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Summary 
During the last 10 years, there has been a strong urbanisation in Kunming, which is the result of 

economic growth and population growth in the city. It is expected that this urbanisation will only 

increase as the population will see a strong increase in the future. The rapid economic growth and the 

associated urbanisation has a major impact on the environment and the social and cultural aspects of 

the society. The city life has an impact on the air, water and soil pollution. In addition, the land 

use/cover changes that need to happen for the urban areas to expand cause a great impact. Because 

of these consequences, it is necessary to study the development of the city, in order to have better 

regulation on the urbanisation in the future. 

In this study, the driving forces of urbanisation in Kunming are determined. In addition, the 

development of the city will be investigated between 2005 and 2017, based on local climate zones. 

The trend, land surface temperatures and surface urban heat island intensities (sUHII) of the different 

local climate zones are determined based on remote sensing data and methods. This results in maps 

and tables for 2005, 2011 and 2017, showing the distribution of the different local climate zones and 

land surface temperatures. 

The analysis of the motives shows that the urban development in Kunming is led by economic growth, 

urban population increase and socio-economic, topographical and proximity factors. The results of the 

surveys on urban development show that between 2005 and 2011, there was mainly a spatial 

expansion of the city, whereas between 2011 and 2017, there was mainly a densification of the city. 

The most common local climate zone of 2005, 2011 and 2017 is compact mid-rise (LCZ 2), which mainly 

occurs in the centre of the city. Between 2005 and 2017, there was a sharp increase in open local 

climate zones, with the largest increase taking place between 2011 and 2017. In addition, large low-

rise (LCZ 8) also experienced a strong increase between 2005 and 2017. The largest decrease can be 

seen in low-plants (LCZ D) and agricultural greenhouse (LCZ H), which is due to the transformation of 

agricultural areas into urban areas. For the land surface temperatures, the highest temperatures are 

found in zones with heavy industry (LCZ 10), large low-rise (LCZ 8), compact mid-rise (LCZ 2) and 

compact low-rise ( LCZ 3). From the values of the different surface urban heat island intensities, for 

both the entire city and the separate local climate zones, there is a general increase between 2005 and 

2017. 

It can be concluded that Kunming is subject to strong urbanisation and the associated consequences. 

Over the years, there has been a change in development with more focus on creating higher buildings 

that are located in a more open and green space. Despite the greater awareness of the consequences 

of the strong urbanisation and the adjustments that the policy wants to implement to reduce the 

consequences, the expected population increase and climate change will require a greener and more 

elaborated city policy.  
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Samenvatting 
Gedurende de laatste 10 jaar wordt Kunming gekarakteriseerd door een sterke verstedelijking, ten 

gevolge van de economische groei en de bevolkingstoename in de stad. Aangezien de bevolking nog 

een sterke stijging zal kennen in de toekomst, zal deze verstedelijking enkel maar toenemen . De snelle 

economische groei en de daarbij horende verstedelijking heeft een grote impact op het milieu en de 

sociale en culturele aspecten van de samenleving, zoals lucht-, water- en bodemvervuiling, maar ook 

aan de omvormingen in het landgebruik en landbedekking. Daarom is het aangewezen om de 

ontwikkeling van de stad te bestuderen, zodat deze kennis gebruikt kan worden om de verstedelijking 

beter te reguleren. 

In deze studie worden de drijfveren van de verstedelijking in Kunming bepaald. Daarnaast zal de 

stadsontwikkeling onderzocht worden tussen 2005 en 2017 op basis van lokale klimaatzones, waarbij 

de trend, de temperaturen van de landoppervlakte en de oppervlakte stedelijke hitte eiland (SHE) 

intensiteiten van de verschillende lokale klimaatzones bepaald worden op basis van 

teledectiegegevens en -methodes. Dit resulteert in kaarten en tabellen voor 2005, 2011 en 2017, 

waarbij de verdeling van de verschillende lokale klimaatzones en landoppervlakte temperaturen 

weergegeven worden.  

De analyse van de drijfveren toont aan dat de stadsontwikkeling in Kunming geleid wordt door de 

economische groei, stedelijke populatiestijging en de sociaaleconomische, topografische en 

nabijheidsfactoren. De resultaten van de onderzoeken naar de stadsontwikkeling geven weer dat er 

tussen 2005 en 2011 vooral een spatiale expansie van de stad is, terwijl er tussen 2011 en 2017 

voornamelijk een verdichting van de stad gebeurde. De meest voorkomende lokale klimaatzone 

doorheen alle jaren in Kunming is compact mid-rise (LCZ 2), welke voornamelijk in het centrum van de 

stad voorkomt. Tussen 2005 en 2017 was er een sterke toename van open lokale klimaatzones, waarbij 

de grootste stijging plaatsvond tussen 2011 en 2017. Daarnaast kende large low-rise (LCZ 8) ook een 

sterke stijging tussen 2005 en 2017. De grootste daling is te zien in low-plants (LCZ D) en agricultural 

greenhouse (LCZ H), die te wijten is aan de omvorming van landbouwgebieden naar urbane gebieden. 

Voor de landoppervlakte temperaturen kan er in het algemeen vastgesteld worden dat de hoogste 

temperaturen gevonden worden in zones met heavy industry (LCZ 10), large low-rise (LCZ 8), compact 

mid-rise (LCZ 2) en compact low-rise (LCZ 3). Uit de waarden van de verschillende oppervlakte Urban 

Heat Island Intensiteiten, voor zowel de ganse stad als de aparte lokale klimaatzones, is er een 

algemene stijging te zien tussen 2005 en 2017. 

Er kan geconcludeerd worden dat Kunming onderhevig is aan een sterke verstedelijking en de gevolgen 

die hieraan verbonden zijn. Doorheen de jaren is er een verandering in de ontwikkeling te zien waarbij 

er meer focus gelegd wordt op het creëren van hogere gebouwen die zich in een meer open en groene 

ruimte bevinden. Ondanks het grotere bewustzijn van de gevolgen van de sterke verstedelijking en de 

aanpassingen die het beleid wil uitvoeren om de gevolgen te verkleinen, zal door de verwachte 

populatiestijging en klimaatverandering, een groener en meer uitgewerkt stadsbeleid noodzakelijk 

zijn. 
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1. Introduction 
The past century has been characterised by rapid urbanisation, whereby cities are formed and grow 

larger as more people are living and working in the central areas. Population is still increasing and 

natural resources are continuously exploited. Urbanisation leads to land use/cover changes (LUCC), 

where natural and agricultural land are replaced by urban areas (Nyambod, 2010).  

 

In this thesis, the development of the urbanisation of Kunming, located in Southwest China, will be 

investigated. In order to do this, five objectives are conducted: 

 

(1) Investigate the drivers of the urbanisation in Kunming between 2005 and 2017; 

(2) Develop Local Climate Zone-maps for Kunming in 2005, 2011 and 2017; 

(3) Evaluate the thermal behaviour of the different LCZs, based on the LST and LCZ maps; 

(4) Study the urbanisation in Kunming using Land Surface Temperature (LST) maps; 

(5) Assess the surface Urban Heat Island (sUHI) in Kunming. 

In the first objective, the drivers of the urbanisation in Kunming are investigated, so knowledge can be 

gained about the causes of the rapid urbanisation and how it may be regulated. In the second, Kunming 

is divided into LCZs for 2005, 2011 and 2017. In the third objective, the LST is used to evaluate the 

thermal behaviour of the LCZs. These LST maps are subsequently used for the fourth objective, where 

the LUCC and urban development is studied using LST and LCZ maps. In the fifth objective, the LST is 

used to investigate the sUHI of Kunming. This can be helpful to divide the city according to their 

capacity to cause heat stress. This division is especially important for the future urbanisation plans 

since the expected increase in population and climate change can cause more problems with heat 

stress in the city. 

The thesis is made up by a literature study, material and methods, results, discussion and conclusion. 

The literature study focusses on the urbanisation in China and Kunming, whereby drivers (objective 1) 

and the consequences are discussed. Furthermore, there is information given, necessary to complete 

the second to fifth objective. This includes information about the definition, background, mechanism 

and the calculation or mapping of the LCZ scheme, (s)UHI and LST. The climate zone mapping is used 

to study the changes in building patterns between 2005 and 2017, which are driven by the drivers of 

urbanisation. This spatial pattern has an impact on the LST distribution and sUHII of Kunming, due to 

the different thermal characteristics of the local climate zones. In material and methods, the used data 

and methods that are necessary to carry out the researches of objectives (2) to (5) are written down. 

In the results, the results of the research are given. These results are discussed in the discussion and 

links with the literature study and other studies are made. Finally, a general answer on the objectives 

(2 to 5) is given in the conclusion. 
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2. Literature study 
2.1  Urbanisation 

2.1.1 General 
Urbanisation is characterised by a raising population in the city and a decreasing population in rural 

areas (Li et al., 2009). In 2008, more than half of the world’s human population lived in urban areas 

(Gutman et al., 2008; Fund, 2007). The current worldwide urbanisation is related to the fast economic 

development and to the profound changes in social organisation, land use, and patterns of human 

behaviour (Crane & Kinzig, 2005; Un, 2004), and can occur in two ways (Tisdale, 1942). The first one is 

when the amount of areas with a high population concentration increases and the second one is when 

an area with a high population concentration expands. 

 

Urbanisation has an impact on the three pillars of sustainable development; (1) environmental 

protection, (2) economic and (3) social development (United Nations, 2014). During the past century, 

population has been rapidly growing in combination with a continuous exploitation of natural 

resources. As a result, there have been Land use/cover changes (LUCC) worldwide (Li et al., 2009), 

whereby natural vegetation and agricultural land are often replaced by impervious surfaces, such as 

buildings and roads (Thi Van & Xuan Bao, 2010). This Land use change comes with an environmental 

impact, such as negative effects on biodiversity, local climate and hydrologic processes (Nyambod, 

2010; Streutker, 2002). Due to increasing population, research of the urban environment is required 

in order for cities to remain or become sustainable (Zhao et al., 2008). In general, a sustainable city is 

characterised by supplying sustainable welfare to its people, while maintaining and improving its 

ecosystem services (Zhao et al., 2009).  

 

Consequences of urbanisation are global environmental changes and socio-economic development 

(Grimm et al., 2008; Wu et al., 2010). The demographic scale of these changes is unprecedented (Angel 

& Sheppard, 2005; Un, 2004) and causes consequences for the global environment that are still poorly 

understood (Bettencourt et al., 2010). 

 

2.1.2 China 
China is characterised by a rapid urbanisation. The launch of economic reforms since the late 1970’s 

has contributed largely to this process (Luo & Wei, 2009) and helped half a billion people out of poverty 

in the past 30 years. This is because the urbanisation provided labour, cheap land and good 

infrastructure for the people (The world bank, 2014). 

The urbanisation in China distinguishes itself from other developing countries due to the absence of 

widespread proliferation of urban slums. This is partly the result of China’s governmental commitment 

to the expansion of housing and basic infrastructure in urban places (Practices, 2010), and is achieved 

by investing in housing for urban workers and private enterprises, such as large factories and 

construction companies (Qu et al., 2010; Un-Habitat, 2003). Besides newbuild houses, the rural-

turned-urban people sublet their property as an alternative source of income, which provide extra 

housing options for migrant populations (Liu et al., 2010). Although these activities restrict the growth 

of urban and peri urban slums, substandard housing is still a problem in China.  
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Because of the predicted urban population rise to 70% of the current country’s population by 2030, a 

better coordinated urbanisation process is needed in order to have sustainable cities (The world bank, 

2014). In 2012, China has asked the World Bank Group to conduct a joint study on the urbanisation 

challenges of China. This partnership has led to the a model of urbanisation that consists of the 

following aspects (The world bank, 2014): 

(1) Reforming land management and institutions 

Most of the urban expansion happens on converted rural land. This has caused the current available 

amount of farmland to be close to the ‘red line’ of 120 million hectares, which is considered the 

amount of farmland that is necessary to ensure food security. In order to implement more efficient 

land use, stronger property rights for farmers are required. 

 

(2) Reforming the hukou household-registration system to provide equal access to quality services 

for all citizens  

The current barriers to labour mobility from rural to urban areas and between cities, should be 

removed in order to stimulate the wages of the workers. 

 

(3) Reforming urban planning and design 

Industrial zones should be moved to smaller, secondary cities. To do so, government prices for 

industrial land should be based on market value. The transport infrastructure should be linked with 

the urban centres and the coordination between cities should be promoted to ensure better 

management of congestion and pollution The cities should also make better use of the existing urban 

land through flexible zoning. This includes smaller plots and more mixed land use and would lead to 

denser and more efficient urban development.  

 

(4) Managing environmental pressures 

Several environmental laws, regulations and standards are already chosen, but in order to achieve 

greener urbanisation, enforcement is needed. This can be done by introducing taxes and trading 

systems for carbon, air and water pollution, and energy. 

2.1.3 Kunming 
Kunming is the capital city of the province Yunnan, which is situated in the southwest of China, Figure 

1. In 2015, Kunming had a population of 6.68 million people, with a resident population of 5 million 

people. Of the resident population 64% lived in the city and 36% lived in rural areas. Kunming counts 

1.98 million immigrants from other provinces or from other cities in Yunnan. According to the United 

Nations, Kunming is an aging society because more than 10% of its population is older than 60 (Kanmei 

& Minqi, 2017). In the last two decades, Kunming had a fast economic development, which was in 

general supported by local and central governments (Li et al., 2013; Wu et al., 2014). For example, in 

the past years, the Yunnan provincial government made several urbanisation development plans to 

promote economic growth of the province (Gao et al., 2018). This economic growth, in combination 

with land reforms and housing commercialisation, has led to development of Kunming into a regional 

mega city (Qiyan et al., 2015).  
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The urbanisation in Kunming has caused a great loss of green space in the suburban areas and an 

increase of built up area in general. Spatial trend surface analysis showed that the annual urban 

expansion was 20.8% in 2000-2005, 7.1% in 2005-2010 and 0.7% in 2010-2015. The urban expansion 

in 2000-2005 mainly occurred around Kunming itself, while in 2010-2015, the greatest urbanisation 

was in the South of Kunming (Gao et al., 2018).  

 

2.1.4 Drivers of urbanisation 

General drivers in China 

The main drivers of urbanisation vary for different regions. In China, the most important driver is the 

annual GDP growth per capita, which is responsible for almost half of the urban land expansion, 

whereas in India and Africa, the urban population growth has the most effect on urbanisation. 

However, much of the urban expansion is difficult to observe at global scale, such as international 

capital flows, informal economy, local land use policy and generalised transport costs (Seto et al., 

2012). The speed and scale of China's urban growth has been driven by many important factors such 

as economic reforms in the late 1970s, within-country migration policies, increasing urban and/or rural 

income disparities, surplus agricultural labourers, and conversion of farmland for urban use (Yeh et al., 

2011).  

The most important driver in China is the economic growth. Since the beginning of the market reforms 

in 1978, the economy of China has switched from centrally-planned to market-based, which has caused 

a rapid economic and social development in China (Chow, 2004). Together with the global financial 

crisis of 2008, China has become the largest contributor to the economic growth worldwide (Haacke, 

2015). Nevertheless, because of China’s lower capita income (in comparison with advanced countries), 

China is still a developing country with incomplete market reforms. 

The rapid economic growth in China has brought many challenges, such as inequality, challenges in 

environmental sustainability, external imbalances and demographic pressures due to the ageing 

population and the internal migration (Haacke, 2015). 

Figure 1. Location of Kunming, situated in the Yunnan province in China (China highlights, 2018; Google Earth, 2018; modified). 
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Besides the economic growth, the migration in China also affects urbanisation. The growth of the urban 

population in China is mostly due to rural-to-urban migration and not so much due to in-situ 

urbanisation of rural areas and natural population growth. Between 2010 and 2020, more than 150 

million Chinese farmers will move to cities (Gong et al., 2012). To accommodate all the migrants and 

the natural population growth in cities, the urban area needs to increase quickly (Figure 2). This causes 

the conversion of large areas of farmland to urban land (in-situ urbanisation; Gong et al., 2012). 

 

 

Additional drivers in Kunming 

In addition to the general drivers of urbanisation in China, Kunming is led by urbanisation plans and 

social-economic, topographic and proximity factors. 

Between 1999 and 2010, the urbanisation was speeded up due to two factors. The first one is the 

World Horticultural Expo in 1999, which improved the urban infrastructure, road, tree and air projects 

because of its successful organising. As a result, the planning and construction of main road networks 

were completed 10 years earlier than expected and the image of Kunming was improved. It also 

stimulated the attraction of foreign investment, modifications to the industrial structure and the rapid 

development of the tourism-centred tertiary industry. Kunming is now a preferred tourism site in China 

and migration destination (Qiyan et al., 2015). The second important factor is the new planning 

framework that was approved in 2003 and will shape the urbanisation between 2008 and 2030. This 

framework had an important influence on the increasing urbanisation level, and has helped the 

increase in built-up area from 185 km² in 2003 to 275 km² in 2010 (National Bureau of Statistics of 

China, 2004). In addition, the new framework promotes the agglomeration of Kunming with 

neighbouring cities (e.g. Yuxi, Quing and Chuxiong). This is the so called Kunming centred Dianzhong 

urban agglomeration that started on 2009 and will end in 2030 (Su et al., 2011). Urban agglomeration 

is the result of the integration and interaction of regional central cities with their surrounding cities 

and leads to changes in spatial organisation (Gottmann, 1957; Kipnis, 1997; Haggett et al., 1977). It 

merges independent cities and it is the sum of all their interurban relationships (Baigent, 2004; Chen, 

2017; Fang & Yu, 2017; Gottmann, 1957). An important agglomeration is the Kunming-Yuxi integration. 

In 2011, the Yunnan Provincial government made an agreement for the integration of Kunming and 

Figure 2. China's urban area expansion from 1990 to 2010 (Gong et al., 2012). 
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Yuxi, which was an agreement of five years. Since then, the government stimulates the urbanisation 

between the two big cities and tries to accelerate the economic development of Yunnan. This 

urbanisation has caused a dramatical decline in agricultural land and forest between 2005 and 2015, 

while shrub and grass land has increased (Figure 3). In addition, the gap between the southern part of 

Kunming and the North of Yuxi is almost completely filled up by urban areas between 2010 and 2015 

(Figure 4 ; Gao et al., 2018). 

 

 

 

 

 

 

 

 

 

 

 

With the knowledge of the current urbanisation patterns, it is expected by 2025 to have a better 

connection between Kunming and Yuxi and the two cities would experience a further expansion (Gao 

Figure 4. The development of the urbanisation of Kunming since 2005 ( Gao et al., 2018; modified). 
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Figure 3. The proportions of each landcover class from 2000 to 2015 in Kunming (Gao et al., 2018). 
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et al., 2018). A prediction for 2025 and the comparison of this prediction with 2015 can be seen on 

Figure 5. 

 

In the new planning framework, the North District will be a core city area and the centre of banking, 

commerce and trade, tourism and service. The East District will contain new industry, scientific, 

cultural and educational zones and a modern centre of urban logistics. The South District will form a 

new model of tourism and holiday town, with clustering development. The West District will become 

an industrial place of phosphorus chemical industry, electronic devices, mechanic manufacturing and 

tourism and service (Qiyan et al., 2015). By 2030, this new planning framework will transform Kunming 

into a regional centre and a land hub that connects China with Southeast Asian countries. 

Besides the political factors, the topographic factors are also one of the main drivers of urbanisation. 

For example, the agreement of Kunming-Yuxi integration in 2011 is greatly affected by the topography 

of the landscape and the morphology of the Dianchi Lake. Before 2010, the urbanisation mostly 

occurred in the flat agricultural areas with a concentric growth pattern. Flat areas or areas with a slope 

less than 15° are preferred for urban expansion and more than 90% of the urbanisation is situated in 

these regions. Since 2010, Kunming mostly expanded to the South and is shaped by the topographic 

pattern (Figure 4). Most of the urban expansion is located around the lake, since this is a more 

attractive place to live (Gao et al., 2018). 

 

2.1.5 Consequences of urbanisation 

Environmental and health issues related to urbanisation 

China 
Since the 1970s, economic growth in China has induced rapid industrialisation and high pollutant 

emissions, which cause dramatic environmental degradation, including water and air pollution. The 

strong need for energy and raw materials is putting a big pressure on the environment and results in 

health problems for people (Chan & Yao, 2008; Huang et al., 2014; Mao et al., 2014; Qu et al., 2010; 

Yang et al., 2011). Eventually, due to the rising costs of environmental degradation, Chinese leaders 

gradually changed their conventional view of realising economic growth at the expense of 

environment (Wang et al., 2012).  

In the last years, there have been frequent severe air pollution episodes in China causing huge health 

issues and social losses (Li, 2016). High emissions, from coal burning and industry processes, are a 

Figure 5. Prediction of built-up areas in 2025 and the comparison with the built-up areas in 2015 (Gao et al., 2018). 
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primary cause for the increasing pollutant concentrations (Petäjä et al., 2016). In addition, vehicle 

emissions are an increasing concern, especially in megacities (Yang et al., 2013). China has the highest 

lung cancer burden of the world (Guo et al., 2016) and it is estimated that the amount of premature 

deaths due to the poor air quality is 1.27 million a year (Yang et al., 2013). Since 2016, after the 

environmental figures of China were published, the environment is a key factor in the local 

governments performance evaluation and national-controlled monitoring sections for the air quality 

has been introduced 

Due to pollutant discharges in water bodies, eutrophication is high. Organic and toxic pollution is 

widespread trough China, together with severe ecological devastation (Miao et al., 2012). The 

increasing health concern and environmental awareness has led to stricter regulation, so various 

industries are challenged to change their wastewater treatment technologies (Teh et al., 2016). By 

2020, the numbers of severely polluted water bodies and groundwater overdraft should be reduced, 

the pollution of the groundwater should be preliminarily controlled and the quality of the aquatic 

ecosystems in the Beijing-Tianjin-Hebei region and the drinking water should be improved (The state 

council, 2016). Also by 2030, the quality of the ecological environment should be improved and by the 

middle of the 21st century the ecological environment should be fully recovered and the ecosystem 

should have a virtuous cycle (Teh et al., 2016). 

Kunming 

Kunming has one of the best air qualities of the Chinese big cities, but the airborne pollution is getting 

worse (Scally, 2013). Reliable data about the air pollution is however not easy to find. Daily smog 

readings published by the Kunming Environmental Protection Bureau (KEPB) are mostly half those 

reported by independent sources. According to the head of KEBP, the contradictions between the 

bureau and the national reporting agencies are due to differences in sample durations and 

calculations. The constant construction and the daily addition of hundreds of new cars play an 

important role in Kunming’s air quality (Scally, 2013).  

Problems with the water quality of the Dianchi lake began when the city grew and farmers started 

using big amounts of industrial fertilisers to grow more crops (Yang et al., 2010). The situation was 

aggravated by the continuous discharge of Kunming’s untreated sewage directly into the lake. By the 

late 1980s, a film of algae began to spread across the lake, eventually growing so large and pervasive 

that by the early 2000s, almost the entire surface was green and fetid. In addition, natural cleansing 

buffers, such as shoreline wetlands, withered and died (Huang et al., 2013). Efforts to restore lake 

water quality were postponed for a long time. The local government began a series of costly and 

unsuccessful attempts to rebalance the lake’s oxygen levels and to get rid of algae. The projects 

included wetland restoration, planting hundreds of tons of invasive water hyacinths, banning all new 

construction near the lakeshore and injecting ozone directly into the lake. Still, water quality stayed 

low. Much of the water that leaves the Dianchi lake will eventually flow into the Jinsha river. If the 

leaving water is not treated well, pollution will enter again into the source of China’s largest river 

(Yangtze), which could cause a far-reaching impact on the Jinsha and upper reaches of the Yangtze 

(Scally, 2016).  

 

The amount of green parks is scarce in Kunming, but since March 2017, plans for building 37 new parks 

are included in the thirteenth five-year plan. There would be an effort to turn the ‘Spring City’ into a 

‘Garden City’. The goal is to make 45% of Kunming’s total land area green space by 2020. It is estimated 
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that probably they will not succeed to reach the 45% due to the continuous building of urban areas 

that occupy large amounts of land. For 16 of the 37 new parks there would only be a restoration and 

protection of already forested areas. The other 21 public areas will be completely new (Scally, 2017).  

Land use/cover changes 

Urbanisation causes the city to expand in area and causes land use changes, which lead to an increasing 

average temperature (Kim, 1992). For example, the expansion of the impervious surface area changes 

the heat capacity and radiative properties of the land surface, which can lead to a reduction of 

evapotranspiration in urban areas (Streutker, 2002). Each land cover type has unique thermal, 

moisture and optical spectral properties, so changes in land use/cover will result in a different local 

thermal environment (Oke, 1982). LUCC can range from the modification of the landscape character 

without affecting the overall classification to the complete replacement of one land cover type. Land 

cover modification can be anthropogenic, as deforestation, or naturally caused, as flooding. In both 

cases, the replaced spatial entities can fall into a different land cover category (Mölders, 2012). 

The outward expansion of cities is responsible for the decreasing area of agricultural land and forests. 

This urban sprawl is accompanied by many temperature rising factors, which change the urban heat 

budget. Examples of these factors are concretisation, industrial growth, traffic congestion, air pollution 

and emission of volatile organic compounds (Lo & Quattrochi, 2003; Roy, 2011; Singh et al., 2014; Yang 

& Lo, 2002). For this reason, land cover changes play a big role in the increasing urban heat island (UHI), 

which is characterised by higher temperatures in urban areas compare to its surrounding temperatures 

(EPA, 2008; Solecki et al., 2005). 

 

Urban Heat Island 

Definition 
Urban heat islands have already been a concern for over 40 years. It changes the processes of energy 

and water balance and influences the dynamics of air movements (Oke, 1987). As mentioned above, 

an urban heat island is an urban or metropolitan area characterised by significantly warmer air 

temperatures in the urban areas compared to the temperatures in the surrounding rural areas. The 

difference in temperature is larger at night than during the day, when winds are weak and when sky is 

cloud free (EPA, 2008; Solecki et al., 2005). The main contributors to the UHI-effect are the LUCC (EPA, 

2008; Solecki et al., 2005) and the waste heat that is generated by energy usage (Li et al., 2013). 

 

The UHI can be divided in two types. The first is the atmospheric UHI, that consists of canopy Layer 

UHI and Boundary Layer UHI. This type can be calculated from weather station networks (Chow & Roth, 

2006; Fast et al., 2005; Karl & Quayle, 1988; Peterson, 2003). The second one is the surface UHI (sUHI) 

that is estimated by using thermal infrared remote sensing techniques (Imhoff et al., 2010; Jin et al., 

2005; Peng et al., 2012; Voogt & Oke, 2003). sUHIs are largest at day, while atmospheric UHIs are 

largest at night (Lo & Quattrochi, 2003). Due to easy access of satellite images, the sUHI has been 

getting more interests in studies in areas where air temperature is difficult to obtain (Clinton & Gong, 

2013; Imhoff et al., 2010; Jin et al., 2005; Peng et al., 2012; Tran et al., 2006; Zhang et al., 2010).  

 

Drivers of an UHI 
An UHI emergences due to the additional input of heat in urban areas in the form of power 

automobiles, air-conditioners and other sources of anthropogenic heat, in combination with the ability 

of the urban structures to keep the heat inside the city. The exchange of heat is influenced by 
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conduction, convection and radiation and arises due to the mutual response of multiple factors that 

can be divided in two categories, controllable and uncontrollable factors (Chen et al., 2006). These 

factors can be further categorized as temporary effect variables, such as air speed and cloud cover, 

permanent effect variables, such as green areas, building material and sky view factor, and cyclic effect 

variables, such as solar radiation and anthropogenic heat sources (Figure 6, Chen et al., 2006). In 

general, surfaces consisting of building, asphalt, bare-soil and short grasses are urban surfaces that 

heat up rapidly and contribute to the UHI-effect (Taha, 1997). 

 
In urban areas, the ground level consists of specific structures such as walls, roof facets, irrigated 

gardens, non-irrigated spaces, lawns and paved areas. These structures capture and absorb solar 

radiation and store it as heat energy. The process goes on from sunrise until late afternoon. After the 

sun sets, the environment starts to cool down and the stored heat energy is released to the 

environment. The amount of heat that is released by the urban structures depends on controllable 

factors like sky view factor and the materials of the building. Due to the city building and thus the low 

sky view factor, the release of longwave radiation to the atmosphere is low. This has as consequence 

that a lot of heat is stored in building structures (Chen et al., 2006). In addition, one of the main causes 

of high air temperatures in cities is due to the typical street canyon configuration that causes a low 

albedo effect (Chen et al., 2006).  

Other factors that causes heat storage are the lack of vegetation, the high roughness of the urban 

structures and air pollution. Due to the lack of vegetation, there is almost no latent heat flux and the 

high roughness is responsible for a reduction of convective heat removal and transfer by wind (Taha, 

1997). The aerosols in air polluted areas absorb and re-radiate longwave radiation and can inhibit the 

corresponding radiative surface cooling. This causes a pseudo-greenhouse effect that strengthens the 

UHI (Phelan et al., 2015). As for the uncontrollable factors, the Urban Heat Island Intensity (UHII) can 

be increased by anticyclone conditions (Chen et al., 2006). These are large-scale wind circulations 

around a central region of high atmospheric pressure that goes clockwise in the Northern Hemisphere 

and counter clockwise in the Southern Hemisphere (Hakim et al., 2002). Furthermore a negative 

correlation can be found between the wind speed and the cloud cover, and the UHI (Kim & Baik, 2002; 

Oke, 1982; Pongracz et al., 2006). Concerning the effect of the population, there is a positive 

correlation between a higher city population and the UHI-effect (Tran et al., 2006). This effect can be 

direct as well as indirect. The direct effect is due to more metabolisms and thus human heat production 

and the indirect effect is due to the higher amount of buildings, vehicles and factories. However a 

Figure 6. Overview Urban Heat Island mechanism (Chen et al., 2006; modified). 
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higher population does not necessarily mean a higher heat storage since variables such as sky view 

factor, anthropogenic heat, building design and albedo play a more important role (Memon et al., 

2008).  

 

Consequences of an UHI 
Urban heat islands have many adverse effects such as the deterioration of living environment, 

increasing energy consumption (Konopacki & Akbari, 2002), elevation in ground-level ozone (Rosenfeld 

et al., 1998) and an increase in mortality rates (Changnon et al., 1996). The higher temperature 

influences the regional climate, eco-environment, such as net primary production (Imhoff et al., 2010), 

biodiversity (Reid, 1998), water and air quality, (Grimm et al., 2008) and socio-economic development 

(Chen et al., 2006).  

The higher temperatures in the city can lead to periods with extreme heat on warm summer days 

(Clarke, 1972; Rooney et al., 1998). During these hot-weather events, the UHIs strengthen the thermal 

stress on vulnerable and at-risk people (Kovats & Hajat, 2008; Smargiassi et al., 2009). Because of this, 

it is important to know the hotspots within the city or the surface intra-UHI (SIUHI), so certain problems 

due to this extreme heat can be avoided (Martin et al., 2015). 

 

2.2 Local Climate Zone (LCZ)-mapping 

2.2.1 Background 
The impact of urbanisation on the local environment has been studied for almost 185 years and is 

influenced by city form and function. For example, the controllable factors from the UHI mechanism, 

such as the sky view factor and other morphological parameters, have an important influence on the 

thermal behaviour of a city. Because of this, the city can be divided into thermal zones based on its 

morphological characteristics, which gives an idea of the intensity of the UHI (Stewart & Oke, 2006). 

These thermal zones, i.e. Local Climate Zones (LCZs), are very useful to evaluate the combined effect 

of land use change and fast urban growth. LCZs can be described as areas with uniform surface 

coverage, material, structure and human activity that covers hundreds of meters to several kilometres 

on a horizontal scale. The zones are determined by physical and functional information of the area, 

including the urban structure, urban coverage, urban fabric and urban metabolism. Each zone features 

a typical screen-height temperature that is most clearly seen on dry surfaces, on quiet, clear nights and 

on simple relief (Stewart & Oke, 2012). 

 

The LCZ scheme (Figure 7) was initially introduced for the classification of urban and rural field sites 

for observational studies about UHI and was intended to facilitate objective measurements of UHI 

intensity worldwide (i.e. to measure the different in temperature between two LCZ types; Bechtel et 

al., 2015; Stewart et al., 2015). But since the labelling of landscapes into urban or rural areas causes a 

high variability (Stewart, 2011), the LCZ scheme can help to obtain standardised measurements of the 

UHII (Bechtel et al., 2015). Furthermore, LCZs contain physical and functional information, which 

makes the LCZ scheme useful to discretise the landscape and is therefore suitable for mapping 

purposes. It can contribute to the World Urban Database and Access Portal Tools (WUDAPT; Bechtel 

et al., 2015). WUDAPT was conceived to gather and spread data on the physical geographies of cities 

worldwide by using the Local Climate Zone scheme in order to overcome the shortcoming of useful 

information about the form and function of cities at a detailed spatial resolution (Bechtel et al., 2015; 

Stewart et al., 2015). This data is necessary in global urban climate science to simulate urban 
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trajectories, so mitigation and adaption policies could be supported. The necessity of information 

about the urban landscapes is recognised in the Intergovernmental Panel on Climate Change (IPCC) 

assessment reports on both adaptation and mitigation (Pachauri et al., 2014). At present, most of the 

available global data consist only of the urban mask, which just shows the boundaries that separate 

the urban from the ‘natural’ landscape (Esch et al., 2013). 

 
  

Figure 7. Local climate zone scheme (Steward & Oke, 2012). 
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2.2.2 WUDAPT Protocol 
Since the spectral features of the LCZ are not the same for different parts of the world, a semi-

automated method has to be used for mapping. A common used and promising approach is based on 

multi-temporal multi spectral and thermal remote sensing data and modern machine learning 

methods. For this, an universal, objective and simple LCZ mapping method was introduced, which is 

based on free data and free software (Bechtel et al., 2015), in order to conduct and validate LCZ 

classifications by local experts of their cities. This method was developed by WUDAPT in order to fill 

the gap between urban development and local climate conditions (Cai et al., 2017). It is designed to be 

an universal, simple and objective way to gather data about the form and function of cities (Bechtel et 

al., 2015).  

 

The method uses free satellite images from USGS Earth Explorer and free software including SAGA-GIS 

and Google Earth (See et al., 2015). The data gathering can be categorised into different levels that 

each represent a certain level of detail. An overview of these levels is shown on Figure 8. 

 

 

The level 0 method can be used to give global and culturally neutral information about the urban 

morphology and is based on the Local Climate Zone scheme (Stewart & Oke, 2012; Kaloustian & 

Bechtel, 2016). The protocol for the collection of level 0 data consists of six steps (Bechtel et al., 2015): 

(1) Demark the city. 

(2)  Training areas of the respective LCZs are digitised using Google Earth and are subsequently 

imported into SAGA software. 

(3) Satellite images for the urban domain are downloaded and imported into SAGA software. The 

satellite images consist of multiple spectral bands at a 30 m resolution, which can be used to 

distinguish the surface covers. More explanation can be found in section 2.2.3. 

(4) The LCZ map is made by using the random forest classifier in SAGA where the training areas 

are necessary to classify the study area into local climate zones. More explanation can be 

found in section 2.2.4. 

Figure 8. WUDAPT's different levels of data gathering (Bechtel et al., 2015). 
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(5) The resulting map is evaluated based on visual interpretation and is compared to Google Earth, 

whereby the LCZ training areas are added or modified, in order to reduce the amount of 

misclassifications.  

(6) Step (4) and (5) is repeated until the executor is satisfied about the map, based on its visual 

interpretation. 

Despite the benefits that this method has to offer, there are some disadvantages. Firstly, this method 

is a time consuming process due to the image pre-processing steps and the selection of training 

samples. Moreover, it only applies on city level and not on a global level. Because of this, it will take a 

long time before all the cities are classified (Cai et al., 2017).  

Secondly, the conventional method only uses freely available Landsat images. This causes a lower 

accuracy compared to the use of Advanced Spaceborne Thermal Emission and Reflection radiometer 

(ASTER) satellite data (Xu et al., 2017).  

Thirdly, the conventional method can cause problems with the horizontal heterogeneity or the mixture 

of different LCZs on small surfaces. In the original method, the spectral Landsat data is classified on a 

per-pixel basis, but these individual pixels do not include the horizontal heterogeneity of the urban 

landscape of cities areas (Verdonck et al., 2017). This causes problems in cities where no systematic 

planning is present and in fast growing cities located in less developed regions (Seto et al., 2012). These 

cities contain most of the time a high mixture of functions and structures at small horizontal scales 

(Verdonck et al., 2017). 

Finally, in the conventional method, no accuracy assessment is available. The maps are only compared 

with Google Earth, and the quality of the LCZ maps is consequently not ensured (Verdonck et al., 2017). 

The Human Influence Experiment (HUMINEX) from Bechtel et al., 2017 investigated the quality of 94 

crowdsourced training datasets for ten cities, which were generated by 119 students and concluded 

that most of the resulting LCZ maps were of poor to moderate quality. In general, this is due to 

difficulties in the interpretation of the (urban) landscape and due to a lack of knowledge of the LCZ 

scheme. They also concluded that the quality of the LCZ maps could improve up to 20 % in overall 

accuracy when multiple training datasets are used to create a single LCZ map. 

 

2.2.3 Data: Landsat 

In General 

In July 1972, the Earth resources technology satellite was launched and has eventually been renamed 

to Landsat (Short, 2011). Landsat has currently launched eight satellites and has provided satellite 

images of the Earth since 1972. The images are archived in the United States and in Landsat receiving 

stations around the world. The images are used in multiple disciplines, for example in geology, 

cartography and forestry. Each Landsat image can be accessed through the U.S. Geological Survey 

(USGS) ‘EarthExplorer’ website (Wulder et al., 2011). 

Landsat 7 

The seventh satellite of the Landsat program was launched on April 15 in 1999 and was built by 

Lockheed Martin Space Systems Company. The main purpose of this satellite was to refresh the global 

archive of satellite photos, in order to provide cloud free and up-to-date images. The satellite goes in 

a polar, sun-synchronous orbit, so it can scan the entire earth surface and has an altitude of 705 km at 

the equator (Lillesand et al., 2015). Landsat 7 is capable to collect and transmit 532 images per day. 

These images contain eight spectral bands, 1-7 plus a panchromatic band, with a spatial resolution 
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between 15 and 60 m and with a temporal resolution of 16 days or 232 orbits (Chander et al., 2005). 

Unlike the previous Landsat satellites, Landsat 7 makes use of the Enhanced Thematic Mapper Plus 

(ETM+). This ETM+ instrument has a Scan Line Corrector (SCL), that compensates the forward motion 

(along track) of the sensor, in order to have scans that are aligned parallel to each other (Storey et al., 

2005) 

Scan line error 

In May 2003, the Scan Line Corrector (SLC) in the ETM+ instrument failed, which gave errors in the 

image. When there is no working SCL present, the ETM+ line of sight gives a zig-zag pattern along the 

satellite ground track, see Figure 9.  

 

This gives images where some areas are missing and others are imaged twice, which results in a total 

loss of 22 % of the data. The gaps along the edge of the images have a maximum width that is 

equivalent to one full scan line (390 to 450 m) and the precise location varies from scene to scene 

(Katzschner et al., 2015). The raw images still have a high geometric and radiometric fidelity, but the 

information is missing for the wedges varying in size from one 30 m pixel near the centre of the image 

to fourteen 30 m pixels along the eastern and western edges of the image (Storey et al., 2005). There 

have been efforts to repair the SCL, but without success. It has been concluded by the Anomaly 

Response Team (ART) that the SCL problem was mechanical and permanent (Katzschner et al., 2015). 

Due to the SCL failure, the use of the SLC-off is confined, which limits the applicability of the system 

since it is impossible to produce images for the entire swath (Hossain et al., 2015) 

To minimise the effects of the SCL-failure, several approaches have been developed to improve the 

utility of the ‘SLC-off’ images. Examples are image segmentation (Maxwell et al., 2007) and multi-date 

(same season) image compositing (Gutman, 2008). The image segmentation is more designated for 

certain land cover applications (Bédard et al., 2008), while the multi-date approach is used for the 

NASA/USGS Global Land Survey product suite (Gutman et al., 2008). Another approach to fill the gaps 

is based on interpolating from neighbouring scan lines or using pixel values extracted from one or more 

images of the same area that has been taken before the SLC-failure (Lillesand et al., 2015). To fill the 

scan gap, precise knowledge is required about what pixels are valid in an image and which need to be 

filled. For this, a scan gap mask can be created for each band in order to mark the existing data as 1 

and the missing data in the scan gap as 0. After locating the gaps, a linear histogram matching 

methodology attempts to find a linear transformation between one image and another. When the 

transformation is applied on the entire scene, a global linear histogram match is made. The pixel values 

Figure 9. Differences between a working and non-working SLC (USGS) 
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of the SLC-Off image can be generated by applying a corrective gain and bias to the pixel values of an 

SLC-On image, using the mean and standard deviation of the data (Potić, 2015). 

However, this global histogram match is not always optimal. In scenes with transient object such as 

clouds, visible errors can be created. To minimise this, high saturated pixels are excluded before the 

corrective gain and bias are calculated. But in general, when a better precision and product is required, 

corrective gains and biases should better be calculated in a moving window around each pixel in the 

scene (Scaramuzza et al., 2004). 

 

Landsat 8 

In February 2013, Landsat 8 joined Landsat 7 and has as main purpose to extend the collection of 

Landsat data on an operational basis into the future. The satellite was launched into a repetitive, near-

circular, sun-synchronous, near polar orbit. This orbit has a nominal altitude of 705 km at the equator 

and has an inclination angle of 98.2°. The satellite can do 14.5 orbits a day and the time interval 

between the adjacent coverage tracks of the satellite is seven days. The images have an East-West 

width of 185 km and a North-South width of 180 km. The images are archived in the Worldwide 

Reference System-2 (WRS-2), according to their location (Lillesand et al., 2015). 

The mission of Landsat 8 has multiple objectives, including:  

(1) to collect and archive moderate resolution (30 m GSD) reflective, multispectral image data 

permitting seasonal coverage of the Earth for less than five years; 

(2) to collect and archive moderate to low resolution (120 m) thermal multispectral image data, 

permitting seasonal coverage of the Earth in a period less than three years; 

(3) to ensure that the resulting data is sufficiently consistent with the data from the previous 

Landsat data, so land cover and land use changes can be seen and  

(4) to make standard data products available for general public (Lillesand et al., 2015).  

Landsat 8 has two sensors, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). 

These sensors give 12-bit data, that is processed to produce a ‘Level 1T’ GeoTIFF that is corrected to 

the terrain. This GeoTiff image product is radiometrically corrected and the non-polar scenes are co-

registered to an UTM cartographic projection, while the polar scenes are co-registered to Polar 

Stereographic projection (Lillesand et al., 2015). 

 

2.2.4 Classification algorithm: random forest classifier 
The Random Forest Classifier (RFC), used to classify the Landsat images, is a statistical ensemble 

algorithm created by Leo Breiman and consists of multiple tree-structured classifiers, see Figure 10. 

The main principle of an ensemble approach is that a group of ‘weak learners’ can come together to 

form a ‘strong learner’. In the RFC, the trees are weak learners and the random forest is the strong 

learner. Each decision tree considers a random subset of features from the full training set and makes 

a prediction for the outcome (LCZ), based on its available data. The decision tree consists of three kinds 

of nodes, the root node, internal nodes and the lead nodes. The root and internal nodes are a set of 

features that describes the data, while the leaf nodes denote an output or LCZ. In case of LCZ mapping 

the feature sets include spectral information about each LCZ, determined based on the training 

(sub)set. The final prediction is ultimately made by taking the majority vote for the predicted class 

from all the decision trees (Breiman, 1999; Malekipirbazari & Aksakalli, 2015). 
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Advantages of the RFC are fast runtimes and the ability to deal with unbalanced and missing data. The 

RFC makes use of randomly chosen trees, which increases the diversity in the forest and leads to more 

robust overall predictions. The classifier gives a good classification performance and computing 

efficiency and is capable to handle large data- and feature sets. Furthermore, the classifier can be used 

for unsupervised learning and can detect outliers by using proximity analysis. 

Weaknesses of the RFC include the absence of the potential, when used for regression, to predict 

beyond the range in the training data and the fact that the classifier could over-fit data sets that are 

quite noisy (Malekipirbazari & Aksakalli, 2015; Mingers, 1989; Pal & Mather, 2003).  

 

2.3 Land Surface Temperature  

2.3.1 Definition 
The Land Surface Temperature (LST) is the radiative skin temperature of the land that is derived from 

solar radiation (ESA, 2017) and is not the same as air temperature. It is a key parameter of the Earth 

surface energy budget and is used in applications of hydrology, meteorology and climatology. It is an 

important indicator of the greenhouse effect and of the energy flux between the atmosphere and the 

land surface (Li et al., 2013). The LST is furthermore useful to study urbanisation. It is an indicator for 

the direction and degree of urbanisation due to the higher LST in built-up areas and lower LST in 

vegetation and water bodies (Linh & Van Chuong, 2015).  

Like other geophysical parameters, LST is dynamic, both spatially and temporally, which makes the 

conventional measurement techniques complex and not practical. Because of this, the use of remote 

sensing satellites to estimate the LST is preferred, due to its synoptic and repeated coverage, which 

makes the estimation more easy (Rozenstein et al., 2014). 

 

2.3.2 Relationship LCZ and LST 
For analysing the temperature differences among LCZ classes, air temperature is the most suitable 

meteorological parameter. Since the amount of observational meteorological stations are in general 

limited, alternative temperature data is required to assess the effect of the urban morphology on local 

climate conditions (Geletič et al., 2016). Although the LCZ classification is based on measurements of 

the air temperature, LST was also found to be associated with LCZ classes. This is because satellite 

Figure 10. Simplified Random Forest (Malekipirbazari & Aksakalli, 2015; modified) 
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images, especially acquired during night-time, have a strong relationship between the land surface and 

the adjacent air (Cai et al., 2017). In addition, surface temperature and land use/cover are positive 

related to each other due to land characteristics like albedo and moisture content of the different 

surface types (Lo & Quattrochi, 2003). Because of this correlation, (surface)UHIs can be identified 

based on the differences in surface temperature (Lo & Quattrochi, 2003; Oke, 1982). 

 

Geletič et al. (2016) found that, among most of the LCZs the LST differ significantly. The LST from large 

low-rise buildings (LCZ8), heavy industry (LCZ 10) and LCZ D (low plants) are most distinguishable, while 

the LST from compact midrise (LCZ 2), open high-rise (LCZ 4) and sparsely built-up (LCZ 9) are less 

distinguishable. It is found that the LST of built-up LCZ classes are in general higher than the LCZ from 

natural land cover classes. Heavy industry (LCZ 10), compact mid-rise (LCZ 2) and compact low-rise 

buildings (LCZ 3) have the warmest LST, while water bodies (LCZ G) and dense forest (LCZ A) have the 

coldest LST (Geletič et al., 2016). To know whether the LCZs differ significantly, the LST of two European 

cities were statistically tested with ANOVA. Cai et al. (2017) found that at night the highest LST in the 

built-up areas are found in zones with compact high-rise (LCZ 1). While as for the natural land cover 

types, the highest LST was detected in areas covered with water (LCZ G), which is due to its high heat 

capacity. Vegetation zones (LCZ A-D) have the lowest LST among all classes. Nevertheless there are 

also inconsistencies in the LST variations, especially in sparsely built (LCZ 9), dense trees (LCZ A), 

scattered trees (LCZ B) and bush, scrub (LCZ C), due to its highly variable urban morphology and 

temporal variation in vegetation. 

 

2.3.3 LST estimation  
The estimation of LST from satellite data knows several difficulties, such as atmospheric correction, 

the quantity expression of thermal infra process, the difficult separation of temperature and emissivity, 

the seasonal and dynamic states of surfaces and the uncertainty of land classification (Li et al., 2013). 

For the estimation of the LST, multiple algorithms have been developed and can be grouped into 

different categories, whereas the most popular algorithms are the single channel and the split-window 

algorithm. In general the two algorithms differ more or less 3 K from each other, whereas the split-

window algorithm is more correlated to the MODIS LST (Nikam et al., 2016). The single channel method 

is a commonly used approach to estimate LST based on thermal-infrared remote sensing image data 

(Jimenez-Munoz et al., 2009). The algorithm only requires one thermal-infrared channel and uses the 

same equation and coefficients for different sensors while the split-window algorithm requires 

simultaneous data from at least two sensor channels (Galve et al., 2008). In addition, it only requires 

atmospheric moisture content and land surface emissivity as parameters, making it widely applied in 

UHI studies. The two most used algorithms are described below. 

(1) Single Channel 
 

The single channel method or the mono-window algorithm (MWA) is a practical algorithm when in situ 

atmospheric radiosonde profiles are unavailable. Only a few parameters are required to generate LST 

with high accuracy (Li et al., 2013).  

The estimation of the LST using this method requires information regarding the atmospheric 

parameters, such as down-welling path radiance, up-welling path radiance, atmospheric transmittance 

and surface emissivity for each band, along with the radiance observed by each band of TIRS. In the 

single channel method, the atmospheric upwelling and downward radiance are simplified, while the 
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other atmospheric parameters are usually estimated by solving atmospheric transmittance/radiance 

codes (Jimenez-Munoz et al., 2009). 

The most important error source of this LST estimation is due to atmospheric effects, which can lead 

to an error between 0.2 K and 0.7 K on the LST, and an error between 0.2 K and 0.7 K on the surface 

emissivity uncertainty. Since typical uncertainties for remote sensing measurements can be assumed, 

a total error for the LST using the single channel method is estimated between 0.3 K and 0.8 K. Unless 

more accurate in situ values for emissivity and atmospheric parameters are available, an accuracy 

lower than this total error cannot be expected (Jiménez-Muñoz & Sobrino, 2006). 

 

(2) Split-Window  

The split-window algorithm was developed to improve the accuracy of the LST retrieved from remote 

sensing data (Sobrino et al., 1993). The majority of the LST products are obtained from various sensors 

by using this algorithm (Wan, 1996). This algorithm requires data from two spectrally adjacent thermal 

bands, typically located in the atmospheric window between 10 and 12 µm. The basic principle of the 

split window algorithm is that the radiance attenuation for the atmospheric absorption is proportional 

to the radiance difference of simultaneous measurements at two different wavelengths, which are 

each subjected to different quantities of atmospheric absorption (Sobrino et al., 2008). Despite the 

fact that this method is seen as the most widely used algorithm for LST estimation, there are still 

limitations regarding techniques for the estimation of land surface emissivity (LSE) and atmospheric 

water vapor content (Nikam et al., 2016). 

 

2.3.4 Land Surface Emissivity (LSE) 
The LSE is one of the most essential parameter for the estimation of LST, and can be estimated by using 

the single channel or the split-window method (Yu et al., 2014). Emissivity at a certain wavelength can 

be theoretically defined as the radio of the radiance emitted by a body at temperature T to the 

radiance emitted by a black body at the same temperature. The emissivity of the land surface is 

dependent on the water content, surface roughness, vegetation condition and viewing angles 

(Salisbury & D’Aria, 1994). There are several techniques for the estimation of the LSE since the direct 

estimation of LSE from satellite measurements is complex. One of the techniques is the NDVI-based 

emissivity method (NBEM; Li et al., 2013), which estimates the LST based on the Normal Difference 

Vegetation Index (NDVI). This method is easy to use but has limitations for areas with low NDVI and 

can cause a deviation of -0.038 to 0.032  in these areas (Dash et al., 2005). 
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3. Material and methods 

3.1 Study area 
Kunming is the capital and largest city of Yunnan province and is located in southwest China, see Figure 

1, page 4. In the last three decades, the city has known a large economic growth, due to its remote 

location, which resulted in a rapid urbanisation. Because of this, Kunming is an interesting area to study 

the fast urbanisation in China.  

Kunming is located on a plateau with an elevation from 1500 m to 2800 m and is surrounded by 

mountain scenery in the North, East and West. The metropolitan area of Kunming is found in the 

Dianchi basin (Zhou & Wang, 2011). The city has a subtropical monsoon climate with humid and 

warmer summers and dry and colder winters. Kunming has a mean annual precipitation between 788 

and 1000 mm and the rain is mostly falling in May to October. Because of the various landscapes, the 

amount of rainfall is dependent on the location. In general, mountainous regions will have more rainfall 

than flat regions. The annual average air temperature is between 15.4°C and 24.2°C, with a minimum 

of -3°C and a maximum of 32.2°C (Gao et al., 2018). The climate is one of the mildest of China due to 

its surrounding landscape (Zhou & Wang, 2011). The landscape causes a more or less all year round 

spring climate, this is why the city is also called the ‘City of Eternal Spring’. 

3.2 Data and methods 

3.2.1 LCZ mapping 

Landsat images 

In relation to the second objective of this study, cloudless to almost cloudless Landsat images of the 

study area with a resolution of 30 m are downloaded from USGS for the different years. For the LCZ 

classification of 2017, 2011 and 2005, respectively four (Landsat 8 level 1), three and three (Landsat 7 

level 1) images are selected. Within the specific year, images are chosen from different seasons, and 

thus with different climate characteristics. For Landsat 8, only the bands 1, 2, 3, 4 ,5 ,6 ,7 ,10 and 11 

are used, and for the Landsat 7 images only the bands 1, 2, 3, 4, 5, 6 and 7. More information about 

the images can be found in Table 1.  

 

Table 1. Landsat images information for the LCZ mapping. 

Mapping period Landsat Entity ID Date 

2005 LE07_L1TP_129043_20050406_20170116_01_T1 06/04/2005 

LE07_L1TP_129043_20050201_20170116_01_T1 01/02/2005 

LE07_L1TP_129043_20060103_20170111_01_T1 03/01/2006 

2011 LE07_L1TP_129043_20110306_20161209_01_T1 6/03/2011 

LE07_L1TP_129043_20120120_20161203_01_T1 20/01/2012 

LE07_L1TP_129043_20111117_20161205_01_T1 17/11/2011 

2017 LC08_L1TP_129043_20170109_20170311_01_T1 01/09/2017 

LC08_L1TP_129043_20170314_20170328_01_T1 14/03/2017 

LC08_L1TP_129043_20170501_20170515_01_T1 01/05/2017 

LC08_L1TP_129043_20170109_20170311_01_T1 09/01/2017 
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Due to the failure of the Scan Line Corrector from the Landsat 7 Enhanced Thematic Mapper (ETM) 

sensor, the satellite images need to be corrected before they can be used in the LCZ mapping or LST 

calculation. This problem can be solved by multiple methods. The method used in this research is based 

on the application of a linear transform to the ‘filling’ image in order to adjust it on the standard 

deviation and mean values of each band (Scaramuzza et al., 2004). This method will fill the gaps in one 

scene with data from another Landsat scene, using ENVI software and the ‘landsat_gapfill.sav’ plugin. 

ROI and training areas 

According to the WUDAPT method, the first step in the LCZ classification is to select the region of 

interest (ROI, Appendix 1) in Google Earth. Within this ROI, multiple training areas are selected for the 

different LCZs. The sampling of the training areas is based on making representative and correct areas 

for the different local climate zones, in order to minimise the amount of misclassifications. Examples 

of the different LCZs are presented in Table 2. 

To select the training areas for the situation in 2017, a first impression of the city is made by walking 

and driving through the streets. After this first step, initial training areas are chosen based on both 

baidu maps top view and street view. Baidu maps is a mapping service application that offers satellite 

imagery, street maps, street view and indoor view perspectives of the entire world. These initial 

training areas are then checked in real life and are modified if necessary. This method was chosen 

because of its efficiency and because it gives a more accurate insight in the size and the composition 

of the different areas. The final training areas are visualised in Appendix 2. The training areas for 2005 

and 2010 are collected using only the timeline of Google Earth pro and baidu maps. To do so, the 

training areas of 2017 are reviewed and used, changed or omitted, and clear and new training areas 

are added. These training areas are shown in Appendices 3 and 4.  

In the sampling for 2017, almost no lightweight low-rise (LCZ 7), sparsely built (LCZ 9), bare rock or 

paved (LCZ E) and bare soil and sand (LCZ F) areas are found with an acceptable size. These LCZs were 

thus left out of the classification. For 2005 and 2010, some extra LCZs are left out of the classification 

due to the absence of (enough) representative areas. For 2011, compact high-rise (LCZ 1) is further not 

included and for 2005, compact high-rise (LCZ 1), open high-rise (LCZ 4) and heavy industry (LCZ 10) 

are not included in the classification. 

Despite the attempt to have optimal training areas, there are some uncertainties. Leaving out bare soil 

and sand (LCZ F) causes the disadvantage of misclassification due to the construction sites that contain 

bare soil. In most of the training areas, spectral information of bare soil and sand (LCZ F) is present, so 

construction sites can be mapped as a combination of multiple LCZs. 

Another difficulty lies in the usage of plastic foils that cover rose plantations. Because of the 

uncertainty of the spectral response of this foil, a new zone was added, which is called ‘agriculture-

greenhouse’ (LCZ H). A last uncertainty is found in the sampling for 2010 and 2005, because the chosen 

training areas could not be checked in real life or with street view. 

 



22 
 

Table 2. Examples of the different LCZs in Kunming. 

 [Trek de aandacht van uw lezer met een veelzeggend 

citaat uit het document of gebruik deze ruimte om een 

belangrijk punt te benadrukken. Sleep dit tekstvak als u 

het ergens anders op de pagina wilt plaatsen.] 

LCZ 1  Compact high-rise 

LCZ 2  Compact mid-rise 

LCZ 3  Compact low-rise 

LCZ 4  Open high-rise 

LCZ 5  Open mid-rise 

LCZ 6  Open low-rise 

LCZ 8  Large low-rise 

LCZ 10 Heavy industry 

LCZ A  Dense trees 

LCZ B  Scattered trees 

LCZ C  Bush, scrub 

LCZ D  Low plants 

LCZ G  Water 

LCZ H  Agricultural greenhouse 
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Classification and its adaptions 

For the LCZ classification, the WUDAPT-protocol, with certain adaptations (Verdonck et al., 2017), is 

followed. A general overview of both the conventional and the modified method can be seen in Figure 

11. 

 

Figure 11: Overview LCZ classification. Workflow A is the WUDAPT based method, while workflow B is the modified workflow that uses 

a moving window to include neighbourhood information (Verdonck et al., 2017). 

The development of the LCZ maps requires adaptations (workflow B, Figure 11) to the original method 

presented by WUDAPT (workflow A, Figure 11). In workflow A, the Landsat images are resampled from 

a resolution of 30 m to 100 m. After this step, a random forest classification in SAGA is carried out and 

the LCZ maps are validated visually using Google Earth. Since this method is not optimal for a city 

characterised by small heterogeneous areas, like Kunming, workflow B is preferred. In workflow B 

some adaptations are made: 

1. A first adaptation is applied on the first condition of the WUDAPT protocol, where the training 

areas should be homogeneous polygons with a minimum surface area of 1 km², because 

smaller surface areas would not be large enough to establish a local climate zone (Bechtel et 

al., 2015). Since Kunming is characterised by heterogeneous areas, training areas of at least 1 

km² are difficult to find, therefore many smaller, homogeneous areas were selected.  

2. The second adaption is taking into account the neighbourhood information. This is not 

included into the original WUDAPT method and causes spectral variability to be lost due to the 

resampling of Landsat images to a 100 m resolution. Because of this, a contextual classifier is 

used, which uses information from neighbouring 30 m pixels through a moving window 

(Verdonck et al., 2017). This is a way to include horizontal heterogeneity. Multiple moving 

windows with different kernel sizes are used in order to select the most appropriate moving 

window per year. 

3. The second adaptation is assessing a validation. For each kernel size, 10 random forest 

classifications are performed. These runs are evaluated by assessing the map accuracies on 

the pixels of the independent validation polygon set, using an error matrix. Independent 

validation polygons are selected on randomly selected pixels from training areas, in order to 
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avoid a positive bias of neighbouring training and validation samples (Verdonck et al., 2017). 

The error matrix computes the overall accuracy (OA) and provides an estimation of the 

accuracy of the classification result. The OA is the division of the correctly allocated validation 

pixels by the total amount of validation pixels. In addition to the OA, F1-scores are computed. 

The F1-score is the arithmetic mean of the class-wise F1 scores. These F1- values are the 

weighted averages of the user’s (UA) and producer’s accuracies (PA). The UA gives an idea 

about how often the LCZ on the map is actually the LCZ in real life, while the PA is the 

probability that a certain LCZ in real life is correctly classified. The class-wise F1-score for class 

i is calculated as followed (Sokolova & Lapalme, 2009): 

𝐹1𝑖 =
2 U𝐴𝑖 P𝐴𝑖 

𝑈𝐴𝑖 + 𝑃𝐴𝑖
 

In order to assess the robustness of the different classification methods, standard deviations 

(SD) on the OA and F1 are calculated. 

 

3.2.2 Land Surface Temperature retrieval 

Images 

For the LST calculation, cloudless Landsat images from the warm season are taken because of their 

ability to give a better visibility of the urban structures. The selected Landsat images are shown in Table 

3. For 2005 and 2011, no cloudless Landsat images are found in the warm season. As a result, cloudless 

images from 2004 and 2012 are taken. The bands of Landsat 8, which are used for making the LST map, 

are bands 4, 5 and 10, while for Landsat 7, bands 3, 4 and 6.1 are used. 

Table 3. Landsat images information for the LST calculation. 

Mapping period Landsat Entity ID Date 

2005 LE07_L1TP_129043_20040521_20170121_01_T1 21/05/2004 

2011 LE07_L1TP_129043_20120615_20161123_01_T1 15/06/2012 

2017 LC08_L1TP_129043_20170501_20170515_01_T1 01/05/2017 

 

In the satellite image of 2004 some clouds are present in the mountainous areas. To overcome a 

disturbed result because of these clouds, due to its notable lower LST, the clouds are left out of the 

image. To do so, the clouds are first separated in another raster and their pixel values are subsequently 

reclassified to NoData-value. In the final step, this reclassified raster is added with the original LST map. 

LST estimation 

LST is estimated using the single channel algorithm because of its relatively simple data requirements 

and high accuracy. In addition, the National Aeronautics and Space Administration (NASA) suggests not 

to use band 11 for surface temperature retrieval when problems with data from one of the Landsat 8 

thermal bands (band 11) are considered (Vlassova et al., 2014). An overview of the method is visualised 

on Figure 12 and will be explained in more detail in the following paragraphs. 
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Conversion digital numbers to top of atmosphere reflectance 

At-sensor radiances measured at a certain wavelength region is converted into Digital Numbers (DNs), 

using a quantification system. These DN values have no physical connotation and no unit. DNs can be 

converted to radiance, thereafter to Top Of Atmosphere (TOA, at-sensor) brightness temperature and 

finally into land surface temperatures, so a quantitative analysis can be done from thermal remote 

sensing data.  

The first step is to convert the Digital Numbers (DN) of band 10 to Top Of Atmosphere (TOA) 

reflectance, using the radiance rescaling factors that are provided in the metadata file. For this 

conversion, the equation below is used. 

  

L λ = M L Q cal + A L             

 

With ML the band-specific multiplicative rescaling factor, Qcal the Band 10 image and AL the band-

specific rescaling factor. The ML-and AL-value are provided in the metadata file and are respectively 

3.3420 x 10-4 and 0.1. 

 

Conversion of reflectance values into satellite brightness temperature 

The second step is to convert the reflectance values into satellite brightness temperature. Therefore, 

the thermal constants are used that are found in the metadata file. This results in at-satellite brightness 

temperatures expressed in Kelvin (Li et al., 2013). Since values in degrees Celsius are desired, a 

conversion from Kelvin to Celsius is added. 

After the digital numbers are converted to reflection, the TIRS band data should be converted from 

spectral radiance to brightness temperature at sensor (BT) using the thermal constants (K1 and K2) 

Figure 12. Overall method for LST estimation. 
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that are provided in the metadata file. The following equation is used to convert the reflectance to BT 

in Celsius degrees:  

𝐵𝑇 =
𝐾2

ln(
𝐾1
𝐿λ

+1)
− 273.15                  

K1, K2 = band-specific thermal conversion constants from the metadata with K1=774.8853 and 

K2=1321.0781 

 

LSE calculation 

The third step is to calculate the Land Surface Emissivity (LSE), based on the NDVI emissivity method. 

To do so, the Normalized Difference Vegetation Index (NDVI) is calculated using band 4 and 5. These 

bands did first undergo an atmospheric correction. This NDVI is then used to calculate the Proportion 

of Vegetation (PV), which is subsequently used to calculate the LSE. For the calculation of the NDVI and 

the PV, equation below are used. 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅(𝑏𝑎𝑛𝑑 5)−𝑅𝑒𝑑 (𝑏𝑎𝑛𝑑 4)

𝑁𝐼𝑅(𝑏𝑎𝑛𝑑 5)+𝑅𝑒𝑑 (𝑏𝑎𝑛𝑑 4)
      

 

Thereafter the PV is calculated with the following equation: 

 

𝑃𝑉 = (
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)²         

 

With NDVImin and NDVImax the minimum and maximum value of the NDVI interval. 

 

To calculate the Land Surface emissivity (LSE), the Normalized Difference Vegetation Index (NDVI) and 

the Proportion of Vegetation (PV) are needed. The LSE is an important factor for the estimation of LST, 

since the LSE is a proportionality factor that scales blackbody radiance (Planck’s law) to predict emitted 

radiance. It is the efficiency of transmitting thermal energy across the surface into the atmosphere. 

The LSE can be estimated using the error correction: 

 

𝐿𝑆𝐸 = 0.004𝑃𝑉 + 0.986                

LST calculation 

The final step is the calculation of the LST, using the at-satellite brightness temperature of band 10, 

the wavelength of emitted radiance at 11.5 µm and the LSE (Cai et al., 2017). 

Finally, the LST or the emissivity-corrected land surface temperature is calculated using the following 

formula: 

 

𝐿𝑆𝑇 =
𝐵𝑇

1+(λ
BT

ρ
)ln (LSE)

                  

With  

ρ = h
c

σ
= 1.438 . 10−2𝑚𝐾    … 
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…………… 
Where BT is the at-sensor brightness temperature (°C) of band 10, λ is the wavelength of the emitted 

radiance of band 10, LSE is the estimated land surface emissivity, σ is the Boltzmann constant (= 1.38 

.10−23 𝐽/𝐾), h is Planck’s constant ( = 6.262 .10−34 𝐽𝑠) and c is the velocity of light (= 2.998 . 108 𝑚/𝑠). 

In order to compare the LSTs from the different years, the maps are normalised. To do so, the equation 

below is used. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝐿𝑆𝑇 =
𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒−min( 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒)

max(𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒)−min( 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒)
    

With pixel value the pixel value of the raster, min (pixel value) the minimum value and max (pixel value) 

the maximum pixel value of the raster image. 

 

3.2.3 Surface Urban Heat Island assessment 

Evolution of the sUHII during 2004 -2017 
Urbanisation has many consequences, as discussed in section 2.1.5. One of them is the sUHI, which 

means that the surface temperature in the city is higher than the surface temperature in the areas 

surrounding it. The evolution of the sUHII between 2005 and 2017 can give information about the 

development of the city in that period. For example, there is a significant correlation between sUHII 

and population as well as GDP (Cui et al., 2016).  

 

The sUHII of each LCZ as well as Kunming in general, based on the LCZs, is calculated. The sUHII is 

calculated to assess the surface heating effects in urban areas as well as in each LCZ. To obtain the 

overall mean sUHII, the difference in mean land surface temperature between the urban (LSTurban) and 

natural (LSTnatural) LCZ are calculated according to the following formula (Bonafoni et al., 2017): 

𝑠𝑈𝐻𝐼𝐼 = 𝑚𝑒𝑎𝑛 𝐿𝑆𝑇𝑢𝑟𝑏𝑎𝑛 − 𝑚𝑒𝑎𝑛 𝐿𝑆𝑇𝑛𝑎𝑡𝑢𝑟𝑎𝑙        (8) 

To obtain the sUHII of each LCZ, the difference between the mean LST of LCZ i and the mean LST of all 

the natural LCZs covered with vegetation is calculated according to the formula below (Bechtel et al., 

2015): 

𝑠𝑈𝐻𝐼𝐼(𝑖) = 𝑚𝑒𝑎𝑛 𝐿𝑆𝑇𝐿𝐶𝑍(𝑖) − 𝑚𝑒𝑎𝑛 𝐿𝑆𝑇𝑛𝑎𝑡𝑢𝑟𝑎𝑙      (9) 

This will give both positive and negative values for the sUHII, as such both the Urban Heat (UHI) and 

Urban Cool Islands (UCI) can be determined. The determination of the urban and natural zones are 

done according to the characterisations of the LCZs, because the urban LCZ (LCZ 1-10) have normally 

the highest LST and are linked to the city, while the natural LCZ (LCZ A-H) have normally colder LST and 

are linked to rural and natural areas. 

sUHII classification in 2017 
Besides the information about the development, it is useful to know which parts of the city can have 

the ability to cause problems with extreme heat. The urban LCZs of Oke (2004) can be used to classify 

the zones by their thermal climate zones (TCZs) and redefining the UHI magnitude by inter-zone 

temperature difference. However, these TCZs are not easy to use in operational modes and to be 

incorporated in risk management since more practical thermal references are needed. Because of this, 

the characterisation of a sUHI in terms of a temperature exceedance level or threshold is eligible. The 
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thermal references of these surface intra-urban heat islands (sIUHIs) are based on multiple 

temperature thresholds that are related to the spatial average of the LSTs (Martin et al., 2015). The 

comparison of LSTs in LCZs is based on the assumption that every LCZ is characterised by a unique LST 

regime (Geletič et al., 2016). Because of this, an overlay analysis was applied whereby the mean LST 

(µ) and its standard deviation (SD) is calculated for each LCZ using zonal statistics in ArcGIS. The 

advantage of using mean values and standard deviations of the LSTs is because it shows better the 

spatial differentials regardless of the temporal variation of the actual LST values (Zhang et al., 2013). 

For Kunming, the sUHI is classified into five levels according to the standard deviation from the mean 

LST. The threshold values for the classification is represented in Table 4 (Zhang et al., 2013). 

 

 

 

LST category RANGE 

Very low Ts < µ - 1 SD 

Low µ - 1 SD ≤ Ts < µ - SD/3 

Medium µ - SD/3 ≤ Ts < µ + SD/3 

High µ + SD/3 ≤ Ts < µ + 1 SD 

Very high Ts ≥ µ + 1 SD  

 

Table 4. Threshold values for sUHI classification based on the LST, whereas µ and SD are the mean and standard deviation values of the 
LST respectively (Zhang et al., 2013). 
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4. Results 
4.1 LCZ mapping 

4.1.1 Accuracies 
To select the best LCZ classification for the different years, the appropriate kernel size is chosen based 

on the classification accuracies and F1-scores. The first mapping process was done for 2017, which 

explains the greater amount of kernel sizes for that time period. For 2011 and 2005, the choice of the 

tested kernel sizes was more focused. The OAs and F1-scores of the LCZ maps with different kernel 

sizes (workflow B) are shown in Table 5.  

 
Table 5. OAs of the LCZ maps with kernel size 7x7, 9x9 or 11x11 from 2005, 2011 and 2017. 

  5x5 7x7 9x9 11x11 

2017      
OA (%)  95.8 ± 0.1 95.8 ± 0.1 95.7 ± 0.1 95.4 ± 0.2 

F1
 M

e
as

u
re

 (
%

) 

LCZ 1 Compact high-rise 74.8 ± 1.2 

 

78.0 ± 0.8 

 

78.0 ± 0.7 71.8 ± 2.2 
LCZ 2 Compact mid-rise 86.6 ± 0.4 

 

84.4 ± 0.6 

 

84.1 ± 0.5 83.0 ± 0.9 
LCZ 3 Compact low-rise 61.3 ± 0.8 

 

67.8 ± 2.3 50.5 ± 3.1 56.9 ± 4.0 
LCZ 4 Open high-rise 77.4 ± 0.3 

 

76.7 ± 0.8 74.4 ± 0.6 69.9 ± 0.7 
LCZ 5 Open mid-rise 45.1 ± 1.0 

 

45.3 ± 2.5 48.1 ± 2.1 43.0 ± 3.6 
LCZ 6 Open low-rise 56.7 ± 1.3 

 

50.6 ± 1.5 49.9 ± 1.8 49.1 ± 1.2 
LCZ 8 Large low-rise 90.7 ± 0.9 

 

93.8 ± 0.4 92.4 ± 0.6 88.8 ± 0.8 
LCZ 10 Heavy industry 75.8 ± 3.5 

 

63.2 ± 1.2 63.7 ± 9.4 50.7 ± 5.1 
LCZ A Dense trees 97.3 ± 0.2 

 

98.2 ± 0.3 97.0 ± 0.5 96.0 ± 0.4 
LCZ B Scattered trees 60.8 ± 1.9 

 

61.6 ± 4.5 52.8 ± 4.6 46.7 ± 4.8 
LCZ C Bush, scrub 80.9 ± 4.5 

 

74.2 ± 3.8 60.6 ± 4.1 74.1 ± 4.9 
LCZ D Low plants 85.6 ± 2.6 

 

83.5 ± 1.3 78.0 ± 2.4 72.1 ± 3.2 
LCZ G Water 100.0 ± 0.0 

 

100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 
LCZ H Agricultural greenhouse 96.7 ± 0.4 96.3 ± 0.3 96.9 ± 0.2 96.4 ± 0.1 

2011      

OA (%)  96.8 ± 0.1 96.7 ± 0.1   

F1
 M

e
as

u
re

 (
%

) 

LCZ 2 Compact mid-rise 73.2 ± 1.0 77.6 ± 0.7   

LCZ 3 Compact low-rise 54.5 ± 2.5 55.8 ± 1.2   

LCZ 4 Open high-rise 75.4 ± 0.9 77.2 ± 0.7   

LCZ 5 Open mid-rise 57.6 ± 0.7 56.4 ± 1.1   

LCZ 6 Open low-rise 60.8 ± 2.4 56.8 ± 1.7   

LCZ 8 Large low-rise 89.0 ± 1.4 91.4 ± 0.4   

LCZ 10 Heavy industry 68.8 ± 0.4 60 ± 0.2   

LCZ A Dense trees 98.9 ± 0.2 99.4 ± 0.1   

LCZ B Scattered trees 60.4 ± 1.4 68.2 ± 2.0   

LCZ C Bush, scrub 70.0 ± 3.3 72.5 ± 1.4   

LCZ D Low plants 86.6 ± 2.2 83.2 ± 2.8   

LCZ G Water 100.0 ± 0.0 100.0 ± 0.0   

LCZ H Agricultural greenhouse 96.9 ± 0.7 95.5 ± 0.9   

2005      

OA (%)   97.4 ± 0.1 97.7 ± 0.1 97.3 ± 0.1 

F1
 M

e
as

u
re

 (
%

) 

LCZ 2 Compact mid-rise  75.6 ± 1.8 79.0 ± 2.0 74.6 ± 1.5 

LCZ 3 Compact low-rise  47.6 ± 2.8 48.3 ± 4.1 40.2 ± 5.3 

LCZ 4 Open high-rise  62.9 ± 2.2 61.1 ± 2.1 56.4 ± 2.4 

LCZ 5 Open mid-rise  63.9 ± 3.8 67.4 ± 2.1 72.4 ± 4.3 

LCZ 6 Open low-rise  85.1 ± 1.6 85.7 ± 2.7 81.4 ± 2.1 

LCZ A Dense trees  99.3 ± 0.0 99.4 ± 0.1 99.5 ± 0.0 

LCZ B Scattered trees  75.8 ± 2.8 80.5 ± 2.1 74 ± 3.6 

LCZ C Bush, scrub  62.3 ± 0.8 67.0 ± 3.4 66.2 ± 5.2 

LCZ D Low plants  67.1 ± 3.3 75.1 ± 2.5 73.4 ± 1.6 

LCZ G Water  99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 

LCZ H Agricultural greenhouse  93.0 ± 1.0 95.7 ± 0.7 94.6 ± 0.4 
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The confusion matrix of the LCZ map obtained by using workflow A is shown in Appendix 5 and the 

confusion matrices of the different years with an appropriate kernel size is shown in Appendix 6 to 

Appendix 8. For the LCZ map of 2005, the highest OA with the lowest SD is achieved using a kernel size 

of 9x9, while for the maps of 2011 and 2017 this was achieved using a kernel size of 5x5 or 7x7. The 

F1-scores for the LCZ map of 2005 with kernel size 9x9 gave the best results. For the LCZ map of 2011 

with kernel size 7x7, the best F1-scores with the lowest SD were achieved for the urban zones. Because 

of this, a kernel size of 7x7 is preferred over a kernel size of 5x5 for 2011, despite the little higher OA 

of the LCZ map with kernel size 5x5. Kernel size 9x9 was not tested due to the high possibility of having 

both a higher OA and F1 scores of the urban zones. For 2017, the LCZ maps with kernel size 5x5 gave 

the highest F1-scores and the lowest SD for the urban zones. For this reason, a kernel size of 5x5 is 

preferred for 2017. For all the different years and all the different kernel sizes, it can be noticed that 

compact low-rise (LCZ 3) has the lowest F1-score of the urban LCZs, and a higher SD, this is especially 

the case for 2005 and 2011. Also LCZ 5 and LCZ 6 have a lower F1-score and a somewhat higher SD. 

The natural LCZs gave in general better F1-scores. 

 

4.1.2 LCZ localisation 
The final LCZ maps of 2005, 2011 and 2017 with their appropriate kernel sizes are shown in Figure 13. 

In Table 6, the area of every LCZ is shown for the different years. In Figure 14 and 15 the LCZs are 

expressed relative to respectively the total area and the total urban area. 

The LCZ maps (Figure 13) show the landcover pattern of Kunming between 2005 and 2017. For all the 

different years, the centre of Kunming is mostly covered with compact mid-rise (LCZ 2), the Southwest 

of the Dianchi lake has the most agricultural land (LCZ D and LCZ H) and the mountainous areas are 

mostly covered with dense trees (LCZ A), scattered trees (LCZ B) and bush, scrubs (LCZ C).  

In 2005 (Figure 13A), the presence of compact high rise (LCZ 1), open high rise (LCZ 4), lightweight (LCZ 

7), sparsely built (LCZ9), heavy industry (LCZ 10), bare rock or paved (LCZ E) and bare soil or sand (LCZ 

F) is negligible. Small villages of compact low-rise (LCZ 3) and compact mid-rise (LCZ 2) are located 

between zones of low plants (LCZ D) or agricultural greenhouse (LCZ H).  

In 2011 (Figure 13B), compared to 2005, the presence of open high-rise (LCZ 4) and open mid-rise (LCZ 

5) is more pronounced in the outskirts of the city and large low-rise (LCZ 8) is present in greater 

abundance in the South of the centre. Due to the construction of the airport in the Eastern part of 

Kunming in 2012, open mid-rise (LCZ 5) and large low-rise (LCZ 8) is present in this region and in the 

direction to it. In the East-side of the Dianchi Lake, a mixture of compact mid-rise (LCZ 2), open mid-

rise (LCZ 5) and large low-rise (LCZ 8) is found. Areas with agricultural LCZ are less dominant compared 

to 2005. Heavy industry (LCZ 10) has increased a little and is visible in the Northwest of the Dianchi 

lake and in the Northern direction of the city centre. Areas with compact high-rise (LCZ 1), lightweight 

(LCZ 7), sparsely built (LCZ 9), bare rock or paved (LCZ E) bare soil or sand (LCZ F) are still not present 

or are too small to be mapped.  

In 2017 (Figure 13C), the presence of open high-rise (LCZ 5) has increased and the presence of compact 

mid-rise (LCZ 2) has decreased in the outskirts of the city. The South of Kunming is getting more 

urbanised by open high-rise (LCZ 5) and open mid-rise (LCZ 4). In the East side of the Dianchi lake the 

presence of open mid-rise (LCZ 4) has also increased, while the amount of compact mid-rise has 

decreased. Zones of compact high-rise (LCZ 1) are now more present but still occupy a small area of 

the urban area of Kunming (1.1%; Figure 15). 
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Figure 13. LCZ -maps from 2005 with kernel size 9x9 (A), 2011 with kernel size 7x7 (B) and 2017 with kernel size 5x5 (C). 
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                    Table 6. Total occupied area of each LCZ for the different years. 

 

 

 

 

 

 

 

 

 

 

 

4.1.3 LUCC between 2005 and 2017 
The landcover changes that occurred between 2005 and 2017 can be seen on the LCZ- maps in Figure 

13 and on the histograms in Figures 14 and 15. The urban growth between 2005 and 2011 (Figures 

13A, 13B), is seen in both Northern, Eastern and Southern direction of the centre where natural LCZ 

are replaced by urban LCZ. In addition, the West side of the Dianchi Lake is more urbanised. Between 

2011 and 2017 (Figures 13B, 13C), most of the LUCC consists of the conversion of urban LCZs to other 

urban LCZs. In addition, the urbanisation to the South is more pronounced. 

 

The biggest LUCC is the conversion of low plants (LCZ D) to urban zones, whereas LCZ D decreases from 

16.7 % of the total area in 2005, to 9.1 % in 2011 and to 6.2 % in 2017 (Figure 14). Other important 

changes are the increasing areas of open high-rise (LCZ 4), open low-rise (LCZ 6) and large low-rise (LCZ 

8), whereas open high-rise (LCZ 4) and large low-rise (LCZ 8) had a spectacular growth. Open high-rise 

(LCZ 4) increased from 16.7 % of the urban area in 2011 to 21.1 % in 2017 and large low-rise (LCZ 8) 

went from 16.2 % of the urban area in 2005, to 26.1 % in 2011 and to 35.7 % in 2017 (Figure 15). 

Furthermore, the presence of compact high-rise (LCZ 1) has become noticeable, but is still fairly low 

(1.1 % of the urban area; Figure 15). 

Besides the big decrease of areas with low plants (LCZ D), other notable decreases in area are found in 

zones with compact low-rise (LCZ 3) and dense trees (LCZ A). Of the total urban area, compact low-rise 

(LCZ 3) decreased from 11.4 % in 2005, to 4.1 % in 2011, to 2.5 % in 2017 (Figure 15) and dense trees 

(LCZ A) decreased from 31.8 % of the total area in 2005 to 28.1 % in 2011 to 26.6 % in 2017 (Figure 14). 

Open mid-rise (LCZ 5) increased in total area over the period 2005-2017 (Figure 14), but decreased in 

percentage relative to the total urban area (Figure 16), which means that the total area of the LCZ does 

have a smaller increase compared to the increase of the total urban area. For compact mid-rise (LCZ 

2), a big reduction in percentage relative to the total urban area is seen (from 44.5 % in 2005 to 30.3 

% in 2011 to 12.1 % in 2017; Figure 15), while the percentage relative to the total area knows an 

 
 

2005 (km²) 2011 (km²) 2017 (km²) 

Urban LCZ LCZ 1 / / 13.6 

 LCZ 2 197.50 256.59 150.63 

 LCZ 3 50.64 34.88 30.77 

 LCZ 4 / 82.55 264.70 

 LCZ 5 60.54 73.53 105.34 

 LCZ 6 63.74 131.41 215.07 

 LCZ 8 71.80 221.22 444.53 

 LCZ 10 / 46.23 20.85 

Total urban area  444.20 846.41 1245.49 

Natural LCZ LCZ A 1 402.35 1 248.04 1 260.49 

 LCZ B 608.19 582.26 628.60 

 LCZ C 590.39 779.08 696.58 

 LCZ D 736.1 402.61 295.40 

 LCZ G 467.26 470.98 475.37 

 LCZ H 155.30 119.20 136.15 
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increase between 2005 and 2011 (4.6 % to 5.8 %; Figure 14) and a decrease between 2011 and 2017 

(5.8 % to 3.2 %; Figure 14). This means that between 2005 and 2011, the total area of LCZ 2 increased, 

but not to the same extent as the urban area. 
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Figure 15. Histogram of the LCZs with their corresponding percentage of the total urban area. 

Figure 14. Histogram of the LCZs with their corresponding percentage of the total area from 2005, 2011 and 2017. 
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4.2 Land surface retrieval 

4.2.1 Evolution of LST during 2004 -2017 
The LST of 2004, 2012 and 2017 is calculated and normalised and is shown on Figure 16. For May 2004 

(Figure 16A), the highest temperatures are found in the centre of the city and in some mountainous 

areas. The warmer regions are mostly located on more natural landscape around the lake and in the 

mountains. In the Dianchi lake, there are also some warm zones, which can be due to algae. The colder 

areas are found in water bodies and in the mountains. The white dots represent the clouds, which 

contain no data. For 2012 (Figure 16B), the areas in the South, the West and the East of the city have 

more hot areas in comparison to 2004. The warmer and colder areas stay more or less the same, except 

for the warmer regions in the lake, which are absent in 2012. In 2017 (Figure 16C), compared to 2012, 

the hot areas are more densified, the warmer regions have expanded and the colder areas are less 

cold.  

 

 

 

 C 
 

 
Figure 16. Normalised LST of Kunming from May 2004 (A), June 2012 (B) and May 2017 (C). 

A B 

C 
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4.2.2 Thermal behaviour of the different LCZs  
In Table 7, the mean LSTs of the different LCZs with their SDs are calculated for 2004, 2012 and 2017. 

The highest LSTs are found in compact mid-rise (LCZ 2), compact low-rise (LCZ 3), large low-rise (LCZ 8) 

and heavy industry (LCZ 10), whereas the lowest LST is found in water (LCZ G). The largest SD on the 

mean LST is for all the different years found in heavy industry (LCZ 10) and large low-rise (LCZ 8). For 

the other LCZs, the SD differs over the LCZs, which is due to the different time of taking the satellite 

image. 
 

Table 7. The mean LST (°C) for each LCZ in the month May 2017. 

 

 

4.3 Surface urban heat island intensity 

4.3.1 Evolution of the sUHI during 2004 - 2017 

General sUHII intensity of Kunming 
The sUHI intensities of 2004, 2012 and 2017 are shown in Figure 17. The sUHII increases from 2.31°C 

in 2004 to 3.7°C in 2012 to 3.84 °C in 2017.  

 

 

 Mean LST May 2004 ± SD (°C) Mean LST June 2012 ± SD (°C) Mean LST May 2017 ± SD (°C) 

LCZ 1 Compact high-rise / / 29,64 ± 1.11 

LCZ 2 Compact mid-rise 26.07 ± 2.18 33.48 ± 2.04 31.28 ± 2.9 

LCZ 3 Compact low-rise 24.94 ±1.79 32.95 ± 1.96 30.92 ± 1.98 

LCZ 4 Open high-rise / 31.81 ± 2.20 29.61 ± 1.57 

LCZ 5 Open mid-rise 24.28 ±1.80 32.52 ± 1.92 29.44 ± 2.35 

LCZ 6 Open low-rise 23.72 ± 1.66 31.81 ± 2.56 29.31 ± 1.36 

LCZ 8 Large low-rise 26.48 ± 2.74 33.97 ± 2.51 31.96 ± 3.31 

LCZ 10 Heavy industry / 34.29 ± 3.33 32.35 ± 3.38 

LCZ A Dense trees 21.54 ± 1.71 27.31 ± 2.17 25.31 ± 1.22 

LCZ B Scattered trees 23.92 ± 1.68 31.12 ± 3.02 28.32 ± 1.22 

LCZ C Bush, scrub 23.73 ± 1.95 30.83 ± 2.87 29.78 ± 1.43 

LCZ D Low plants 24.23 ± 1.48 31.52 ± 2.68 29.81 ± 1.75 

LCZ G Water 19.31 ± 1.53 23.71 ± 3.08 18.54 ± 1.56 

LCZ H Agricultural greenhouse 23.34 ± 1.34 31.32 ± 2.01 28.59 ± 1.21 

Figure 17. sUHI intensity of each LCZ of the three different years. 
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sUHII of the different LCZs over the different time periods 
The sUHIIs of each LCZ of 2004, 2012 and 2017 can be found in Table 8. Positive values indicate an 

intensifying effect on the sUHII, while the negative values indicate an UCI. In general, the sUHII for 

each LCZ increases between 2004 and 2017, except for open mid-rise (LCZ 5), dense trees (LCZ A) and 

scattered trees (LCZ B) where the sUHII for 2012 is larger than the sUHII for 2017. The highest positive 

sUHII are seen in heavy industry (LCZ 10) and large low-rise (LCZ 8), followed by compact mid-rise (LCZ 

2) and compact low-rise (LCZ 3). The lowest positive sUHIIs are found in scattered trees (LCZ B) and 

agricultural greenhouse (LCZ H). The only UCIs are found in areas with dense trees (LCZ A) and water 

(LCZ G). 

           Table 8. sUHI intensity of each LCZ of the three different years. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 18, the difference in sUHII of each LCZ is shown for 2004-2012 and 2012-2017. Between 2004-

2012, the sUHI-intensifying effects increased the most for compact low-rise (LCZ 3), open mid-rise (LCZ 

5), open low-rise (LCZ 6) and large low-rise (LCZ 8). For period 2012-2017, the largest increase in sUHI- 

intensifying effects are seen in bush and scrub (LCZ C) and low plants (LCZ D). The difference in sUHII 

of open low-rise is zero for the period 2012-2017. For the sUHI-mitigating effects, the zones with water 

(LCZ G) know a large increase in both periods 2004-2012 and 2012-2017.  
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LCZ-type sUHI intensity 2004 (°C) sUHI intensity 2012 (°C) sUHI intensity 2017 (°C) 

LCZ 1 Compact high-rise / / 2.9 

LCZ 2 Compact mid-rise 3.4 4.2 4.6 

LCZ 3 Compact low-rise 2.3 3.7 4.2 

LCZ 4 Open high-rise / 2.6 2.9 

LCZ 5 Open mid-rise 1.4 3.3 2.7 

LCZ 6 Open low-rise 1.1 2.6 2.6 

LCZ 8 Large low-rise 3.4 4.7 5.2 

LCZ 10 Heavy industry / 5.0 5.6 

LCZ A Dense trees -1.1 -1.9 -1.4 

LCZ B Scattered trees 1.3 1.8 1.6 

LCZ C Bush, scrub 1.1 1.6 3.1 

LCZ D Low plants 1.4 2.3 3.1 

LCZ G Water -3.3 -5.5 -8.2 

LCZ H Agricultural greenhouse 0.7 1.8 1.9 

Figure 18. Difference in sUHII of each LCZ for 2004-2012 and 2012-2017. 
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4.3.2 sUHI classification 
The sUHI classification with its 5 classes is shown in Figure 19. Very high LST temperatures and thus 

high sUHI (class 5) are found in most of the urban regions of Kunming, while very low and low LSTs 

(class 1 and 2) are found in the most of the natural and agricultural areas. Moderate LSTs (class 3) are 

present in the urban and the agricultural areas, and high LSTs (class 4) are only visible in some parts of 

the city. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. sUHI classification of Kunming for May 2017. 

Class 
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5. Discussion 

5.1 LCZ classification 
Different kernel sizes are used for the LCZ classifications of 2005, 2011 and 2017 in order to generate 

the best classification for that time period (Verdonck et al., 2017). For 2005, kernel sizes 9x9 and 11x11 

give the best classification, while for 2011 and 2017, kernel sizes 7x7 and 5x5 give a better result. The 

reason why higher kernel sizes are better for 2005, while smaller kernel sizes are better for 2011 and 

2017 is due to the urbanisation trend in Kunming. This trend causes the city to have more 

heterogeneous areas and smaller plots with mixed land uses. This is the result of the new model of 

urbanisation, which has as purpose to be more efficient, inclusive and sustainable (The world bank, 

2014). It should be noted that the difference in OA between the LCZ maps obtained by using a moving 

window and the LCZ maps without a moving window is bigger than the difference in OA between the 

LCZ maps with a moving window themselves. This has already been concluded in the study by Verdonck 

et al. (2017). 

For the three different years, the lowest F1-scores occur at compact low-rise (LCZ 3), open mid-rise 

(LCZ 5) and open low-rise (LCZ 6). For compact low-rise (LCZ 3), this lower F1-score is due to errors of 

commission (misclassification of LCZ 2 into LCZ 3) of compact mid-rise (LCZ 2). These misclassifications 

can have three causes. The first one is because of small difference between the characteristics of 

compact mid-rise (LCZ 2) and compact low-rise (LCZ 3), which are not always well distinguishable on 

the Landsat image. For instance, Landsat images give spectral information and are not useful to 

measure height levels and consequently cause misclassifications (Cai et al., 2017). The second reason 

is because of the mix of compact mid-rise (LCZ 2) and compact low-rise (LCZ 3) in the rural villages, 

which can cause errors of commission and omission of compact mid- and low-rise (LCZ 2 and LCZ 3). 

The reason why the misclassification due to these rural villages do not have much effect on the F1 -

score of compact mid-rise (LCZ 2) is because of the high occurrence of compact mid-rise (LCZ 2) in the 

centre of the city, while compact low-rise (LCZ 3) mostly only occur in the rural villages. The third and 

final cause for the lower F1-score of compact low-rise (LCZ 3) are the building constructions that 

change during the year. The appearance of these building constructions can change from bare soil to 

constructions of some height. Since the training areas of all the different LCZs can have spectral 

information of bare soil, misclassifications of these areas can easily be made. In addition, the height 

and the surface material of the construction can change during the year and alter the spectral 

information. The lower F1-score of open mid-rise (LCZ 5) and open low-rise (LCZ 6) is mostly due to 

errors of commission and omission of open mid- and low-rise (LCZ 5 and LCZ 6). The reason for these 

misclassification can be due to the combination of similar characteristics of the two LCZs and the 

limited information of the Landsat images on the height. This is especially the case for the suburbs 

areas containing open mid-rise (LCZ 5) buildings that only consist of four or five floors. A second reason 

are the construction sites that change during the year. 
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5.2 Thermal behaviour of the different LCZs 
The obtained results for the LST is based on satellite observations (Landsat 8) and thus ignore thermal 

responses of the vertical surfaces. Only the surface temperatures of the satellite subpoint on the 

surface of the Earth that is centred below the satellite, are analysed. Because of this, the results are 

not the same as the general thermal responses of any particular LCZ (Dobrovolný & Krahula, 2015). 

Therefore, the results only provide a partial, but nevertheless coherent, insight into the nature of the 

LSTs of the LCZs. In addition, the LSTs of the different years are obtained by only one moment in time 

and can therefore not give a general LST regime for the different LCZs. 

The highest LST of the LCZs is found in heavy industry (LCZ 10), which is the result of the industrial 

activities and the material from which the factories are built. This causes high LSTs in industrial areas 

during daytime, which has been confirmed in many other studies (e.g. Geletič et al. (2016) and Roth et 

al. (1989)). The land surface temperature in the perimeter of factories also increases and may cause a 

buffer zone. This buffer zone can affect the surface temperatures of other areas (Abdelnasser & El 

Shirbeny, 2016). The second highest LST is found in large low-rise (LCZ 8). This can be due to the 

presence of LCZ 8 in the buffer zone of heavy industry (LCZ 10). Large low-rise (LCZ 8) has also a higher 

variability. This higher statistical variability of the LST in this zone can be due to the location of large 

low-rise (LCZ 8), since not all the LCZ 8 are located near industrial area. Another explanation for the 

higher statistical variability can be due to the different thermal properties associated with the large 

roof surfaces (Akbari & Levinson, 2008). Compact mid- and low-rise (LCZ 2 and LCZ 3) do have a similar 

LST as large low-rise (LCZ 8) and heavy industry (LCZ 10). The typical LST for compact mid-rise (LCZ 2) 

and compact low-rise (LCZ 3) can be the result of the central location of the zones, the sky view factor 

(Scarano & Sobrino, 2015), anthropogenic heat flux and the absence of green elements (Chakraborty 

et al., 2015; Meng, 2017).  

The sky view factor has a positive correlation with LST, which means higher sky view factors are 

associated with higher LST during daytime (Scarano & Sobrino, 2015). This is because of the larger 

contact between solar radiation and surfaces. Because compact mid-rise (LCZ 2) has a lower sky view 

factor as well as a higher LST, other factors need to be included. Compact mid-rise (LCZ 2) is mostly 

located in the city centre and contain a lot of anthropogenic heat sources, including vehicle engines, 

domestic combustion processes and human metabolism due to the higher population density in the 

centre (Kotthaus & Grimmond, 2012) These heat sources have an impact on the surface temperature 

by means of the surface-energy balance that channels the anthropogenic heat into heating the urban 

surfaces (Bohnenstengel et al., 2014). The speed of this process is dependend on the material (heat 

capacity), of the urban surface. In addition, the absence of the green elements inhibit the possibility 

to cool down the area by increasing the latent heat flux.  

Compact low-rise (LCZ 3) has a similar LST as compact mid-rise (LCZ 2), but a fraction smaller. Compact 

low-rise (LCZ 3) has a larger sky view factor than compact mid-rise (LCZ 2), which means a larger surface 

area can be reached by solar radiation and can be heat up during daytime, compared to compact mid-

rise (LCZ 2). Nevertheless, due to the location (rural villages) of compact low-rise (LCZ 3) and smaller 

patch size and lower anthropogenic activity of the zone, the LST is little smaller than compact mid-rise 

(LCZ 2). 

Despite the high anthropogenic heat flux and absence of green elements in zones with compact high-

rise (LCZ 1), the LST is lower in these areas, compared to compact mid- and low-rise (LCZ 2 and LCZ 3). 

This could be due to the presence of more shadowy areas on the surface of the buildings because of 

lower contact with solar radiation and/or due the result of other and better building material since 
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these zones are quite recent. Nevertheless, areas with compact high-rise (LCZ 1) are rather limited in 

Kunming and are also smaller than other LCZs. This can cause a less accurate mean LST for this LCZ.  

  

The lowest LST is found in areas with dense trees (LCZ A) and water (LCZ G). The lower LST for dense 

trees (LCZ A) can be due to the positive relation between sky view factor and LST. Areas with dense 

trees have a low sky view factor due the dense crowns. These dense crowns inhibit solar radiation and 

prevent surface heating of the trees. Furthermore, the crown evaporates water, which causes the 

latent heat flux to increase. The presence of dense crowns is depended on multiple factors, such as 

the season and diseases. But since Kunming has a special climate (‘Spring City’), the trees contain 

leaves throughout the year. The low LST for water bodies is the result of the small heat capacity, which 

causes a slow heating and cooling of the water. This is especially the case for large and deep water 

basins, such as the Dianchi lake. 

 

5.3 Urban development 

5.3.1 Urban expansion and densification 

Period between 2005 and 2011 
Between 2005 and 2011, urban growth with regard to the centre of Kunming was established in the 

north-western, eastern and southern part, which are led by both urbanisation plans and social-

economic, topographic and proximity factors (Gao et al., 2017). Several LUCC occurred between 2005 

and 2017, but the biggest change happened between 2005 and 2011 and consisted of the conversion 

of agricultural land to urban zones. This can be explained by rural-to-urban migration where Chinese 

farmers move to the city which in effect causes the agricultural land to decrease. Since accommodation 

is needed for these migrants, urban area increases at the expense of rural area. This LUCC confirms 

the study of Gong et al. (2012), which concluded that rural-to-urban migration occurs in the whole of 

China. 

Urbanisation in the north-western part could have been the result of the World Expo in 1999, which 

stimulated the progress of suburbanisation of residential housing (Qiyan et al., 2015) and due to the 

agglomeration of Anning with Kunming. In 2005, the west of the Dianchi lake (Anning) is mostly 

covered with agricultural land (LCZ D and LCZ H), compact mid-rise (LCZ 2) and compact low-rise (LCZ 

3). By 2011, the agglomeration with Kunming city is visible and most of the farmland has been 

converted into urban LCZ, such as compact mid-rise (LCZ 2) and open mid-rise (LCZ 5).  

In the south-eastern part of the city, the settlement of the Changshui airport in 2012 has led to the 

conversion of agricultural land to urban areas. Before the settlement of the airport, the region in the 

south-eastern part of the city centre was mostly covered with rural villages (LCZ 2 and LCZ 3) and 

agricultural land (low plants; LCZ D). In 2011, the airport was under construction and is classified as 

large low-rise (LCZ 8) and the direction to the airport was densified with mostly large low-rise (LCZ 8) 

and building constructions of open mid-rise (LCZ 5). The occurrence of large low-rise (LCZ 8) and open 

mid-rise in that area can be respectively due to the presence of a wood factory and establishment of 

(touristic) residences. 

For all the regions, the percentage of compact mid-rise (LCZ 2) relative to the total urban area 

decreased (Figure 15, page 34), while the total area of compact mid-rise (LCZ 2) increased (Table 6, 

page 33). This is probably due to insufficient new areas with compact mid-rise (LCZ 2), compared to 

the total new areas with urban LCZs. Another possible factor is the absence of open high-rise (LCZ 4) 
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in the classification of 2005. This can cause open high-rise (LCZ 4) zones to be misclassified as compact 

mid-rise (LCZ 2) and can lead to a higher total area of compact mid-rise (LCZ 2), compared to the reality. 

Nevertheless, this amount should be relative small or even neglectable. 

Period between 2011 and 2017 
Between 2011 and 2017, there has both been an expansion and densification, as seen in Figures 13B 

and 13C, page 32. The expansion is most commonly noticed in the eastern and southern part relative 

to the centre of Kunming and is a result of both agglomeration and the settlement of the airport. The 

expansion causes areas with agricultural land (LCZ D and LCZ H), compact low-rise (LCZ 3) and compact 

mid-rise (LCZ 2) to decrease because of the removal of rural villages for apartment buildings (LCZ 1, 

LCZ 4, LCZ 5) or suburbs (LCZ 6). New areas with compact low-rise (LCZ 3) are rare since these zones 

cannot provide plentiful residences compared to higher LCZs. Aside from the expansion, there is 

densification in the already existing urban areas, for example in the western region where open high-

rise (LCZ 4) and open mid-rise (LCZ 5) have replaced or were added to the already existing compact 

mid-rise (LCZ 2). This densification is the result of the new model of urbanisation in China. Through 

densification and compact building, the ‘compact city’ approach of the urbanisation model wants to 

counteract the negative effects of urban sprawl, such as ineffective land use and environmental 

problems (Haaland & van den Bosch, 2015). It also spares farmland, which is getting more important 

in China since the current available amount of farmland is close to the ‘red line’ of 120 million hectares. 

This red line is considered to be the minimum area necessary to ensure food security. The decreased 

reduction of agricultural land is noticeable in Kunming, as shown in Figure 14 and in Table 6. 

Densification of the urban areas also enhances the efficiency, reduces carbon emissions and 

infrastructural costs (The world bank, 2014). 

 

The urbanisation in the eastern part of Kunming is mostly the result of the establishment of the new 

airport Changshui, that was officially opened in 2012. The Changshui Airport is the fourth largest 

airport in China and connects Kunming to the primary cities in Asia (Qiyan et al., 2015). Because of this, 

the airport has significantly promoted the development of the urbanisation and tourism in the Yunnan 

Province (Jian et al., 2017). The urbanisation to the south can mostly be explained by the Kunming-

Yuxi integration in 2011, which is affected by topographic factors, such as the Dianchi lake and the 

mountains. The biggest LUCC that happened in the south is the conversion of agricultural land into 

urban LCZs. Especially open high-rise (LCZ 4), open mid-rise (LCZ 5) and large low-rise (LCZ 8) have been 

built there. The establishment of areas with open high-rise (LCZ 4) and open mid-rise (LCZ 5) to the 

south of the centre is probably due to the combination of the Kunming-Yuxi integration (Gao et al., 

2017), the new planning framework (Qiyan et al., 2015) and the need for more compact and green 

residences. The increase of large low-rise (LCZ 8) to the south of the centre can be the result of the 

establishment of new businesses (e.g. flower plantation and horticulture in the south) as a result of 

industrialisation and economic growth. 

 

Especially for 2017, areas with open high-rise (LCZ 4) are more commonly seen in the centre. This can 

be due to the combination of expansion, densification and the desire to create a greener environment. 

The expansion and densification is necessary because of increasing population and less available land. 

Because of this, apartment buildings with more floors can be desired. The choice for LCZs with more 

green is the result of the bigger awareness of the need for a better living environment (Wang et al., 

2012), especially in terms of air quality. Trees in streets are important for improving the urban 

environment (Wang et al., 2018) and have multiple advantages. The trees provide ecosystem services 
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that improve the quality of the environment and human life. The trees can conserve energy, remove 

air pollutants, sequestrate CO2 and reduce storm water runoff (Armson et al., 2013; McPherson et al., 

2016; Soares et al., 2011). Nevertheless, the trees also produce volatile organic compounds (VOC) and 

can disturb the upward airflow when streets are narrow and trees are close to each other (Nowak et 

al., 2000). In case of the open LCZs, there is more open space and these negative effects should not be 

a problem. In terms of human life, it creates a more pleasant living environment and can increase real 

estate values by increasing the attractiveness and recreational opportunities (Wang et al., 2018). 

Changes in LST 
The urban expansion is also visible on the LST maps. The rapid urbanisation in Kunming has altered the 

local thermal environment, especially by increasing the LST in the zones surrounding the urban core. 

This confirms the study of Zhou & Wang (2010). Between 2005 and 2017, the areas with higher LSTs 

have increased sharply. The LST increased mostly in areas that were converted from vegetated land, 

such as forests and agricultural land, to built-up land. This change consists of multiple stages. In the 

first stage, vegetation is removed and the surface energy balance changed. This increases the sensible 

heat flux at the cost of the latent heat flux, due to the loss of evapotranspiration (Owen et al., 1998). 

The second stage is the conversion of bare soil into impervious surface, which changes the moisture 

balance. This reduces the water storage of the land and further strengthens the sensible heat flux. In 

addition, the thermal environment gets warmer due to the modifications in the thermal properties of 

the land surface, such as heat capacity and thermal conductivity (Li et al., 2009). In the last stage, the 

impervious surface is developed and the resulting built-up areas facilitate the absorption of solar 

radiation. This whole process causes the increase of areas with higher LSTs from 2005 to 2017. Besides 

the Land use change, the increased human population and industrial activities also contribute to the 

changing urban thermal environment by rising the anthropogenic heat discharge. 

 

5.4 sUHII assessment 
The sUHII has an increasing trend between 2004 and 2017 and increased with 1.53 °C. This is due to 

the positive relationship between sUHII and urban area size, where a doubling of urban area can result 

in an increase in sUHII of 0.7 °C (Zhou et al., 2017). The size of the urban area can explain almost 87% 

of the sUHI, but with large spatial and temporal variations. The positive correlation between sUHI and 

the urban area size is higher in regions where the thermal characteristics of the surrounding landcover 

is more homogeneous. This is the case in Kunming where the urban areas are surrounded by large 

areas of homogeneous forest and agricultural land (Li et al., 2017). The urban area in 2005 (444.20 

km²) has almost tripled in 2017 (1245.49 km²), which lead to even a higher increase in sUHII than 

expected according to  Li et al. (2017).  

The reason why the sUHII increases with increasing size of urban area is due to the lower albedo, higher 

thermal conductivity and larger heat capacity, which result in a higher surface heat storage that comes 

along with the implementation of impervious surfaces. Other sUHI-induced factors are population, 

energy consumption and air pollution, due to the effect on the surface-energy balance, that leads to 

the heating of the urban surfaces (Bohnenstengel et al., 2014). Several studies, focusing on big cities 

in China, have found that a higher LST is linked with an increase of patch density, aggregation and 

irregularity of the built-up class (Li et al., 2011; Zhou et al., 2011). 
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5.4.1 sUHII of the different LCZs 
Whether LCZs can mitigate or intensify the sUHII is self-evidently depended on their LST regime. 

Different land cover types cause different feedbacks to LST, and thus to the sUHII, due to the variation 

of their physical and biochemical characteristics (Du et al., 2016; Jin et al., 2011; Wang et al., 2016). 

Besides the properties of the land cover of the LCZ, local climatic conditions, such as precipitation, 

temperature, soil moisture and air humidity, have influence on the correlation between urban 

landscapes and the UHI-effect (Peng et al., 2014; Zhao et al., 2014). These local climatic conditions are 

not included in this study. 

The intensities of the sUHIs are different in the LCZs. The LCZs that intensify the sUHII of Kunming the 

most are heavy industry (LCZ 10), large low-rise (LCZ 8), compact mid-rise (LCZ 2) and compact low-

rise (LCZ 3). The LCZs that mitigate the sUHII are dense trees (LCZ A) and water (LCZ G). This is the case 

for all the three different years and is due to the characteristics of the land cover type in these zones, 

which are already discussed in the section of the LST regime in the LCZ. 

For most of the LCZs, the sUHII increases between 2004 and 2017, except for open mid-rise (LCZ 5), 

dense trees (LCZ A) and scattered trees (LCZ B), where the sUHII is the highest in 2012 instead of 2017. 

This can be due to more bare soil in 2012 for dense trees (LCZ A) and scattered trees (LCZ B), which will 

lead to a higher LST than normally is expected since the LST of bare soil or sand (LCZ F) is higher than 

the land cover in these zones. For open mid-rise (LCZ 5), the higher sUHII in 2012 can be due to higher 

accuracy of the classification of the zone, compared to 2004 and 2017.  

In general, the biggest increase in sUHII of the LCZs is seen between 2004 and 2012. This is because of 

the amount of converted land in that time period, which is larger than between 2012 and 2017, due 

to the greater urban expansion and due to the larger time period in between. These two reason are 

evidently correlated with each other.  

Between 2004 and 2012, compact mid-rise (LCZ 3), open mid-rise (LCZ 5), open low-rise (LCZ 6) and 

large low-rise (LCZ 8) zones have the largest difference in sUHII. This is probably due to densification 

and land cover changes where natural LCZs are converted into urban LCZs, f.e. in 2004 zones with 

compact low-rise (LCZ 3) are mostly surrounded by agricultural land, while in 2012, some of the 

compact low-rise (LCZ 3) will be surrounded by other built-up area. This will result in less heat that can 

escape due to the surrounding buildings. For large low-rise (LCZ 8), an additional reason can be due to 

the increasing area of neighbouring heavy industry (LCZ 10). This causes a warmer LST for large low-

rise ( LCZ 8) than when it would be surrounded by other built-up area or natural land cover.  

Between 2012 and 2017, the biggest difference in sUHII is seen in heavy industry (LCZ 10), bush and 

scrub (LCZ C) and low plants (LCZ D). For heavy industry (LCZ 10), it can be the result of densification in 

its surrounding areas. For bush and scrub (LCZ C) and low plants (LCZ D), this can be due to the amount 

of bare soil or sand (LCZ F), which has a larger LST than the LST in these LCZs. The presence of bare soil 

in bush and scrub (LCZ C) can be due to natural open spaces. For low plants (LCZ D), it can be due to 

fallow farmland or conversion to other built-up area since the LCZ map is from 2011 and conversion 

could be missed in the overlay with the LST map of 2012. 
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5.4.2 sUHII for 2017 in general 
For the situation in 2017, high sUHI are found in most of the urban regions of Kunming. Especially 

compact LCZs, large low-rise (LCZ 8) and heavy industry (LCZ 10) have a higher LST and have thus a 

higher UHI intensity. Compact LCZs have a higher sUHI because of its urban topography, also known 

as the ‘canyon effect’ (Oke, 1982), the population density and the absence of green elements. These 

results confirm the study of Cai et al. (2017). While urban LCZs can increase the sUHI intensity, water 

(LCZ G) and natural LCZs are important to mitigate the sUHI-effect. Due to the plan to incorporate more 

green parks in the city, the urban thermal environment could be moderated and can help to decrease 

the sUHI intensity in these urban zones. 
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6. Conclusion 
Drivers of urbanisation in Kunming are a combination of general drivers in China on the one hand and 

specific drivers in Kunming on the other hand. In China, urbanisation is mostly driven by economic 

growth (Chow, 2004) and rural to urban migration, whereby the latter is due to in-situ urbanisation of 

rural areas and natural population growth (Gong et al., 2012). In addition, Kunming is led by 

urbanisation plans (e.g. world horticultural expo in 1999, the new planning framework in 2003 and the 

new model of urbanisation in 2012; Qiyan et al., 2015) and social-economic, topographic (e.g. 

mountains, flat regions) and proximity factors (Gao et al., 2018).  

Accurate LCZ maps of 2005, 2011 and 2017 can be generated using a moving window with respectively 

a kernel size of 9x9, 7x7 and 5x5. The need for smaller kernel sizes of the later years can be explained 

by the urban development in Kunming. Kunming is characterised by a rapid urbanisation between 2005 

and 2017. In the period between 2005 and 2011, there was mostly a conversion of agricultural land 

into urban LCZs in order to expand the city for residences or industrial zones. Starting from 2011 

onwards, expansion decreased and focus changed to densification, where smaller plots with mix land 

uses are built over larger homogeneous areas with only one land use or one built up type (The world 

bank, 2014). In addition, there is a slow conversion of low and compact building zones to higher and 

more open building zones. This is an approach to have a more compact and green city. This trend is 

visible on the LCZ maps looking at the increasing areas with open high-rise (LCZ 4) and open mid-rise 

(LCZ 5). Next to the more compact and green residences, areas with large low-rise (LCZ 8) increased 

due to industrialisation of the city. As a result of land cover changes, urban expansion and 

densification, changes in the thermal climate of the city is inevitable. The urban expansion is in general 

responsible for higher surface temperatures due to concretisation, increasing anthropogenic heat and 

building areas, which is visible on the LST maps of 2004, 2012 and 2017. Nevertheless, the impact of 

urbanisation can be influenced by building type, density, greenery and location. Higher LSTs are found 

in areas with heavy industry (LCZ 10), large low-rise (LCZ 8), compact mid-rise (LCZ 2) and compact low-

rise (LCZ 3). The higher surface temperature in heavy industry (LCZ 10) is caused by industrial activities 

and building materials of the factories. Furthermore, zones located around heavy industry are prone 

to having a higher surface temperature as a result of thermal buffer around these areas (Abdelnasser 

& El Shirbeny, 2016). Since areas with large low-rise (LCZ 8) are often located near heavy industry (LCZ 

10), the thermal buffer can be a reason for the higher mean LST in these zones. The LST of compact 

mid- and low-rise (LCZ 2 and LCZ 3) is somewhat lower than the LST of large low-rise (LCZ 8) and heavy 

industry (LCZ 10). The reason for higher surface temperatures in these zones can be due to the central 

location, sky view factor (Scarano & Sobrino, 2015), anthropogenic heat flux, high population density 

and the absence of green elements (Chakraborty et al., 2015; Meng, 2017). Areas with higher LSTs 

have the possibility to increase sUHII, while areas with lower LSTs can lower the sUHII. In Kunming, 

only areas with dense trees (LCZ A) and water (LCZ G) can mitigate the sUHI-effect. Between 2005 and 

2017, an increase is seen in sUHII, which is, among others, the result of the strong urbanisation. This 

increase in sUHII can cause heat stress in specific locations at certain points of time. Especially the 

centre of Kunming is prone to heat stress. Knowledge of the sUHII of the different LCZs, and its 

characteristics is therefore important for future urbanisation plans.  

In the currents plans, attempts will be made to limit further increase of (s)UHI and to achieve a more 

sustainable urbanisation (e.g. the 37 new green parks in Kunming, Scally 2011). In addition, promoting 

electric cars (Shirouzu & Jourdan, 2017), greenroofs (Xiao et al., 2014) and decreasing polluting 
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industry (Nace, 2017) is raising in China. Other measurements that can help mitigate the sUHI are 

sprinkling and watering surfaces of buildings, using building materials with lower albedo, reducing 

anthropogenic heat and using more pervious surfaces (Meng, 2017). 

7. Further Research 
With the expectation of a further population increase and climate change challenges, Kunming is still 

in a developing phase, especially since its current environmental goals are not yet achieved. Because 

of this, further research can be conducted on the following up of the urbanisation in Kunming, with 

emphasis on future urbanisation plans, the feasibility of the plans and their impact on social, cultural, 

economic and environmental level. 
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Appendix 1. Region of interest, Kunming (Google Earth © 2017) 

Appendix 2. Training areas for the LCZ classification of 2017, Google Earth 2017. 
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Appendix 3. Training areas for the LCZ classification of 2011, Google Earth 2017. 

Appendix 4. Training areas for the LCZ classification of 2005, Google Earth 2017. 



61 
 

Appendix 5. Confusion matrix (%) of LCZ classification for 2017 (workflow A). 

 

 

 

 
LCZ 1 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ 10 LCZ A LCZ B LCZ C LCZ D LCZ G LCZ H 

LCZ 1 55.32 0.08 0 0.87 0.94 0.18 0.28 0 0 0 0 0 0 0.49 
LCZ 2 2.51 82.91 41.59 4.64 18.02 10.05 3.24 42.31 0 0 0 0 0 2.68 
LCZ 3 0 0.32 17.4 0.13 0.09 0.88 0.14 0 0 0 0 0.19 0 0.13 
LCZ 4 40.29 4.78 17.4 74.56 53.96 24.51 7.93 9.62 0.35 0.14 7.6 0.38 0.01 4.66 
LCZ 5 1.04 5.67 10.03 13.73 14.53 28.92 0.9 1.92 0.01 0 2.92 0 0 1.11 
LCZ 6 0 0.97 5.9 1.62 5.94 29.98 1.03 0 0 0.28 0.58 1.9 0 0.55 
LCZ 8 0.42 4.45 5.9 1.48 0.94 0.18 79.39 11.54 0.03 0 0 1.9 0 2.83 
LCZ 10 0 0.32 0 0 0.85 0 1.65 34.62 0 0 0 0 0 0.09 
LCZ A 0.21 0 0 0.67 0.09 0.18 0.07 0 80.97 18.73 0.58 0 0 15.55 
LCZ B 0 0 0 0.61 0.38 0.53 0.34 0 4.39 22.45 8.77 12.36 0 1.3 
LCZ C 0 0.08 0.29 0.07 0.57 0.18 0.14 0 13.95 48.62 16.37 5.7 0 3.72 
LCZ D 0 0.08 1.47 0.81 1.04 3 1.17 0 0.23 9.78 62.57 69.58 0 1.08 
LCZ G 0.21 0 0 0 0 0 0.34 0 0.08 0 0 0 99.99 62.65 
LCZ H 0 0.32 0 0.81 2.64 1.41 3.38 0 0 0 0.58 7.98 0 3.15 

Appendix 6. Confusion matrix (%) of LCZ classification for 2005 (workflow B) with kernel size 9x9. 

 
LCZ 2 LCZ3 LCZ 5 LCZ 6 LCZ 8 LCZ A LCZ B LCZ C LCZ D LCZ G LCZ H 

LCZ 2 91.26 43.82 19.1 11.03 11.76 0 0 0 0.19 0 0.19 

LCZ 3 6.82 49.49 3.43 8.72 0 0 0 0 0 0 0 

LCZ 5 0.22 2.23 66.57 13.72 0 0 0 0 0 0 0 

LCZ 6 0 4.46 6.48 50.66 0.33 0 0 0 2.89 0 0 

LCZ 8 1.59 0 0 0 87.91 0 0 0 0 0 0 

LCZ A 0 0 0 0 0 99.32 27.48 0 1.54 0 0 

LCZ B 0 0 0 4.14 0 0.38 70.99 7.4 1.93 0 0 

LCZ C 0 0 0 0 0 0.13 1.53 85.23 0 0.02 0 

LCZ D 0 0 4.42 8.97 0 0.05 0 7.37 87.48 0 5.35 

LCZ G 0 0 0 0 0 0.12 0 0 0 99.98 0 

LCZ H 0.11 0 0 2.76 0 0 0 0 5.97 0 94.46 
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 LCZ 2 LCZ 3 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ 10 LCZ A LCZ B LCZ C LCZ D LCZ G LCZ H 

LCZ 2 93.21 32 0.56 24.56 20 2.02 0 0 0 1.34 0.62 0 0 

LCZ 3 0.85 48.5 0 0.1 4.27 1.28 0 0 0 0 0 0 0 

LCZ 4 1.32 12.43 94.5 19.24 3.64 0 0 0 0 0 0 0 0 

LCZ 5 2.17 2.19 4.94 49.68 25.25 0 0 0 0 0 0 0 0 

LCZ 6 0 4.66 0 2.46 45.59 0 3.75 0 0 0 3.49 0 0 

LCZ 8 1.13 0 0 0.1 0 90.7 20 0 0 26.17 4.52 0 0 

LCZ 10 1.23 0 0 0 1.25 6 73.75 0 0 0 0 0 0 

LCZ A 0 0 0 0 0 0 0 99.54 21.49 0 0 0 0 

LCZ B 0 0 0 0 0 0 0 0.06 50.79 24.16 4.52 0.01 0.11 

LCZ C 0 0 0 0 0 0 2.5 0.4 27.72 46.99 0 0 0 

LCZ D 0 0.22 0 0 0 0 0 0 0 1.34 82.13 0 7.18 

LCZ G 0 0 0 0 0 0 0 0 0 0 0 99.99 0 

LCZ H 0.09 0 0 3.86 0 0 0 0 0 0 4.72 0 92.71 

Appendix 7. Confusion matrix (%) of LCZ classification for 2011 (workflow B) with kernel size 7x7. 

 
LCZ 1  LCZ 2 LCZ3 LCZ 4 LCZ 5 LCZ 6 LCZ 8 LCZ 10 LCZ A LCZ B LCZ C LCZ D LCZ G LCZ H 

LCZ 1 68.48  0.16 0 2.15 0.09 0 0 0 0 0 0 0 0 0 

LCZ 2 0  96.68 19.47 0.87 23.02 1.59 1.59 0 0 0 0 0 0 0 

LCZ 3 0  0.73 59.29 0.07 0.47 0 0.55 0 0 0 0 0 0 0.11 

LCZ 4 31.52  0.24 1.47 88.83 31.85 13.76 0.76 0 0 0 0 0.19 0 0.17 

LCZ 5 0  0.49 15.04 5.92 37.97 38.98 0.28 0 0 0 0 0 0 0.62 

LCZ 6 0  0.24 4.72 1.89 5.75 42.15 0 0 0 0 0 1.14 0 0.62 

LCZ 8 0  1.3 0 0.07 0 0 96.82 1.92 0 0 0 0 0 0 

LCZ 10 0  0.16 0 0.2 0.47 0 0 98.08 0 0 0 0 0 0 

LCZ A 0  0 0 0 0 0.35 0 0 97.31 33.33 0 0 0 0 

LCZ B 0  0 0 0 0 0.35 0 0 2.69 56.34 5.85 11.98 0.01 0 

LCZ C 0  0 0 0 0 0.18 0 0 0 10.33 88.3 3.61 0 0 

LCZ D 0  0 0 0 0.38 1.76 0 0 0 0 5.85 75.29 0 0 

LCZ G 0  0 0 0 0 0 0 0 0 0 0 0 99.99 0 

LCZ H 0  0 0 0 0 0.88 0 0 0 0 0 7.79 0 98.47 

Appendix 8. Confusion matrix of the LCZ classification for 2017 (workflow B) with kernel size 5x5. 
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