tx
v2
T

− Γfy
uxuy
v2
T

− ∂Tx
∂x
− Tx

ρ

∂ρ

∂x
.

(6.15)

Finally, for n = 2, combining the results for n = 0 and n = 1 with Eq. (6.8)
leads to

1
2

(
∂Tx
∂t

+ u · ∇rTx

)
=
(
−1− 2Γfx

ux
v2
T

− Γfy
uy
v2
T

)
Tx

+ 1
2 − Tx

∂ux
∂x

.

(6.16)

In the previous equations, the moments of the velocity along the x-axis were
considered. Interchanging x↔ y in these equations leads to the dynamical
equations of the moments along the y-axis.

In the case of a globally-coupled or high-density system, it is a good approxi-
mation to treat the system as spatially homogeneous. With the assumption
of spatial homogeneity, the average direction of motion fx = ux/vT , so that
these last equations simplify to

∂ux
∂t

=− ux + Γux
vT
− Γux(u

2
x + Tx)
v3
T

− Γ
uxu

2
y

v3
T

, (6.17)

and

1
2
∂Tx
∂t

=
(
−1− 2u

2
x

v3
T

− Γ
u2
y

v3
T

)
Tx + 1

2 .
(6.18)

Naturally, this does not describe a low-density system well: it was shown
earlier that in these systems clustering occurs between collectively moving
particles, so that spatial homogeneity is no longer a valid assumption.

6.3 Symmetrical Velocity Distribution 71



A change of basis can be made from the (x, y) frame to one where the axes
are parallel and perpendicular to the direction of the mean-field velocity, so
that u = u‖ and u⊥ = 0. The dynamics for the moments then simplify to

∂u‖
∂t

= −u‖ + Γu‖
vT
− Γ

u‖(u2
‖ + T‖)
v3
T

,

1
2
∂T‖
∂t

=
(
−1− 2Γ

u2
‖

v3
T

)
T‖ + 1

2 ,

1
2
∂T⊥
∂t

=
(
−1− Γ

u2
‖

v3
T

)
T⊥ + 1

2 ,

(6.19)

where now
vT =

√
u2
‖ + T‖ + T⊥. (6.20)

Results

The Python software package PyDSTool was used for the integration of the
differential equations [CR07], and the software package XPPAUT was used
for a bifurcation analysis [Erm02]. Fig. 6.1 shows the solution for u‖ in
function of the coupling factor for the mean-field model. Initial conditions
are either the ordered phase with u‖(0) = 1, or the disordered phase with
u‖(0) = 10−4. Note that the totally disordered phase with u‖(0) = 0 is an
unstable fixed point at Γ ≥ 2.0 in the mean-field model. Contrary to what
simulations with a globally-coupled Vicsek model have shown, hysteresis
is present in the system. When starting from the disordered phase, the
transition to the ordered phase occurs at Γ ≈ 2.0. However, when starting
from the ordered phase, the transition to disorder occurs for Γ ≈ 1.9. As will
be shown in the following section, this can be linked to the approximation of
a symmetrical velocity distribution.
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Fig. 6.1.: The value of u‖ in function of the coupling factor for the mean-field model
with a symmetrical velocity distribution. The solution starting from a
disordered phase (red line) is different from the solution starting in the
ordered phase (blue line).

6.4 Asymmetrical Velocity Distribution

When considering an asymmetrical velocity distribution, the moments for
n > 2 become 〈

v3
x

〉
= u3

x + 3uxTx + Sx,〈
v4
x

〉
= u4

x + 6u2
xTx + 4uxSx +Kx,

(6.21)

and so on for higher moments. Here, Sx = 〈δv3
x〉 and Kx = 〈δv4

x〉 as they are
related to the skewness and kurtosis of the velocity distribution, respectively.
To calculate higher-order moments that will appear for an asymmetrical
velocity distribution, calculations are made in the (‖,⊥)-frame and under the
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condition of a spatially homogeneous system. The first five moments in this
reference frame are given by

∂u‖
∂t

= −u‖ + Γu‖
vT
− Γ

u‖(u2
‖ + T‖)
v3
T

,

∂T‖
∂t

= −2T‖ − 4
Γu2
‖T‖

v3
T

− 2Γu‖S‖
v3
T

+ 1,

∂S‖
∂t

= −3S‖ − 6
Γu2
‖S‖

v3
T

− 3Γu‖K‖
v3
T

+ 3
Γu‖T 2

‖

v3
T

,

∂K‖
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(6.22)

Here, F = 〈δv5〉 and σ = 〈δv6〉. To obtain closure for this series of moments,
the approximation is made that σ − S2 = 0. This means that the variance
of the skewness of the velocity distribution is set to zero. By doing this, the
dynamical equation for the fifth moment in Eq. (6.22) simplifies to

∂F‖
∂t

= −5F‖ − 10
Γu2
‖F‖

v3
T

+ 10S‖ + 5
Γu‖(T‖K‖ − S2

‖)
v3
T

. (6.23)

The dynamical equations describing the perpendicular moments of the veloc-
ity distribution are given by

∂T⊥
∂t

= −2T⊥ − 2
Γu2
‖T⊥

v3
T

+ 1,

∂S⊥
∂t

= −3T⊥ − 3
Γu2
‖S⊥

v3
T

,

∂K⊥
∂t

= −4T⊥ − 4
Γu2
‖K⊥

v3
T

+ 6T⊥,

∂F⊥
∂t

= −5T⊥ − 5
Γu2
‖F⊥

v3
T

+ 10S⊥.

(6.24)

Results

In Fig. 6.2, the results from the mean-field model for u‖ and the two tem-
perature components are compared to numerical results obtained from a
globally-coupled system with N = 90000. A bifurcation analysis using the
PyCont [RH10] package indicates the existence of a branching point at
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Γ = 2.0, which is in agreement with the value of Γ = 1.991 obtained for a
globally-coupled system [Sev+14]. Hysteresis is no longer present in the
system when working with an asymmetrical velocity distribution. Several
factors can explain the deviations between these numerical results and the
mean-field model. First, the approximation in Eq. (6.14) will play a part in
this. Furthermore, as collective motion sets in, the velocity distribution is
non-Gaussian, but is here described by only its first five moments. Lastly, the
mean-field model ignores the fluctuations on the skewness of the velocity
distribution. As ultimately all moments are coupled, this will have an effect
on the solution for the mean-field velocity and temperature shown in Fig. 6.2.
The seemingly better fit for models involving active Brownian particles (e.g.
[RE10]) can be explained by the fact that the approximation in Eq. (6.14) has
to be made less often. The active nature of the particles in such a model also
invokes the additional criterion that the mean-field speed u‖ has to converge
to the self-propelled speed v0 in the limit of zero noise.
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Fig. 6.2.: Comparison between the first two moments of the velocity distribution
for the mean-field model and a numerically simulated globally-coupled
system with N = 90000.
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7Conclusion and Outlook

Collective motion is a form of collective behaviour that can arise in complex
systems. Observations indicate that the patterns of collective motion can be
categorized in only a few distinct classes. This could indicate universal un-
derlying mechanisms. In this thesis, a minimal model was used to investigate
the features required to develop collective motion.

The Vicsek model – introduced in chapter 2 – is among the best-known of
these minimal models. It describes self-propelling Brownian particles that
align their direction of motion to that of their neighbours under the influence
of a short-range force. This model shows a discontinuous phase transition
and the transition to collective motion occurs when the social force becomes
strong enough to overcome the effect of noise.

In order to determine whether collective motion needs a self-propelling
nature of particles, Dossetti and Sevilla developed a model that describes
passive Brownian particles rather than self-propelling ones [DS15]. This
model was the focus of the remainder of this thesis.

In chapter 3, the results of Dossetti and Sevilla were verified. In addition,
particle diffusion was studied for this model. If collective motion was present
in the system, particle diffusion turned out to be anisotropic with regard to
the directions parallel and perpendicular to the mean direction of motion.
This is in contrast with the original Vicsek model, in which the anisotropy is
reversed. The mechanism behind this difference remains unclear.

In chapter 4, the spatial correlations between particles were studied. Particles
were found to be spatially correlated at all times – over small ranges in the
absence of collective motion and large distances when it was present. As with
the original Vicsek model, phase separation occurred for coupling factors
right above the transition point. For a 2D system with periodic boundary
conditions, this phase separation took on the form of dense bands travelling
collectively through a region of disorderly moving particles. These bands also
appeared in the original Vicsek model. In the model of Dossetti and Sevilla,
they were found to be wider and less dense. Additionally, particles in the
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disorganized regions formed small clusters. The size of these clusters was
proven to follow a power-law with a cut-off size dependent on the number
of particles. A finite-size scaling analysis was performed for the cluster-size
distribution, resulting in a power-law exponent of less than 2.

In chapter 5, the entropy production was examined. The entropy production
was shown to be a combination of three things: the change in system entropy,
the entropy production linked to the heat dissipation to the reservoir and
an unconventional entropy production, linked to the odd-parity variables
included in the force. When averaged in the steady state, only the uncon-
ventional entropy production was non-zero. The entropy production was
measured for a globally-coupled and a short-range version of the model by
Dossetti and Sevilla. For the globally-coupled model, the entropy production
was confirmed to be sub-extensive in the disordered phase. It became exten-
sive at the onset of collective motion. This could be explained by considering
that in the disordered phase all particle trajectories are equally likely so that
detailed balance still holds true on a macroscopic scale. When a short-range
force was implemented instead, the nature of the entropy production changed
drastically: extensive in the disordered phase and depending on the system
size at the transition point. While the latter effect can be explained by size
effects, no intuitive explanation was found for the former. Its cause may lie
in the spatial correlations inherent to the short-range model, but results on
this remain inconclusive.

Finally, a mean-field version was developed in chapter 6 for the model by
Dossetti and Sevilla. This version was inspired by the work of Romanczuk and
Schimansky-Geier and assumes spatial homogeneity [RSG12]. Compared to
numerical results of a globally-coupled model, the mean-field model made
good predictions for coupling factors of the disordered phase and around
the transition point. For higher values of the coupling factor, the mean-field
model showed larger deviations when compared to the numerical results.
These can be attributed to the approximations made in the mean-field model,
as it e.g. neglects fluctuations on the skewness of the velocity distribution.

These results conclude the work done for this thesis on the Vicsek model for
passive particles. Self-propulsion was confirmed to be unnecessary for the
development of collective motion. Experiments on passive particles such as
some shaken rods could test this claim further.
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For systems larger than those studied in the analysis of the cluster size
distributions, the original Vicsek model displays several evenly spaced bands
rather than the single band found in all performed simulations. Further
studies are required to observe if the bands also split up for the model used
here and whether this has any effect on the cluster size distribution.

An investigation of the entropy production in the system produced results
that are difficult to explain. A further study of the entropy production could
deepen our understanding of the effect of spatial inhomogeneities on the
entropy production. Such a study has recently been undertaken for field
theories of active matter [Nar+17].

The mean-field adaptation of the Vicsek model properly described homoge-
neous systems, but no existing model takes spatial fluctuations into account.
To account for spatial fluctuations in a mean-field model, perhaps an ex-
tension similar to the Bethe approximation in the Ising model could be
created. The topological version of the Vicsek model, in which the number of
neighbours is fixed, may be especially suitable for this.

While the last decade brought much progress in the understanding of the
Vicsek model, the temporal mechanisms underlying the emergence of long-
range order remain unclear. The time-evolution could be quantified by
using temporal network theory. This has proven useful to understand the
large-scale features in a connected system. Applying it would lead to an
informative picture of how information spreads through the system. A recent
development for analysing the structural differences of these time-evolving
networks is the change-point detection technique. The onset of collective
motion alters the network topology and by using a Bayesian hypothesis
test, this technique could allow for the identification of the times at which
large-scale pattern changes occur.
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Nederlandse
Samenvatting

Collectieve beweging is een alomtegenwoordig fenomeen in onze wereld.
Observaties tonen aan dat de patronen van collectieve beweging kunnen
onderverdeeld worden in een beperkt aantal klassen. Het is dus interes-
sant voor fysici om het onderliggende mechanisme dat dit universeel gedrag
veroorzaakt te onderzoeken. Hiervoor wordt gebruik gemaakt van een mini-
maal model dat met zo weinig mogelijk eigenschappen collectieve beweging
kan veroorzaken.

Hoofdstuk 1 begint met een introductie tot complexiteit, fasetransities en
collectieve beweging. In hoofdstuk 2 wordt het Vicsek model geïntroduceerd:
een populair model voor het beschrijven van collectieve beweging. Dit model
beschrijft actieve Browniaanse deeltjes die onderhevig zijn aan kortedracht-
interacties. Deze interacties zorgen ervoor dat de bewegingsrichting van
deeltjes gealigneerd wordt met die van hun buren. Eens deze kracht sterk ge-
noeg is om de ruis inherent aan dit model te overwinnen, ontstaat collectieve
beweging.

Hoofdstuk 3 beschrijft de verificatie van een model ontwikkeld door Sevilla
et al., waarbij wordt nagegaan of de deeltjes wel degelijk actief moeten zijn
voor de ontwikkeling van collectieve beweging. De spatiale correlaties die
optreden in dit model worden verder onderzocht in hoofdstuk 4. Hier wordt
onder meer de verdeling van de clustergroottes in een van de fasen van dit
model bestudeerd.

Hoofdstuk 5 bestudeert de entropieproductie in het model van Sevilla et al.,
zowel voor kortedrachtinteracties als voor globale interacties. De entropiepro-
ductie toont grote verschillen voor beide soorten interacties, hetgeen verder
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onderzocht moet worden om tot een intuïtieve verklaring te komen. Tenslotte
wordt in hoofdstuk 6 een mean-fieldversie bestudeerd van het model van
Sevilla et al. In dit model worden alle interacties uitgemiddeld, wat voor
een simpelere beschrijving zorgt aangezien het veeldeeltjesprobleem wordt
gereduceerd tot een ééndeeltjesprobleem.
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ANumerical Considerations

A.1 Integrating the Equation of Motion

To study the time evolution of the system, the equation of motion Eq. (3.11)
is integrated using a modified velocity-Verlet algorithm as introduced by
Groot and Warren, where it was applied for dissipative particle dynamics
[GW97]. This algorithm is given by

ri(t+ ∆t) = ri(t) + ∆tvi(t) + 1
2(∆t)2Fi(t),

vi(t+ ∆t) = vi(t) + λ∆tFi(t),
Fi(t+ ∆t) = Fi (r(t+ ∆t),v(t+ ∆t)) ,

vi(t+ ∆t) = vi(t) + 1
2∆t (Fi(t) + Fi(t+ ∆t)) ,

(A.1)

where F is the sum of the frictional, velocity-aligning and stochastic force.
As in [GW97], the empirical factor λ was set to be λ = 1/2, as integration
with this factor and the integration scheme (A.1) corresponded very well
with the results obtained with a simple Euler-algorithm.

For the time step ∆t appearing in this scheme, generally the choice ∆t = 0.01
(in dimensionless variables) was made. Integration with this time step
reproduced the features of Brownian motion if no velocity-aligning force
was included, while the important criterion vi∆t � R0 is also valid. This
last criterion means that a particle does not move through another particle’s
interaction range in-between two time steps. However, for low-density
systems (ρ̃ ≤ 2), the increased fluctuations have as effect that reaching the
steady state is a much slower process. For these systems, ∆t = 0.02 was
used.
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A.2 Force Calculation

For the calculation of the velocity-aligning force, a linked-cell method inspired
by molecular dynamics is used. With this method, the system is divided in
square boxes with a length of R0. This implies that, for a particle in a
certain box, all its neighbours will be either in the box itself or in one of the
neighbouring boxes (8 in 2D, 26 in 3D). Here, periodic boundary conditions
are applied. This method reduces the scaling of the force calculations from
O(N2) to O(NNc), where Nc is the average amount of particles for every
cell (which does not change on increasing the system size or number of
particles at a fixed particle density). Naturally, for every box, only half of
the neighbouring boxes has to be considered. Fig. A.1 and the pseudo-code
below illustrate this method.

Fig. A.1.: Illustration of the linked-cell method. The neighbours of the central
particle (blue) are all contained in the red square.
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Algorithm 1 Initializing Link and Header

NoB = systemSize← Number of boxes
Header[NoB][NoB] = -1
Link[N] = -1

for i = 1 . . . N do
xIndex = Floor(xi)
yIndex = Floor(yi)
Link[i] = Header[xIndex][yIndex]
Header[xIndex][yIndex] = i

Now, ‘Header’ contains the highest particle index for every box (or -1 if there
are no particles in the box) and ‘Link[i]’ is another particle in the same box as
i, but with a lower index (if there is no such particle, it is equal to -1). With
these two structures, the neighbours of every particle can be found quickly
and the force calculation is done with the following algorithm:

Algorithm 2 Force Calculation
averageDirection[N] = 0
Neighbourcount[N] = 0
for all boxes do

Using Header, Link: determine particles in central box
for half of neighbouring boxes do

Using Header, Link: determine particles in neighbouring boxes
for particles i in central box do

if any particle j from central or neighbouring box in range then
add direction of particle j to averageDirection[i] and vice-versa
Neighbourcount[i] += 1
Neighbourcount[j] += 1

for i = 1 . . . N do
calculate force on particle i using averageDirection, Neighbourcount

For the stochastic force appearing in (6.4), care has to be taken with the
Dirac-delta function appearing here. To circumvent the singular nature of
this function, it is deemed constant during one time step, so that

δ(t− t′) =


1

∆t if t′ ∈ [t, t+ ∆t],
0 otherwise.

(A.2)
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A first simulation attempt with C++’s pseudo-random number generator
showed periodic peaks in the autocorrelation of the order parameter over
long time scales. These appeared because of the insufficient period of the
PRNG. Hence, the random numbers used throughout the simulations in
this thesis were generated with a Mersenne-Twister pseudo-random number
generator. Normally distributed random numbers were then generated using
C++’s Box-Muller transform.

A.3 Autocorrelation with FFT

As in section 3.3.4, we often wish to compute a quantity of the type

χi(t) = 〈xi(t0)xi(t0 + t)〉t0 , (A.3)

where the average is over the arbitrary reference times. If n samples are
available, the computation of this autocorrelation is of the order of n2, which
can become very costly for large samples and certainly so if we also wish
to average over all particles in the system. To speed up this process, one
can make use of the Fast Fourier Transform (FFT) algorithm, so that the
calculation of the autocorrelation function scales as n log n [NB99]. The
Fourier transform of (A.3) is given by

χ̃(ω) =
∫

dt eiωt
∫

dt′ x(t′)x(t′ + t)

=
∫

dt
∫

dt′ e−iωt
′
x(t′)eiω(t′+t)x(t′ + t)

= x̃(ω)x̃(−ω) = |x̃(ω)|2,

(A.4)

where x̃(ω) is the Fourier transform of x(t). Hence, the Fourier transform of
x(t) is calculated using the FFT algorithm and after applying the inverse FFT
on |x̃(ω)|2, the autocorrelation function of x(t) is obtained.
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BPower-law Distributions

A variable x is said to follow a power-law if its distribution is of the form

p(x) ∝ x−α, (B.1)

where α is commonly referred to as the exponent of the power-law [New05].
A power-law distribution comes in two forms, depending on whether x is
a continuous or discrete variable. As the cluster sizes in section 4.3 can
only take on integer values, this appendix is concerned with power-law
distribution for the latter. The probability distribution is in this case given
by

px = Cx−α, (B.2)

where C is a normalization constant. Note that this distribution diverges
for x = 0, so that there must be a lower-bound, xmin on this distribution
[Cla+09]. The normalization constant can be found by requiring that all the
probabilities sum to one:

1 = C
∞∑

x=xmin

x−α = Cζ(α, xmin), (B.3)

where ζ(α, xmin) is the generalized Riemann ζ-function, so that

px = x−α

ζ(α, xmin) . (B.4)

Power-law distributions are an example of a “heavy-tailed” distribution:
events that would be considered outliers for a Gaussian distribution occur
with a relatively large probability for a power-law distribution. They are also
said to be “scale-free”, meaning the distribution has the same appearance
when a change of scale is made [Als+14; New05]. This can be easily verified,
as when x is scaled by a certain factor b, the distribution in Eq. (B.4)
becomes

pbx = b−αx−α

ζ(α, xmin)
= b−αpx,

(B.5)
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so that upon a change of scale, the distribution gets multiplied by a constant,
but its shape remains unchanged. The power-law distribution is the only
distribution with this feature [New05].

The k-th moment of a power-law distribution can be calculated as

〈
xk
〉

= 1
ζ(α, xmin)

∞∑
x=xmin

xk−α, (B.6)

so that it is divergent if α ≤ k.

88 Chapter B Power-law Distributions



Bibliography

[Ach99] Muktish Acharyya. “Nonequilibrium phase transition in the kinetic Ising
model: Existence of a tricritical point and stochastic resonance”. In:
Physical Review E 59.1 (1999), p. 218 (cit. on p. 25).

[Ald+07] Maximino Aldana, Victor Dossetti, Christian Huepe, VM Kenkre, and
Hernán Larralde. “Phase transitions in systems of self-propelled agents
and related network models”. In: Physical Review Letters 98.9 (2007),
p. 095702 (cit. on p. 11).

[Ald+09] M Aldana, H Larralde, and B Vázquez. “On the emergence of collective
order in swarming systems: a recent debate”. In: International Journal
of Modern Physics B 23.18 (2009), pp. 3661–3685 (cit. on p. 14).

[Als+14] Jeff Alstott, Ed Bullmore, and Dietmar Plenz. “powerlaw: a Python
package for analysis of heavy-tailed distributions”. In: PLOS ONE 9.1
(2014), e85777 (cit. on pp. 49, 87).

[BA08] Gabriel Baglietto and Ezequiel V Albano. “Finite-size scaling analysis
and dynamic study of the critical behavior of a model for the collective
displacement of self-driven individuals”. In: Physical Review E 78.2
(2008), p. 021125 (cit. on p. 11).

[BA09a] Gabriel Baglietto and Ezequiel V Albano. “Computer simulations of the
collective displacement of self-propelled agents”. In: Computer Physics
Communications 180.4 (2009), pp. 527–531 (cit. on p. 11).

[BA09b] Gabriel Baglietto and Ezequiel V Albano. “Nature of the order-disorder
transition in the Vicsek model for the collective motion of self-propelled
particles”. In: Physical Review E 80.5 (2009), p. 050103 (cit. on p. 11).

[Bal+08] Michele Ballerini, Nicola Cabibbo, Raphael Candelier, et al. “Interaction
ruling animal collective behavior depends on topological rather than
metric distance: Evidence from a field study”. In: Proceedings of the
National Academy of Sciences 105.4 (2008), pp. 1232–1237 (cit. on
p. 18).

89



[Ber+09] Eric Bertin, Michel Droz, and Guillaume Grégoire. “Hydrodynamic equa-
tions for self-propelled particles: microscopic derivation and stability
analysis”. In: Journal of Physics A: Mathematical and Theoretical 42.44
(2009), p. 445001 (cit. on p. 12).

[BG90] Jean-Philippe Bouchaud and Antoine Georges. “Anomalous diffusion
in disordered media: statistical mechanisms, models and physical ap-
plications”. In: Physics Reports 195.4-5 (1990), pp. 127–293 (cit. on
p. 37).

[Bin81] Kurt Binder. “Critical properties from Monte Carlo coarse graining and
renormalization”. In: Physical Review Letters 47.9 (1981), p. 693 (cit. on
p. 24).

[Bla+03] Daniel L Blair, T Neicu, and Arshad Kudrolli. “Vortices in vibrated
granular rods”. In: Physical Review E 67.3 (2003), p. 031303 (cit. on
p. 2).

[BY02] Yaneer Bar-Yam. “General features of complex systems”. In: Encyclopedia
of Life Support Systems (EOLSS), UNESCO, EOLSS Publishers, Oxford, UK
(2002) (cit. on p. 1).

[Cha+07] Hugues Chaté, Francesco Ginelli, and Guillaume Grégoire. “Comment
on “phase transitions in systems of self-propelled agents and related
network models””. In: Physical Review Letters 99.22 (2007), p. 229601
(cit. on pp. 10, 12).

[Cha+08a] Hugues Chaté, Francesco Ginelli, Guillaume Grégoire, and Franck Ray-
naud. “Collective motion of self-propelled particles interacting without
cohesion”. In: Physical Review E 77.4 (2008), p. 046113 (cit. on pp. 11–
13, 30).

[Cha+08b] Hugues Chaté, Francesco Ginelli, Guillaume Grégoire, Fernando Peruani,
and Franck Raynaud. “Modeling collective motion: variations on the
Vicsek model”. In: The European Physical Journal B-Condensed Matter
and Complex Systems 64.3 (2008), pp. 451–456 (cit. on pp. 14, 19).

[Cha01] Serena Chan. “Complex adaptive systems”. In: ESD. 83 Research Seminar
in Engineering Systems. Vol. 31. 2001 (cit. on p. 1).

[Cla+09] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. “Power-
law distributions in empirical data”. In: SIAM Review 51.4 (2009),
pp. 661–703 (cit. on p. 87).

[CM05] Kim Christensen and Nicholas R Moloney. Complexity and criticality.
Vol. 1. Imperial College Press, 2005 (cit. on p. 50).

[Cou+05] Iain D Couzin, Jens Krause, Nigel R Franks, and Simon A Levin. “Effec-
tive leadership and decision-making in animal groups on the move”. In:
Nature 433.7025 (2005), pp. 513–516 (cit. on p. 19).

90 Bibliography



[CR07] LaMar MD Guckenheimer JM Clewley RH Sherwood WE. PyDSTool,
a software environment for dynamical systems modeling. 2007. URL:
http://pydstool.sourceforge.net (cit. on p. 72).

[CV00] András Czirók and Tamás Vicsek. “Collective behavior of interacting
self-propelled particles”. In: Physica A: Statistical Mechanics and its
Applications 281.1 (2000), pp. 17–29 (cit. on p. 9).

[Czi+96] András Czirók, Eshel Ben-Jacob, Inon Cohen, and Tamás Vicsek. “For-
mation of complex bacterial colonies via self-generated vortices”. In:
Physical Review E 54.2 (1996), p. 1791 (cit. on p. 15).

[DM+98] M De Menech, AL Stella, and C Tebaldi. “Rare events and breakdown
of simple scaling in the Abelian sandpile model”. In: Physical Review E
58.3 (1998), R2677 (cit. on p. 50).

[DS15] Victor Dossetti and Francisco J Sevilla. “Emergence of collective motion
in a model of interacting Brownian particles”. In: Physical Review Letters
115.5 (2015), p. 058301 (cit. on pp. 22, 26, 30, 41, 53, 77, 78).

[Erm02] Bard Ermentrout. Simulating, analyzing, and animating dynamical sys-
tems: a guide to XPPAUT for researchers and students. SIAM, 2002 (cit. on
p. 72).

[GC04] Guillaume Grégoire and Hugues Chaté. “Onset of collective and cohesive
motion”. In: Physical Review Letters 92.2 (2004), p. 025702 (cit. on
pp. 10, 11, 15, 17).

[GC10] Francesco Ginelli and Hugues Chaté. “Relevance of metric-free interac-
tions in flocking phenomena”. In: Physical Review Letters 105.16 (2010),
p. 168103 (cit. on p. 18).

[Gin16] Francesco Ginelli. “The Physics of the Vicsek model”. In: The European
Physical Journal Special Topics 225.11-12 (2016), pp. 2099–2117 (cit.
on pp. 4, 8–10, 15, 29, 30).

[Gro+12] Robert Grossmann, Lutz Schimansky-Geier, and Pawel Romanczuk. “Ac-
tive Brownian particles with velocity-alignment and active fluctuations”.
In: New Journal of Physics 14.7 (2012), p. 073033 (cit. on p. 15).

[Gré+03] Guillaume Grégoire, Hugues Chaté, and Yuhai Tu. “Moving and staying
together without a leader”. In: Physica D: Nonlinear Phenomena 181.3
(2003), pp. 157–170 (cit. on pp. 4, 11, 15, 17, 18).

[GT10] Harvey Gould and Jan Tobochnik. Statistical and thermal physics: with
computer applications. Princeton University Press, 2010 (cit. on p. 47).

[GW97] Robert D Groot and Patrick B Warren. “Dissipative particle dynamics:
Bridging the gap between atomistic and mesoscopic simulation”. In:
The Journal of Chemical Physics 107.11 (1997), pp. 4423–4435 (cit. on
p. 83).

Bibliography 91

http://pydstool.sourceforge.net


[HA04] Cristián Huepe and Maximino Aldana. “Intermittency and clustering
in a system of self-driven particles”. In: Physical Review Letters 92.16
(2004), p. 168701 (cit. on p. 48).

[Ibe+09] Michael Ibele, Thomas E Mallouk, and Ayusman Sen. “Schooling Be-
havior of Light-Powered Autonomous Micromotors in Water”. In: Ange-
wandte Chemie International Edition 48.18 (2009), pp. 3308–3312 (cit.
on p. 2).

[Jen03] Henrik Jeldtoft Jensen. “Lecture notes on Kosterlitz-Thouless transition
in the XY model”. In: Imperial College Lectures (2003) (cit. on p. 9).

[Kur98] Jorge Kurchan. “Fluctuation theorem for stochastic dynamics”. In: Jour-
nal of Physics A: Mathematical and General 31.16 (1998), p. 3719 (cit.
on p. 57).

[Kwo+16] Chulan Kwon, Joonhyun Yeo, Hyun Keun Lee, and Hyunggyu Park.
“Unconventional entropy production in the presence of momentum-
dependent forces”. In: Journal of the Korean Physical Society 68.5 (2016),
pp. 633–638 (cit. on pp. 58, 59).

[MW66] N David Mermin and Herbert Wagner. “Absence of ferromagnetism or
antiferromagnetism in one-or two-dimensional isotropic Heisenberg
models”. In: Physical Review Letters 17.22 (1966), p. 1133 (cit. on p. 9).

[Nag+07] Máté Nagy, István Daruka, and Tamás Vicsek. “New aspects of the con-
tinuous phase transition in the scalar noise model (SNM) of collective
motion”. In: Physica A: Statistical Mechanics and its Applications 373
(2007), pp. 445–454 (cit. on pp. 11, 37).

[Nag+15] Ken H Nagai, Yutaka Sumino, Raul Montagne, Igor S Aranson, and
Hugues Chaté. “Collective motion of self-propelled particles with mem-
ory”. In: Physical Review Letters 114.16 (2015), p. 168001 (cit. on
p. 21).

[Nar+17] Cesare Nardini, Étienne Fodor, Elsen Tjhung, et al. “Entropy production
in field theories without time-reversal symmetry: quantifying the non-
equilibrium character of active matter”. In: Physical Review X 7.2 (2017),
p. 021007 (cit. on p. 79).

[NB99] MEJ Newman and GT Barkema. Monte Carlo Methods in Statistical
Physics. Oxford University Press: New York, USA, 1999 (cit. on pp. 35,
86).

[New05] Mark EJ Newman. “Power laws, Pareto distributions and Zipf’s law”. In:
Contemporary physics 46.5 (2005), pp. 323–351 (cit. on pp. 87, 88).

[RE10] Pawel Romanczuk and Udo Erdmann. “Collective motion of active
Brownian particles in one dimension”. In: The European Physical Journal-
Special Topics 187.1 (2010), pp. 127–134 (cit. on pp. 67, 69, 75).

92 Bibliography



[Rey87] Craig W Reynolds. “Flocks, herds and schools: A distributed behavioral
model”. In: ACM SIGGRAPH Computer Graphics 21.4 (1987), pp. 25–34
(cit. on p. 4).

[RH10] Clewley RH. PyCont. 2010. URL: http://www2.gsu.edu/~matrhc/
PyCont.html (cit. on p. 74).

[Ris84] Hannes Risken. “Fokker-planck equation”. In: The Fokker-Planck Equa-
tion. Springer, 1984, pp. 63–95 (cit. on p. 68).

[RL13] Maksym Romenskyy and Vladimir Lobaskin. “Statistical properties of
swarms of self-propelled particles with repulsions across the order-
disorder transition”. In: The European Physical Journal B 86.3 (2013),
p. 91 (cit. on p. 45).

[Rom+12] Pawel Romanczuk, Markus Bär, Werner Ebeling, Benjamin Lindner, and
Lutz Schimansky-Geier. “Active brownian particles”. In: The European
Physical Journal Special Topics 202.1 (2012), pp. 1–162 (cit. on p. 16).

[RSG12] Pawel Romanczuk and Lutz Schimansky-Geier. “Mean-field theory of
collective motion due to velocity alignment”. In: Ecological Complexity
10 (2012), pp. 83–92 (cit. on pp. 4, 67, 69, 70, 78).

[Sah+09] Arnab Saha, Sourabh Lahiri, and AM Jayannavar. “Entropy production
theorems and some consequences”. In: Physical Review E 80.1 (2009),
p. 011117 (cit. on p. 56).

[Say15] Hiroki Sayama. Introduction to the modeling and analysis of complex
systems. Open SUNY Textbooks, 2015 (cit. on p. 1).

[Sei05] Udo Seifert. “Entropy production along a stochastic trajectory and an
integral fluctuation theorem”. In: Physical Review Letters 95.4 (2005),
p. 040602 (cit. on pp. 55–57).

[Sei08] Udo Seifert. “Stochastic thermodynamics: principles and perspectives”.
In: The European Physical Journal B-Condensed Matter and Complex
Systems 64.3 (2008), pp. 423–431 (cit. on pp. 56, 58).

[Sek98] Ken Sekimoto. “Langevin equation and thermodynamics”. In: Progress
of Theoretical Physics Supplement 130 (1998), pp. 17–27 (cit. on p. 56).

[Sev+14] Francisco J Sevilla, Victor Dossetti, and Alexandro Heiblum-Robles.
“Synchronization and collective motion of globally coupled Brownian
particles”. In: Journal of Statistical Mechanics: Theory and Experiment
2014.12 (2014), P12025 (cit. on pp. 21, 22, 39, 64, 75).

[Shi+16] Pyoung-Seop Shim, Hyun-Myung Chun, and Jae Dong Noh. “Macro-
scopic time-reversal symmetry breaking at a nonequilibrium phase
transition”. In: Physical Review E 93.1 (2016), p. 012113 (cit. on pp. 60,
62, 63).

Bibliography 93

http://www2.gsu.edu/~matrhc/PyCont.html
http://www2.gsu.edu/~matrhc/PyCont.html


[Shi+96] Naohiko Shimoyama, Ken Sugawara, Tsuyoshi Mizuguchi, Yoshinori
Hayakawa, and Masaki Sano. “Collective motion in a system of motile
elements”. In: Physical Review Letters 76.20 (1996), p. 3870 (cit. on
p. 17).

[Sid+98] SW Sides, PA Rikvold, and MA Novotny. “Kinetic Ising model in an
oscillating field: Finite-size scaling at the dynamic phase transition”. In:
Physical Review Letters 81.4 (1998), p. 834 (cit. on p. 26).

[Sil+13] Jesse L Silverberg, Matthew Bierbaum, James P Sethna, and Itai Cohen.
“Collective motion of humans in mosh and circle pits at heavy metal
concerts”. In: Physical Review Letters 110.22 (2013), p. 228701 (cit. on
p. 2).

[Sol+15] Alexandre P Solon, Hugues Chaté, and Julien Tailleur. “From phase
to microphase separation in flocking models: The essential role of
nonequilibrium fluctuations”. In: Physical Review Letters 114.6 (2015),
p. 068101 (cit. on pp. 12, 13).

[Str11] Daniel Strömbom. “Collective motion from local attraction”. In: Journal
of Theoretical Biology 283.1 (2011), pp. 145–151 (cit. on p. 5).

[Ton+05] John Toner, Yuhai Tu, and Sriram Ramaswamy. “Hydrodynamics and
phases of flocks”. In: Annals of Physics 318.1 (2005), pp. 170–244 (cit.
on p. 9).

[TT98] John Toner and Yuhai Tu. “Flocks, herds, and schools: A quantitative
theory of flocking”. In: Physical review E 58.4 (1998), p. 4828 (cit. on
p. 30).

[Vic+95] Tamás Vicsek, András Czirók, Eshel Ben-Jacob, Inon Cohen, and Ofer
Shochet. “Novel type of phase transition in a system of self-driven
particles”. In: Physical Review Letters 75.6 (1995), p. 1226 (cit. on pp. 5,
7, 11, 14).

[Vic08] Tamas Vicsek. “Universal patterns of collective motion from minimal
models of flocking”. In: Self-Adaptive and Self-Organizing Systems, 2008.
SASO’08. Second IEEE International Conference on. IEEE. 2008, pp. 3–11
(cit. on p. 3).

[VZ12] Tamás Vicsek and Anna Zafeiris. “Collective motion”. In: Physics Reports
517.3 (2012), pp. 71–140 (cit. on p. 3).

[Yeo+16] Joonhyun Yeo, Chulan Kwon, Hyun Keun Lee, and Hyunggyu Park.
“Housekeeping entropy in continuous stochastic dynamics with odd-
parity variables”. In: Journal of Statistical Mechanics: Theory and Experi-
ment 2016.9 (2016), p. 093205 (cit. on pp. 59, 60).

94 Bibliography



[YM17] David Yllanes and M Cristina Marchetti. “How many dissenters does it
take to disorder a flock?” In: arXiv preprint arXiv:1701.05477 (2017)
(cit. on p. 19).

Bibliography 95





List of Figures

1.1 Examples of systems displaying collective motion: (a) the flock-
ing of starlings, (b) a school of yellowstripe scad, (c) a locust
swarm, (d) an E. coli colony. . . . . . . . . . . . . . . . . . . . 3

2.1 Representation of the aligning force in the metric Vicsek model. 8
2.2 Phase diagram for the Vicsek model as a liquid-gas transition . . 13
2.3 Schematic summary of the phases in the Vicsek model. . . . . . 14
2.4 Phase diagram for collective motion with cohesion. . . . . . . . 18

3.1 Phase transition diagram for ρ̃ = 2. . . . . . . . . . . . . . . . . 26
3.2 Phase transition diagram for ρ̃ = 4. . . . . . . . . . . . . . . . . 27
3.3 Binder cumulant for ρ̃ = 2. . . . . . . . . . . . . . . . . . . . . . 28
3.4 Binder cumulant for ρ̃ = 4. . . . . . . . . . . . . . . . . . . . . . 28
3.5 Bimodal distribution of the order parameter at the transition point. 29
3.6 Decay of 〈Λ〉 with number of particles . . . . . . . . . . . . . . . 30
3.7 Comparison between density fluctuations for an ordered and

disordered state. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8 Distribution of the velocity components for several values of the

coupling factor . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Entropy associated with the one-particle velocity distribution. . 35
3.10 Change of velocity autocorrelation function with coupling factor. 36
3.11 Relative mean square displacement of initially neighbouring

particles versus time . . . . . . . . . . . . . . . . . . . . . . . . 38
3.12 Order parameter, Binder cumulant and susceptibility for a globally-

coupled system . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Particle density ρ and direction θ of particles in a system with
L = 192 and ρ̃ = 4 . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Density projected on the axis perpendicular to the mean direc-
tion of motion, . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Spatial correlation of particle orientations . . . . . . . . . . . . 46
4.4 Radial distribution function . . . . . . . . . . . . . . . . . . . . 48
4.5 Cluster size distribution (excluding the band) . . . . . . . . . . 49

97



4.6 Scaling of the moments of the cluster size distribution with
system size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Data collapse of the cluster size distribution for ρ̃ = 4 and Γ̃ = 3.5. 52
4.8 Data collapse of the cluster size distribution for ρ̃ = 3 and Γ̃ = 3.8. 52

5.1 The entropy production rate per particle s in function of the di-
mensionless coupling factor and the susceptibility of the entropy
production during a time τ = 200. . . . . . . . . . . . . . . . . . 63

5.2 Scaling of the entropy production rate per particle, s, with N for
a globally-coupled system. . . . . . . . . . . . . . . . . . . . . . 64

5.3 Entropy production rate per particle s in function of the dimen-
sionless coupling factor Γ̃, for a system with ρ̃ = 2. . . . . . . . 65

5.4 Local entropy production in function of the local order parameter
for the short-range model . . . . . . . . . . . . . . . . . . . . . 66

6.1 The value of u‖ in function of the coupling factor for the mean-
field model with a symmetrical velocity distribution. . . . . . . 73

6.2 Comparison between the first two moments of the velocity dis-
tribution for the mean-field model and a numerically simulated
globally-coupled system . . . . . . . . . . . . . . . . . . . . . . 76

A.1 Illustration of the linked-cell method. . . . . . . . . . . . . . . . 84

98 List of Figures



List of Symbols

v0 Self-propelled speed in the Vicsek model
R0 Interaction range in the metric Vicsek model
η Noise strength in the Vicsek model
Λ Order parameter to describe collective motion
L Linear size of a system
N Number of particles in the system
∆t Time step of the simulation
ρ Particle density of the system
γ Coefficient of friction in the Langevin equation
T Temperature
D Diffusion coefficient
ξ Vector of which the components are Gaussian white noise
kB Boltzmann constant
Γ Coupling factor in the continuous-time Vicsek model
G Binder cumulant
χ Susceptibility of the order parameter
S Entropy
Cvv Velocity autocorrelation function
g(r) Radial distribution function
s Rate of the entropy production per particle

99


	Titlepage
	1 Introduction
	1.1 Complexity and Emergent Collective Behaviour
	1.2 Phase Transitions
	1.3 Collective Motion
	1.4 Modelling Approaches

	2 The Vicsek Model
	2.1 Description of the Model
	2.2 Limiting Cases
	2.3 Angular versus Vectorial Noise
	2.4 The Nature of the Phase Transition
	2.5 Role of the Boundary Conditions
	2.6 Langevin Description
	2.7 Extensions

	3 Collective Motion without Self-Propulsion
	3.1 The Vicsek Model for Passive Particles
	3.2 Observables
	3.3 Results
	3.3.1 Long-range order
	3.3.2 Giant number fluctuations
	3.3.3 Distribution of the velocity components
	3.3.4 Velocity autocorrelation
	3.3.5 Particle diffusion

	3.4 Globally-Coupled Version

	4 Spatial Structure and Correlations
	4.1 Visualization
	4.2 Spatial Correlations
	4.2.1 Spatial correlation of the direction of motion.
	4.2.2 Radial distribution function

	4.3 Cluster Size Distribution
	4.3.1 Observations
	4.3.2 Finite-size scaling


	5 Entropy Production
	5.1 Entropy and (ir)reversibility
	5.2 Introduction to Non-Equilibrium Entropy Production
	5.3 Unconventional Entropy Production
	5.4 Entropy Production for Collective Motion
	5.4.1 Global interactions
	5.4.2 Short-range interactions


	6 Mean-Field Model for Passive Particles
	6.1 From a Fokker-Planck Equation to Dynamical Moment Equations
	6.2 A Mean-Field Model
	6.3 Symmetrical Velocity Distribution
	6.4 Asymmetrical Velocity Distribution

	7 Conclusion and Outlook
	Nederlandse Samenvatting
	A Numerical Considerations
	A.1 Integrating the Equation of Motion
	A.2 Force Calculation
	A.3 Autocorrelation with FFT

	B Power-law Distributions
	Bibliography
	List of Figures
	List of Symbols

