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SUMMARY

This thesis handles about the combination of pollination networks and certain ma-

chine learning methods. The reason for this is that ecological datasets of interactions

are mainly built by aggregating positive observations, giving no clear evidence that

the negatively classified (i.e. not-observed) interactions are assuredly non-happening.

There may be some missing values in the composed network. Therefore prediction

models can be of use, to further finetune existing pollination (and by extension all eco-

logical) networks. The work is centered around one central dataset (of the Florabeilles

project in France).

In the case of biological interactions, the data is pairwise. Such networks can then be

represented by a graph (with all species representing a node) or an interaction matrix

(with all species making up the rows and columns). Also, models should be adapted

or redesigned to cope with this twofold input. The input of a model is now called a

dyad, and consists by definition of two instances (here being a plant and a pollinator

species). Therefore too, four distinct prediction settings (A,B,C,D) need to be defined,

as a new dyad is now no longer unambiguously defined. The model can be trained

with the information of both species, only one species (plant or pollinator) or none of

the species for which a prediction will be made. This leads to four possible settings,

where of course the last one mentioned is the hardest one to make predictions for.

When possible, performances for all four settings need to be reported, as one single

value can give an over- or underestimation of the real performance.

Machine learning is a field of computer science which lets a model learn patterns

from data. It provides self-learning algorithms, which can be used in cases where

no known or no unambiguously defined rules apply. Two models are presented in

this work. The first one is a kind of collaborative filtering, namely a so-called linear

filter. This approach takes a lot of known pollination interactions as examples and

makes predictions based on the frequency of interaction. In fact it generates a score

between zero and one of how likely it is for an interaction to happen. This model

does not use any extra information about the species, but only focusses on the binary

interaction matrix itself. Still, good results are obtained as an AUC of about 84.3%

could be reached. This value was obtained after optimization of the four parameters

of the model, although many parameter combinations proved to lead to comparable



values.

Next to this theoretical performance estimate, also a practical validation is done. The

predictions of the linear filter model were compared to other real life databases from

neighbouring countries. Indeed some not-observed interactions of the dataset, but

positively predicted by the filter, seemed to be happening in real life. This proofs

that the prioritization of interactions with a model can be of actual use in ecological

datasets, to detect missing values.

The second method is called two-step kernel ridge regression and takes, in contrast

with the first one, a lot more data with it. It receives information about all comprised

species, in a genetic, morphological, environmental and temporal way. Every species

is characterized by a vector of information, which is of course modified afterwards

to serve as proper input for the model. The collected information can be split up in

two sides, being phylogenetic information (i.e. DNA sequences of typical genes) and

traits (e.g. height, flower colour, symmetry... of plants and size, flying period, abun-

dance... of pollinators). These can be used separately (leading to a trait-based and a

phylogeny-based model) or all aggregated in one model (called the combined model).

The used information for a specific model is always stored in two kernel matrices

(defining similarity): one for the pollinators and one for the plant species. Then two

successive kernel ridge regressions are executed, using the labels of the binary inter-

action matrix.

There are two regularisation parameters in the model. With an initial - arbitrary cho-

sen - parameter combination, the combined model achieves the best results. When

the performance estimations are made using nested cross-validation, both the trait-

based model and the combined model seem to score quasi equally. The concept of

nested cross-validation is to separate the final test set from all parts (folds) used for

parameter optimization. In this way the estimate is more fair. The ’honest’ AUC’s of

the combined model for setting A, B, C and D are respectively 87.3%, 81,3%, 86.6%

and 81.1%. The fact that setting C scores a lot higher than setting B shows that is

easier for the model to generalize to new plants. This is mainly due to larger amount

of plants (almost double of the pollinators) that has been included in the training.

Both models proved to be able to recreate the most likely interactions of a dataset.

These predictions can be used to detect probable missing values, which can after-

wards be prioritized in further field research. Not all predicted values necessarily

have to happen in reality, but the prioritization of them can be a time-saving factor in

ecological research.
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SAMENVATTING

Deze thesis behandelt de combinatie van pollinatienetwerken en bepaalde machine-

learning methoden. De aanleiding hiervoor is dat ecologische datasets voornamelijk

worden opgesteld door positieve waarnemingen te aggregeren, zonder een duidelijk

bewijs te leveren dat negatief geclassificeerde (dus niet-geobserveerde) interacties

gegarandeerd niet plaatsvinden. Bepaalde interacties kunnen ontbreken in het opge-

stelde netwerk. Daardoor kunnen predicitiemodellen nuttig zijn om bestaande polli-

natie (en bij uitbreiding alle ecologische) netwerken verder te verfijnen. Dit werk is

gecentreerd rond één dataset (van het Florabeilles project in Frankrijk).

In het geval van biologische interacties is de data paarsgewijs. Zulke netwerken kun-

nen dan voorgesteld worden door een graaf (waar ieder species een node voorstelt)

of een interactiematrix (waar de species de rijen en kolommen van uitmaken). Daar-

naast moeten modellen ook worden aangepast om met deze dubbele input om te

gaan. De input van een model wordt nu een dyad genoemd en bestaat per definitie

uit twee items (hier een plant en een bestuiver). Hierdoor dienen ook vier verschil-

lende predictiesettings (A, B, C, D) te worden gedefinieerd, omdat een nieuwe dyad

nu niet langer eenduidig gedefinieerd is. Het model kan namelijk getraind zijn met

de informatie van beide species, slechts één species (plant of bestuiver) of geen van

beide species waarvoor de predictie gemaakt wordt. Dit leidt tot vier mogelijke set-

tings, waarbij de laatstgenoemde duidelijk de moeilijkste is om voorspellingen voor te

doen. Indien mogelijk moeten steeds de performanties van alle vier de settings wor-

den gerapporteerd, omdat één enkele waarde een vertekend beeld kan geven (een

over- of onderschatting van de werkelijke prestatie).

Machine learning is een tak in de informatica waarbij men een model patronen laat

herkennen in data. Het gaat om zelflerende algoritmen, die kunnen worden ingezet

voor toepassingen waarbij geen gekende of geen ondubbelzinnig gedefinieerde regels

gelden. In dit werk worden twee modellen toegelicht. De eerste is een soort col-

laboratieve filtering, namelijk een lineaire filter. Deze methode vergt veel bekende

bestuivingsinteracties als voorbeeld en maakt nadien predicties op basis van de in-

teractiefrequenties. In feite genereert het een score tussen nul en één die beschrijft

hoe waarschijnlijk het is dat de interactie plaatsvindt. Dit model gebruikt geen extra

informatie over de species, maar richt zich enkel op de binaire interactiematrix. Toch



worden goede resultaten bekomen, met een AUC van ongeveer 84.3%. Deze waarde

is bekomen na optimalisatie van de vier parameters van het model, al bleken veel

parameter-combinaties vergelijkbare waarden op te leveren.

Naast deze theoretische performantie, is ook een praktische validatie uitgevoerd. De

voorspellingen met de lineaire filter werden vergeleken met andere real-life databases

van naburige landen. Sommige niet-geobserveerde interacties van de dataset, maar

positief voorspeld door de filter, bleken inderdaad in de natuur voor te komen. Dit

bewijst dat focussen op positief voorspelde interacties daadwerkelijk nuttig kan zijn

voor het detecteren van ontbrekende interacties in ecologische datasets.

De tweede methode wordt tweestaps kernel ridge regressie genoemd en gebruikt, in

tegenstelling tot de eerste, veel meer gegevens. Het verwerkt informatie van alle

species van het netwerk, zowel genetisch, morfologisch, ecologisch als temporeel.

Elk species wordt gekenmerkt door een vector van informatie, die uiteraard nadien

wordt aangepast om als geschikte input voor het model te fungeren. De verzamelde

data over de species kan opgesplitst worden in twee luiken, zijnde fylogenetische

informatie (nl. DNA-sequenties van typerende genen) en traits (bijv. hoogte, bloemk-

leur, symmetrie... van planten en grootte, vliegperiode, abundantie... van bestuivers).

Deze kunnen afzonderlijk worden gebruikt (leidend tot een trait-gebaseerd en een

fylogenie-gebaseerd model) of geaggregeerd in één model (het gecombineerd model

genoemd). De informatie gebruikt voor een bepaald model is steeds opgeslagen in

twee kernel matrices (die gelijkenissen definiën: één voor de pollinatoren en één voor

de planten. Nadien zijn twee opeenvolgende kernel ridge regressies uitgevoerd, ge-

bruik makend van de labels van de binaire interactiematrix.

Met een initiële - arbitrair gekozen - parametercombinatie, behaalt het gecombineerd

model de beste resultaten. Wanneer de prestatie-inschatting wordt gemaakt met

behulp van geneste kruisvalidatie, blijken het trait-gebaseerde model en het gecom-

bineerde model quasi even goed te scoren. Het concept van geneste kruisvalidatie

is om de definitieve testset gescheiden te houden van alle delen die gebruikt wor-

den voor parameteroptimalisatie. Op deze manier is de inschatting objectiever. De

AUC’s van het gecombineerd model voor settings A, B, C en D zijn respectievelijk

87.3%, 81,3%, 86.6% en 81.1%. Het feit dat setting C een stuk hoger scoort dan

setting B toont aan dat het model makkelijker generaliseert voor nieuwe planten.

Dit komt hoofdzakelijk door het feit dat er dubbel zoveel planten als pollinatoren zijn

meegenomen in de training.

Beide modellen hebben aangetoond in staat te zijn de meest waarschijnlijke interac-

ties van een dataset te reconstrueren. Deze voorspellingen kunnen worden gebruikt

om mogelijks ontbrekende waarden te detecteren, waar later op kan worden gefo-

cust in verder veldonderzoek. Niet alle voorspelde interacties hoeven in de realiteit

x



te gebeuren, maar de prioriteitstelling ervan kan een tijdsbesparende factor zijn in

ecologisch onderzoek.
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INTRODUCTION AND OUTLINE

Plant-pollinator interactions are one of the many interaction types we know in nature.

Pollination is of major importance for both species biodiversity and humans. A great

biodiversity of plants and animals depend mutually on each other for pollination and

food, and also people depend on this mutualism for their feeding habits [30]. Polli-

nation is still a hot topic in literature (as e.g. managed honeybee stocks are getting

more controversy [39], or as climate change starts to influence species phenologies

and abundances [49]).

A lot of field research has been done to document pollination behaviour and to set

up datasets of which pollinators are interacting with which plants. Years and years

of observation are performed, and with this data ecological datasets are constructed

by aggregating positive results. All detected pollinations are classified as positive,

but one is never sure that the remaining plant-pollinator combinations are surely non-

happening in this neighbourhood. Indeed, there are some so-called forbidden links

between species (by the lack of compatibility), but other interactions might just have

been missed during the timespan of assembling the dataset.

For this reason, researchers are always looking for new methods to review pollina-

tions networks. DNA-barcoding methods become more popular, but here we focused

on machine learning methods. The concept will be elucidated and two techniques will

be discussed.

The main goal of this work is to provide well-functioning algorithms that can predict

whether a specific plant and pollinator will interact or not. The purpose is however

not to fully predict a purely hypothetical interaction network (although this would be

a proper use of the model), but more to finetune existing networks. As stated earlier,

datasets are often a collection of positive observations. In this way, no evidence is cre-

ated that negative interactions are undoubtedly impossible or not occurring. Predic-

tion algorithms can prioritize interactions for further research or highlight species that

deserve special attention. In this way, possible missing interactions (so-called false

negatives) in the dataset can be traced and completed. Machine learning will never

replace field research, as a lot of training examples are necessary for the model’s

build up, but in this way mutual benefits can take place.



The work consists of 5 chapters. The first chapter starts with an introduction about

ecological networks. They are approached from a biological point of view, but also a

more mathematical side of interaction networks is highlighted. The second chapter

is about machine learning. Two different algorithms are elucidated: collaborative fil-

tering and kernel methods. Afterwards a section is dedicated to the proper ways of

estimating performance of these built models. The last theoretical section of chapter

2 describes the concept of optimal transport, which will later be used in a practi-

cal way. Chapter 3 describes the main dataset of the work. Everything is centered

around this dataset, so a proper introduction is fundamental. Different properties of

the network are defined, and all comprised species are considered in multiple ways.

Chapter 4 presents and interprets the results with the two different machine learning

approaches. A parameter optimization is done, a theoretical evaluation and a prac-

tical validation. Results are compared and an explanation of the different patterns is

given. At last chapter 5 does not focus on the predictive part, but more on the inter-

acting part. Here the theory of optimal transport is connected to the main dataset.

Again properties of the originating network are computed.

xiv



CHAPTER 1

ECOLOGICAL NETWORKS

1.1 Introduction and representation

In nature, many ecological and biological networks are present, ranging from large-

scale trophic food webs to interactions at molecular level like protein-ligand interac-

tions. In this work, the focus lies on species interaction networks.

There are five different types of biotic interactions, distinguished by the effect on the

interacting species.

- Competition (−,−) means that the interaction is detrimental for both involved

species, e.g. the lion (Panthera leo) and the spotted hyena (Crocuta crocuta)

both feeding on the same resource.

- Mutualism (+,+) is an interaction type beneficial for both species, e.g. the shelter-

defence interaction between the acacia ant (Pseudomyrmex ferruginea) and the

bullhorn acacia (Acacia cornigera).

- Predation and parasitism (+,−) both belong to the interaction class where one

species benefits from the interaction, while the other one gets harmed. A pre-

dation example is the Iberian lynx (Lynx pardinus) hunting and consuming the

common rabbit (Oryctolagus cuniculus); an example of species with a parasitism

relationship are the Anopheles gambiae mosquito (and on its turn humans) be-

ing host organism for Plasmodium falciparum, the unicellular protozoan causing

malaria.

- Commensalism (+,0) holds an advantage for one of the interacting species, with-

out helping or harming the second one, e.g. spearfish (Remora brachyptera) at-

taching themselves with a sucker to blacktip reef sharks (Carcharhinus melano-

pterus).

- Amensalism (−,0) at last occurs when one interacting species stays indiffer-

ent, while the other is negatively affected, e.g. Penicillium expansum inhibiting

growth and life of many types of bacteria [40].



1.1. INTRODUCTION AND REPRESENTATION

The two most common (and in fact equivalent) ways to represent an ecological net-

work are a graph and an interaction matrix. In a graph, the nodes represent the

species and the edges are the lines connecting the nodes. When the relation be-

tween two species is asymmetric (e.g. in a food web where a predator eats a prey),

the network is represented as a directed graph or digraph. Here, the edges are ar-

rows from one node to the other, originating in the prey node and terminating (with

an arrowhead) at the predator node [1]. A food web is also an example of a unipartite

(or homogeneous [59]) network, meaning there is only one set of species interact-

ing with one another. Each species eats and can be eaten. The interaction matrix,

further denoted as Y, is square: it contains all species in all rows and the same set

of species in all columns. An interaction value then indicates whether the species

in the row eats the species in the column (1) or not (0). In bipartite networks on

the other hand, there are two different sets of species (e.g. pollinators and plants),

meaning that the interaction matrix does not have to be square. The rows represent

one set, the columns the other, and the value of Y,j quantifies whether there is an

interaction between species  and j (1) or not (0) [56]. All this is illustrated in Table

1.1. We assume that each species (and hence node of the graph) is described by a

feature vector , containing any relevant information on phylogeny, morphology or

other characteristics.

In the binary context of Y,j being 0 or 1, the positive class (1) denotes interacting

species and the negative class (0) non-interacting species. This is not to be con-

fused with the biological meaning of positive and negative effects on the interacting

species, as stated above with five possible relationships [58].

The other possibility is a real-valued interaction matrix. In this case, Y,j describes how

relevant every interaction is, for example by the number of pollinator visits to a plant.

In this way one can distinguish between strong and rather weak interactions in a

network. The data to construct these quantitative matrices is collected by field obser-

vations, so the outcome needs to be handled with care. Researchers are never sure

the observed abundances are also the real abundances (i.e. the real ratio of species

presences or the real ratio of species interactions). Making matrices binary can cause

a potential loss of information but avoids the problem of uncertain abundances [64].

The advantage of using the matrix approach and associated linear algebra is that one

may then deal with complex systems but now in arbitrary dimensions [1].

2



CHAPTER 1. ECOLOGICAL NETWORKS

Table 1.1: Visualisation of the interaction matrix and the corresponding graph for
a unipartite directed food web (left) and a bipartite undirected pollination network
(right).
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1.2. PROPERTIES OF NETWORKS

1.2 Properties of networks

Species are usually heterogeneously distributed in an ecological network, in a such

way that most species only have a few interactions, while a few species are much

more connected than expected by chance [23]. Nestedness is a meaningful measure

for bipartite networks to quantify the latter, representing the extent to which the

interactions of specialists and generalists1 overlap. The nestedness for the row set of

species and the column set of species is respectively given by η(R) and η(C). Bastolla

et al. (2009) defines the nestedness of these margins as

η(R) =
∑

<j

n
(R)
,j

min(n(R) , n
(R)
j )

and η(C) =
∑

<j

n
(C)
,j

min(n(C) , n
(C)
j )

, (1.1)

where n
(R)
 and n

(R)
j are the number of interactions of row species  and j respectively,

where n(R),j denotes the number of shared interactions between these two row species,

where n
(C)
 and n

(C)
j are the number of interactions of column species  and j respec-

tively and where n
(C)
,j denotes the number of shared interactions between these two

column species [7].

The nestedness of the whole network is the average of those of the two margins,

defined as η = η(R)+η(C)

2 . All three metrics lie between zero and one, where η = 1 de-

fines complete nestedness [46]. Graphically, complete nestedness is indicated with

an isocline in the interaction matrix Y. An example of a nested network can be seen

in Figure 1.1a [23]. It has been shown that a nested structure minimizes compe-

tition and increases the number of coexisting species [7]. All mutualistic networks

(like e.g. plant-pollinator networks) tend to show a nested behaviour. In these we can

hence say that a new species will be more likely to interact with a generalistic species

of the other set than with a very specialized one [53]. This idea will be crucial in a

later described linear filter model (Sections 2.2.1 and 4.1).

A related variable is modularity. This does not define how much specialists and gener-

alists are connected, but represents the tendency for subsets of species to be strongly

connected, while they are weakly connected to the rest of the network. It quantifies

how compartmentalized a network is. In this context, one defines a module as a

densely connected subset of species, not overlapping with other subsets. Mathemat-

ically, with Q the modularity:

Q =
1

2k

n
∑

=1

m
∑

j=1

�

Y,j −
n nj

2k

�

S,j . (1.2)

1It can here be assumed that specialists are species only interacting with one or a select group of
partners while generalists are interacting with a wide variety of other species. A more scientific definition
of both is given in the following section.
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CHAPTER 1. ECOLOGICAL NETWORKS

(a) Nested matrix. (b) Modular matrix. (c) Nested & modular matrix.

Figure 1.1: Example networks to demonstrate the properties of nestedness and mod-
ularity.

The derivation of the formula is based on ratios, and more precisely the portions of

interactions occurring between nodes of a number of modules (subsets) opposed to

how many interactions that would be randomly expected. Therefore a modularity of

zero represents complete random links. k stands for the total sum of all values in

the interaction matrix:
∑n
=1

∑m
j=1 Y,j. n represents again the number of interactions

species  establishes. The S is a (n × m) matrix with a 1 if species  and j belong to

the same module and 0 otherwise [41]. As modules are composed of species having

many interactions among themselves while having very few with species of other

modules, a blocked structure can be recognised [23]. This structure can be seen in

Figure 1.1b. Nestedness and modularity will be used in Chapter 5.

Interaction matrices are a handy tool for network description, but still there is a re-

mark to make. Actually, an interaction between two species is no pure yes-no-event,

as the occurrence of the interaction may be rare or may depend on several local and

behavioural circumstances. Therefore a lot of variation can exist between ecological

networks, so only presenting them with fixed graphs or interaction matrices may not

be sufficient. To solve this, the question ’Do these two species interact’ is replaced by

’How likely is it that these two species interact?’, in which the interactions are treated

as probabilities. Now some metrics borrowed from the information theory can be used

to characterize the network, because this is done by modelling each interaction as a

Bernoulli experiment and by calculating the expected value of each metric. Hence, Y

is a matrix where each element is P,j, being the probability that species  establishes

an interaction with species j. It is assumed that all interactions are independent and

can be represented as a series of Bernoulli trials2, so that 0 ≤ P,j ≤ 1 [46]. The in-

formation theory is a branch of the mathematical theory of probability and statistics.

Its formulas are quite abstract but are applicable in all systems with a probabilistic
2A Bernoulli trial is the realization of a probabilistic event that gives 1 with probability p and 0 otherwise.
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1.2. PROPERTIES OF NETWORKS

or statistic basis. Then a, for example, ecological meaning can be assigned to the

derived metric values [36].

Next to nestedness and modularity, now some metrics based on this information the-

ory are discussed. Entropy is frequently used in thermodynamics but also plays a

role in the information theory. This actually tells how surprising a certain outcome

is. When the probabilities of all possible outcomes of an event are equal, the en-

tropy is maximal because the effective outcome will be most surprising. To illustrate

this with a small example: when one throws a dice, all six possible outcomes are of

equal probability. The random variable X is defined as the outcome of the experi-

ment, and p(X = ) as the probability that the outcome X takes value  (for example

p(X = 2) = 1
6 ). Because every p(X = ) is identical, we say that its probability distri-

bution pX() is uniform. Intuitively in this scenario, the outcome of an experiment is

the hardest to predict. It will be most surprising, so the entropy is high.

When on the other hand the distribution of all outcomes is very favoured towards one

specific value, the outcome is easier to predict and hence, the entropy is low. To stay

with the same example: when the dice is adulterated and almost only lands on one of

its six sides, the outcome will not be so surprising. The probability distribution pX()

is no longer uniform but has one exceptionally high value. It is not hard to predict the

outcome. The entropy is low.

Entropy is mathematically defined as

H(X) =
∑

∈AX

pX() log2
1

pX()
, (1.3)

with X a random variable, pX its distribution and AX the set of all possible values of X.

When only the set of pollinators or only the set of plants is filled in for X, this results

in the marginal entropies.

The joint entropy of two variables X and Y is given by

H(X, Y) =
∑

∈AX ,y∈AY

pX,Y(, y) log2
1

pX,Y(, y)
(1.4)

and the conditional entropy of the variable X for a given Y = y by

H(X|Y = y) =
∑

∈AX

pX|Y(|y) log2
1

pX|Y(|y)
. (1.5)

To make this clear, if in a (for example plant-pollinator) interaction matrix a plant

only interacts with one specific pollinator, the conditional entropy of this plant is zero.

There is no uncertainty or surprise when determining its interaction partner.

To use terminology that will be helpful afterwards: Conditional entropies can be in-
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CHAPTER 1. ECOLOGICAL NETWORKS

terpreted as the expected number of binary questions that have to be asked to

determine the particular species of an interaction, when the interaction partner is

known [35].

Joint entropy, marginal entropy and conditional entropy can all be linked to each other

by following equation:

H(X, Y) = H(X) + H(Y |X) = H(Y) + H(X|Y) . (1.6)

Finally the mutual information and the variance of information are defined as

M(X;Y) = H(X) − H(X|Y) , (1.7)

V(X;Y) = H(X, Y) − M(X;Y) = H(X|Y) + H(Y |X) . (1.8)

The mutual information is the average reduction of uncertainty of X when the value

of Y is known. It is the average amount of information that Y contains about X. It

can be verified that M(X;Y) is equal to M(Y;X). The variance of information on the

other hand is the sum of the average uncertainty that stays on X when Y is known

and the average uncertainty that stays on Y when X is known. It is now clear that

H(X, Y) = M(X;Y) + V(X;Y).

The previously defined metrics can be linked to a uniform distribution, where the

entropy is maximal (as seen earlier). When their probability distribution is uniform,

the entropy of respectively X and Y can be computed as

H(UX) = log2 |AX | and H(UY) = log 2|AY | . (1.9)

The difference in entropy between distributions and their uniform distributions is now

ΔU =
�

H(UX) − H(X)
�

+
�

H(UY) − H(Y)
�

. (1.10)

By combining these metrics, one can determine the entropy of a uniformly distributed

matrix as a formula with clear mathematical and afterwards ecological meaning:

H(UXY) = ΔU + 2M(X;Y) + V(X;Y) . (1.11)

The relative contribution of the three components in this equation gives an indirect

quality measurement of the information. The first term ΔU describes how strong the

matrix deviates from the uniform distribution. When this term is large, this is an in-

dication that one or more species (or species interactions) are overabundant in the

7



1.2. PROPERTIES OF NETWORKS

network. The second term is the mutual information. The larger this term, the better

the information transfer from X to Y (i.e. knowing X reveals much info about Y) and

vice versa. For the species this means that their number of possible interaction part-

ners is limited. A matrix in which M(X;Y) approximates H(UXY) has a high predictive

power. It is in that case not hard to predict the interaction a species will establish, as

the species are quite specialized (see the second example below). Finally, the remain-

ing uncertainty is V(X;Y). The variance of information is uncertainty that cannot be

explained by the other terms. The lower this term, the better, as this would increase

the information that is obtained about X when Y becomes known and vice versa. The

three extremes of contribution of the different terms are shown with respective toy

networks:




















0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0





















One interaction dominates the network.

This means that ΔU is maximal: both marginal distributions

deviate completely from uniform distributions. The mutual in-

formation and the variance of information are both zero.





















1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





















Perfect speciation of the network.

Here M(X;Y) is maximal: knowing X reduces the uncertainty

on Y completely as when X is known, Y is known immediately.

The variance of information is zero, and so is ΔU because both

marginal distributions are uniform.





















1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1





















Heterogenous network without speciation.

Now V(X;Y) is maximal because the uncertainty about X re-

mains unchanged when Y is known. The mutual information

is zero, and so is ΔU because both marginal distributions are

uniform [64].

To end this section, a trade-off in ecological networks is highlighted. This can best

be done by slightly transforming the previous equation to

H(UX) = ΔUX + M(X;Y) + H(X|Y) , (1.12)

where

- H(UX) is the entropy of the network if all interactions would be uniformly dis-

tributed over the species, i.e. their freedom of choice is maximal.

- ΔUX expresses again how much the observed data differs from a uniform distri-

bution.
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- M(X;Y) quantifies the organisation of the network, i.e. the limitation on possible

interactions between X and Y. The ecological interpretation of this metric is that

a restricted number of interactions can lead to higher efficiencies.

- H(X|Y) is part of the uncertainty that remains if the whole structure of the in-

teraction network is known. A large conditional entropy means that the species

have a large variety of possible interaction partners out of which they can choose

(so large uncertainty). This metric can be seen as a measure of network stabil-

ity. Too strong restrictions on the interactions and on freedom of choice of the

species decreases the stability.

As can be seen, efficiency and stability are antagonistic: one comes at the cost of

the other. If the freedom of choice of the species becomes larger, meaning they have

a broader variety of interaction partners, the stability of the overall network grows

but the efficiency of their interactions goes down. Visualisations in mathematical

and ecological terms are presented in Figure 1.2a and 1.2b, respectively. There it is

assumed that the deviation of the uniform distribution, and hence the diversity of the

species in the network, remains constant [51].

1.3 Specialists versus generalists

The terms ’specialist’ and ’generalist’ were already mentioned in Section 1.2, but will

be further developed here. Globally they can be distinguished by saying that the for-

mer only interacts with one (or a very select group of) species, while the latter has

a lot of possible interaction partners, but there are more scientific approaches avail-

able. Here the Optimal Diet Model is elucidated (a kind of Optimal Foraging Theory),

applied for a mobile predator feeding on stationary prey. Subsequently, this could

easily be transformed to the setting of pollination, as pollinators are mobile and flow-

ers are stationary. In the predation context, the following metrics are to be taken into

account: E, the amount of energy that the prey provides to the predator; S, the search

time (i.e. the time necessary to find the prey, which is dependent on the abundance of

the prey and the ease of locating it); and h, the handling time (i.e. the time necessary

to catch and consume the prey, starting from the point where the prey is found). The

ratio E/h is called the profitability of a prey. We now assume prey1 with energy E1

and handling time h1 and prey2 with energy E2 and handling time h2, and assume

that the profitability of the first one is the highest: E1
h1

> E2
h2

. When the predator en-

counters prey1, it should always choose to eat it without considering the one with

the lower profitability. However, if the predator encounters prey2, it should reject it

and search for prey1, except when this is no cost-effective option. The latter means

9



1.3. SPECIALISTS VERSUS GENERALISTS

(a) Trade-off in mathematical terms.

(b) Trade-off in ecological terms.

Figure 1.2: Trade-off in ecological networks
When the freedom of choice increases (i.e. every species has more possible interac-
tion partners), the uncertainty over the established interactions increases. (a) The
conditional entropy increases, with a decrease in mutual information as a result.
Knowledge of X now reveals less information on Y (the interaction partner). (b) A
greater conditional entropy can be translated to a greater stability, and a smaller
mutual information to a smaller efficiency of the interactions [51].
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that it would take too much time to find the more profitable one that it is actually not

worth it. Hence we say that the predator should eat prey2 if E2
h2

> E1
h1+S1

with S1 the

search time of prey1. It is this equation that we need to define the two concepts of

this section.

The equation can be rearranged to get: S1 >
�E1h2

E2

�

− h1. S1 can be seen as a thresh-

old in the choice of a prey. Animals that have values of S1 reaching the threshold

are defined as generalists. They include a wide variety of preys in their diet. Animals

that have values of S1 below the threshold are defined as specialists. They are better

off by exclusively eating one prey. A switch between these two feeding strategies

can be made depending on the abundance of preys. Since it is always favourable

to eat prey1, the choice of eating this one is not dependent on the abundance of

prey2. However, since the choice of eating prey2 is dependent on S1, this choice is

dependent on the abundance of prey1. Hence, when the food of a specialist becomes

scarce (i.e. the abundance of prey1 is too low), a specialist could sometimes switch to

become a generalist. The model can of course be extended for more than two preys,

but this extension is not further treated here [48].

When the Optimal Fouraging Theory is applied to pollination, two things need to be

taken into account. Firstly, nectar is assumed to be a non-depleting food resource,

which is not valid for all prey types. Secondly, bees do not tend to maximize their net

rate of energy gain (i.e. the previously defined profitability, the net energy gained per

time unit), but rather their energy efficiency (i.e. energy gained per energy spent).

The reason for this is that to maximize the former, tremendous loads of nectar should

be carried in one flight. The weight of the nectar adds a significant cost to the bee’s

flight between flowers and can even shorten the lifespan of the bee. Therefore, the

metabolic cost of the transport of nectar should be included in the model. Afterwards,

all the same concepts based on thresholds can be applied. The maximization of ener-

getic efficiency is just an adaptation to a limited flight-cost budget [54]. To continue,

pollination and pollination networks are first to be more properly defined.

1.4 Pollination networks

Pollination is a specific type of biological interaction. Pollination literally means the

transfer of pollen from a male anther to a female stigma, where pollen is a sex cell of

plants containing its genes. These cells are essential for reproduction.

Darwin (1877) already described distylous flowering plants as species characterized

by possessing two types of flowers, being the ’pin’ flowers (with long styles and short

stamens) and the ’thrum’ flowers (with short styles and long stamens). Each indi-

vidual of such plant species only bears one of these two types. This was probably
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to prevent fertilization after accidental self-pollination so that in this way, a pollen

transfer resulting in successful fertilization only occurs between different individu-

als. Later distyly evolved to dioecy, where male and female flowers no longer con-

tain parts of the opposite sex. Presumably an evolutional change in pollinator types

(e.g. shortening of the mouth parts) induced the inutility of the short styles and short

stamens [8].

Just like other ecological networks, pollination networks can be represented as a graph

or as an interaction matrix. Here, arrows in the graph are not necessary as a direction

of the interactions is not really applicable. Matrices can be binary or quantitative,

with the same advantages and disadvantages as mentioned above ((+) more infor-

mation in the quantitative case but (-) uncertainty about abundances). Moreover,

other sources about pollination mention a second problem with taking the number of

visits as an interaction value. Identifying the main pollinator for a floral species is

based on two components of animal activity: frequency of visits and effectiveness of

pollen transfer to appropriate stigmas in each flower visit. Most studies only consider

the first aspect because presence of visitors is more easily observed than the transfer

of pollen. Pollinator effectiveness can be qualified by a variety of metrics: the number

of pollen grains deposited per visit, the amount of both pollen deposited on stigmas

and pollen removed from anthers, the frequency with which each visitor species con-

tacts anthers and stigmas, fruit set per visit or seed set per visit [22]. Although newer

methods have been developed to define the effectiveness, like DNA meta-barcoding,

the component is often left behind [19]. This incurs the risk of misidentifying the

main pollinator and mistaking the specialized system as a generalized system [22].

For previously and here mentioned reasons, taking binary values instead of visitation

frequencies could be seen as a safe decision.

If the risk of misidentifying the main pollinator would really induce a problem is left

aside, as this is quite contradictory in literature. Only a few studies compared the vis-

itation frequency with the effectiveness of pollen transfer. Armbruster (1985) found

that the most common visitor is mostly a poor pollinator. These pollinators could ac-

tually be seen as parasites from the plant’s point of view, as they remove pollen that

otherwise would be transferred more effectively to stigmas of other individuals. Here,

the importance of the common pollinators is greatly overestimated, and the impor-

tance of less common but highly effective ones underestimated by only taking into

account visitation frequencies [3]. Olsen (1997) on the other hand states that the

most common visitors are also the most important pollinator [43].

Pollination is mostly of the mutualism type (see Section 1.1). However, the relation

is rather asymmetrical as pollinators are typically more specialized than plants, so

being more dependent on this plant’s abundance [40]. The benefit for the plants is
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the ability to mate with other individuals; the benefit for the pollinator is the collection

of nectar and pollen, by which they transfer this pollen from the anthers to the next

flower [2].

Pollination is quickly linked to bees, but in fact various types of pollinators are known.

To start with the insects, there are of course bees (the domesticated honey bees and

wild bees such as bumblebees and solitary bees), but also beetles (e.g. oil beetles,

long horn beetles and swollen thigh beetles), wasps (e.g. fig wasps and orchid wasps),

butterflies, moths (e.g. hawk moths), thirps and flies (e.g. hoverflies) [2]. Fig wasps

are famous because of their co-evolution/co-speciation and intimate relation with fig

plants. In total, more than 750 fig species are known, all owning their own pollinating

wasp species of the Agaonidae family. In theory, the ’one-to-one rule’ would apply

for this pollinating interaction, but in practice this rule is sometimes violated. Still an

intense mutualism exists between the species, as the plant depends on its wasp for

pollination and the wasp on the fig for reproduction (their larvae feed themselves by

galling fig flowers) [12].

Next to these invertebrate pollinators, three other vertebrate classes need to be con-

sidered: Mammalia, Reptilia and Aves. Mammals are mainly important in forests,

where they help pollinating big trees. Some examples are rodents, flying squirrels

and lemurs. However, the most famous mammalian pollinator is the fruit bat. This

mostly nocturnal species has a diet containing fruit, nectar, seeds and leaves [28] and

covers large distances, making him perfect for transferring pollen. Unlike many other

bats, fruit bats locate their food not by echolocation but by sight and smell. Their

eyes are therefore remarkably large, as can be seen in Figure 1.3a.

Examples of reptile pollinators are lizards and geckos. In desert regions where water

is sparse, lizards (e.g. Podarcis lilfordi) can visit some cacti species to drink the nectar

and are hence able to pollinate them. Lizards normally feed on insects, but feeding on

nectar is an element of a variable set of feeding strategies found by P. lilfordi. (Other

strategies include the consumption of seeds, fruits, and other parts of several plant

species, as well as small crustaceans [44]).

Birds present in the pollination network are the sunbirds (family of the Nectariniidae)

living in Africa, hummingbirds living in America and honey eaters living in Australia.

These three groups are distantly related to each other. In some regions these birds

co-evolved with plant species, making them more successful in nectar foraging than

the insects competing with them. The co-evolution results in a morphological com-

patibility (see Figure 1.3b) as well as in a more reddish colour of the flowers (as birds

and insects are more sensitive to different reflected wavelengths).
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(a) Samoan flying fox (Ptero-
pus samoensis).

(b) Purple-throated Carib hummingbird (Eulampis
jugularis).

Figure 1.3: Pollinators of the Mammalia and Aves class.

1.5 Phylogeny and traits

To model a pollination network, information about the participating species can be

highly useful. This information will then be stored in the feature vector of each node,

as mentioned in Section 1.1. One can focus on species phylogeny, traits or a com-

bination of both. The phylogeny and traits of the species comprised in the used

pollination network are more thoroughly discussed in Chapter 3, but some examples

of their relevance are shown here.

1.5.1 Phylogeny of species

Phylogeny focuses on the evolution of species and on how closely they are related

to each other. It shows the relationships between groups of organisms and tries to

recreate their evolution by means of common ancestors. Classification of species

(e.g for angiosperms) is now strongly based on phylogenetic insights. This change was

made when phylogenetic trees became more developed. Major clades were identified

but those relationships were in conflict with the then prevailing classification (which

was mostly based on visual similarities) [1].

Rafferty and Ives (2008) used Phylogenetic Linear Mixed Models (PLMM) for the statis-

tical assessment of two statements: (1) whether closely related pollinators are more

likely to visit plants with similar relative frequencies, and (2) whether closely related

pollinators tend to visit closely related plants. As can be assumed, the models treated

the quantitative strengths of pairwise interactions as the dependent variable, and

incorporated phylogenies as anticipated covariances among these interactions, as in-

dependent variables.

The conclusion of the researchers was that pollinator phylogeny did not explain the
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community composition. Closely related pollinators were not more likely to visit the

same plant species, and the same pollinator is not more likely to be attracted to

closely related plants (research question 2). Nonetheless, pollinators were affected

by plant phylogeny, namely that closely related plants were likely to have similar vis-

itation frequencies, regardless of the species (p < 0.001) (research question 1) [49].

This last statement is confirmed by the study of Vazquez et al. (2009). There they

showed that the number of pollinators visiting different plants depended strongly on

the phylogeny of the plants but only weakly on the phylogeny of the pollinators [63].

1.5.2 Traits of species

Traits denote are all characteristics of a certain species. They can be morphological,

geographical, behavioural, etc. Sometimes phylogeny is also seen as a trait. After-

wards, one can discover which plant traits are likely to be responsible for attracting

different pollinators.

Examples of plant traits

Rafferty and Ives (2008) investigated eight plant traits to determine which ones could

explain the visitation behaviour of pollinators on different plant species. Of the eight

traits, two traits involved phenology3: (1) phenological shift (i.e. whether plants are

flowering significantly earlier) and (2) date of first bloom (i.e. the mean week of flow-

ering onset) and six were morphological traits: (3) plant height, (4) flower color, (5)

floral symmetry, (6) floral display size (i.e. mean number of flowers or iflorescences

per plant), (7) nectar volume, and (8) nectar concealment (i.e. whether flowers have

concealed nectar or not). To facilitate comparisons among the effects of plant traits,

they standardized values for each trait to have a mean of 0 and a variance of 1. Af-

ter the validation of their linear mixed model, four of the eight traits seemed to be

significant, being date of first bloom (p=0.047), plant height (p=0.002), flower color

(p=0.009) and floral symmetry (p=0.046) [49].

Simpson and Neff (1983) investigated floral morphology, floral colour, scent and re-

ward chemistry as traits. They found (in contrast to the ones above) that blossom

colour scored poorly in predicting pollinator visits while reward chemistry seemed

more important. The amount and availability of reward may strongly limit the func-

tional groups of attracted pollinators. The most common rewards are pollen and nec-

tar. Pollen is a reward offered by e.g. plants with poricidally dehiscent4 anthers, but

is not available for all pollen-feeding insects. Exclusively bees that can vibrate their
3Phenology is the study of periodic plant and animal life cycle events and how these are influenced by

seasonal and interannual variations in climate.
4Dehiscence is the splitting along a built-in line of weakness in a plant structure in order to release its

contents at maturity.
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flight muscles to buzz the flowers can collect this pollen, while other insects lack this

access. Other less common types of rewards are oil, fragrance (that male euglos-

sine bees collect to attract females), floral resin (that can be used for nest building),

and a site for breeding, as mentioned in the very specialized fig/figwasp example of

Section 1.4.

The apparent contradiction about blossom colour can easily be explained, as different

floral traits could be associated with specialization at other taxonomic scales. Traits

like floral colour are more important at a higher level (e.g. differentiation between

bee and bird pollinators), while reward is more important at a lower taxonomic level

(e.g. differentiation between different bee families/genera) [22].

Pollinator traits

Leigle et al. (2017) used a long list of pollinator traits to develop a recommendation

model. Examples are long or short legs, body mass, feeding habits, living above

or below ground, etc. Afterwards they could conclude that only three traits were

necessary to create a good recommendation: the body mass of the species and two

other traits based on phylogeny [16].

The importance of traits is illustrated well in Santamaria and Rodríguez-Gironés (2007).

These people did research about whether plant-pollination networks can be described

using trait complementarity rules and barrier rules. They used different models and

different data to check if topological properties (like nestedness, degree distribution,

etc.) of mutualistic networks can be predicted.

One of the good scoring models was the lognormal neutral model. In this one the

probability that a plant-pollinator pair interacts is proportional to their relative abun-

dances, and relative abundances were drawn from a lognormal probability distribu-

tion. However, they listed several reasons why this cannot be considered as a valid

prediction model, despite the good fit. Firstly, assuming random interactions is not

sufficient to reproduce network topology, as neutral models based on other propabil-

ity distributions (e.g. uniform ones) give poor fits to the data. Secondly, the neutral

model assumes that species abundance determines the frequency of interactions,

but there is no proof that these two are significantly correlated to each other. Also

an interpretation error occurs because it is not clear whether generalistic species

are generalists because they are more abundant, or if they are more abundant be-

cause they interact generalistic and hence have more access to resources. Thirdly,

considering random interactions implies that most (all) phenotypic characteristics of

interacting species are irrelevant to determine patterns in the data. Other studies

showed that phenotypic traits often prevent the happening of a certain interaction.

Due to this so-called forbidden interactions, and due to previously mentioned lack of

causal interpretations, random behaviour can be rejected.
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What they did discover is that the combination of trait complementarity rules and bar-

rier rules provided very good fits and good predictions for the network metrics. They

included traits like phenology (flowering period of plants, flying period of insects), the

nectar sugar concentration, the flower color and scent. They discovered that simple

linkage rules lead to mutualistic networks with the same topological properties as

observed in actual datasets. Beside the challenge of understanding the ecological

processes that underlie these regularities, they showed that two to four linked traits

were enough to predict topologic properties [53]. These are important conclusions

and can be used as basis for later discussed prediction models (Chapter 4).

1.6 Climate change for plants/pollinators

Climate change is a hot topic in media and literature, and deserves some special

attention in the context of plant-pollinator interactions. Many ecosystems in nature

are affected by regional and global climate changes, and pollination networks are one

of them. All kinds of effects can disturb ecological interactions (e.g. rainfall) but the

main factor seems to be the temperature increase. Both plants and pollinators are

affected by global warming, although the generally shorter life span of insects makes

them more sensitive to this variability [30].

Mutualistic partners have synchronized their timing over the evolution. This devel-

opment of increasingly narrower phenological matches is one of the aspects of co-

specialization [39]. Now however, more mismatches are observed or predicted. Data

has shown that many plants have reacted to increasing temperatures by flowering

earlier. The flowering period appears to start earlier in the season, linearly correlated

with the mean (increasing) temperature of the month of/months before flowering, and

species flowering early in the season appear to be most sensitive. However, this is not

true for all plant species as other data collections show that e.g. 20% of the species

was not affected. Besides the (whether or not) earlier flowering, the length of the

flowering season seemed less affected.

Pollinators show similar behaviour. In studies where butterflies were observed, a close

relationship between first appearance dates and temperature was detected. The peak

appearance came earlier and flight duration was prolonged during a warming period.

The same goes for honeybees (e.g. Apis mellifera) where there is also a quite linear

relationship between the date of first appearance and the temperature in the previous

months. Honey bees can be considered as good indicators of climate change as they

overwinter, and appear to react quickly to increases in spring temperatures.
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Although the responses show the same trends, it cannot be avoided that sometimes

temporal mismatches appear among the mutualistic partners: not all linear relation-

ships are evenly sensitive; other environmental cues for plant flower inducing can be

altered, leading to unexpected cue combinations and bizarre flowering times; early

mismatches in the season can result in restricted nest development of bee species

and can limit pollination services later in the season; etc.

Modelling outcomes infer that between 17 and 50% of all pollinator species suffer

from disturbance in food supply due to temporal mismatches, depending on the phe-

nological shifts applied. However, these values have to be treated with care as direct

temperature responses and the occurrence of mismatches in pollination interactions

may vary among regions.

Here a second mismatch can be introduced, namely a special mismatch. Not only

temporal behaviour changes can be induced by global warming, but also changes in

abundance and distribution. Both increased reproductive effort of plants as decreased

flower abundance have been observed for increasing spring temperatures. Pollinators

are then again influenced by both this global warming, and the changes in food avail-

ability by changes in plant population density. In history it has been observed that

species distributions move towards equator regions and descend from mountains dur-

ing cold glaciations, while the opposite is observed during warmer inter-glaciations. A

lot of trees and pollinator species (like butterflies and bees) now show the dynamics

of moving towards higher latitudes and altitudes, similar to what is expected in warm-

ing scenarios. Flies on the other hand show opposite patterns, possibly due to new

dominant and competing species.

Again due to this sometimes similar but perhaps not equal effects, or sometimes op-

posite effects, both phenological (temporal) and spatial mismatches may occur. This

has several consequences. Specialized pollinators are most likely to be left with no

food due to new competing insects and are most sensitive to extension, but also

generalist species could be pushed to diet shifts or diet reductions. Also, if some

pollination interactions are uncoupled, the network has to establish new interactions.

Considering long co-evolution of lots of species, this is not evident. The last frequently

studies effect is anew quite contradictive. Some plants suffer from reduced pollen de-

position through quantitatively less or qualitatively less efficient visits. Plants may

suffer from limited reproduction due to insufficient pollination. On the other hand

also opposite effects are observed, where supplemental pollination leads to a pos-

itive influence on the survival and growth rate of flowering species. An increased

food availability per flower could maybe partly compensate the diet reductions due

to mismatches in time and space.
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The latter can be seen as a buffer mechanism, and some similar statements can be

made. Naturally, ecological networks possess an inherent robustness in their struc-

ture. Mutualistic networks consist of highly asymmetric relationships, where a core of

generalist species interact with each other, while most specialists interact only with

these generalists. This was the nested structure of a plant-pollination network. The

stability induced by nestedness makes networks more robust against perturbations

caused by climate change. Although the buffering capacity, the loss of generalistic

plant species in particular, may put other plants and pollinators at higher risk for ex-

tinction. And even when a dynamic structure of links tries to compensate for these

occurrences, each mutualistic network can reach a tipping point and collapse under a

disturbance [30].
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CHAPTER 2

MODELLING TECHNIQUES

2.1 Machine learning and pairwise learning

Literally describing and implementing all (possible) driving forces for interactions in

a network would be hard and time consuming. These interactions are dependent on

lots of biotic and abiotic factors, on each other and probably on a lot of phenomena

that are not completely understood yet. Here machine learning could be of use. Also

secondly, models providing those interactions with a great chance of occurring in

reality could shorten and optimize field searches. In other words, predictive models

enable researchers to prioritize interactions for experimental validation [62].

Machine learning can be described as the science of finding stable patterns in data [57].

In fact, it is the field of computer science that gives computers the ability to learn

without being explicitly programmed [52]. It provides algorithms based on training

examples out of which knowledge can be discovered [47]. A small example (of the

supervised learning type) to clarify the definition could be: assume there is a dataset

of face images available and one wants to make a classifier that provides for every

picture a label y ∈ {me, ƒeme}. This application would be hard to program in a

traditional way since formally specifying a rule that differentiates male from female

is not evident. An alternative is to give example pictures labeled with their gender,

and let a machine automatically learn a rule. When this is done, the developed model

can be used to provide labels for other pictures that were not included in the training

dataset [6]. For biological networks, supervised learning approaches perform typically

much better than unsupervised ones, as they take advantage of known interactions

of the network and create a model based on their specific properties [56].

A specific direction in machine learning is the field of pairwise learning. In pairwise

learning, the goal is to predict the label of a pair of objects (instead of a label for

just one object, like the picture example above) where this pair of objects is called a

dyad. A differentiation can be made between monadic and dyadic data, depending

on the two objects comprised in the dyad. When for example an interaction metric

between two pollinators should be predicted, the pair of objects can be denoted as
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(, ′) with  ∈ U , ′ ∈ U (U is the set of all pollinators) and a label y. This is to be linked

with the unipartite network of Section 1.1. When the interaction strength between a

pollinator and a plant is of interest, the corresponding dyads are of the form (,)

with  ∈ U ,  ∈ V (U is the set of all pollinators and V is the set of all plants), and again

label y. This corresponds to the bipartite network of Section 1.1. y referred to as an

interaction strength two times, but can in fact stand for any (binary, quantitative or

textual) label [58].

The goal of pairwise learning is to learn a function ƒ (,) to make predictions of this

label for new dyads. The prediction can be an estimate of the binary, quantitative

or textual label, but can in some cases also be interpreted as a score indicating the

confidence of the interaction occurring [59]. However, the term new dyad is not

always evident. Therefore, four different settings are distinguished.

Figure 2.1: Four settings in new dyad prediction.

- Setting A (blue): both  and  were observed during training, but the label of

this combination was missing.

- Setting B (purple): only  was observed during training;  is a new object that

did not occur in any dyad of the training dataset.

- Setting C (yellow): only  was observed during training;  is a new object that

did not occur in any dyad of the training dataset.

- Setting D (orange): both  and  are new objects that did not occur in any dyad

of the training dataset.
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Intuitively, it is easy to understand that the prediction of a label in setting A is much

easier than a label in setting D. Therefore, it is advised to also separate validation

tests or performance metrics over four settings, because otherwise over- or under-

estimation of the model performance can occur. Frequently used validation methods

are leave-out cross-validation schemes, but these are further discussed in Section

2.3 [58].

2.2 Techniques to predict plant pollinator

interactions

As mentioned in Section 1.5.2, neutral trophic models take the probability of two

species interacting is proportional to the product of their relative abundances [11].

Obviously this is a too simple approach to estimate the interaction network. Two

co-occurring species do not necessary have to interact with each other and several

other reasons rejected the use of these probability distributions [53]. Other manners

can be used to obtain predictions for the interactions of species. In this section,

two approaches will follow. The two are distinguished form each other by the use

of information. The first one only uses the provided interaction matrix (see Chapter

3) while the second one includes much more data. It would be expected that the

performance rises as more information is taken into account, but this is to be tested.

2.2.1 Collaborative filtering

When no additional information is known about the species of the training data (like

the earlier mentioned phylogeny and traits), only the structure of the given dataset

itself can be used to predict missing and new values, or to re-evaluate the given

values.

Introduction to collaborative filtering (CF)

CF is a technique complementary to content-based filtering. Content-based filtering

uses features of plants and pollinators (or e.g. features of items and customers in a

recommendation system for online sites) to make predictions. Collaborative filtering,

on the other hand, only uses the known preferences (so the binary interaction matrix

or a qualitative item scoring matrix) to predict other interactions.

CF has several challenges to deal with. First of all, the data sparsity. Just as in commer-

cial recommender systems, the interaction data of biological networks is very sparse,

which complicates the making of predictions. Two problems are related to this spar-

sity of data. The most challenging one is the cold start problem. This occurs when
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a new pollinator or plant enters the system, but as the features of this species are

not taken into account, it is difficult to find similar species and predict interactions.

The other problem with sparse databases is the so-called neighbour transitivity. In

e-commerce recommendation, this refers to the problem in which users with similar

tastes may not be identified as such if they have not rated the same items. All users

only rate a small subset of the items and if this subsets do not overlap, possible sim-

ilar users cannot be used for each others recommendations. In pollination datasets

mostly, all possible plant-pollinator combinations are evaluated with an interaction

value so this problem does not really apply. A possible solution for these sparse data

are dimensionality reduction techniques such as Singular Value Decomposition [65]

or Latent Semantic Indexing [32] in which unrepresentative or insignificant items are

deleted and further predictions are done with the reduced dataset. Another solution

would be a hybrid model in which content-based filtering and collaborative filtering

are combined. As such, for example the bulk taxonomic information can be incorpo-

rated in the model and the cold start problem gives less issues. A second challenge

for CF is the scalability. Both user-item databases as plant-pollinator databases can

be very big which requires good computational resources. Also here, dimensionally

reduction techniques can provide good solutions. The third challenge mentioned in

Su and Khoshgoftaar (2009) is synonymy, referring to the fact that a number of the

same (or very similar) items can be stored in the database with similar names but not

as the same item, meaning they are considered as two completely different things.

Here Semantic Indexing can help to reduce these items, by creating semantic spaces

in which all the items would be closely related, e.g. the words ’film’ and ’movie’. In

biological contexts, one species can also possess different (official) names (as Apis

mefifera and Apis mellifica (the European honeybee) or Epilobium angustifolium and

Chamerion angustifolium (the great willowherb)), but still this is more limited than

in sales applications. Finally, there is the grey sheep phenomenon. Here one has a

specific user or pollinator whose preferences do not consistently agree or disagree

with the rest of the group, so this one cannot benefit from the collaborative filtering.

Next to these problems, a few other challenges are mentioned in Su and Khoshgoftaar

(2009) (such as privacy limitations or shilling attacks from businesses rating their own

products on e-sale sites), but these last ones do not apply in a biological context [60].

A specific CF-technique: a linear filter

This filter technique re-evaluates the binary interaction matrix, meaning that all (known)

interactions are given a quantitative score of how likely they are to be positive. This

[0,1]-score range then replaces the original zeros (negative) and ones (positive). The

score is generated by a linear filter, which will be theoretically explained below, but

first a small example is shown:
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Plant1 Plant2 Plant3 Plant4 Plant5 Plant6

Pollinator1 1 0 1 1 0 0

Pollinator2 0 0 0 1 0 0

Pollinator3 1 1 1 0 1 1

Pollinator4 1 0 0 1 0 0

Pollinator 2 is a very specific pollinator as it only interacts with plant 4 (specialist).

When then e.g. the interaction [pollinator 2, plant 2] is evaluated, this zero is proba-

bly correct. Hence, the new score given by the filter (instead of 0) is 0.34, meaning

the interaction is more likely to be negative. Pollinator 3 on the other hand is highly

non-specific, interacting with almost every plant (generalist). Also, plant 4 is highly

non-specific, interacting with almost all pollinators. Now when re-estimating the neg-

ative interaction value of [pollinator 3, plant 4], the generated score is 0.81 instead

of the original 0. Being close to 1, this interaction is indeed very likely to be positive

and can (depending on the threshold) be defined as a false negative of the dataset.

The values should however not be confused with a probabilistic interpretation; there

is no chance of 34 or 81% that an interaction happens. In addition, the distribution

of the filtered values can be very tilted towards zero when the interaction matrix is

sparse. Only the relative comparison between the generated values has a valid inter-

pretation.

The few non-specific species could already be distinguished in the interaction graphs.

As biological networks are typically non-random, they show a heavy-tailed distribution

of node degrees. Several nodes, called hubs, have degrees greatly higher than the

average. In such networks, a new node (without consideration of its features) is more

likely to interact with a hub than with a less connected node [56]. This is similar to

what was described in the theory of nestedness. In summary, negative interactions

with a hub are more likely to be wrong. The reason why one would focus on false

negatives is the way a biological network is constructed. This is mostly done by ag-

gregating positive (i.e. observed) interactions. However, there is not always evidence

that a negative interaction does really not occur in reality. There is a chance that the

interaction is in fact positive, but was not observed during the build-up of the network

[62].

Now the construction of the linear filter is explained. The algorithm comes from the

work of Stock (2017) [58]. The original binary (n × m)-interaction matrix is referred

to as Y = [Yj]. The filtered interaction matrix will be called F = [Fj] and the cross-

validating values will be called β. First, the values of F are constructed as a weighted

average of the interaction value itself, the average of the interactions in its row, the

average of the interactions in its column and the average of all the interactions in the

25



2.2. TECHNIQUES TO PREDICT PLANT POLLINATOR INTERACTIONS

matrix:

Fj = α1Yj + α2
1

n

n
∑
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Ykj + α3
1

m

m
∑

=1
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1

nm

n
∑
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m
∑

=1

Yk . (2.1)

The use of this row and column information is intuitively logical considering the pre-

viously given example. The four α’s are weights between zero and one, obviously

summing up to one. The method works well for all α’s being 0.25, but further tuning

can be done.

If one now wants to validate every interaction Yj in the original matrix (i.e. generate

the interaction value β), it would be ideal not to make use of the specific interaction of

pollinator  and plant j and only use the other information comprised in the network.

Only this way a proper estimation of the model performance can be achieved. β is

therefore constructed based on the condition that when this value passes through the

linear filter F, it remains unchanged. Then the previous expression is changed to:
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When both Yj and Fj are first changed to β, one gets
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α2

n

n
∑

k=1
k 6=

Ykj +
α3

m

m
∑

=1
 6=j

Y +
α4

nm

n
∑

k=1
k 6=

m
∑

=1
 6=j

Yk +
�

α1 +
α2

n
+
α3

m
+

α4

nm

�

β , (2.3)

in which this structure can be recognised
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Solving this equation to β leaves us with

β =

Fj −
�

α1 +
α2
n +

α3
m +

α4
nm

�

Yj

1 −
�

α1 +
α2
n +
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�
. (2.5)

Although Yj appears in Equation (2.6), β does not depend on this value. The setup for

this formula makes sure that all dependencies clear each other out. Hence, this is an

application of the well-known leave-one-out cross-validation (LOOCV). CV will follow

in Section 2.3 as well.
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The predicted interaction value β is replacing the original zeros and ones. In order to

not have to define a threshold for β from which we define an Yj = 0 as being a false

negative, ROC curves (Receiver Operating Characteristics) and corresponding AUC’s

(Area Under the Curve) are used. The meaning of this ROC curve and its AUC, as also

their application on the dataset are presented in Sections 2.3 and 4.1, respectively.

Validation experiments in Stock (2017) with 94 datasets with the LOO-computation

gave an average AUC of about 80% for binary matrices, meaning that on average

there is a chance of 80% that a missing positive interaction gets a higher score than

a missing negative interaction [58].

In summary, negative interactions with high scores are natural targets for increased

sampling effort, as they are most likely to occur in reality.

2.2.2 Kernel methods

Secondly, two-step kernel ridge regression (TSKRR) is discussed. This method will use

the interaction matrix, as well as the traits/phylogeny of both species sets to make

predictions. Predictions are again numerical values that (try to) approach the binary

interaction matrix. Firstly, a short introduction to the different parts of TSKRR is pro-

vided.

Kernels

Kernel functions are mathematical tools to represent and manipulate objects in arti-

ficial high-dimensional feature spaces. By using kernels, linear models can be used

for non-linear problems. It is assumed that there is a feature map ϕ : X→ H, where H

(the Hilbert space) is a suitable space to represent these objects. This Hilbert space H

extends the methods from the two-dimensional Euclidean plane (or three-dimensional

space) to spaces with any (in)finite number of dimensions. Then, the general idea of

kernels is that in this high-dimensional space H, a simple linear model might suffice

to describe the patterns in the data, instead of having to compute a very complex

model in space X.

The feature mapping itself is in practice never really done. Computing the map is

computationally expensive as H is an infinite-dimensional space, making the calcula-

tions hard or nearly impossible. A Hilbert space is only an abstract vector space, and

it has the structure of an inner product. The inner product (or dot product) is used

to apply the kernel trick. This means that the value of the kernel function of a pair

of objects in the original object space is the same as the inner product of the items

of the pair presented in the Hilbert space: k(, ′) =



ϕ(), ϕ(′)
�

H, where 〈, b〉 is

used to indicate a dot product. By using this kernel trick, algebraic operations can be

performed in space H without performing the feature mapping [55].
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A common use of a given kernel function is in the form of a matrix, containing the

kernel values of all possible pairs of objects. This is called a Gram matrix: K =

[Kj] = [k(, j)]. Such kernel or Gram matrices are always symmetric (i.e. k(, ′) =

k(′, )) and positive semi-definite. Kernels quantify the similarity between objects.

K =















k(1, 1) k(1, 2) . . . k(1, n)

k(2, 1) k(2, 2) . . . k(2, n)
...

...
...

k(n, 1) k(n, 2) . . . k(n, n)















(2.6)

Kernels can easily be used in a pairwise learning setting by defining so-called pairwise

kernels  ((,), (̄, ̄)), where e.g.  ((,), (̄, ̄)) = k(, ̄) g(, ̄). These measure

the similarity between two dyads (,) and (̄, ̄) instead of between two separate

objects [58].

Ridge regression

Ridge regression is a modification of the well-known linear regression, where not only

the least-square error is used to estimate the coefficients of the regression, but a

second penalty term is included. This penalty term consists of the L2-norm with

a tuning parameter λ. The tuning parameter λ controls the relative impact of the

penalty term on the estimates of the regression coefficients. When λ = 0, the penalty

term has no effect and ridge regression will produce the least-square estimates. The

profit of this extra term is that it shrinks the weights of less contributing variables

(feature selection). As λ increases, the flexibility of the ridge regression fit decreases

(and hence prevents unnecessary complexity/overfitting), but increases the bias [34].

Ridge regression can be formulated as:

ƒ () = 0 + 11 + ... + pp + ε =
p
∑

j=0

jj + ε
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y −
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jj

�2
+ λ

p
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2
j

�

i.e. RSS + λ
p
∑

j=1

2
j

�

(2.7)

Kernel ridge regression

When combining the 2 concepts above, one can replace all feature vectors in the

ridge regression expression with their mapping in H:  → ϕ = ϕ(). In this case the

number of dimensions can be much higher, or even infinitely higher than the number

of data-cases. A long expression for the weights  can again be obtained, but we will

focus on these expressions in the following subsection [67]. Actually, it boils down

to finding that prediction function ƒ (to fit a model in an ’imaginary’ high-dimensional
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feature space H) that minimises a similar twofold loss function.

min
ƒ

n
∑

=1

�

ƒ () − y
�2
+ λ ||ƒ ||2

H
(2.8)

The second part is again the L2-norm, here in the Hilbert space, with weight λ [58].

Two-step kernel ridge regression

Two-step kernel ridge regression is conceptually quite straight-forward. Two ordinary

kernel ridge regressions are combined: one for generalizing to new pollinators and

one for generalizing to new plants (see Figure 2.2). In this way, a prediction for new

dyads can be made. TSKRR can be used for any of the four discussed settings.

In a first step, a prediction is made for known plants and new pollinators. Next, a

second KRR is used to make predictions for new plants, using the predicted labels

from the first model. The order of the two regressions is purely arbitrary; it does not

matter if the first step uses a model for new plants and the second step one for new

pollinators, or the other way around [58].

The fact that two successive kernel ridge regressions are performed, implies that

two separate kernel matrices can be used instead of having to work with similarities

between dyads. We hence need a kernel matrix k(, ̄) : U × U → R containing the

similarities between the pollinators and a kernel matrix g(, ̄) : V × V → R containing

the similarities between the plants, without having to include pairwise kernels like

 ((,), (̄, ̄)).

A short mathematical outline of TSKRR is provided. In this context, n pollinators , m

plants  and the (n × m) interaction matrix Y are available. The model for any dyad

(,) that has to be learned is of the form

ƒ (,) =
n
∑

=1

m
∑

j=1

Wj k(, ) g(,j) , (2.9)

with k the pollinator kernel, g the plant kernel and W the (n × m) matrix of weights.

These are the model parameters (weights) that have to be estimated.

When shifting to the notation of Gram matrices (K = [k(, j)] and G = [g(, j)]),

the parameters of the TSKRR can be obtained by

W = (K + λ1n)−1 Y (G + λ1m)−1 , (2.10)

where 1n and 1m respectively are the (n×n) and (m×m) identity matrices and where

λ and λ are two regularization parameters.
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Figure 2.2: Illustration of the TSKRR principle.

The (n ×m) matrix F with the model’s predictions can be obtained as

F = K (K + λ1n)−1 Y (G + λ1m)−1G (2.11)

or as F = Hk Y Hg, when the form of hat matrices is introduced:

Hk = K (K + λ1n)−1 and Hg = (G + λ1m)−1G . (2.12)

The TSKRR will be used in Chapter 4, where hence the interaction matrix Y and kernel

functions will be used as input.

2.3 Performance evaluation

Models are only effective when their functioning is adequate. Several options to esti-

mate a model’s performance are available and some of them will be highlighted here.

Performance metrics

Common criteria to evaluate binary predictions are the accuracy (i.e. the number of

correctly predicted pairs divided by the total number of pairs) or, equivalently, the

error rate (i.e. one minus the accuracy). However, ecological networks typically deal

with highly imbalanced data as non-interacting pairs often far outnumber interacting

ones. Accuracy is not appropriate in such situations because it greatly favors the ma-

jority class (a simple model just predicting all pairs as non-interacting would receive

a high accuracy, although this obviously is not a good model). Alternative measures
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are based on a confusion matrix. In the case of binary classification, this matrix is

a (2 × 2) matrix where the columns and rows represent respectively the actual and

the predicted classes (positive and negative), with each cell containing the number of

pairs corresponding to these classes [56]. Note again that in a classification context,

an interaction (1) is defined as the positive class and a non-interaction (0) as the neg-

ative. This is not to be confused with the biological meaning of positive and negative

effects on the interacting species [58]. We assume that all pollination networks are of

the mutualism type.

Actual positive (P) Actual negative (N)
Predicted positive (predP) True positive (TP) False positive (FP)
Predicted negative (predN) False negative (FN) True negative (TN)

Table 2.1: Confusion matrix for binary predictions.

Several metrics can be derived from this matrix to evaluate the performance of a

model, among which:

- The true positive rate (TPR), also called the sensitivity or the recall, is equal to

the number of true positives divided by the number of actual positives: TP
TP+FN .

- The true negative rate (TNR), also called the specificity, is equal to the number

of true negatives divided by the number of actual negatives: TN
FP+TN .

- The false positive rate (FPR), corresponding to 1-specificity, is equal to the num-

ber of false positives divided by the number of actual negatives: FP
FP+TN . In many

biological networks however, the number of interactions is much lower than the

number of non-interactions. It is therefore important to achieve a low FPR be-

cause even moderate FPR can easily lead to much more false positive predictions

than true positive predictions, and hence a very low precision.

- The false negative rate (FNR), also called the miss, is equal to the number of

false negative divided by the number of actual negatives: FN
TP+FN .

- The precision is equal to the number of true positives divided by the number of

predicted positives: TP
TP+FP .

- The rate of positive predictions (RPP) is equal to the number of predicted positive

divided by the total number of examples: TP+FP
P+N or predP

P+N .

These measures should be combined to give a global picture of the performance of a

model, e.g. sensitivity and specificity or precision and recall. Other, less used, metrics

are the correlation coefficient Q2, the F-score and the average normalized rank. Their

definitions can be found in literature [56].
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Graphical assessment

Beside single values, visualisations with curves are also possible. The three most

known curves are the ROC curve, the PR curve and the lift chart. When the number

of positive examples is much smaller than the number of negative ones, as it often

happens in biological networks, there is not much difference between the ROC curve

and the lift chart, so this last one is omitted.

- ROC stands for Receiver Operating Characteristics. ROC curves plot the True Pos-

itive Rate as a function of the False Positive Rate, when varying the confidence

threshold. More specifically, the predictions are sorted from the most confident

to the least confident and the threshold is varied from the maximum to the min-

imum confidence score. Each value of the threshold corresponds to a different

confusion matrix and thus a different pair of values of the TPR and FPR. All these

different pairs of values together construct the ROC curve. Every ROC curve goes

through the points (0,0) and (1,1). The curve of a 100% perfect classifier would

make a right-angle trough the point (0,1), while a completely random classifier

would make a ROC curve coinciding with the diagonal (the line directly connect-

ing the points (0,0) and (1,1)). Both can be seen in Figure 2.3. Logically, one

wants a classifier with a ROC curve as close as possible to the one through (0,1).

A way to quantify this goal is with the area under the ROC curve (AUROC), which

is equal to 1 for a perfect classifier and 0.5 for a random one. ROC curves allow

to compare classification methods and work for each possible ratio of expected

positive and negative predictions. However, if one knows that the ratio between

positives and negatives will be very low when applying the classification model,

then one is typically only interested in the bottom-left part of the ROC curve. In

fact in such cases, PR curves are more suitable to give an overview of the whole

computed model.

- PR stands for Precision vs. Recall. As the name reveals, this curve plots the pre-

cision as a function of the recall (equal to the TPR), when varying the confidence

threshold. A perfect classifier would give a PR curve passing through the point

(1,1), while a random classifier would have an average precision equal to P
P+N ,

see also Figure 2.3. All PR curves end at the point (1, P
P+N ) corresponding to pre-

dicting all pairs as positive. Similarly as the AUROC, also the PR curve can be

summarized in one value, namely the area under the RR curve (AUPR). A draw-

back of PR curves is that they are much more sensitive to false negatives in the

true dataset. On the other hand, they can be used this way to experiment with

the fraction of false negatives [56].
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Figure 2.3: ROC and PR curves of a 100% perfect classifier, a completely random
classifier and an example curve.

Cross-Validation

Classification methods are typically validated using cross-validation (CV). CV is a sta-

tistical evaluation method that divides the data in two segments, being a training set

and a test set. The model is trained on the examples of the training set and subse-

quently validated with the examples of the independent test set. In typical CV, the

training and validation sets must switch in successive rounds such that each data

point has a chance of being validated against. This is the basic form of K-fold cross-

validation [50].

Regular K-fold CV divides the items in K folds, trains the model on K−1 folds and eval-

uates the model with the data points of the remaining fold. This principle is illustrated

in Figure 2.4a for four folds. However, in the setting of pairwise learning, an important

difference is to be noticed. Pairwise learning models take dyads as an input instead of

single items. Since the objects comprised in the dyad come from two different sets,

there are two dimensions in which items can be left out of the training set. In other

words, the model may have learned from either both objects, only one object or none

of the objects of the test instance during training, depending on how training and test

instances were selected. This results in four different K-fold CV schemes instead of

the classical one-dimensional one. To start, the four prediction settings of Figure 2.1

in Section 2.1 are repeated, applied to the pollination network:

(A) The plant and the pollinator species were both part of the training data, but the

value of this specific interaction was missing and hence needed to be predicted.

(B) The pollinator was part of the training dataset, but the plant is a new species.

(C) The plant was part of the training dataset, but the pollinator is a new species.
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(a) Illustration of the regualar K-fold cross-validation
scheme on a one-dimensional dataset, with K=4.

(b) Illustration of the four K-fold cross-validation schemes
on a pairwise dataset, with K=15.

Figure 2.4: Cross-validation schemes, focusing on the difference between a one- and
a two-dimensional dataset.
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(D) Both plant and pollinator species were not included in the data on which the

model was built.

Similarly, four CV settings can be determined. All the settings can be visualized in

Figure 2.4b.

(A) CV for setting A is the most straight-forward. The dyads of the original set are

divided in K folds; K − 1 folds are used to train the model while the last one

is used for validation. This means that when predicting a test dyad, this exact

plant-pollinator combination is new to the model, but interaction information

of both species is included in model training. Performance estimated with this

cross-validation scheme is therefore the most optimistic.

(B) In this validation method, all dyads involving a particular pollinator are omitted

for model training and included in the test set for performance estimation.

(C) Similarly as in CV-setting B, all dyads involving a particular plant species are

omitted for model training and included in the test set for performance estima-

tion.

(D) Here one has the intention to evaluate predictions on completely new dyads, so

none of both objects may already be included in the training set. This means

that not only the particular fold used for validation (containing the new dyads)

but also every fold containing one of this dyad’s objects needs to be discarded

during training. When predicting this fold, both the plant and pollinator species

are unseen by the model, making performance estimation in this CV scheme

the most stringent [62]. In this way, for each of the K iterations, part of the

data will never be used (i.e. not in the validation set and not in the training set).

Quantified for K folds, this boils down to a fraction of (K − 1)2/K2 of the original

dataset that is used for training, 1/K2 for validation and 2K(K − 1)/K2 remaining

unused [58].

Afterwards, all K validation outcomes per setting can be summarized/combined into

one performance metric. When designing a new supervised network inference method,

it is recommended to communicate performances for all four possibilities separately,

as a method can work well for one case but less good for another.
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2.4 Optimal transport

The previous parts of Chapter 2 all focused on the prediction of interactions, and the

evaluation of the models doing so. Here a second topic is approached, based on

the interaction behaviour of species in a network. The practical use of the optimal

transport theory is demonstrated in Chapter 5, but first a more theoretical overview

is provided.

Optimal transport is a mathematical theory that makes it possible to measure dis-

tances between functions, or more general, objects, by enforcing several (e.g. mass)

conservation laws. The first published optimal transport problem is referred to as

Monge’s problem (later called the Monge-Kantorovich mass transport problem [15])

and is about the transformation of a landscape. An original landscape  with de-

fined relief characteristics (little hills and valleys) needed to be converted to a desired

landscape b with another relief. Transporting soil from one place in the landscape to

another is associated with a cost value and of course the total cost of transporting

needed to be minimized, but with the condition that the total mass of all soil was

conserved. Mathematically, we define X as a subset of R2,  and b as two functions

of X, and c (·, ·) as a convex distance. Now the problem consists of finding a function

T (called the transport map) from X to X that transports landscape  into landscape

b, while minimising the product of the amount of transported earth () with the

transported distance c(, T()), or

min
T:X→X

∫


c(,X(T)) () d

subject to the conservation ∀B ⊂ X :
∫

T−1(B)
()d =

∫

B
b()d . (2.13)

When the transport occurs between two completely different sets (so e.g. not from

landscape to landscape) the transport map T maps a set X to a set Y. Algorithms

based on this idea can be used in various settings for numerous applications. One of

the settings is the semi-discrete setting, where a continuous resource or substance is

transported to a discrete number of items, places, etc. [37]. Applied to a pollination

network, this boils down to the problem of having a distribution of plants containing

nectar, and defining the optimal transportation to a finite set of insects, such that

each insect receives its desired amount of nectar (visualized in Figure 2.5). When the

assumption is made that each plant produces the same amount of nectar and each

insect consumes the same amount of nectar, then e.g. the amount of nectar needed

for one insect species is proportional to the relative abundance of this species in the

total population of pollinators.
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Figure 2.5: Find the optimal distribution/map to match the (yellow) pollinator distribu-
tion to the (purple) plant distribution.

Again switching to mathematical notation, this problem can be translated to:

r = vector containing the distribution of insects (n-dimensional)

c = vector containing the distribution of plants (m-dimensional)

M = a cost matrix, i.e. defining how ’unlikely’ it is that a specific insect and plant in-

teract with each other. This is in fact the negative of the pollinators’ preferences.

Out of this we get a polyhedral set containing all valid partition matrices P of plants

over pollinators:

U(r, c) =
¦

P ∈ Rn×m | P1m = r, PT 1n = c
©

(2.14)

where 1m and 1n are respectively an m- and n-dimensional vector of ones.

Now, the following optimization problem needs to be solved

dM(r, c) = min
P∈U(r,c)

∑

,j

PjMj (2.15)

to minimise the distance (cost) and hence find the most optimal distribution P*.

A shorter notation is possible using the Frobenius dot-product, where
∑

,j PjMj is

written as 〈P,M〉F, leaving the formula as

dM(r, c) = min
P∈U(r,c)

〈P,M〉F . (2.16)

A modification can be made based on the information theory of Section 1.2. There it

was stated that an interaction network can be more stable if the (conditional) entropy

becomes higher (i.e. there is more uncertainty) and species are to interact with more

partners. This can here be achieved by inducing (obligating) a minimal evenness in
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the solution. The optimal partition matrix P* then forces the pollinators to visit a bit of

all plants instead of just focusing on one or a few favourite plant species. The solution

is smoothened out following the maximum-entropy principle [14]. The regularization

using the maximum-entropy principle is quite intuitive and has in fact been favoured

over the one without entropy in, for example, the use of transport theory to predict

traffic patterns [69]. In this paper entropy maximizing is approached as probability

maximizing, which is equivalent considering the structure of P* and the formula of

entropy.

The evenness in the transport matrix P* is quantified by a tuning parameter λ. The

smaller this parameter, the more even the partition of pollinators over plants be-

comes. The formula of the distance is then adjusted to

dλ
M
(r, c) = 〈Pλ,M〉F = min

P∈U(r,c)
〈P,M〉F −

1

λ
h(P) = min

P∈U(r,c)

∑

,j

PjMj −
1

λ
h(P) , (2.17)

with h(P) = −
∑

,j Pj logPj, being the entropic regularization term. Note that this is

the exact same equation as Equation (1.3) defining entropy (except that the one there

is defined in bits by using log2).

Indeed, the smaller the parameter λ, the higher the weight of the entropy becomes,

the more the distance is punished for an uneven distribution. dλ
M

is called the dual-

Sinkhorn divergence. The solution is derived by taking the Lagrangian of Equa-

tion (2.18). Setting its partial derivative to zero gives the solution P* of the mini-

mization problem.

Experiments require two sets of species distributions and a cost matrix defining the

cost of the interaction between every two species of the separate sets. The algorithm

gives two outputs, namely the optimal transport matrix between the two distributions

P* and the corresponding Sinkhorn distance dλ
M

. The mathematical meaning of the

two is already clear: the matrix is the most ideal mapping of the first distribution to

the second, and the distance is the overall cost that the just defined mapping pattern

would cause, but is now focused on their biological meaning.

The optimal transport matrix defines the part of its interactions every pollinator should

establish with each plant (i.e. the ’portion of its visits’). This is dependent on the abun-

dance of the plants, the abundance of the insect species itself, the abundance of the

other insect species capable of pollinating the same plants, and on the cost matrix

per possible interaction. P* defines the optimal interaction behaviour of the pollina-

tors. The distance then is the overall cost of this defined interaction behaviour. As it

is more convenient to speak of a maximization of preference instead of minimization

of cost, the sign of the distance can be switched and this value can hence be inter-

preted as a ’satisfaction index’. The interaction matrix with the lowest cost is now
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the interaction matrix that matches best with the initial species’ preferences. It tries

to fit as good as possible the pollinators’ behaviour if they were free to choose their

interaction partners, but still meets the constraints set by the available distributions

and the entropic restriction term.
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CHAPTER 3

EXAMINING THE DATA

3.1 Quick overview

This work is entirely based a single dataset, provided by FlorAbeilles, a project of Lab-

oratoire Pollinisation et Ecologie des Abeilles de l’Unité Abeilles et Environnement de

l’INRA d’Avignon [26]. The original dataset contains 305 pollinators and 452 plant

species. It is a binary interaction matrix, meaning there is only a distinction between

interactions and non-interactions without providing qualitative information (a recom-

mended choice considering Section 1.4). The matrix is very sparse, having a positive

value density of only 1.10%. This implies that the network predominantly consists

of specific interactions, combined with a few generalists. Multiple visualisation tech-

niques can be performed to introduce the FlorAbeilles dataset. One of them is with

the software package Bipartite in R, of which an obtained image is shown in Figure

3.1. To visualise the data sparsity, heatmaps can be used. The first heatmap of Figure

3.2 represents the original interaction matrix, with all species in alphabetical order.

The most striking row is on about 1/4th of the figure. This pollinator is Apis mellifera,

the famous Western or European honey bee, see Figure 3.3. Mellifera literally means

honey-bearing, referring to the fact that this bee produces a large volume of honey as

stockpile over the winter. This species can interact with a large variety of plants and

is able to adapt itself to the local environments as they spread geographically [68].

The second heatmap of Figure 3.2 is obtained by swapping rows and columns re-

spectively, in such way to indicate the nestedness of the network. Nestedness and

modularity were defined and visualized in Section 1.2. Referring back to these plots,

the nested structure of the network is quite clear. By using Equation (1.1), we obtain

an η(R) of 0.0718, η(C) of 0.1312 and hence an overall η of 0.1015. Next to this value,

other calculations based on Section 1.2 (Information theory) can be made:



3.1. QUICK OVERVIEW

Figure 3.1: A first visualisation of the dataset. The left names represent pollinators,
the right ones represent plant species. For clarity not all species are shown, but part
of the hubs and part of the specialized species are included in the image.
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(a) Interaction matrix of the species in alphabetical order.

(b) Interaction matrix of the species indicating nestedness.

Figure 3.2: Interaction matrix visualisation using heatmaps. Every black cell denotes
an interaction, every white cell a non-interaction.
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Figure 3.3: European honey bee (Apis mellifera).

HB 7.2139
HP 7.9230

HB,P 10.5651
HB|P 2.6421
HP|B 3.3512

V(B;P) 5.9933
M(B;P) 4.5718

ΔU 1.9359

Table 3.1: Calculated values of the Information theoretic metrics (in bits), on the
original dataset.

3.2 Information theory

In Table 3.1, the determined values of the Information theory can be found. The

row species (i.e. the pollinators (bees)) denote variable B, the column species (i.e. the

plants) denote variable P. Two main facts can be extracted from this table. Firstly, we

can see that the conditional entropy of B given P is smaller than that of P given B.

This means that when the plant is known, less uncertainty about the pollinator species

remains than the other way around. As stated in Chapter 1, a conditional entropy can

be interpreted as the expected number of binary questions that have to be asked

to determine the particular species of an interaction, when the interaction partner is

known. When a plant, for example, only interacts with one pollinator, no questions

have to be asked and the conditional entropy given this plant is zero. When a plant can

interact with two different pollinators, the conditional entropy given this plant is one,

as one question suffices to determine the interaction partner of a specific interaction.

With the defined metrics above, we could hence say that when the plant is known, on

average 2.64 questions are necessary to determine the interacting pollinator. When

on the other hand the pollinator is known, on average 3.35 questions are necessary

to determine the particular plant species the pollinator has visited. There is more

uncertainty left when the pollinator species is known, from of which we can conclude
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that the pollinators in this network interact in a more generalistic way than the plants.

When compared to the earlier mentioned statement of Morales-Castilla et al. (2015)

(that a plant-pollinator relation is rather asymmetrical as pollinators are typically more

specialized than plants), these are not in line. However when checked, the average

number of interaction partners a plant has in this dataset is 3.35 (the median is 1),

while the pollinators in the database on average interact with 4.97 plants (and the

median is 2). Here, it is true that identifying the plant species when the pollinator

species is known is harder than conversely.

Secondly, conditional entropy can be seen as a measure of network stability (recall

Equation (1.12)). The two discussed conditional entropies can be added up to the

variance of information, still a measure for the stability. As the contribution of HP|B is

bigger than HB|P, mainly the pollinators effectuate this stability.

Also, the variance of information and the mutual information can be compared, still

with the same trade-off in mind. The larger the mutual information, the better the

information transfer from B to P and vice versa. A high mutual information shows a

rather limited number of interaction partners and hence a high efficiency of the in-

teractions. When on the other hand the conditional entropies are larger, the number

of potential interaction partners increases (there is more uncertainty), but the overall

network becomes more stable. Here the variance of information dominates the mu-

tual information so stability dominates efficiency.

The other metrics are hard to discuss, as they cannot be compared to other values.

The joint entropy H(B, P), for example, can be seen as a measure for diversity, but as

there is no other network to compare with, no conclusions can be made.

As Apis mellifera (the Western honeybee) is the most striking species of the network,

the properties are calculated a second time without this row. No huge differences can

be seen but still there are some changes. ΔU drops a little, as the species distribu-

tion moved somewhat in the direction of a uniform distribution. Though, the biggest

change is HP|B dropping to 2.8649, hence lowering the variance of information. This

would imply a loss of network stability and could be considered as a negative impact.

However the story for Apis mellifera is quite different than for other bees. The amount

of human managed honeybee stocks has almost tripled during the past decades. The

main reason for this is that they are highly efficient pollen and nectar foragers, ca-

pable of interacting with many agricultural crops. Despite this benefit for food culti-

vation, the drawbacks of this enormous increase in honeybees start to be revealed.

As most productive agricultural crops are mass-flowering intensively, but only during

a short period, the managed bees have to exploit other resources too temporarily.

They form a direct competition for wild bee species and force them to shift their diets

towards less profitable or scarce resources. Outcompeting local wild bees is not a de-
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Domain: Eukaryota
Kingdom: Animalia

Phylum: Arthropoda
Class: Insecta
Order: Hymenoptera

No taxon: Aculeata (Ants, bees and stinging wasps)
No taxon: Anthophila (Bees)

Superfamily: Apoidea
Families: Seven families are covered by bees:

Andrenidae
Apidae
Colletidae
Halictidae
Megachilidae
Melittidae
Stenotritidae

Table 3.2: Taxonomy of the pollinators.

sired effect, especially since the best pollination service is provided by a combination

of Apis mellifera and wild bees. Next to that, also plant species can be affected. A too

high visitation frequency can lead to less success in reproduction, e.g. by preventing

pollen tube development. So although Apis mellifera can provide great pollinating

services to crops, still the trade-off has to be made between this and the effects of

honeybee spillovers on wild plants and pollinators [39].

3.3 Species comprised in the network

3.3.1 Species phylogeny

The pollination network obviously consists of pollinators and plants. As stated above,

many types of pollinators exist, but the used dataset only contains bees. Bees are

considered to be a clade, called Anthophila. A clade is a group of organisms that

consists of a common ancestor and all its lineal descendants. It represents a single

branch of the tree of life [22]. The taxonomy of bees and hence of all pollinators in

the FlorAbeilles dataset is presented in Table 3.2. The taxonomic data originated from

the site bugguide.net [10].

For the plants present a similar overview is made (Table 3.3), but not classified till

the family level as done above. This is because the plants in the dataset are not as

closely related to each other as the pollinators, already giving a large set of different

orders. Taxonomic data of plants came from the USDA Plants dataportal [61].

This way of using taxonomy gives a broad overview of which species are closer related

to one another than others, but a better way of presenting this is with a phylogenetic
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Domain: Eukaryota
Kingdom: Plantae

Subkingdom: Tracheobionta
Superdevision: Spermatophyta

Devision: Magnoliophyta
Class: Liliopsida

Orders: Commelinales
Cyperales
Liliales
Orchidales
Typhales

Class: Magnoliopsida
Orders: Sapindales

Apiales
Asterales
Campanulales
Capparales
Caryophyllales
Celastrales
Cornales
Dipsacales
Ericales
Euphorbiales
Fabales
Gentianales
Lamiales
Linales
Malvales
Myrtales
Papaverales
Plantaginales
Plumbaginales
Polygonales
Ranunculales
Rhamnales
Rosales
Rubiales
Salicales
Sapindales
Scrophulariales
Solanales
Theales
Violales

Table 3.3: Taxonomy of the plants.
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tree. A phylogenetic tree is an estimate of the relationships among taxa and their hy-

pothetical common ancestors. Today most phylogenetic trees are built from molecular

data, meaning DNA or protein sequences [29]. Here, DNA sequences were used. The

sequences came from the public data portal of the BoldSystems database [9], were

downloaded in the FASTA format and were further processed in MEGA to generate a

phylogenetic tree with all respectively phylogenetic branch distances. MEGA bases

this algorithm on the maximum likelihood estimator. The chosen statistical method

for the tree is the neighbour-joining tree.

For insects, the DNA sequence of the COI (Cytochrome-c-oxidase) gene is used to

build a tree. This is a mitochondrial gene that takes part in the aerobic respiration. It

generates an oxidase protein that catalyses the four-electron reduction of molecular

oxygen to two molecules of water, and then utilizes the obtained energy to pump

protons across the inner mitochondrial membrane [24].

For plants (or more specifically angiosperms), both the matK and the rcbL gene are

commonly used. The matK (Megakaryocyte-Associated Tyrosine Kinase) gene is cod-

ing for a protein with corresponding name. This protein is an intron maturase, a

protein that splices introns. The protein is thought to play a significant role in the

signal transduction of hematopoietic cells1 [25]. It is also able to inactivate Src family

kinases, and may play an inhibitory role in the control of T-cell proliferation [4].

The rcbL gene then is the Large subunit of the RuBisCO gene (opponent of the Small

subunit (rbcS)). RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase) is a fa-

mous enzyme involved in the first major step of carbon fixation in plants. This is

a process by which atmospheric carbon dioxide is assimilated in the Calvin cycle;

i.e. converted to and stored as energy-rich molecules such as glucose [17]. It is

thought to be the single most abundant protein on earth [13].

A small piece of the pollinator tree is shown in Figure 3.4. For the full trees of pollina-

tors and plants is referred to a Google Drive folder

https://drive.google.com/open?id=1o5D-xidcLJZRZkSv_45C5dhLLeKw-q_Y.

The generated phylogenetic trees consist of external nodes (the tips) that represent

the actual sequences that are available today, internal nodes that represent hypo-

thetical ancestors, and branches that connect nodes to each other. The lengths of the

branches represent the amount of change that is estimated to have occurred between

a pair of nodes [23]. Note that the tree is shown in the ’Topology only’ - mode, mean-

ing that the length of the branch lines on the figure are unrelated to branch lengths

(i.e. the difference in DNA). Only the value above the branches is representative for

the actual branch length. The reason for this is that some nodes are separated by
1Haematopoiesis is the formation of blood cellular components.
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Figure 3.4: Part of the pollinator phylogenetic tree (made in MEGA with the neighbour
joining tree method).

very short branches, whereas others are separated by very long ones. Sometimes

it becomes impossible to visualise these short lines and, moreover, it gives the tree

a messy look. When the actual branch lengths are replaced by their value, the tree

only contains the topological information and the lines can be arbitrarily chosen in

such way to give the tree a more elegant look.

3.3.2 Species traits

Characteristics of plants and pollinators can be denoted as traits, as introduced in

Section 1.5. Not of all species traits were found, but the others are presented here.

Data of the plant species came from the books Veldgids Nederlandse Flora of H.

Eggelte [18] and Geïllustreerde Flora van Nederland of E. Heimans, H. Heinsius and

J. Thijsse [31]; data of the pollinator species from Veldgids Bijen voor Nederland en

Vlaanderen of S. Falk [20].

Plant traits

The first two gathered plant traits are the Growth habit of the species, ranging from

herb, graminoid, subshrub, shrub to tree, followed by their (proportional) Minimum,

Maximum and Mean height. These two traits can be seen in Figures 3.5 and 3.6,

respectively. Because of some large trees as e.g. Sorbus aucuparia (the European

mountain-ash), Sambucus nigra (the European elderberry) or Euonymus europaeus
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Figure 3.5: Distributin of growth habits.

(the European spindle), the plot becomes quite unclear for the herb heights. There-

fore, an adapted plot is made in Figure 3.6b where all plants with heights above 3 m

are left out.

Next an overview of the Blooming period is given in Figure 3.7. This is done by bi-

nary labels for each month and each plant species, denoting whether the plant is

flowering in this month or not. As can be seen (and expected), the summer months

(June, July and August) are most common, but some species remarkably deviate from

this. Examples are Erodium gruinum (long beaked stork’s bill) blooming very early

(from February to May), or Hedera helix (the common ivy) blooming very late (from

September to November). Blooming all year long is very rare but also possible, like

for Senecio vernalis (Eastern groundsel).

Two other characteristics of plants are their Duration and their Category. The dura-

tion of the plant can be annual, biennial or perennial. Annual plants are those whose

entire life cycle occurs within one growth season, like many common garden plants.

During this time, which can last from a few weeks to a few months, the plant will

develop roots, stems and leaves and will die afterwards. In order not to go extinct,

the plant only has this one growth season to also produce seeds. Seeds are the only

things that allow these species to grow new annual plants the next season. The seeds

are dormant (meaning they are not active) until the correct time of year, during which

they will develop and go through their entire life cycle.

Biennials are plants that take two years to complete their entire life cycle. In the first

year these plants are only vegetative, meaning that they do not produce reproductive
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(a) Height of all plants.

(b) Height of plants below 3m.

Figure 3.6: Distribution of plant heights.
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Figure 3.7: Distribution of blooming periods.

structures. In this period they grow roots below ground and a small rosette of leaves

near the surface. At the end of this vegetative stage, the above-ground part of the

plant may die or not but the roots remain. In the second year of growth, the stem

elongates and flowers and seeds are produced. These seeds produce new biennials

that will start their first growth season the year after.

At last, there are perennial species, mostly shrubs and trees, which persist for many

growth seasons. Their vegetative (or juvenile) phase can be short (like biennials) but

can also last for a few years. The species can be evergreen or deciduous, depending

on the fact whether their foliage stays throughout the year or is dropped after every

growing and blooming period.

The regulation mechanism of flower inducing is significantly different in perennial

species compared to annual/biennial species. The floral promoter in annual/biennial

plants induces all the above-ground meristems to flower in the same season, whereas

in perennial plants a sophisticated regulation system (consisting of many different

factors) finetunes flower inducing so that only a proportion of the meristems will be

transformed into flowers at a certain time. This actually means that perennial plants

are able to regulate their flower inducing in a quantitative way and hence partition

their resources between reproductive and vegetative sinks, according to prevailing

conditions. The partitioning of resources and the vegetative growth is required be-

cause of their long life span and need for competition with other species.

Consequences in e.g. orchards: trying to manipulate the flower inducing and shorten
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the juvenile period for perennial fruit trees will require more sophisticated techniques

and knowledge compared to annual/biennial plants [5].

A bar plot of the duration of the dataset species is made in Figure 3.8a. Since all

subshrubs, shrubs and trees are consistently perennials, a second plot of the duration

of the herbs only is made. The ratio between both plots of course changes when leav-

ing out part of the growth habits but the overall trends stays. Perennial is the most

common duration type, biennial the least common one. Also, in both Figures 3.8a

and 3.8b, seven species2 are left out as for these, multiple growth categories were

possible.

For Category the possibilities are monocot or dicot. Monocots denote flowering plants

(angiosperms) whose seeds typically contain only one embryonic leaf or cotyledon.

The largest family in this group is the family of the Orchidaceae. Dicots on the other

hand have two cotyledons in their embryonic stage. A linked characteristic is that

flower parts of monocots come in multiples of three, while flower parts of dicots come

in multiples of four or five. Molecular phylogenetic research has shown that monocots

form a monophyletic group, while dicots do not share a common ancestor. Therefore,

the term ’dicot’ is more used in the manner of ’not being monocot’ [42].

Important to mention is that not all plant species can be labelled with one of these two

categories. Conifers for example are none of both, as they are no flowering plants.

In the FlorAbeilles dataset, all plants are flowering. Of them, only thirteen are mono-

cots, while all others are dicots.

The next trait is the Flower colour of the plant species. Similarly to the blooming

period, the colour variable is changed into eight dummy variables, being white, pink,

red, orange, yellow, green, blue and purple. Most plants only have 1 blossom colour,

but sometimes there are multiple possibilities for one species. A clear example is

Antirrhinum majus (the common snapdragon), being able to flower in white, pink, red

and yellow (see Figure 3.9). Here, the values of the dummy variables are [1, 1, 1, 0,

1, 0, 0, 0]. A barplot of all flower colours is to be found in Figure 3.10. As can be seen

there, white and yellow are the dominant flower colours in this dataset.

Further used traits were Phyllotaxis and Flower symmetry. Phyllotaxis is a categorical

variable, telling how the leaves are placed on the plant stem. The basic phyllotactic

patterns in nature are either opposite, whorled, alternate or basal.

In opposite phyllotaxis, leaf primordia grow one by one, but two successive leaves al-

ways grow on the opposite side of each other. This opposite pattern is further divided

into the opposite distichous and the opposite decussated phyllotaxis. The difference

is clarified in Figures 3.11a and 3.11b. In the first one, every leaf always grows 180◦

2Berteroa incana (annual or biennial), Centaurea diffusa (annual or biennial), Digitalis purpurea (biennial
or perennial), Foeniculum vulgare (biennial or perennial), Geranium molle (annual or biennial), Jacobaea
vulgaris (biennial or perennial) and Picris hieracioides (biennial or perennial).
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(a) Duration of all plants. (b) Duration of herb species.

Figure 3.8: Distribution of durations.

(a) White (b) Pink (c) Red (d) Yellow

Figure 3.9: Flower colours of Antirrhinum majus.
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Figure 3.10: Distribution of flower colours.

past the previous one, resulting in two clear rows of leaves. The second one can

make angles of 90◦, 180◦ and 270◦, resulting in perpendicular successive leaf pairs. In

whorled phyllotaxis, at least three leaf primordia grow at the same node. This results

in rosettes of leaves along the stem. This did not occur in the investigated dataset.

Alternate phyllotaxis is the most common type in nature (approximately 80% of the

plant species). There leaf primordia can grow one per node, or two or more leaf pri-

mordia can grow at the same node, but each leaf is always at a constant divergence

angle of 137.5◦ from the previous one. This gives the impression that all leaves are

spread quite randomly over the stem. The last type considered is the basal one. Here

leaves are not placed over the stem, but all start near the surface. A special type of

this basal phyllotaxis is a ground rosette.

How all these types look, is made clear in Figure 3.12. In the dataset 64% of the

species had an alternate phyllotaxis, 6% an opposite structure being distichous, 25%

an opposite structure being decussated, six species having a basal phyllotaxis and

three species having a rosette one.

For the Flower symmetry three types are considered, being asymmetrical, bilaterally

symmetrical and versatile symmetrical. The difference is the number of symmetry

axes. An asymmetrical flower has no symmetry axis; a bilaterally symmetrical flower

has one, and a versatile symmetrical flower has multiple. In the found traits 20% of

the flowers were asymmetrical, 38% were bilaterally symmetrical and the other 42%

were formed versatile symmetrically.
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(a) Opposite - distichous. (b) Opposite - decussated.

Figure 3.11: Two types of the opposite phyllotaxis.

(a) Distichous (b) Decussated (c) Alternate (d) Basal (e) Gr. rosette

Figure 3.12: Pyllotaxis.
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The last three traits are Position of the ovary, Number of styles and Number of sta-

mens. The ovary is the part of the pistil that contains the ovules. An ovule on its turn

is that what becomes a seed after fertilization [21]. In general, ovary positions are

classified as superior or inferior. When the ovary is superior, it lies above the attach-

ment of the stamens, petals, and sepals. Such flowers are called hypogynous. When

the ovary is inferior, it lies below the attachment of the outer floral whorls. These are

epigynous flowers [41]. In the dataset 121 species had n superior ovary, 76 species

an inferior and one species (namely Euonymus europaeus (the European spindle))

had a partially inferior ovary, which is an intermediate form.

The pistil is the female organ of a flower, consisting of an ovary, style, and stigma.

The ovary is already discussed above and the stigma is the part of a pistil or style

that receives the pollen. The style is then the elongated part of the pistil between the

ovary and the stigma [21]. The number of styles ranged from 0 to 6, with a median

of 1 and a mean of 1.35.

The stamen (plural stamina or stamens) is the pollen-producing reproductive organ of

a flower. As being the pollen-bearing organ of the flower, it is the male organ in the

angiosperms [21]. The number of stamens ranged from 1 to 40, with a median of 5

and a mean of 7.46.

Table 3.4 provides an overview of all used plant traits and a specific example. The

example species chosen is Ligustrum vulgare (the wild privet or common privet).

Growth habit Categorical Shrub
Minimum height (cm) Numerical 50
Maximum height (cm) Numerical 200

Mean height (cm) Numerical 125
Blooming period Dummy variables [0,0,0,0,0,1,1,0,0,0,0,0]

Duration Categorical Perennial
Category Categorical Dicot

Flower colour Dummy variables [1,0,0,0,0,0,0,0]
Phyllotaxis Categorical Opposite decussated

Flower symmetry Categorical Versatile symmetrical
Position ovary Categorical Superior

Number of styles Numerical 1
Number of stamens Numerical 2

Table 3.4: Overview of all used plant traits and the specific example of the wild privet.

Pollinator traits

The first trait is Voltinism. Univoltine insects produce one generation per year, while

bivoltine insects produce two generations per year. The bivoltinism does not have

to be symmetric. When the resource availability peak is not in the middle of the

year but e.g. falls early in the season and then decreases, the first generation has a

shorter larval feeding stage than the second generation. The bivoltine life cycle is
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Figure 3.13: Distribution of flying periods.

more likely to be superior to the univoltine one if (1) growth is fast, (2) the suitable

growing season is long, (3) the biomass loss during nonlarval stages is small, and (4)

the egg size is small [33]. For most insects of the dataset this seems not to be the

case, as 87 species have are univoltine and only 11 are bivoltine.

Just like plants are only flowering for a limited time period, each pollinator also has

a limited Flying period. A similar plot as for the plants is made, based on binary

variables for each month-insect combination. The result can be seen in Figure 3.13.

Overall, it can be said that flying periods are longer than blooming periods, but also

(and logically) the most popular months are May, June, July and August. Still, both

March/April and September/October are very abundant in the graph.

The next two traits are Nesting type and Status. The first one is quite clear (denoting

the place and/or category of the insect’s nest), and the second one is about the abun-

dance of the species. The possibilities range from disappeared, possibly disappeared,

very rare, rare, quite rare, quite common, common, very common to increased. A

plot of both variables can be found in Figures 3.14 and 3.15 respectively. For a few

species two nesting types were possible, so they contributed to two bars of the plot.

As can clearly be seen, nesting on the ground is the most common nesting type. In

the Status-plot no specific trend is observed, as common and rare have the same

frequencies and the variations on these alternate3.

The last pollinator trait is the Size of the bees. A similar plot as the plant heights is

made in Figure 3.16. The smallest pollinator was Hylaeus brevicornis with a size of 4

to 5 mm, the biggest one was Bombus rupestris ranging from 20 to 24 mm.
3Possibly Status is a less indicating variable, as the occurrence of the species comes from Belgian data,

while the FlorAbeilles dataset comes from France. Still, the status can be considered to be quite propor-
tional.
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Figure 3.14: Distribution of the nesting types.

Figure 3.15: Distribution of the statuses.
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Figure 3.16: Distribution of pollinator sizes.

Table 3.5 provides an overview of all used pollinator traits and a specific example. The

example species chosen is Andrena flavipes (the yellow legged mining bee).

Voltunism Categorical bivoltine
Blooming period Dummy variables [0,0,1,1,1,1,1,1,1,0,0,0]

Nesting type Categorical Ground
Status Categorical Very common

Minimum height (mm) Numerical 11
Maximum height (mm) Numerical 13

Table 3.5: Overview of all used pollinator traits and the specific example of the yellow
legged mining bee.

Again, the traits of the species comprised in the network can be found in the same

Google Drive folder as mentioned on page 48. There also, the original binary FlorAbeilles

dataset is stored.
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PREDICTION OF PLANT -

POLLINATOR INTERACTIONS

4.1 Linear filter

When not using any features of the plants or pollinators, predicting labels (interacting

or non-interacting) can be done using a linear filter. This method generates a value

between zero and one, related to how likely it is for the interaction to happen in reality.

With Equation (2.6), a leave-one-out cross-validation can be performed, where the

original value is always left out and the interaction estimation is purely based on the

rest of the matrix (i.e. the info comprised in the network). Full explanation was given

in Section 2.2.1.

Firstly, the filter was applied to the data with all α’s being 0.25. The ROC curve based

on the original values Y and the filtered values F gave an AUC of 0.9979, but as stated

above, this formula still contains the respective original values. Therefore we will only

focus on the LOO-values from now on, because only these can give a proper vali-

dation and proper estimation of the performance. The generated ROC curve (based

on Y and β) gave an AUC of 0.8390, which is relatively high compared to the score

of 0.5 of a random classifier. AUC (area under the ROC curve) is a measure for the

ability of a model to rank true interactions higher than non-interactions, independent

of prediction score threshold, but this concept was already introduced in Section 2.3.

A new heatmap is plotted in Figure 4.1b, showing the distribution of these generated

interaction values. In theory all values lie distributed between zero and one, but the

large number of zeros in the original matrix (sparsity of 98.90%) pulls these values

remarkably down. As can be seen in the figure, species already having more interac-

tions in Y now obtained ’high’ LOO-values for all of their possible interactions. This

corresponds to what was stated earlier: it is less feasible for a generalistic pollinator

to not interact with a certain plant than it is for a very specialized pollinator.



4.1. LINEAR FILTER

(a) Heatmap of the binary interaction matrix.

(b) Heatmap of the generated LOO-values (i.e.β).

Figure 4.1: Heatmaps before and after filtering (already leaving out the respective
original value).
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Figure 4.2: The ROC curve of the linear filter model, with [α1, α2, α3, α4] =
[0.05,0.50,0.45,0.00] and the ROC curve of a random classifier on the left axis,
together with the threshold values used to construct the blue ROC curve on the right
axis.

Furthermore, different values for the parameters α were tested. Normally hyperpa-

rameters are optimized with a type of cross-validation, so since the β interaction value

is computed as a leave-one-out cross-validation, different α’s can be filled in and the

AUC based on these scores can be optimized. All α’s between zero and one with a step

size of 0.05 were tried, always making sure the four alphas summed up to one. This

resulted in 1761 possible parameter combinations, all generating their own AUC. The

obtained values lie between 0.6570 and 0.8428, with this highest AUC corresponding

to [α1, α2, α3, α4] = [0.05,0.50,0.45,0.00]. The top-26 highest AUC’s all left α4 as

zero. The following 23 highest AUC’s all left α1 as zero. This implies that the terms in

Equation (2.1) with α2 and α3 are the most valuable for the model. A further evidence

for this statement is that the lowest 424 AUC values corresponded with a parameter

combination in which either α2 was zero, α3 was zero, or both (resulting in the worst

models). However, still 1125 of the total 1761 combinations gave an AUC above 80%,

so it can be concluded that the exact combination of α’s is not of major importance,

as long as enough weight is assigned to the second and third term.
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The ROC curve of the model with this optimal parameter combination is plotted in

Figure 4.2, together with the performance curve of a random classifier. Also a third

line can be seen on the plot, denoting the thresholds taken to separate interact-

ing and non-interacting pairs. With a ROC curve analysis, an optimal threshold can

be determined, i.e. an optimal cut-off to classify β, based on the original interaction

matrix. Many approaches are available to determine the optimal threshold for a clas-

sifier, e.g. taking the point with maximal accuracy, the average predicted probabil-

ity/suitability approach, the sensitivity-specificity sum maximization approach, the

sensitivity-specificity equality approach or the approach based on the shortest dis-

tance to the top-left corner (0,1) in ROC plot. Information on these methods and

their differences can be found in Liu (2005) [38]. Firstly, one of these theoretical ap-

proaches is chosen, namely the last mentioned one of the closest point to (0,1) (which

was the point that only a perfect classifier contains). When computed, this point cor-

responded with a threshold of 0.014, which can now be seen as an optimal threshold

for the generated β’s. Note that this value is quite low compared to all computed

scores, meaning that a lot of interactions will be classified as positive by the filter.

The distribution of β can be seen in Figure 4.3. Also, Figure 4.4 shows the distribution

of β by the means of a bloxplot. The highest point marked on the ROC curve next to

the boxplot is the point closest to (0,1). This corresponds to a threshold of 0.014.

A second possibility would be to intuitively choose the best point of the ROC curve,

e.g. a point where not excessively many positive predictions are made but where all

these predictions are correct. This is based on what was said in the section about per-

formance: In many biological networks, however, the number of interactions is much

lower than the number of non-interactions. It is therefore important to achieve a low

FPR because even moderate FPR can easily lead to much more false positive predic-

tions than true positive predictions, and hence a very low precision. The chosen point

is also marked on the ROC in Figure 4.4,i.e. the lowest one. This corresponds with a

threshold of 0.053.

In the same figure, the boxplot of the computed β’s is shown to scale the thresholds.

The first quartile (Q1), median (M) and third quantile (Q3) are respectively 0.00383,

0.00661 and 0.01292, meaning that 50% of the scores lies between these outer val-

ues. The distance between Q1 and Q3 is also called the interquartile range (IQR). Note

that the plotted maximum in the boxplot is β = 0.02652 instead of the real maximum

of 0.23291. This is because all values greater than Q3 + 1.5 IQR are considered as

outliers.

Although the AUC of 0.8428 seemed already promising, a ROC curve is only a theoret-

ical performance estimation. Therefore, a second practical evaluation was conducted.

Web of Life [66] is an online database portal where a lot of ecological networks can be
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Figure 4.3: Distribution plot of all 137 860 computed β’s.

Figure 4.4: Overview of the computed β’s (left plot), the ROC curve of the linear filter
(with optimal parameters [α1, α2, α3, α4] = [0.05,0.50,0.45,0.00]) plus the corre-
sponding thresholds to construct the ROC curve (right plot) and the relative position
of the selected optimal thresholds in the β-range (connecting the left and right plot).
The chosen points on the ROC curve are highlighted. The respective thresholds are
0.014 and 0.053.
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Plant Pollinator Original Computed Value in the
Y-value β-value Web of Life dataset

Eryngium Anthidiellum 0 0.0625 1
campestre strigatum → false negative? → indeed false negative
Scolymus Lagioglossum 0 0.0384 1
hispanicus malachurum → false negative? → indeed false negative
Cirsium Bombus 0 0.0339 1
arvense pascuorum → false negative? → indeed false negative

Table 4.1: Evidence for detecting false negatives with the linear filter model (threshold
0.014), based on a real life dataset.

found. Among these numerous files, both binary and weighted pollination datasets

from around the world are present. Firstly we focused on one binary pollination net-

work, namely a dataset of Greece (from the Aristotelian University in Thessaloniki

[45]) containing quite some similar species as the dataset used in this work. Having

defined an optimal threshold for the model, one can now search for false negatives

in the original matrix Y. Important to mention: this term is not completely similar to

what is mentioned in a confusion matrix (cfr. Table 2.1)! Normally, a false negative

(FN) is a value/category referring to the predicted matrix. A prediction is classified

as FN if it is positive in reality (i.e. in Y), but is (wrongly) predicted as negative by a

classification model. Then the predicted value is incorrectly assumed to be negative.

Analogous to this, we now want to find false negatives of the original dataset. By this

we mean interactions that could be incorrectly considered as negative during field re-

search, but are possible to occur in reality. For this, we will use predictions of the filter

model. Instead of typically assuming that Y is 100% correct and looking for mistakes

in the predictions, we will use the predictions to possibly find missing interactions

in Y. The considered values will be those plant-pollinator combinations for which Y

denoted a zero, but where the linear filter would predict a positive interaction value

(i.e.β was larger than 0.014 - if we focus on the first method). After searching these

previously mentioned species combinations in the dataset of Greece, indeed some

false negatives were detected. Examples are shown in Table 4.1.

From this table, one can conclude that some predicted interactions were not observed

during the timespan of composing the FlorAbeilles dataset, but actually can occur in

nature as they are present in the dataset of Greece. Considering that Greece and

France are not that far-removed and both plant and pollinator species are present in

these countries, it is possible that these interactions are not non-happening in France,

but were just missed during field research. This underlines the usefulness of machine

learning models in ecology. The fact that most datasets are constructed based on

field observations, it is hard to find evidence that a certain interaction is surely non-

happening. Some negative interactions in a dataset can be false negatives and can
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with the use of these models be prioritized for further research in the environment

where the dataset was created.

Secondly, all the pollination datasets of Web of Life were considered. In total there

were 40 binary and 143 weighted ones, distributed over all continents. This of course

already means that ’validation’ of a missing interaction is less straightforward, as

occurrences of species may differ. However still, if a predicted interaction is present

in another dataset, this nonetheless means that this one is biologically possible.

Of all predicted interactions (β > 0.014) only the possible false negatives of Y are

examined, as we assume that the positive values of Y are all correctly observed. This

then boils down to 28 835 interactions. The reason for this sizable number is that

with the construction of the filter, the more generalistic the species, the greater the

chance of having positive predictions with all 452 plants or all 306 pollinators. The

earlier mentioned statement can again be stressed: it is less feasible for a generalistic

pollinator to not interact with a certain plant than it is for a very specialized pollinator.

The example species of Table 4.1 are also all highly non-specific1. Of the 28 835

examined plant-pollinator combinations of Y, only 4.099% was also present in another

file of Web of Life. (Not many species of the FlorAbeilles dataset corresponded to

species comprised in these geographic widely distributed pollination files. Only 13

of the 183 files could be used.) Still, of this 4% (i.e. 1049 species pairs) that was

present in another file, 133 interactions were negative in Y but positive in the other

file. This means that at least 133 interactions were not detected when creating the

original dataset, but are possible to occur in nature. These do not necessarily all have

to happen in the neighbourhood of the original dataset, but can again be prioritized

in field research in this area.

If this last practical validation is re-done with the second threshold of 0.053, the num-

ber of predicted interactions obviously goes down quickly. Now the filter only gen-

erates 1513 positive predictions (instead of 28 835) of which 1207 interactions are

possible false negatives; the others are already positive in Y and are hence consid-

ered to be correct. Now 9.942% of these plant-pollinator combinations was present

in another Web of Life-file so could be externally checked. 26 of the 120 interactions

were found to be positive in the other files, so are proven to be biologically possi-

ble. Again, these pollinations do not automatically happen in France, but confirm

the statement quoted in the theory section: negative interactions with high scores

are natural targets for increased sampling effort, as they are most likely to occur in

reality. The prioritized field research is a crucial concept in this chapter. It is also

good to know that some generalistic species are able to interact with more partners
1Pollinators A. strigatum, L. malachurum and B. pascuorum resp. have 26, 25 and 24 interactions; plants

E. campestre, S. hispanicus and C. arvense resp. have 20, 7 and 5 interactions. These are all high numbers
for pollinators and plants respectively, considering the dataset.
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4.2. TWO-STEP KERNEL RIDGE REGRESSION

(a) Scheme based on the first threshold of 0.014.

(b) Scheme based on the second threshold of 0.053.

Figure 4.5: Visualization of the external validation experiments.

than initially expected, as this can have a positive influence on the network stability

(cfr. Section 1.2).

4.2 Two-step kernel ridge regression

The second model includes more information of thecomprised objects/dyads. To use

the collected traits and phylogeny in models, the cross-section of the species with

known traits and the species with available COI- or matK-sequence is going to be

used. In this way, the same plants and pollinators are included in all data files and

the predictive power of a model with traits can be compared to one using phylogeny.

The result is a subset of 96 pollinators and 193 plants2.

For two-step kernel ridge regression, the interaction matrix and two similarity matri-
2It could be important to know that Apis mellifera is not included in the subset. This pollinator is manually

introduced in a lot of places and is able to interact with nearly all plants. This could positively influence the
performance metrics (as these predictions will be very accurate), but this could give a small overestimation
of the model’s real performance.
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ces are necessary. The latter is realized by the use of kernels. Note that one kernel

matrix contains similarity values of only one set of species, never mixing with the

other set. We will hence end up with four Gram matrices:

- KT : a (96 × 96) similarity matrix of pollinators, based on traits,

- KP: a (96 × 96) similarity matrix of pollinators, based on phylogeny,

- GT : a (193 × 193) similarity matrix of plants, based on traits, and

- GP: a (193 × 193) similarity matrix of plants, based on phylogeny.

To create those kernels, we start with dissimilarity matrices which are later trans-

formed to similarity matrices. The files containing the traits of plants and pollinators

can be converted to two square dissimilarity (or distance) matrices by using the Vegan

package in R. The distance metric specified is the ’Gower’ distance, frequently used

for ecological datasets. The reason for this is that many datasets of traits contain

as well numerical values (e.g. height of the plants, size of the pollinators,...), binary

values (e.g. monocot/dicot, univoltinism/bivoltinism,...) as categorical values (e.g. five

options for growth habit, twelve options for nesting type,...). Most distance metrics

(e.g. the Euclidean distance) have difficulties coping with this combination, but the

Gower metric is designed to handle such data, without requiring any recoding for

multistate or quantitative characters [27]. It first rescales every column separately

by dividing each entry by the range of the corresponding variable, after subtracting

the minimum value. Hence each variable is scaled to a range of [0,1]. Afterwards

the distance between two items is the average of all the variable-specific rescaled

distances.

The phylogeny of plants and pollinators is currently stored in the produced phyloge-

netic trees. To export these, two Newick files are generated in MEGA. A Newick file

can be processed in Python using the Phylo module. This module of BioPython reads

the file with the branch lengths, determines the terminal nodes (i.e. the species) and

calculates the total distance between them using all these branch lengths.

Now the four distance (or dissimilarity) matrices are constructed. Of course these

matrices are symmetrical, as the distance between species  and j is the same as

between species j and . Heatmaps are plotted for visualization in Figure 4.6. For

convenience, the same order of species is used for rows and columns, so a clear

diagonal of distance zero can be noticed (the distance of a species to itself is zero).

These cells are dark blue. When paying attention, one can also see that the darker

blue squares of more similar species in the phylogeny matrices can be found back

in the ones based on traits. This means that closer related organisms based on DNA

show corresponding features.
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4.2. TWO-STEP KERNEL RIDGE REGRESSION

(a) Heatmap of the pollinator distances,
based on traits.

(b) Heatmap of the pollinator distances,
based on phylogeny.

(c) Heatmap of the plant distances,
based on traits.

(d) Heatmap of the plant distances,
based on phylogeny.

Figure 4.6: Heatmaps of dissimilarity.
Note: The 96 pollinator and 193 plant species are plotted in the order produced by
their respective phylogenetic trees. In this way it is clear to see that species close to
each other in this matrix (i.e. close to each other in the tree) are more similar. These
plots are more legible than those where the species were sorted alphabetically (as
in the original interaction matrix). With regard to similarity/dissimilarity, alphabetical
sorting is almost random.
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As all distances lie distributed between zero and one, the similarity matrix can just be

computed by taking ’1-dissimilarity’. The other tried option to go from dissimilarity

to similarity was Non-metric Multi Dimensional Scaling (NMDS). This also gave decent

results but was in fact a superfluous step that can cause a possible loss of informa-

tion. Still, this technique can provide great alternative visualisations of the distances,

but this is left behind. The kernels themselves are solely based on a simple math

operation on the computed dissimilarities.

One last thing will be done before staring with the actual TSKRR. As the name suggests

and as explained earlier, TSKRR is based on regressions. As all the kernel evaluations

are centered around zero, the regression can be hampered. The most simple solution

is adding an intercept, by adding 1 to every element of the four kernels. This is not

to be confused with adding the identity matrix to a kernel, which would make all

the species relatively more distinct form each other and give biased results. For the

combined model where all available data is used (so where the pollinator and plant

kernel are the sum of their respective trait-based and phylogeny-based kernels), this

intercept of 1 is not necessary.

Now we have an interaction matrix (which is a subset of the original matrix Y con-

taining the pairwise binary interaction values for the 96 and 193 species) and the

respective square kernels to conduct the regressions. Two-step kernel ridge regres-

sion can be performed. The package xnet in R contains all formulas described in

Section 2.2.2. It is based on the paper of Stock et al. (2018) [59] and is developed by

Joris Meys.

Three initial models are trained, i.e. one using the two trait-based kernels, one using

the two phylogeny-based kernels and one using the two summed kernels. The regular-

ization parameters λ and λ of the TSKRR predictions (introduced in Equation (2.12))

are firstly set to 0.1. By comparing the obtained predictions after training to the orig-

inal interaction matrix, the fit of the training data can be determined. The trait-based

model realizes an AUC of 1, the phylogeny-based model an AUC of 0.9998 and the

combined model an AUC of 1. What is more important, is the model performance on

a test set. As stated earlier, the training and test sets can be divided in four different

ways. The performance estimations of these four prediction settings are mentioned

in Table 4.2, using the four cross-validation schemes of Figure 2.4b in a leave-one-out

framework. Shortcuts to calculate these metrics are available and are included in the

xnet package. Considering that a test AUC of 0.5 resembles random guessing and 1

represents a perfect classifier, these values are not bad to start from.

One would expect that the performance decreases from setting A → (B,C) → D as

prediction becomes harder when less information or examples of the dyad are in-

cluded in the training set. (Setting A observes both plant and pollinator species in
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4.2. TWO-STEP KERNEL RIDGE REGRESSION

Prediction Trait-based Phylogeny-based Combined
setting model model model

Setting A 0.8248 0.8304 0.8768
Setting B 0.7317 0.7491 0.8405
Setting C 0.7955 0.7111 0.8190
Setting D 0.6930 0.5664 0.7693

Table 4.2: Performance (AUC) when using leave-one-out cross-validation in four differ-
ent schemes, on the initial trained models (i.e. with all λ’s being 0.1).

the training set, setting B and C observe one of both species and setting D has to

make predictions for completely new dyads). Also, as there are almost two times

more plants than pollinators included, the model probably generalize better to new

plants. The performance of setting C is hence expected to be slightly higher than

that of setting B. When checked, the values of Table 4.2 tend to follow these trends,

although some deviations are observed.

Depending on the setting it is sometimes more beneficial to make predictions based

on the species’ traits or on the species’ phylogeny. For the prediction of interactions

of a new pollinator species, it seems to be slightly better to focus on the phylogeny of

all comprised species of the network. The interactions of a new plant species, on the

other hand, seem to be more reproducible using a model based on the plants’ and

pollinators’ traits. This nonetheless does not mean that the interaction behaviour of

pollinators is more determined by this pollinator’s phylogeny and a plant’s interaction

behaviour more by its traits, as e.g. the phylogeny-based model is based on the phy-

logeny of both sets (plants and pollinators). In addition, this observation only applies

for the models trained with this arbitrarily chosen parameter set.

Next to the two separate models, the overall results imply that the combined model

performs best for all settings, which is not illogical as this one includes all available

information about the comprised species. The next paragraphs will sometimes only

focus on this combined model.

To improve the model’s performance, their regularization parameters can be opti-

mized. For the final estimate of those parameters, all data points are used. A range

of [10-4,5.10-4,10-3,5.10-3,10-2,5.10-2,10-1,0.5,1,5,10] is tried for both parame-

ters, leading to 112 = 121 possible λ-combinations. The best parameter-combination

for the four different settings of the combined model is shown in Table 4.3, together

with their highest reachable AUC. These AUC-values also fulfil the expected trends

explained above.

The optimal parameter combinations for other models are shown in Table 4.4, without

the highest reachable AUC’s with leave-one-out tuning. The maximal AUC’s of the

trait-based model are very similar to those of the combined model, but those of the

phylogeny-based model are somewhat lower.
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Prediction Optimal (λ, λ)- Corresponding
setting combination AUC with LOO

Setting A (1, 1.10-1) 0.9041
Setting B (1, 5.10-2) 0.8622
Setting C (5, 1.10-1) 0.8714
Setting D (5, 5.10-2) 0.8289

Table 4.3: Optimization of both regularisation parameters of the combined model,
based on the highest reachable LOO-AUC and all species of the interaction matrix.

Prediction Trait-based Phylogeny-based Combined
setting model model model

Setting A (1, 1.10-1) (2.10-2, 1.10-3) (1, 1.10-1)
Setting B (1, 1.10-1) (1.10-1, 10) (1, 5.10-2)
Setting C (5, 1.10-1) (1.10-1, 5.10-1) (5, 1.10-1)
Setting D (5, 1.10-1) (5, 1.10-1) (5, 5.10-2)

Table 4.4: Optimization of both regularisation parameters of all models, based on the
highest reachable LOO-AUC and all species of the interaction matrix.

However, rationally it would not be fair to say that our new models now perform with

these certain (higher!) AUC’s, as they were optimized for those specific data. There-

fore, nested CV is the solution. Nested CV splits the data in training, tuning and test

sets. The general idea is that the part used for the ultimate validation is never mixed

with the optimization process. The principle is explained in Figure 4.7 for the example

of setting B, with four outer folds and eight inner folds. In this case, we will use four

outer folds for settings B (row wise) and C (column wise), and sixteen outer folds for

settings A and D. Before allocating the dyads to different folds, the rows and columns

of the interaction matrix and corresponding kernels are randomly shuffled. The tun-

ing of the parameters in the inner folds will be done with the leave-one-out approach,

meaning that the number of inner folds depends on the number of dyads left in the

outer training data.

Nested CV is performed here to give an honest estimation of the model performance.

Four or sixteen times the optimal (λ, λ)-combination is selected based on the high-

est LOO-AUC possible for this outer training fold. Again for both parameters the range

[10-4,5.10-4,10-3,5.10-3,10-2,5.10-2,10-1,0.5,1,5,10] is tried, producing 121 λ- com-

binations. Then these regularisation parameters are used to train the specific outer

training fold, and the performance of this model on the independent test set is com-

puted. When repeated for all outer folds, this will leave us with four or sixteen external

AUC’s per setting, of which the average or median will give an honest estimation of

the performance for this setting. It is intuitive to see that these values are more sin-

cere than values where the whole dataset would be used to do both optimization and

validation. The output of the nested cross-validation experiments for the combined
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4.2. TWO-STEP KERNEL RIDGE REGRESSION

Figure 4.7: Demonstration of nested cross-validation on setting B, with four outer
folds and eight inner folds. The yellow data is always completely new for the model,
and is never combined with the optimization process. The other three settings show
a similar pattern of exclusion, which can be composed by looking at Figure 2.4b.
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Figure 4.8: The four ROC curves generated by the nested-cross validation experiments
for the combined model. Corresponding AUC’s can be found in Table 4.5.

model can be found in Table 4.5. The representative AUC-values (i.e. the medians of

all performances per setting, displayed in bold) did of course decrease in comparison

with those of Table 4.3, but are still notably high. The values of Table 4.3 were anyway

never meant to denote an actual performance. These were only used to determine

the best overall regularisation parameters. The newly obtained performance esti-

mates clearly follow the proposed patterns. The expected difference between setting

B and C is hence confirmed. The same experiments are conducted for the two other

TSKRR models. The outcomes are visualized in the next section of this chapter.

The ROC curves of the different prediction settings for the combined model are given

in Figure 4.8. These curves are all a combination of four or sixteen different ROC

curves, based on mean true positives and mean true negatives.

As a conclusion, we can say that with this model predictions for all types of new pol-

lination interactions can be made. Performance estimations show that predictions

are (way) better than random guessing, so the initial goal of building a model is al-

ready met and reasonable predictions can be made. Still one needs to realize that

this model can impossibly describe all cause-effect relations related to pollination. A

number of straightforward traits were used to characterize the incorporated species,

but these can be further extended with knowledge from biology. By incorporating

more and more information, other patterns in data can be discovered and more pre-

cise predictions can be made.
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Prediction Fold Optimal (mbd, λ) Corresponding
setting combination after training AUC on test set

Setting A 1 (1, 0.1) 0.9046
2 (1, 0.1) 0.9711
3 (1, 0.1) 0.8921
4 (1, 0.1) 0.9244
5 (1, 0.1) 0.8420
6 (1, 0.1) 0.9232
7 (1, 0.1) 0.8489
8 (1, 0.1) 0.7380
9 (1, 0.1) 0.9345

10 (1, 0.1) 0.8931
11 (1, 0.1) 0.88841
12 (1, 0.1) 0.8114
13 (1, 0.1) 0.9312
14 (1, 0.1) 0.8831
15 1, 0.1) 0.8985
16 (1, 0.1) 0.8921

0.8926
Setting B 1 (1, 1.10-2) 0.8564

2 (1, 0.1) 0.8264
3 (5, 0.1) 0.8178
4 (1, 0.1) 0.8806

0.8487
Setting C 1 (5, 0.1) 0.687

2 (5, 0.1) 0.8645
3 (5, 0.1) 0.8076
4 (5, 5.10-2) 0.8694

0.8666
Setting D 1 (5, 1.10-2) 0.8221

2 (10, 5.10-2) 0.8754
3 (5, 5.10-2) 0.8208
4 (5, 5.10-2) 0.8776
5 (5, 5.10-2) 0.8425
6 (5, 5.10-2) 0.9531
7 (5, 0.1) 0.7404
8 (5, 0.1) 0.7907
9 (5, 5.10-2) 0.6813

10 (10, 5.10-2) 0.7542
11 (5, 0.1) 0.7592
12 (5, 0.1) 0.6006
13 (5, 5.10-2) 0.8302
14 (5, 5.10-2) 0.8298
15 (5, 5.10-2) 0.7895
16 (5, 5.10-2) 0.8506

0.8260

Table 4.5: Outcome of nested cross-validation experiments on the combined model.
For each setting and each fold, the result of the optimization process in the training
set is given (as parameter combination) together with the performance on the inde-
pendent test set. The value in bold is always the median of all performances in this
setting.
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However, all articles described in Section 1.5.2 only needed a small number of traits

to lead to good fits. Of course, e.g. Santamaria and Rodríguez-Gironés (2007) aimed

at predicting topologic network properties, while here specific interactions are to be

predicted. Hence, more data can be of use. The model uses data gathered from differ-

ent sources (because ecological, morphological,... properties of species are not always

neatly listed in tables or openly accessible) and can be used to prioritize field searches

and detect false negatives. This detection is in fact a more useful goal to start with

than being capable of perfectly predicting imaginary pollination networks. Models do

not have to replace field searches, and new data from researchers (of e.g. changing

abundances or interaction behaviour) will always be necessary, but in this way ma-

chine learning can help to detect gaps in the collected interaction information. Next

to this finetuning of datasets (stated as the main purpose of this work), being able

to predict which pollinators can interact with which plants - based on biological char-

acteristics - may be helpful in other areas too. Studies can be done concerning the

fate of several agricultural crops in times of climate change, the fate of pollinator

abundances if invasive species are introduced, studies about co-extinction or rewild-

ing ecological communities, and so on...

Biology and models can be mutually beneficial for each other.

4.3 Overview of all performances

In this summarising section, all performances are visualized. The linear filter model

can only predict setting A as β is computed by a leave-one-out modus without with-

drawing entire rows or columns. The three TSKRR models (the trait-based, phylogeny-

based and combined model) on the other hand can make predictions for all four set-

tings.

To make a comparison, the values should be as objective as possible. Therefore, the

linear filter will be visualized without parameter optimization, i.e. with all α’s being

0.25. Besides, the model is trained again for the same subset of 96 pollinators and

193 plants, to not be able to attribute eventual differences to the comprised species.

For the kernel-based models the outcome of the nested cross-validation experiments

will be visualized. As there are no ’standard’ parameters for this type of ridge regres-

sion, these cannot be used. The tuned models where the maximal AUC was computed

are strongly overfitted and were only used to determine the optimal overall parame-

ter combinations. The most honest estimation of performance is hence with a tuning

step, but with the performance prediction on an independent test set, never mixed

with the optimization set. Everything can be seen in Figure 4.9. All values (except the

first one) are the medians of four or sixteen AUC’s.
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Where the combined model scored best in Table 4.2 (where leave-one-out was per-

formed on the whole dataset with arbitrary chosen parameters), the trait-based model

seems to reach these performances after nested cross-validation. The difference can

probably be attributed to the regularisation parameters. In Table 4.2 both λ and λ

were chosen to be 0.1, while here an optimization process is included. If the trait-

based model/combined model performs better with other parameters, this will be

displayed here. Still, it was already stressed that the chosen optimal parameter com-

bination is not connected to the set on which the performance is calculated, but other

orders of magnitude may lead to better results in general for several models. Overall

it can be said that, although the phylogeny-based model can be used to make rough

predictions, it has limited added value to the combined model if both the trait-based

and combined model are used in optimal mode to make predictions.

Possibly, all performances of the TSKRR-experiments can be increased by incorporat-

ing more of the networks’ species and more information about these species. Still,

both conclusions of Sections 4.1 and 4.2 show the ecological benefit of the models.
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Figure 4.9: Overview of all computed AUC-values. For both the linear filter model as
the three TSKRR-models, the most honest performance estimate is taken. All four
models are based on the same species subset of 96 pollinators and 193 plants.
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CHAPTER 5

OPTIMAL TRANSPORT

This last chapter is also centered around the main dataset of this work, but is a smaller

one and does not focus on prediction specifically. It treats a more mathematical view

on interaction networks and interaction behaviour. Up till now, we have a dataset

of interactions occurring in nature and optimal transport theory providing us formu-

las to define the optimal partition of interactions. We could hence use the provided

binary matrix as the optimal transport cost matrix and calculate the partitions for

known plant/pollinator distributions. For these distributions external datasets will be

necessary, but this will follow.

To begin with a short recall of the theory, the calculation of the most optimal division

of plants over pollinators will always be done using the Sinkhorn algorithm (of which

a full explanation was given in Section 2.4). Therefore a distribution of plants, a distri-

bution of pollinators and a specific cost matrix are necessary. The cost matrix was the

opposite of the species’ preference matrix (cost = −preƒ ), determining how ’unlikely’

the interactions are. The cost matrix can be binary (containing just two numbers) or

quantitative. In the binary case, the exact value of these numbers does not matter,

as the algorithm scales the parameters and still generates the same optimal distribu-

tion. The values can e.g. be 0 and -1, or 1 and -1. The quantitative case, on the other

hand, gives a weight to the cost of each possible interaction. The obtained P* defines

the optimal interaction behaviour of a set of pollinators.

5.1 Toy experiments

First, some simple experiments with binary cost matrices are performed as an intro-

duction. When pollinators like Amegilla garrula or Megachile lefebvrei and plants like

Acanthus spinosus or Ophrys aranifera are considered, the preference matrix will be

very sparse as these species all only have one interaction. When on the contrary

optimal transport is done with pollinators like Apis mellifera or Anthidium florentinum,

and plants like Thymbra capitata or Calendula arvensis, the preference matrix will ap-

proach a homogeneous matrix with ones, as their interactions are numerous. Next to
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1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1
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























Blocked preferences Triangle-formed preferences

Table 5.1: Different preference matrices.

these two extremes, intermediate preference matrices are possible. Two common in-

termediate interaction patterns in nature are a block-type and a triangle-type. These

are clearly based on the nestedness and modularity properties of a mutualistic net-

work (see Section 1.2). The four types are illustrated in Table 5.1 for a set of ten plants

and ten pollinators.

To start, it is assumed that all species have the same abundance, meaning for ten

species that each species holds 10% of the total population. Later some experiments

are done when a new invasive species would e.g. make up 30% of the population. As

stated earlier, it is more convenient to speak of a maximization of preference instead

of minimization of distance, hence the sign of the distance is switched so it can now

interpreted as a ’satisfaction index’. When λ is high, there is a low contribution of

the entropy term to the Sinkhorn distance, or the overall satisfaction. The generated

value is not sensitive to the fact if the distribution P* is even or if each pollinator just

visits its favourite plant(s). When on the contrary λ is low, entropy becomes more

important. The amount of evenness in the outcome will greatly influence the gener-

ated value. Of course, a high overall satisfaction is desired. It defines how ’happy’

the species are with this partition. The first eight experiments were done. A plot of

the outcomes and the corresponding dimensionless satisfaction is shown in Table 5.2.

Always (except for the homogeneous one because the partition is already even), the

overall satisfaction is higher (better) for a high λ. This is logical as when λ is low, the
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Figure 5.1: Graph of the overall satisfaction in function of λ, based on the block
preference matrix and two even species distributions.

optimal distribution will mandatory shift to a more even distribution. This matches

the species’ preferences less than when they would be free to choose their interac-

tion partners, decreasing their overall satisfaction. However, a maximum (or higher)

entropy can still be seen as a beneficial property of the ecological network, as stated

in Section 2.4.

An extra graph is plotted in Figure 5.1 to show the influence of λ. The graph is made

based on the block preference matrix. Here again, the maximization of preference

is used so the y-axis should be interpreted as a satisfaction index. Higher numbers

of overall satisfaction are preferred, but also distributions with lower values but high

entropy could be desired. The x-axis contains increasing λ-values. As expected the

curve goes up as λ increases, meaning an always lower contribution of the entropy

term in the distance calculation.

When an invasive species is added to these example experiments (e.g.pnt6 now

has an abundance of 38% in the network instead of its original 10%), all optimal dis-

tributions change accordingly. Not all eight barplots are shown, but the one of the

triangle preference matrix, with a λ of 10 is given in Figure 5.2. The overall satis-

faction of this distribution is 83.940, which is approximately 10 units lower than the

corresponding overall satisfaction in the case of a homogeneous plant distribution.

This means that with one highly abundant species, the cost of the generated pollina-

tion network is higher, hence decreasing the overall satisfaction of the species.

The graph can easily be explained by looking at the triangle matrix. Only pollinators

83



5.1. TOY EXPERIMENTS

High lambda, Low lambda,
i.e. small entropy contribution i.e. large entropy contribution

S
p

ec
ia

liz
ed

Overall satisfaction = 99.959 Overall satisfaction = 23.197

H
om

og
en

eo
u
s

Overall satisfaction = 100.000 Overall satisfaction = 100.000

B
lo

ck
s

Overall satisfaction = 99.987 Overall satisfaction = 51.717

Tr
ia

n
g

le

Overall satisfaction = 94.185 Overall satisfaction = 63.114

Table 5.2: Optimal transport partitions for the four possible preference matrices, for a
uniform distribution of both plants and pollinators and for λ = 10 and λ = 1.
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Figure 5.2: Optimal transport partition with one invasive plant species, a triangle-type
preference matrix and λ = 10. The overall satisfaction is 83.940.

6 to 10 had a positive interaction with pnt6, meaning that they have the largest

portion of visits to this plant. As λ is quite high, not much evenness is induced in the

optimal division, meaning that not all pollinators have to visit pnt6 with the highest

fraction of their plant visits. When λ is lowered to one, this would be the case. Then

for all pollinators the highest fraction of visit is to pnt6, even when the first 5 polli-

nators did not have a positive interaction with this plant in the preference matrix. In

this case, the overall satisfaction goes down remarkably (to 61.269).

Information theory

Also the metrics of Chapter 1 (Section 1.2) can help to interpret the formed partition

matrices. There is focused on the scenarios where the preference matrix is perfectly

specialized and perfectly homogeneous, because these are best to illustrate the be-

haviour of the metrics. As in Chapter 3: the row species (i.e. the pollinators (bees))

denote variable B, the column species (i.e. the plants) denote variable P. Always, a

heatmap of the optimal partition matrix P∗ is added as visualisation of the calculated

values. In Table 5.3 the four combinations of a uniform species distribution and one

dominant species are shown. The introduction of one/more dominant species can im-

mediately be seen at the rising ΔU, denoting the deviation of two uniform marginal

distributions.

With the specialized preference matrix, all conditional entropies stay quite low; the

choice of an interaction partner is rather limited. Therefore the occurring interac-

tions are more efficient (which can be seen from the high mutual information), but
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the network is not very stable (there is a low variance of information). When a more

abundant species is present, the conditional entropies increase. So does the variance

of information (which is the sum of both) and hence the overall network stability. The

reason is clear to see in the heatmaps: there are now more possible interactions

which can effectuate this stability. Yet, as the trade-off described, the efficiency per

interaction goes down.

For the homogeneous preference matrix, P∗ behaves in a different way. The condi-

tional entropies do not change as much as in the previous case when adding an abun-

dant species. The uncertainty over the interaction partner when a species is known

always stays high. This can also be seen in the plots: almost all possible species pairs

can interact with each other. The conditional entropy values are not only quite stable

but also high (meaning the network is very stable), but the interactions are not effi-

cient. When every species reacts completely generalistic and no specific interactions

occur, it is intuitively logical that those interactions are less efficient than in the first

case.

When λ is changed to 1, only the first four matrices change (as was already known

from Table 5.2), so the homogeneous preference case behaves as expressed above.

In the specialized preference case, the conditional entropies increase when lower-

ing λ, the variance of information of course increases too, and the mutual information

shrinks. Also this is logical, as more evenness induces more possible interactions. The

uncertainty over the interaction partners rises and the network becomes more stable.

This was in fact the initial aim of introducing evenness, as stated in the introduction

of the entropy term with weight 1
λ .

5.2 Optimal transport on the pollination dataset

After these demonstrations of the optimal transport principle and the analysis of the

behaviour of P∗, the toy matrices can be replaced by real life data. To define optimal

partitions, we will use the original matrix Y as a preference matrix but we still need

abundances of both plant and pollinator species. For this, the weighted files of Web

of Life can again be used. However, the same issue as in Section 4.1 occurs: there

are very few similar species in the other pollination files. Only four weighted files con-

tained corresponding interaction pairs. Of them one file is chosen and the marginal

distributions are taken as species abundances. A subset of Y is produced, based on

these species. The used abundances are shown in Figure 5.3. The optimal transport

visualization in Figure 5.4.
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Uniform poll. distr. Uniform poll. distr. Dominant poll. Dominant poll.
Uniform plant distr. Dominant plant Uniform plant distr. Dominant plant

S
p

ec
ia

liz
ed

H(B) = 3.32 H(B) = 3.32 H(B) = 2.90 H(B) = 2.90
H(P) = 3.32 H(P) = 2.90 H(P) = 3.32 H(P) = 2.90
H(B, P) = 3.33 H(B, P) = 4.07 H(B, P) = 4.07 H(B, P) = 2.91
H(B|P) = 0.01 H(B|P) = 1.17 H(B|P) = 0.75 H(B|P) = 0.01
H(P|B) = 0.01 H(P|B) = 0.75 H(P|B) = 1.17 H(P|B) = 0.01
V(B;P) = 0.01 V(B;P) = 1.92 V(B; |P) = 1.92 V(B;P) = 0.01
M(B;P) = 3.32 M(B;P) = 2.15 M(B;P) = 2.15 M(B;P) = 2.90
ΔU = 0.00 ΔU = 0.42 ΔU = 0.42 ΔU = 0.84

H
om

og
en

eo
u
s

H(B) = 3.32 H(B) = 3.32 H(B) = 2.90 H(B) = 2.90
H(P) = 3.32 H(P) = 2.90 H(P) = 3.32 H(P) = 2.90
H(B, P) = 6.64 H(B, P) = 6.23 H(B, P) = 6.23 H(B, P) = 5.81
H(B|P) = 3.32 H(B|P) = 3.32 H(B|P) = 2.90 H(B|P) = 2.90
H(P|B) = 3.32 H(P|B) = 2.90 H(P|B) = 3.32 H(P|B) = 2.90
V(B;P) = 6.64 V(B;P) = 6.23 V(B; |P) = 6.23 V(B;P) = 5.81
M(B;P) = 0.00 M(B;P) = 0.00 M(B;P) = 0.00 M(B;P) = 0.00
ΔU = 0.00 ΔU = 0.42 ΔU = 0.42 ΔU = 0.84

Table 5.3: Calculated values of the Information theoretic metrics (in bits) on the opti-
mal partition matrix P∗, for λ = 10. The cost matrices are of the specialized or homo-
geneous type, the abundances vary from a homogeous distribution to one dominant
species and all combinations of them. Note that the color bar for each P∗-heatmap
has a different range per matrix, but black is always the highest frequency of visits
while white is the lowest.
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(a) Plant abundance distribution.

(b) Pollinator abundance distribution.

Figure 5.3: Species distributions taken for optimal transport.
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Figure 5.4: Optimal transport partition for a Web of Life dataset (with a λ = 10).

HB 2.0200
HP 1.4434
HBP 3.1820
HB|P 1.7386
HP|B 1.1619

V(B;P) 2.9005
M(B;P) 0.2814

ΔU 2.1216

Table 5.4: Calculated values of the Information theoretic metrics (in bits) on the opti-
mal partition matrix of the real life example.

When the information theoretical metrics are applied to this optimal P*-matrix, we

get the values of Table 5.4. As can be seen, ΔU is very big. This is logical as both

the pollinator and the plant distribution greatly deviate from a uniform distribution.

Twice a dominant species overrules the abundances of the other species. Secondly,

the variance of information clearly exceeds the mutual information. This means that

the generated partition matrix is stable of nature. HB|P has a bigger contribution to

this variance of information than HP|B, so mostly the plants effectuate the stability.

There is more uncertainty left when the plant species is known, so a plant species

has a wider variety of interaction partners to chose from. Another way of compar-

ing these two metrics is as an expected number of binary questions that have to be

asked to determine the species, when the interaction partner is known. When the
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plant is known, on average 1.73 questions are needed to determine the interacting

pollinator. When on the other hand the pollinator is known, on average 1.16 questions

are needed to determine the particular plant species the pollinator has visited. This

leaves us with the same conclusion. Also, when compared to the statement that a

plant-pollinator relation is rather asymmetrical as pollinators are typically more spe-

cialized than plants of Morales-Castilla et al. (2015), these are in line. To end with the

familiar trade-off, when the stability of the network is high, this comes at the expense

of the interactions’ efficiency. The mutual information of this network (expressing the

information transfer of B to P and vice versa, or the reduction of uncertainty) is low.

This was just a small application of optimal transport, but this theory can offer big-

ger insights than this. The theory for example can help to discover an underlying

binary interaction preference, based on an observed weighted network. When quan-

titative matrices are assembled by counting visits or by more advanced techniques,

the structure of the preference matrix can be determined for different tuning pa-

rameters. In this way, by repeating this for a lot of weighted sets with the same

species, a consensus can be made for the underlying preferences. By tuning the reg-

ularisation parameter λ and changing the plants’ and insects’ preferences, the best

matching interaction matrix can be found. This is a mathematical way of determining

the species’ most preferred interactions, and will of course be different than just mak-

ing the weighted matrix binary. Undoubtedly, optimal transport offers many other

potential applications.
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CONCLUSION

Mathematics, modelling and ecology, three disciplines that can be linked to each other

in several ways. Metrics of the Information theory as entropy and its derivatives all

have their own ecological interpretation, providing an objective way to compare net-

works (e.g. in terms of efficiency and stability). Also nestedness and modularity proof

to be meaningful measures. The nested structure of mutualistic (plant-pollinator) net-

works gives them a natural buffer capacity against external disruptions, which can be

of great importance in times of climate change.

Next to single metrics, formulas can be used to built models. Models (hence machine

learning) can be of use in ecological context because of the way interaction datasets

are constructed. A finetuning step for missing values is recommended. Both the linear

filter model as the two-step kernel ridge regression have shown to be able to make

reasonable predictions for species combinations. Performance metrics (AUC’s) of over

80% can be reached. In this way models are able to guide future field research, by

targeting interactions with more chance of happening. Prioritization of interactions

was the main goal in this work.

Overall, being able to simulate pollination networks and their properties can be help-

ful for other applications too. Pollination is an extremely valuable phenomenon, at

the root of lots of biological interactions and all our feeding habits. Models can, for

example, predict the interaction behaviour of invasive species and stability measures

can then predict potential effects for the network. Numerous utilizations of prediction

models can be examined, but as stated, the focus was on detecting missing values.
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