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Abstract

We investigate a new micro-macro acceleration algorithm for stochastic differential
equations (SDEs) with a time-scale separation. Standard explicit Monte Carlo time
steppers are computationally too expensive for highly stiff systems due to a very small
stability domain. The micro-macro acceleration scheme is able to take larger time steps
by a general four-step procedure. (i) We perform a short explicit Monte Carlo simulation
of the complete differential equation. (ii) At each microscopic time step we record some
macroscopic state variables of interest. (iii) We then extrapolate these variables over
a much larger time step. (iv) Finally, we build a new microscopic probability density
that is consistent with the extrapolated states, and deviates the least from the final
distribution obtained after the microscopic steps. The fourth step is called matching and
is the hardest part of the micro-macro acceleration method.

The goal of the thesis is to perform an efficiency analysis of the micro-macro acceleration
scheme. It is already known that the micro-macro acceleration scheme converges to the
full microscopic dynamics when the number of state variables increases to infinity and the
extrapolation and microscopic step sizes decrease to zero. In contrast, it is also known
that the stability domain for extrapolation is independent of the time-scale separation,
which allows for large extrapolation time steps.

We discuss both convergence and stability and proposes an object-oriented structure for an
efficient implementation. The first contribution of this thesis is a new convergence result of
the micro-macro acceleration scheme for linear SDEs with only slow-mean extrapolation.
This theorem is in contrast to the general convergence theorem that requires an infinite
hierarchy of state variables. The second contribution is an extensive efficiency analysis of
the acceleration scheme, presented in three parts. The first part is an a priori estimation
of how many state variables are required for accurate simulations, without performing
too many computations. This text discusses the effect of state selection for a linear
SDE and also considers a non-linear example. The second part investigates how large
the extrapolation time step can become before the micro-macro acceleration method
becomes less accurate than an approximate macroscopic model. We show that the micro-
macro acceleration scheme can simultaneously be more efficient than a pure microscopic
simulation and more accurate than an approximate macroscopic model. In the third part,
we consider two practical applications where the macroscopic approximations make a
steady-state modelling error. The micro-macro acceleration scheme is able to remove the
modelling error while extrapolating further than the microscopic time stepper.
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Abstract

We onderzoeken een nieuw micro-macro acceleratie algoritme om de simulatie van
stochastische differentiaalvergelijken met een tijdsschaal separatie te versnellen. Gewone
expliciete Monte Carlo methods zijn computationeel te duur voor stijve problemen
door hun kleine stabiliteitsgebied. De micro-macro acceleratie methode kan grotere
tijdsstappen nemen via een generieke procedure, in vier stappen. (i) Eerst doen we een
korte Monte Carlo simulatie van het stijve systeem. (ii) Na elke stap berekenen we een
aantal macroscopische toestanden. (iii) Deze toestanden extrapoleren we vervolgens
over een groter tijdsinterval. (iv) Tot slot construeren we een nieuwe microscopische
distributie die consistent is met de geëxtrapoleerde toestanden, matching genoemd. De
nieuwe verdeling is zodanig dat ze minimaal afwijkt van de laatst gekende verdeling na
de korte Monte Carlo simulatie. Matching is de duurste stap van het algoritme.

Het doel van deze thesis is een onderzoek naar de efficiëntie van het micro-macro
acceleratie algoritme. Er is reeds convergentie aangetoond wanneer het aantal toestanden
naar oneinding gaat en de tijdsstappen naar nul convergeren. Het stabiliteitsdomein van
de extrapolatie is ook onafhankelijk van de stijve component van het proces, waardoor
grotere stappen mogelijk zijn dan bij een microscopische simulatie.

We bespreken convergentie en stabiliteit en stelt een efficiënte object-geörienteerde imple-
mentatie voor. De eerste nieuwe bijdrage van de thesis is een nieuwe convergentiestelling
van de micro-macro acceleratie methode voor lineaire SDEs, met enkel extrapolatie van het
gemiddelde van de trage mode. Deze stelling staat in scherp contrast tot de algemene con-
vergentiestelling die een hiërarchie van oneindig veel toestanden veronderstelt. De tweede
bijdrage is een efficiëntie-analyse van de acceleratie methode, in drie delen. Het eerste is
een schatting van het aantal toestanden nodig voor een nauwkeurige simulatie. Deze tekst
bestudeert het effect van de toestandskeuze voor lineaire processen en beschouwt ook een
niet-linear systeem. Het tweede luik behandelt de grootste extrapolatie stap mogelijk
van de micro-macro acceleratie methode, vooraleer benaderende modellen voor de trage
mode accurater worden. Deze tekst voert een die analyse uit op een aangedreven linear
systeem. We vinden dat de maximale extrapolatiefactor stijgt naarmate de tijdsschaal
separatie groter wordt. Tot slot beschouwt het derde deel van de efficiëntie-analyse twee
modellen uit de literatuur: een bimodaal process en een molecule bestaande uit drie
atomen. De macroscopische benaderingen van de trage mode maken een steady-state
fout. Het micro-macro acceleratie algoritme echter volgt de microscopische dynamica
goed, terwijl grotere tijdsstappen mogelijk zijn dan de microscopische simulatie.
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Chapter 1

Introduction

1.1 Background

Many processes in nature can be described by a system of differential equations (ordinary,
partial or stochastic), in which a large time-scale separation is present. For example,
the relevant time scales for an individual particle in a fusion reactor relate to the time
between particle collisions, whereas the plasma as a whole evolves on a much slower time
scale [12]. Similarly, individual atoms in a polymer network vibrate on a time scale that
is much faster than the motion of the entire polymer molecule [32]. The difference in
time scales makes simulating such processes very costly. We need to capture the fast
dynamics accurately as they influence the slower time scales. In practice however, we are
only interested in the evolution of some slow functions of interest. Hence, not only we
need to use small time steps to capture the fast dynamics, we also need to compute a lot
of these time steps to simulate the slow evolution over long enough time intervals. This
is an inherent problem with stiff systems of equations.

In many cases, the fast variables are modelled using a stochastic process. This is the case
if some missing knowledge leads to some inherent stochasticity during the modelling stage.
Alternatively, if the fast dynamics is modelled via a high-dimensional partial differential
equation, deterministic grid-based numerical schemes soon become intractable. As a
result, Monte Carlo techniques are very attractive to solve inherent stochastic or high
dimensional problems with a reasonable accuracy. This thesis deals with an algorithm
to speed up the simulation of stochastic differential equations with a large time-scale
separation, while remaining truthful to the fast microscopic dynamics.

1.2 Techniques to overcome stiffness

There are many techniques that are able to overcome the issue of stiffness, both for
deterministic and stochastic problems. In this paragraph, we review implicit methods,
explicit methods with an extended stability domain, schemes that make use of approximate
macroscopic models, equation-free techniques and a new slow-fast acceleration method
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1. Introduction

recently developed at KU Leuven, which will be the focus of this thesis.

Implicit time steppers Implicit time integration methods have proven to be very
successful in the context of stiff ODEs [7]. These methods allow for much larger time
steps than their explicit counterparts because implicit methods generally have a much
larger stability domain. The computational cost of an implicit method is however higher
than for an explicit solver: at every time step a system of equations needs to be solved.
Nevertheless, implicit methods still are a major improvement over the only small steps
explicit methods can take.

A problem arises however when employing implicit techniques to SDEs [6]. The authors
of [24] have shown that these methods are unable to capture the probability distribution
of the fast modes. Implicit methods on stochastic problems yield very inaccurate results,
unless the time steps are very small. In other words, the big advantage of implicit
methods, e.g. larger time steps, is exactly what prevents them from working efficiently on
stochastic differential equations. For SDEs, there is no reason to choose implicit methods
over the simpler and more accurate explicit solvers.

S-ROCK It is possible to systematically enlarge the stability domain of explicit solvers
by the so-called S-ROCK (Stochastic Orthogonal Runge-Kutta Chebyshev) method
[1, 2, 20]. S-ROCK increases the stability domain by using a Runge-Kutta like stage-wise
scheme with Chebyshev polynomials. The method can be useful since a small stability
domain is one of the main drawbacks of explicit methods for slow-fast stochastic systems.
A drawback is a that S-ROCK schemes do not attain a high convergence order [21].

Approximate macroscopic models In specific situations, it is sometimes possible
to derive an approximate macroscopic model for the slow modes. Such an approximation
typically holds, in the limit when the time-scale separation goes to infinity [13, 29,
Chapter 11]. Examples of such approximate macroscopic models occur in the field of
molecular dynamics [22], bacterial chemotaxis [8] and many others. Using an approximate
macroscopic model, one can take much larger time steps to simulate the slow variables of
interest, while the averaged effect of the microscopic dynamics is correctly taken into
account.

Equation-free techniques In many situations however, an approximate macroscopic
model is not available in closed form. Methods for these kinds of problems are called
equation-free techniques, since there is no direct macroscopic model to simulate [18].
Another paradigm in this context is called heterogeneous multiscale methods (HMM) [3]
but this technique is equivalent to the equation-free formulation. Usually in an equation-
free context, one is only interested in a few macroscopic quantities, or state variables,
that describe the slow modes accurately enough.

A general four-way framework then exists to simulate the unavailable macroscopic model
over larger time intervals, explained in much detail in [19]. First, a short Monte Carlo

2



1.3. A micro-macro acceleration method

simulation of the microscopic model is performed with small time steps, attuned to the
fast dynamics. Second, at every microscopic step some macroscopic state variables of
interest are recorded, what is called restriction. Third, these macroscopic variables are
extrapolated over a much larger time step to accelerate the simulation. This step is
also called projective integration in the literature [19]. Finally, a new microscopic state
or distribution is built from the extrapolated macroscopic quantities in the lifting step.
Lifting obtains a unique distribution that is both consistent with and in conditional
equilibrium with respect to the extrapolated macroscopic states. The complete four-step
algorithm tries to accelerate the simulation of the complete stiff system by taking larger
time steps than the microscopic time stepper, while still maintaining accuracy.

The method with lifting however exhibits two drawbacks. First, it is only possible to
prove convergence of projective integration when the time-scale separation tends to
infinity [3]. In this limit, the fast variables settle almost immediately to their conditional
invariant distribution making larger extrapolation steps possible. If however the time-scale
separation is not that large (order 10, 100), a modelling error is introduced since the fast
modes are not modelled accurately enough. As these fast modes also influence the slow
modes, a lack of accuracy in the former variables induces an inaccurate approximation of
the latter. The second drawback of that lifting typically initializes the new microscopic
distribution in such a way that there is a large deviation from the exact microscopic
distribution. In practice, lifting usually precedes a few constrained simulation steps that
reduces the deviation from the distribution obtained after the microscopic time steps.
See [32] for more details. These constrained simulation steps are however computationally
very expensive.

1.3 A micro-macro acceleration method
Recently, a new micro-macro acceleration scheme was developed at KU Leuven [9] that
tries to alleviate the two drawbacks from the equation-free context. This new method
focusses on processes modelled by general stochastic differential equations in Itô sense

dX(t) = a(t,X(t))dt+ b(t,X(t))dW(t), X(t) ∈ G (1.1)

on the time interval [0, T ], where a(t,x) is the drift vector, b(t,x) the diffusion matrix
and W is an n-dimensional Wiener process. The set G ⊂ Rd is the domain of the random
variable X(t) and the initial distribution X(0) is independent from the Brownian motion
W. The proposed new micro-macro acceleration method replaces the expensive lifting
procedure by a new matching algorithm. Matching picks the probability density that
is closest to a prior distribution and is consistent with the extrapolated macroscopic
state variables. The prior is again the final distribution obtained after the microscopic
steps in the first stage. The L macroscopic state variables are defined as the expectation
E[Rl(X(t))] of given state functions Rl, of the process,

ml(µ) = E[Rl(X(t))] =
∫
G
Rl(x)dµ(x) l = 1, . . . , L (1.2)

3



1. Introduction

where µ is the associated probability law at every step. The restriction operator, defined
as the vector of states at every time step, then reads

RL(µ) = (m1(µ), . . . ,m1(µ)) = m(µ). (1.3)

The expected improvement over lifting is twofold. First, matching does not require a
constrained simulation afterwards, since the new matched distribution is already close
to the previous computed distribution. Second, the authors of [9] are able to prove
convergence of projective integration with matching to the exact microscopic distribution,
even if there is a finite time-scale separation. This convergence result is in sharp contrast
to equation-free methods, where there is only convergence when the time-scale separation
tends to infinity. As a consequence, projective integration with matching does not make
a modelling error for larger time-scale separations. The expected improvements make
the matching algorithm both faster and more accurate than projective integration with
lifting.

The acceleration algorithm converges to the exact microscopic dynamics when the step
sizes decrease to zero and when the number of state variables L increases to infinity [9].
There also exist stability bounds on the extrapolation step size above which the numerical
scheme diverges to infinity [10], more clearly explained in Chapter 4. However, no tangible
results exist on efficiency of the micro-macro acceleration method, i.e. the minimal
computational effort required to attain a certain accuracy during the simulation. The
computational cost of the micro-macro acceleration method decreases when the number
of state variables to match decreases. The cost also diminishes when the extrapolation
step increases so that we can take larger steps at the time. In both situations, the error
however increases.

1.4 Goal and contributions
The objective of the text is twofold. First we try to assess the choice of the number of
macroscopic states so that the acceleration method is accurate, and that adding an extra
state variable does not yield a significant improvement anymore. Chapter 5 discusses the
choice of states on a linear and non-linear SDE. Second, for many practical problems
it is possible to derive an approximate macroscopic model for the slow modes of (1.1).
We want to find how large an extrapolation step one can take above which the micro-
macro acceleration scheme becomes less accurate than the macroscopic approximation
to the inherently stiff SDE. In this situation, the micro-macro acceleration scheme is
more efficient than a microscopic simulation and more accurate than the approximate
macroscopic model. This way, the micro-macro acceleration scheme can outperform
current state-of-the-art acceleration methods, thereby proving the merit of the method.

The text is organized as follows:

• Chapter 2 goes in depth into the micro-macro acceleration algorithms and defines all
the four steps rigorously. It also contains the convergence theorem and introduces
the notion of relative-entropy matching. Chapter 2 is part of the literature study.

4



1.4. Goal and contributions

• Chapter 3 presents the implementation of matching and discusses some practical
implementation issues. The chapter also contains an efficient object-oriented
structure of the code and a case study to verify the correctness of the implementation.

• Chapter 4 is the beginning of the efficiency analysis and we discuss the micro-macro
acceleration algorithm on a linear SDE. More specifically, it contains novel proofs
on matching with a Gaussian prior and also presents a new convergence result for
linear SDEs 4. The chapter ends with a summary on stability. The new convergence
theorem is important since general convergence of the micro-macro acceleration
scheme requires an infinite hierarchy of macroscopic state variables, while the new
theorem only requires the slow mean. The downside is that it only works for linear
SDEs.

• Chapter 5 assesses what the effect of the number of extrapolated state variables
is for a linear scale-separated SDE. The chapter discovers an adequate number of
moments of the linear process that yields accurate simulation results, while avoiding
superfluous computational work.

• Chapter 6 studies the error as a function of the extrapolation time step and the
inherent time-scale separation of the process. This analysis is done for a periodically
driven linear system, for which we possess an approximate macroscopic model in
the limit of infinite time-scale separation. The chapter finds that the associated
maximal extrapolation factor for the micro-macro acceleration method gets larger
when the time-scale separation gets stronger, while maintaining an accuracy that is
higher than the limiting approximate macroscopic model. This is a novel result,
proving the merit of the micro-macro acceleration scheme.

• Finally, Chapter 7 presents two practical applications where the micro-macro
acceleration method outperforms macroscopic models in terms of accuracy and
microscopic models in terms of computation time. The first is a slow-fast bimodal
problem while the other is a set of equations that describe the behaviour of a
three-atom molecule, arising from molecular dynamics [22]. In both cases, the
approximate macroscopic models make a steady-state error. The micro-macro
acceleration method is able to eliminate the steady-state error, while still allowing
for larger time steps than a complete microscopic simulation.

• Chapter 8 contains the final conclusion.
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Chapter 2

The micro-macro acceleration
method

As mentioned in the introduction, the micro-macro acceleration method approximates
the true microscopic dynamics through some macroscopic state variables of interest,
in a four-way scheme. (i) A short burst Monte Carlo simulations of the SDE with a
particle ensemble. (ii) At every microscopic step, we record the state variables, also
called restriction. (iii) We then extrapolate these state variables over a much larger time
step. (iv) Finally, we compute a new distribution that is consistent with the extrapolated
states and minimizes some distance function, with respect to the prior distribution. The
final step is called matching and the prior distribution is the final distribution obtained
during the Monte Carlo simulation of step (i).

In this chapter, we discus the micro-macro acceleration scheme in more mathematical
depth, as introduced in [9], with similar notation. Section 2.1 introduces the complete
algorithm with the exact definition of the restriction, extrapolation and matching operator.
In Section 2.2, we set forth some properties these operators need to have. Based on these
properties, in Section 2.3 we state the exact convergence theorem of the micro-macro
acceleration method without proof. Finally, Section 2.4 introduces so-called relative-
entropy matching as an example of a practical matching operator that has all the required
properties. Relative-entropy matching will also be used throughout the text. We also
touch lightly on other possible matching strategies in the final section.

2.1 A General Micro-Macro Acceleration Algorithm

Figure 2.1 depicts a visual representation of one cycle of the acceleration method and
Algorithm 1 describes the four steps in more detail. Suppose we are given a weighted
Monte Carlo ensemble of J particles X n = (wj , Xn

j )Jj=1 at time tn = n∆t. The K inner
steps of the microscopic simulation are carried out with a time stepper Sn,k that is in
principle time dependent. This text only considers the well-known Euler-Maruyama
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2. The micro-macro acceleration method

Figure 2.1: Visual representation of the four stages of the micro-macro acceleration
algorithm 1. This figure was taken from [9].

method [31], which is a discretization of the SDE (1.1) with time step δt

Xn,k+1
j = Xn,k

j + a(tn + kδt,Xn,k
j )δt+ b(tn + kδt,Xn,k

j )
√
δtδW, δW ∼ N (0, 1), (2.1)

where X n,k = (wj , Xn,k
j )Jj=1 is the weighted Monte Carlo ensemble at time tn,k =

n∆t+ kδt.

The restriction operator RL was already defined in (1.3). In the context of Monte Carlo
simulations, a discrete version of the restriction operator is required that acts on a particle
ensemble, instead of a continuous probability density. The discrete operator reads

RL(X ) = (EJ [R1(X )], . . . ,EJ [RL(X )]). (2.2)

where X = (wj , Xj)Jj=1 is a weighted particle ensemble and EJ the finite weighted
expected value over this ensemble. The restricted macroscopic states at every microscopic
step are then given by mn,k = RL(X n,k). The extrapolation operator E extrapolates the
sequence of macroscopic state vectors (mn,k)Kk=0 over a time interval ∆t, to obtain a new
macroscopic state vector, written as

mn+1 = E((mn,k)Kk=0, δt,∆t).

We will only consider linear extrapolation in this text, so the extrapolation operator
becomes

mn+1 = mn,0 + ∆t
Kδt

(mn,K −mn,0), (2.3)

where mn,0 = mn. Finally, the matching operator PL(m, π) computes the distribution is
consistent with the macroscopic states m and minimizes some distance function

PL(m, π) = arg min
ν∈R−1

L (m)
d(ν, π), (2.4)
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2.1. A General Micro-Macro Acceleration Algorithm

with π the prior distribution and R−1
L (m) the set of all densities that are consistent with

the macroscopic states m. The function d does not have to be a true metric as long
as it bears some meaning of similarity between two probability measures. In fact, the
similarity function for relative-entropy matching in Section 2.4 is not a metric.

In the context of Monte Carlo simulations however, we need a discrete variant of the
matching operator that takes a particle ensemble as prior distribution and outputs a
particle representation of the matched distribution. Section 2.4 discusses three such
examples of discrete matching operators. With a slight abuse of notation, we will write
the particle ensemble as the second argument of the matching operator instead of the
underlying probability density. For the (weighted) Monte Carlo ensemble X n,K , the
fourth step of the micro-macro acceleration scheme can then be written as

X n+1 = PL(mn+1,X n,K). (2.5)

Throughout the text, we use superscript for temporal indices like n and k and subscript
for counting indices like j and l.

Algorithm 1 The general micro-macro acceleration algorithm for stiff SDEs.
Given a microscopic ensemble X n at time tn, a microscopic step size δt, the extrapolation
step size ∆t and a number of microscopic steps K such that Kδt ≤ ∆t. Let T be the end
time of the simulation and L the number of macroscopic state variables. The algorithm
produces the microscopic ensemble X n+1 in four steps:

(i) Monte Carlo simulation: simulate the microscopic ensemble X n over K small inner
steps of size δt by using an inner microscopic discrete time stepper

X n,k+1 = Sn,k(X n,k, δt)

(ii) Restriction: compute the macroscopic states corresponding to these microscopic
ensembles

mn,k = RL(X n,k).

(iii) Extrapolation: approximate the macroscopic states over a time interval ∆t using
the extrapolation operator

mn+1 = E((mn,k)Kk=0, δt,∆t)

(iv) Matching: compute a new ensemble consistent with these extrapolated macroscopic
states using the matching operator with prior distribution X n,K

X n+1 = PL(mn+1,X n,K)

and advance time with ∆t until the end time T is reached.
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2. The micro-macro acceleration method

2.2 Properties of the restriction and matching operators
To prove convergence of the micro-macro acceleration method, the restriction operator
RL cannot be built from just any set of macroscopic state functions. Every additional
macroscopic state function should add new information about the distribution it represents.
In other words, a new state function has to be linearly independent from the already
present functions. Also, in the limit as L goes to infinity, the functions Rl should uniquely
represent µ. In this limit, the modelling error in the restriction and matching step, for
finite L is completely removed. That is what the next assumption states. The statement
of the assumption is almost identical to the one in [9].

Assumption 1. The macroscopic state functions Rl, l ≥ 1 need to satisfy the following
conditions:

1. The state functions (Rl)Ll=1 are linearly independent on every non-null subset of G,
the domain of all state vectors

2. There is a one-to-one correspondence between the infinite sequence of macroscopic
states (ml(µ))∞l=1 and the distribution µ.

Another requirement of the Theorem 1 is that the restriction and matching operators
are inverses of each other in some sense. Applying the matching operator with a prior
distribution π and a macroscopic state m such that m = RL(π) should yield the prior
distribution π again. The converse also needs to be true: the restriction operator applied
to a matched distribution PL(m, π) should give the exact same macroscopic states m
that the matched density is consistent with. A pair of restriction and matching operators
that has these properties is called a restriction-matching pair. This definition was also
taken from [9].

Definition 1. Restriction-Matching pair. Suppose RL and PL satisfy

1. RL(PL(m, π)) = m for all (m, π) ∈ dom(PL)

2. PL(RL(µ), µ) = µ for all (RL(µ), µ) ∈ dom(PL)

then the pair (RL,PL) is called a Restriction-Matching pair.

Remark 1. Condition 1 implicitly states that the state vector m should always be
attainable by the restriction operator. In practice however, it sometimes happens that
the vector of extrapolated macroscopic state variables m fall outside the domain of the
matching operator and no density can correspond to these states. In practice, condition
1 is not always met and forms the basis for an adaptive time-stepping strategy, based on
matching failures. When the extrapolation step is smaller, the extrapolated states will
lie closer to the exact dynamics. There then is a higher probability that the extrapolated
states lie in the domain of PL so that the restriction operator can attain these states.
We discuss adaptive time stepping in more depth in Chapter 3. Condition 2 on the other
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hand, states that the function PL(m, .) is a projection. Indeed, let PL(m, π) = µ, then
P2
L(m, π) = PL(m, µ) = µ = PL(m, π) since µ is consistent with m.

2.3 Convergence Theorem
All elements are now in place to state the convergence theorem for the micro-macro
acceleration algorithm 1, first formulated in [9]. The theorem is stated in terms of general
restriction and matching operators, but assumes linear extrapolation. The proof also
requires some very technical assumptions that are explained in [9], but omitted here for
clarity.

Theorem 1. Consider an SDE of the form (1.1) with initial condition X(0) = X0.
Let Rl, l ≥ 1, be a sequence of macroscopic state functions, fulfilling Assumption 1.
Let (RL, PL)∞L=1 be a sequence of restriction-matching pairs fulfilling Definition 1 and
two technical conditions in [9]. Furthermore, consider a microscopic time discretization
scheme of order pS ≥ 1 with time step δt. Finally, let E denote linear extrapolation (2.3)
with step size ∆t and let K ∈ N be a number of microscopic steps with Kδt ≤ ∆t. If we
denote the solution of Algorithm 1 with L macroscopic state variables at time T as XN

L ,
then for any smooth enough function g we have

E(|g(XN
L )− g(X(T ))|) ≤ CL + C̃L((δt)pS + ∆t), (2.6)

in which CL and C̃L are constants that depend also on T, g and X0, with CL → 0 as
L→∞.

Loosely speaking, Theorem 1 says that the micro-macro acceleration Algorithm 1 con-
verges to the exact solution, when both the microscopic and extrapolation step size
decrease to zero and the number of macroscopic states L goes to infinity. One of the
downsides of the theorem is that it gives no precise expression for CL, the parameter
that contains information of how many states are needed to keep part of the error small.
The number of macroscopic state variables is application specific, and part of the thesis
is to discover what a good number of states is. We discuss the selection of adequate state
variables more in Chapter 5.

Remark 2. A few remarks about Theorem 1. First, the theorem omits some technical
conditions that the SDE and restriction-matching pair should have but these conditions
are nicely explained in [9]. The function g also needs to belong to a certain class of
functions, but the exact requirements are out of scope for this thesis. Every example
in this text obeys these conditions. Second, an advantage of Theorem 1 is that the
micro-macro acceleration method converges even when there is only a finite time scale
separation, in contrast to other multiscale techniques. As mentioned, in the equation-free
context, there is only converge when the scale separation goes to infinity. This is an asset
compared to other multiscale approaches. Finally, Theorem 1 only proves convergence
and does not say anything on the maximal extrapolation step ∆t possible to keep the
solution finite. This is related to stability and Chapter 4 goes deeper into this problem.
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2.4 Matching in f-divergence
In the remainder of the text, we will always uses so-called relative-entropy matching, an
instance of matching in ‘f -divergence’, introduced in [9]. Relative-entropy matching is also
called Kullback-Leibler matching, or KLD in short. In general, given a prior distribution
π and a vector of macroscopic state variables m that the matched distribution needs to
comply with, the objective of matching in f -divergence is to minimize the functional If

PL(m, π) = argmin
ϕ∈R−1

L (m)
If (ϕ|π) (2.7)

where

If (ϕ|π) =


∫
G f

(
ϕ(x)
π(x)

)
π(x)dx when supp ϕ ⊂ supp π

+∞ otherwise,
(2.8)

with f : [0,∞)→ [0,∞) a convex function such that f(1) = 0. The condition supp ϕ ⊂
supp π is very technical and states that ϕ should be absolute continuous with respect to
π. We will not go into further technical details, see [9] for more information.

A problem with (2.8) is that the solution of the optimization problem (2.7) does not
necessarily have to be a probability density. There is no guarantee that the solution is
positive over the domain G and that it has unit mass. To make it a density, we have to
make sure the solution of (2.7) has both properties. The first property can be readily
dealt with by considering the extension f+ of f such that f+(x) = +∞ when x < 0.
Using this extension, negative values for ϕ will have an infinite penalty so that these
negative values will not occur on a non-null subset of G. For the second property, we can
extend the restriction operator RL with an additional state function R0(x) = 1, such
that the matched density needs to have unit mass. For the remainder of this text, the
restriction operator will always contain the extra unit state, as zeroth component in RL.

The solution of the optimization problem (2.7) is given by [9]

PL(m, π) = (f∗+)′
(

L∑
l=0

λlRl

)
π, (2.9)

where f∗+ is the convex conjugate of f+, defined as f∗+(s) = sup
t≥0

(st− f(t)). The numbers

λ0, . . . , λL are the Lagrange multipliers associated to the optimization problem. These
multipliers are the solution of the non-linear system

RL

(
(f∗+)′

(
L∑
l=0

λlRl

))
= m, (2.10)

The Lagrange multipliers are in practice computed by a Newton-Raphson scheme, ex-
plained in Chapter 3. The solution to (2.10) is unique, if it exists, because the optimization
problem is convex.
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Relative-entropy matching Relative-entropy matching, an instantiation of matching
in f -divergence, is defined by choosing

f(t) =
{
t ln t− t+ 1, t > 0
0, t = 0.

(2.11)

Note that f is indeed convex and f(1) = 0. The minimization problem becomes

PL(m, π) = arg min
ϕ∈R−1

L (m)

∫
G

ln
(
ϕ(x)
π(x)

)
π(x)dx, (2.12)

so that we are effectively minimizing the Kullback-Leibler divergence (KLD) between the
functions ϕ and π. The KLD is also denoted by H(ϕ|π) in the context of information
theory and has some very important applications in image processing an machine learning,
in which we will not go deeper. The matched density looks as follows,

PL(m, π) = exp
(

L∑
l=0

λlRl

)
π (2.13)

where the Lagrange multipliers λl satisfy the non-linear system

∫
G
Rl(x) exp

(
L∑
l=0

λlRl(x)
)
π(x)dx = ml, l = 0, . . . , L. (2.14)

The authors of [23] have proven that relative entropy has all the required properties
for the convergence Theorem 1, such that the micro-macro acceleration method with
relative-entropy matching converges to the exact microscopic dynamics.

Other matching strategies Besides relative-entropy matching, there also exist differ-
ent strategies. We mention here L2D and L2N matching, introduced in [9]. L2D-matching
is also a special form of matching in f -divergence with the function f defined as

f(t) = 1
2(t− 1)2 (2.15)

such that the matching operator looks like

PL(m, π) = max
(

0,
L∑
l=0

λlRl

)
π, (2.16)

see [9] for more details. Finally, there also exists a matching operator that is not based
on the notion of f -divergence. Matching in L2-norm is defined as

min
ϕ∈L2(G)

‖ϕ− π‖22

subject to RL(ϕ) = m,
(2.17)
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2. The micro-macro acceleration method

The solution of the optimization problem is given by

ϕ(m, π) =
(∑L

l=0 λlRl
π

+ 1
)
π (2.18)

where the Lagrange multipliers λ0, . . . λL are the solution of the linear system HΛ =
m − RL(π). The matrix H is defined as (HL)j,k =

∫
GRj(x)Rk(x)dx. There is no

guarantee in the optimization problem itself that the matched density ϕ is positive
everywhere. The authors of [9] expand on this problem a bit more, but the only guarantee
for positivity is taking small enough extrapolation steps.

The original paper [9] explains L2N and L2D-matching in more detail and demonstrates
that L2N has all the required properties for the convergence proof. We will only use
these two strategies in Section 3.4 for numerical verifications.
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Chapter 3

Implementation of the
micro-macro acceleration
algorithm

In Chapter 1 and 2, we present all the mathematical concepts, formulas and insights
that are necessary to understand the micro-macro acceleration method. However, the
high-level formulation of Algorithm 1 is not detailed enough to implement readily. There
are three implementation details not mentioned in Chapter 2: an efficient formulation of
the Newton-Raphson solver, reweighting and resampling of the Monte Carlo particles
and adaptivity of the extrapolation time step. We discusses these practical aspects in
Section 3.1. We then go on to present an object-oriented structure of the code for an
efficient and comprehensible implementation in Section 3.2. Finally in Section 3.3, we
illustrates and validates the code on a practical example called FENE-dumbbells, which
is also discussed in [9]

3.1 Practical Implementation Issues

3.1.1 Newton-Raphson for relative-entropy matching

Matching is inherently an optimization problem and requires the solution of a system
of (non-)linear equations to find the Lagrange multipliers. We discuss here relative-
entropy matching where the system of equations to solve (2.14) is non-linear. A standard
Newton-Raphson iteration usually converges quite quickly to an accurate solution of
these systems.

In general, the Newton-Raphson procedure tries to approximate the zeros of a differen-
tiable function g : Rn → Rn by iterating

λk+1 = λk − (∇g(λk))−1g(λk) (3.1)
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with a well-chosen initial value λ0, that should be close enough to the exact solution λ∗.
Equation (3.1) uses the variable λ to make the link with Lagrange multipliers clear. The
iterative procedure converges quadratically to the true solution [33].

In the case of relative-entropy matching, the non-linear system g(λ) = 0 to solve is (2.14)
and reads

g(λ)l = ml −
∫
G
Rl(x) exp

(
L∑
l=0

λlRl(x)
)
π(x)dx = 0, l = 0, . . . , L. (3.2)

Differentiating g(λ) results in the Jacobian of the system

∇g(λ)k,l = −
∫
G
Rk(x)Rl(x) exp

(
L∑
l=0

λlRl(x)
)
π(x)dx. (3.3)

The involved integrals can be interpreted as expectations of some functions, relative to
the prior density π(x). Approximating the expected values by the weighted ensemble
(wj , Xj)Jj=1 of Monte Carlo particles from the microscopic simulation, gives

∇g(λ)k,l ≈ −
N∑
j=1

Rk(Xj)Rl(Xj) exp
(

L∑
l=0

λlRl(Xj)
)
wj , (3.4)

with the weights wj normalized such that
∑N
j=1wj = 1. The Jacobian matrix is symmetric,

so in practice only half of its entries needs to be computed.

The final choice that remains is the initial value λ0 of the Newton-Raphson procedure. A
good choice is to take the λ0 = 0 ∈ RL+1. When there is no extrapolation, i.e. ∆t = δt,
the prior distribution is equal to the matched distribution. Formula (3.2) then requires all
λl to be zero. If λ0 is not zero, there is a chance that the iterative scheme won’t be able
to converge to the exact zero multipliers, even in the simplest case without extrapolation.

3.1.2 Particle reweighting and resampling

Implementing matching by particle reweighting Matching produces a new prob-
ability distribution after every extrapolation step and sampling these densities can be
an expensive part of the algorithm. Standard sampling techniques like the accept-reject
method however, are not necessary. It is possible to sample the matched distribution in
linear time, using a reweighting method. Looking at the formulas for relative-entropy
matching (2.13), the matched density is the product of a function of the Lagrange
multipliers and the prior density.

PL(m, π) = exp
(

L∑
l=0

λlRl

)
π, (3.5)
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therefore, a weighted ensemble (wj , Xj)Jj=1, representing the prior distribution π, can be
reweighed during matching by

w′j = exp
(

L∑
l=0

λlRl(Xj)
)
wj (3.6)

such that (w′j , Xj)Jj=1 now represents the matched distribution obtained by relative-
entropy matching. Reweighting can also be performed in-place, because once a weight
wi has been updated to w′i, it is never required again for reweighting other particles Xj ,
j > i.

Particle resampling Due to the multiplicative behaviour of matching an ensemble
of particles, it may happen that some weights become very large and others very small,
causing a big spread. As a consequence, computing the expectations in the restriction
operator may become very inaccurate. In practice, it is therefore necessary to resample
the Monte Carlo particles every now and then so that all new particles have an equal
weight and still represent the same probability distribution.

One possible criterion to estimate a large spread, is by comparing the entropy of the
weights with the entropy of a set of all weights equal to 1/J , proposed in [9]. In the case
of relative-entropy matching, the relative entropy of a set of weights (wj)Jj=1 is

J∑
j=1

wj ln(Jwj) ∈ [0, ln J ].

When the relative entropy of the weights is larger than a certain threshold, it is necessary
to resample the particles such that they resemble the same density but with equal weights.
In practice, to resample quickly enough, we set the threshold to one tenth of the maximum
entropy, ln J . To reduce the overhead of computing entropies, the resampling criterion is
checked every five extrapolation steps.

One popular resampling method is so called stratified resampling [15], also discussed
more thoroughly in [9]. The idea is to duplicate certain particles nj times such that all
of these copies have weight 1/J . A practical implementation generates random numbers

uk = (k − 1) + ũk
J

, ũk ∼ U(0, 1)

and takes nj = #{uk|uk ∈ [
∑j−1
i=1 w

′
i,
∑j
i=1w

′
i]}. The number of particles in chosen such

that it yields an unbiased resampled distribution, in expectation.

3.1.3 Resolving matching failures by extrapolation time step
adaptivity

If the extrapolation time step ∆t is too large, the extrapolated macroscopic states m
may fall out of the domain of the matching operator PL. In this situation, there is
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no density ϕ such that RL(ϕ) = m, and matching will fail. One situation where this
happens often is when the slow dynamics changes relatively fast so that the macroscopic
states are extrapolated too far and hence deviate considerably from the exact states. The
micro-macro acceleration algorithm should be robust against matching failures. One way
of handling failures is by reducing the extrapolation step size when matching fails. Such
failures are very costly since they consume a lot of resources without adding any value. A
strong reduction of the extrapolation step size is required to prevent more costly failures
around this simulation step. Therefore the authors of [9] propose to reduce ∆t with a
factor of two when a matching failure occurs, and to increase the step with a factor of
1.2 when matching succeeds. The result is an adaptive acceleration algorithm that can
both quickly fall back when an matching error occurs and gently increase the step size
when everything works fine.

Defining a matching failure in practice is not straightforward. One possible way, proposed
in [9], is by looking at the number of Newton-Raphson iterations when finding the
Lagrange multipliers associated to matching. If the solver does not converge within
a reasonable amount of steps, we can safely assume that the solver will probably not
converge rapidly. Such a behaviour can be an indication of a matching failure. In practice,
a maximum number of iterations of 5 is usually sufficient. Even if the solver could
converge with more iterations than the predefined maximum number of iterations, it
is a good idea to reduce the extrapolation step size. The Newton-Raphson iterations
are the most expensive part and constitute a bottleneck in the algorithm. Reducing the
extrapolation step size will reduce the number of Newton-Raphson iterations and could
provide a speed up, compared to larger step sizes.

3.2 Object-oriented structure of the code

Now all practical details are in place for a robust implementation of the micro-macro
acceleration algorithm in Python. However, a decent object-oriented structure of the
code is also very important. There are three different matching strategies that can be
used, many possible microscopic time steppers besides a simple Euler-Maruyama method
and also many iterative solvers to solve the non-linear system besides the standard
Newton-Raphson method. A BFGS strategy can also be used and could speed up the
iterative solver. Besides these alternatives, there could be variants of the coarse projective
integration method using lifting instead of matching. All these four different parts have
to play well with each other in a carefully designed object-oriented structure.

One popular method to combine all these parts is called dependency injection [28].
The main idea is that an object can take other another object that complies with an
interface, as input. The containing object is then able to call certain methods defined in
the interface, without knowing what the exact type the contained object is. For example,
the coarse projective integration class MicroMacroCPI implements the micro-macro
acceleration algorithm with matching. This class only requires a MatchingStrategy
object on which it can call certain methods, but the projective integrator should not
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care whether it is KLD, L2D or L2N matching. The simulate method only requires
the particle ensemble, the start and end time and time step size so that it is able to
perform the acceleration algorithm. The complete object-oriented structure is depicted
in Figure 3.1. Dependency injection is relatively easy to implement in Python since each
containing object assumes that the injected objects have a certain interface, without
actively checking this. Other languages like C++ or Java require to define explicit virtual
objects or interfaces. A drawback of dependency injection is that it requires extensive
documentation of the code so that the user perfectly knows how each object is interfaced.
We now discuss the important classes in the object-oriented diagram.

Matching Strategies All the matching strategies have in common that they need
to compute the Lagrange multipliers and weights based on these values. It is therefore
possible to define a super class with abstract match and weights methods. The match
method takes as argument the current weighted Monte Carlo ensemble and the extrap-
olated macroscopic state variables. An additional argument is a lambda expression
representing the macroscopic state functions Rl. The method then computes the La-
grange multipliers associated to the input arguments. It also returns whether the solver
converged or not. The weights method takes the computed Lagrange multipliers as
input, together with previous weights and computes the new weights of the particles
after matching.

The three different matching methods discussed above are subclasses of MatchingStrategy.
KLD and L2N for instance, take an iterative solver by dependency injection as a con-
structor argument. They also requires the maximum number of iterations, in order to
stop the solver timely.

Iterative Solvers This thesis considers only one iterative solver for the non-linear
systems arising from matching in f -divergence: a Newton-Raphson solver. The construc-
tor of the Newton-Raphson class requires an object that has a function and jacobian
method. These functions are called every step and take only the current Lagrange
multiplies as argument. KLD implements such an interface as it requires an iterative solver.
The Newton-Raphson solver also takes a dictionary of parameters, like the tolerance
and maximum number of iterations. Finally it has a solve method, required by KLD,
that only takes the initial condition as input argument and returns whether the solver
converged and the final iteration value.

Microscopic Time steppers The base class for the microscopic time integrators
is MonteCarloIntegrator. The integrate method takes an ensemble of particles, a
start and stop time and a time step as arguments. The method advances every particle
over the time step by calling its step method. Each subclass implements its own step
method. For instance, the standard EulerMaruyama class has no boundary conditions
but GridEulerMaruyama does as it has to reflect the particles at the boundary. The
FENE example from next section requires an accept-reject strategy near the boundary of
the domain and has a special subclass that implements the accept-reject method.
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MonteCarloIntegrator

+ step(dt, particles)

+ integrate(tbegin, tend, dt, particles)

EulerMaruyama

+ step(dt, particles)

GridEulerMaruyama

+ step(dt, particles)

MicroMacro

+ simulate(points, weights, tbegin,
 tend, dt, callback)

MicroMacroCPI

+ simulate(points, weights, tbegin,
 tend, dt, callback)

MatchingStrategy

+ match(particles, weights, initial)

+ weights(particles, weights, lambdas)

KLD

+ match(particles, weights, initial)

+ weights(particles, weights, lambdas)

+ gradient(lambdas)

+ hessian(lambdas)

L2D

+ match(particles, weights, initial)

+ weights(particles, weights, lambdas)

L2N

+ match(particles, weights, initial)

+ weights(particles, weights, lambdas)

Use

Use

NonlinearSolver

+ step(x)

+ solve(x0)

NewtonRaphson

+ step(x)

BFGS

+ step(x)

Use
Use

Figure 3.1: Class diagram of all relevant classes and subclasses for an efficient and
reusable implementation of the micro-macro acceleration algorithm. The full arrowheads
represent inheritance while the arrows with ‘use’ on represent object dependencies.
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3.3. Numerical Verification: FENE Dumbbells

3.3 Numerical Verification: FENE Dumbbells
This section serves as a validation of the object-oriented implementation of the micro-
macro acceleration algorithm. The sample problem is a one-dimensional system, called
FENE-dumbbells. The FENE system is also extensively studied in the context of
lifting [32]. The experiments in this section reproduce the numerical tests from [9] and
serve as a confirmation of object-oriented implementation.

FENE stands for ‘Finitely Extensible Non-linear Elastic’ dumbbells, which are polymer
chains moving through a solvent in which they are immersed. The stochastic variable
X(t) represents the length of the polymer, which is modelled as two beads connected by
a non-linear spring. The spring force is modelled as

F : B(
√
b)→ R, x 7→ F (x) = b

b− x2x (3.7)

where
√
b is the maximum length the dumbbells. The spring force diverges to infinity

near x ≈ ±
√
b, which causes stiffness near the edges of the domain of the polymer lengths.

The explicit Euler-Maruyama integrator then requires small time steps to simulate the
behaviour of the Monte Carlo particles accurately. Besides the spring force, the polymers
also experience Stoke’s drag and Brownian motion. The complete SDE for this problem
is

dX(t) =
(
κ(t)X(t)− 1

2We
F (X(t))

)
dt+ 1√

We
dW (t), t ∈ [0, T ] (3.8)

where κ(t) is the time-dependent velocity field due to Stokes drag and We is the Weis-
senberg number. An important quantity in practice is the stress tensor

τ = 1
We

(E[XF (X)]− 1) , (3.9)

which we want to approximate as accurately as possible.

The following experiments assume a constant velocity field κ(t) = 2 and a Weissenberg
number of 1. All the exact densities are obtained by performing an Euler-Maruyama
integration with time step δt = 2 · 10−4, where the initial condition is the invariant
distribution with zero velocity field and. The initial distribution then reads

X0(x) = 1
Z

exp (2WeU(x)) (3.10)

where U(x) is the potential energy function associated with the spring force F (x) = ∇U(x).
A standard accept-reject sampling strategy suffices to sample the initial distribution with
N = 105 independent particles.

Euler-Maruyama simulation A standard Euler-Maruyama simulation is not consis-
tent with the stochastic model. Due to the Brownian increments, some particles may slip
out the domain [−γ, γ], γ =

√
b. Therefore, the authors of [9] present an accept-reject

21
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0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

Dumbbell Length X

0 seconds
1 second
1.1 seconds

Figure 3.2: Kernel density estimation of the probability densities for the FENE model
(3.8) after 0, 1 and 1.1 seconds, with bandwidth 0.2 and N = 105 particles. The initial
condition is given by (3.10) . There clearly forms a peek in the density near the edges,
which will lower the acceptance ratio in the Euler-Maruyama particle sampler.

strategy to ensure that the Monte Carlo particles remain in the feasible domain. In
general, the method increments time for each particle Xk

j of an ensemble X k = (Xk
j )Jj=1

at time tk = kδt by

Xk+1
j = Xk

j + (κ(tk)Xk
j −

1
2We

F (Xk
j ))δt+

√
δtξk, ξk ∼ N (0, 1) (3.11)

and accepts or rejects the new sample Xk+1
j . The sampler rejects a particle when

|Xk+1
j | > α

√
b with α < 1, to avoid very large spring forces that will result in rejections

the next time step. The value of α should be close to 1 to get a consistent numerical
scheme. The smaller the time step δt, the closer the particles may go to the boundaries
since the variance of the Brownian motion is also smaller in that case. The authors
of [9] therefore propose to take α = 1 −

√
δt. Upon rejection of a particle Xk+1

j , the
Euler-Maruyama step is repeated until the truncation accepts the particle.

Figure 3.2 shows the densities of the model after 0, 1 and 1.1 seconds. The distribution
was obtained by kernel density estimation with a bandwidth of 0.01γ. The plots are
insensitive to the exact value of the bandwidth as long as it is not orders of magnitude
higher or lower. As time increases, there clearly forms a peak close to the maximal
polymer length, so that many particle reside near the boundary of the domain of the
polymer length. The equilibrium distribution origins from the interaction between the
spring force that keeps the particles inside the domain and the velocity fields that
elongates the polymers.

Comparison of matching strategies Figure 3.3 compares the three different match-
ing strategies from previous chapter. The experiment takes three macroscopic states into
account. The prior distribution is the exact (obtained by Euler-Maruyama) distribution
after 1 second, and the states for the matching operator are the exact state variables
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Figure 3.3: Matching results for a varying number of moments for KLD (left), L2D
(middle) and L2N (right). Matching in L2 norm clearly has the poorest accuracy,
compared to matching in f -divergence.

after 1.1 seconds. The macroscopic states are the first three normalized even moments

Rl(x) =
(
x

γ

)2l
, l = 1 . . . 3. (3.12)

Odd moment functions should yield zero in expectation because every transient distri-
bution of the FENE model is symmetric around zero, because the initial condition is
symmetric. There also is the zero-th state R0(x) = 1 to make sure the matched density
has unit mass.

Figure 3.3 shows that L2N-matching yields a density that lies far from the exact density,
especially where they peak. L2N hence needs more moments than matching in f -
divergence before it reaches an acceptable approximation of the exact density. Matching
in f -divergence yields a very good approximation, even with only one state variable. This
thesis will from now on only focus on relative-entropy matching as it is very accurate.

Moment accuracy for a varying number of state variables The second exper-
iment again uses the exact distribution after 1 second as prior and takes the exact
normalized even moments at time 1.1 seconds as extrapolated states. We now look at
the relative error

|ml −m∗l |
m∗l

(3.13)

between the moments m∗l of the exact and those of the matched distribution ml at
1.1 seconds. Figure 3.4 presents the experimental results, averaged over 20 i.i.d. runs,
for the three matching strategies and a varying number of even moments (3.12). The
results indicate that for a moment ml with l ≤ L, the error in moments is beneath the
tolerance of the Newton-Raphson solver, indicating convergence of the iterative solver.
For higher order moments however, the error suddenly increases very rapidly since the
higher order moments are not taken into account while matching. The error for moments
l > L however decreases with increasing L, indicating that adding more moments to the
matching operator has a positive impact on the accuracy of higher moments.
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Figure 3.4: Relative error of even normalized moments as a function L for L2N (left) and
matching in f -divergence (right). For l ≤ L the errors are below the Newton-Raphson
tolerance, while for l > L the errors decrease with increasing L.
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Figure 3.5: Relative error of the stress tensor as a function of the extrapolation time
step ∆t for L2N (left) and matching in f -divergence (right). L2N matching attains a
convergence order of 1, while matching in f -divergence has a lower order.

Accuracy dependency on the extrapolation step Finally, in Figure 3.5 we look at
how the matching error depends on the extrapolation time step ∆t for a fixed microscopic
step δt = 2 · 10−4 and a varying number of states L. By Theorem 1, the error of a
well-behaved function should decrease linearly with ∆t if this is the dominant term in
the error bound. The following experiment considers the relative error of the stress
tensor |τ(t) − τ̂(t)|/τ(t) between the matched τ̂(t) and the exact stress τ(t), with an
extrapolation step ∆t ∈ [5δt, 500δt]. The convergence of matching in f -divergence is
slower than first order. The authors of [9] also came to this conclusion and further
investigation is required. For fixed ∆t, the error decreases with increasing L, due to the
fact that the constant CL decreases uniformly with increasing L. L2N does attain first
order, confirming Theorem 1 but the errors are almost an order of magnitude lower for
KLD and L2D matching compared to L2N.
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Chapter 4

Linear slow-fast SDEs:
Convergence & Stability

In the previous chapters, we focussed on the introduction of the micro-macro acceleration
method, as it was already studied in [9]. In this thesis, we are interested in the efficiency
of the method, the speed-up that we can attain for a given accuracy. This chapter is
the start of the efficiency analysis of the micro-macro acceleration method. Since this
speed-up will depend on the time-scale separation that is present in the system, we study
in this chapter how matching performs on a two dimensional linear slow-fast equation

dX(t) = (Y (t)−X(t))dt+DxdWx(t)

dY (t) = −1
ε
Y (t)dt+ 1√

ε
DydWy(t)

(4.1)

with a time-scale separation ε. The fast mode Y (t) is independent from the slow mode
X, while the latter depends on the former. In practice, we are only interested in the slow
process X(t), and we would hence like to only extrapolate states of X(t). In this context,
there are three questions that need to be answered. The first is about convergence.
Theorem 1 states that the micro-macro acceleration algorithm converges if the number
of state variables in X and Y goes to infinity. For linear processes however, we will show
that only the mean of X as state variable is required for convergence. This is a new result
and the main point of this chapter. A second fundamental question concerns stability:
how large the extrapolation step can become before the micro-macro acceleration diverges
to infinity. This has been extensively studied in [10] and this chapter gives a summary
of the stability results. The last question is how many state variables of X and Y are
required to have an as accurate simulation as possible. An a priori estimate of the number
of state variables has also not been studied extensively in the literature and these results
are also new. We discuss the selection of state variables for a linear scale-separated
process in Chapter 5.

In Section 4.1 we start with an analytical decomposition of the joint density between
the slow and fast variables, when the matching algorithm only uses slow state variables
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4. Linear slow-fast SDEs: Convergence & Stability

for extrapolation. This decomposition forms the basis of Section 4.2, where analytical
formulas are derived for matching with slow mean or slow mean and variance extrapolation
with a Gaussian prior distribution. This section also contains numerical experiments
confirming these theorems. In Section 4.3 we state and prove the new convergence
theorem with only slow state variables, based on the analytical formulas of matching.
Finally, in Section 4.4 we summarize stability of micro-macro acceleration.

4.1 A decomposition for matching with only slow state
variables

In practice, we are usually only interested in the behaviour of the slow stochastic process
X(t), so it is useful to perform matching with only states of the slow process. The reasons
are two-fold. First, it is intuitive to assume that the fast variables will quickly relax to
an equilibrium distribution after only a few microscopic steps. This allows for healing of
the fast density after matching with only slow states. The healing happens on faster time
scales than the movement of the slow modes. If the fast modes can relax quickly, there
is no stringent reason to include its state variables in the restriction operator. Second,
adding more states increases the computational burden of matching and will result in
a slower Newton-Raphson procedure. This is often the computational bottleneck and
minimizing this when possible will yield a faster acceleration algorithm with the same
accuracy of the slow values.

For relative-entropy matching there exists a decomposition formula that represents
the complete microscopic matched distribution as a function of the matched marginal
distribution of the slow variables, and a conditional distribution of the fast variables,
given the slow. This decomposition effectively decouples the fast from the slow dynamics
and is a useful result for further proofs on the linear SDEs, but the proof however holds
for any n-dimensional process. The derivation that follows was taken from [10] and
reworked in the notation of this text.

Suppose the joint density between the slow stochastic variables X ∈ Rs and fast variables
Y ∈ Rf is given by ρ(z) with z = (x,y)T ∈ Rs+f . Further assume that the restriction
operator RL only contains state functions of the slow modes X,

RL(µ) = (Eµ[R0(X)],Eµ[R1(X)],Eµ[R2(X)], . . .Eµ[RL(X)]) = m ∈ RL+1.

Also denote for shortness of notation ρ∗(z) = PL(m, ρ)(z) the density of matching with
(extrapolated) macroscopic states m and prior distribution ρ(z). For relative-entropy
matching, formula (2.13) states that the matched density can be written as

ρ∗(z) = exp
(

L∑
l=0

λlRl(x)
)
ρ(z).
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4.1. A decomposition for matching with only slow state variables

The Lagrange multipliers λl are the solution of the set of non-linear equations given by

∫
Rs+f

Rl(x) exp
(

L∑
l=0

λlRl(x)
)
ρ(z)dz = ml. (4.2)

Factorizing the joint density as ρ(z) = ρ(x)ρ(y|x), into a marginal density of the slow
variables ρ(x) and a conditional distributions of the fast variables, given the slow ρ(y|x),
gives a way of integrating out the fast variables

∫
Rs+f

Rl(x) exp
(

L∑
l=0

λlRl(x)
)
ρ(z)dz =

∫
Rs

∫
Rf
Rl(x) exp

(
L∑
l=0

λlRl(x)
)
ρ(y|x)ρ(x)dydx

=
∫
Rs
Rl(x) exp

(
L∑
l=0

λlRl(x)
)
ρ(x)

∫
Rf
ρ(y|x)dydx

=
∫
Rs
Rl(x) exp

(
L∑
l=0

λlRl(x)
)
ρ(x)dx.

Finally, we can reduce formula (4.2) to

∫
Rs
Rl(x) exp

(
L∑
l=0

λlRl(x)
)
ρ(x)dx = ml, (4.3)

or said differently: the Lagrange multipliers corresponding to the matching problem with
fast and slow variables are exactly the same as the multipliers for the slow matching
problem only. An interesting consequence of this reduction is that the matched microscopic
density ρ∗(z) is also decomposable as the matched density of the marginal distribution
of the slow variables ρ∗(x) and the prior conditional density of the fast given the slow
variables ρ(y|x):

ρ∗(z) = exp
(

L∑
l=0

λlRl(x)
)
ρ(y|x)ρ(x) = ρ∗(x)ρ(y|x) (4.4)

where the matched marginal distribution of the slow variables equals

ρ∗(x) = exp
(

L∑
l=0

λlRl(x)
)
ρ(x).

Equation (4.4) is an important result in its own right and is also useful to deduce the
exact formulas of relative-entropy matching in the context of linear equations with a
Gaussian prior.
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4. Linear slow-fast SDEs: Convergence & Stability

4.2 Analytic results for matching with a Gaussian initial
distribution

If the initial distribution of a linear system of SDEs (4.1) is Gaussian, then all intermediate
steps in the micro-macro acceleration algorithm are Gaussian too. This is a well-known
result for the Euler-Maruyama microscopic time stepper, but the same is true for relative-
entropy matching. If the prior distribution is Gaussian then the matched density turns
out to be Gaussian too. This result is independent of whether only the slow mean,
variance or both are extrapolated. This section contains a proof in case of mean-variance
extrapolation. The proof is similar to mean-only extrapolation, stated in [10], and serves
as an extension of that result. The proof relies heavily on decomposition (4.4) and
another lemma stated first. The discussion ends with a numerical verification of these
analytical results.

4.2.1 Minimizing relative entropy

The following lemma is a building block for the theorems concerning matching with a
Gaussian prior. It concerns minimizing the relative entropy in the context of relative-
entropy matching where the new distribution needs to have a predefined (extrapolated)
mean and/or variance and where the prior is normally distributed. The objective is thus
to find the minimizing distribution Q∗ of the Kullback-Leibler divergence

H(Q|P ) =
∫
R
q(x) ln

(
q(x)
p(x)

)
dx

where P is a Gaussian distribution and Q needs to have certain moments fixed. The
following proof only holds when the matched distribution needs to have a certain mean,
but an extension to extrapolated mean and variance is straightforward.

Lemma 1. Given a prior Gaussian distribution P = N (µ,Σ) and a new mean µ∗, the
minimizer Q∗ of the constrained relative-entropy minimization problem

min
Q
H(Q|P ) =

∫
R
q(x) ln

(
q(x)
p(x)

)
dx subject to E[Q] = µ∗ and Q << P (4.5)

is again a Gaussian distribution with mean µ∗ and variance Σ.

Proof. For simplicity of notation, we work with one-dimensional distributions and use
the dummy variable x inside the integrals to suggest ‘slow’ variables. A generalization to
more dimensions is straightforward. Using the fact that p(x) ∼ N (µ,Σ), we can expand
the logarithm term to

H(Q|P ) =
∫
R
q(x) ln(q(x))dx−

∫
R
q(x) ln

( 1√
2πσ2

exp
(
−(x− µ)

2σ2

))
dx. (4.6)

The first term is the negative of the Shannon entropy of a distribution q(x), also denoted
by −H(Q). The second term in (4.6) can be further expanded using properties of the
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logarithm

H(Q|P ) = −H(Q) + 1
2 ln(2πσ2)

∫
q(x)dx+ 1

2σ2

∫
R
q(x)(x− µ)2dx. (4.7)

Since q(x) is a probability density with mean µ∗ we can finally write the relative entropy
as

−H(Q) + 1
2 ln(2πσ2) + 1

2σ2 (Var[q]− (µ− µ∗)2). (4.8)

A basic result from information theory [16,17] states that for a given variance σ2
∗, the

distribution that maximizes the Shannon entropy is exactly a Gaussian with this variance,
regardless the mean. The value of the entropy then is H(Q) = ln(σ∗

√
2πe). We will

first fix σ∗ so that the first term in equation (4.8) is hence minimized by this Gaussian
distribution. Plugging in the value of H(Q) reads

H(Q|P ) = 1
2 + 1

2 ln
(
σ2

σ2
∗

)
+ σ2

∗
2σ2 + (µ− µ∗)2

2σ2 . (4.9)

and it minimizes the value of (4.8) over all distributions with variance σ2
∗. Finally, we

vary σ∗. The function (4.9) is convex in σ∗ and attains its global minimum in σ∗ = σ,
thereby proving the lemma.

Remark 3. A similar lemma where the new distribution Q∗ needs to have a certain
mean and variance, besides only a predefined mean, is simpler to prove. The variance of
Q∗ then is already fixed so it is not necessary to minimize over the variance of Q. The
minimizer is also a Gaussian with the predefined mean and variance.

4.2.2 Matching with extrapolated slow mean

Now all elements are in place to prove that relative-entropy matching with a Gaussian
prior and extrapolated slow moments results in a distribution that is also Gaussian. The
theorem here is specific for slow-mean extrapolation, but an analogous result holds for
variance-only or mean-variance extrapolation, with more complicated formulas. The
proof of the theorem can be found in [10], only the theorem is stated here. Next section
contains a proof of mean-variance extrapolation.

Theorem 2. Suppose P is the prior Gaussian distribution with mean µ covariance
matrix Σ,

µ =
[
µs
µf

]
, Σ =

[
Σs C
CT Σf

]
,

where ‘s’ indicates the slow variables and ‘f’ the fast. The distribution Q∗ that minimizes
the Kullback-Leibler divergence, constrained to E[Q]s = µ∗s is a normal distribution
N (µ∗,Σ) with mean µ∗ = [µ∗s, µ∗f ]T where µ∗f = µf + CTΣ−1

s (µ∗s − µs).

The distribution obtained by relative-entropy matching with a Gaussian prior and
extrapolated slow mean is again a normal distribution with the same covariance matrix
but a different expression for the mean.
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4.2.3 Matching with extrapolated slow mean and variance

A similar result holds when the restriction operator also contains the slow variance. The
proof here is inspired on the proof on mean-only extrapolation in [10], but it is a new
result since it does not appear in anywhere in the literature.

Theorem 3. Suppose P is the prior Gaussian distribution with mean µ covariance
matrix Σ,

µ =
[
µs
µf

]
, Σ =

[
Σs C
CT Σf

]
.

The distribution Q∗ that minimizes the Kullback-Leibler divergence, constrained to E[Q]s =
µ∗s and V ar[Q]s = Σ∗s is a normal distribution N (µ∗,Σ∗) with parameter values

µ∗f = µf + CTΣ−1
s (µ∗s − µs)

C∗T = CTΣ−1
s Σ∗s

Σ∗f = Σf − CTΣ−1
s (Σs − Σ∗s)Σ−1

s C.

(4.10)

Proof. Denote again z = (x, y)T . It is a well-known fact that we can decompose Nµ,Σ
as the product of the marginal normal density of the slow variables and a conditional
normal density of the fast variables given the slow [10]

Nµ,Σ(z) = Nµs,Σs(x)Nµf |s(x),Σr|m(y).

with {
µf |s(x) = µf + CTΣ−1

s (x− µs)
Σf |s = Σf − CTΣ−1

s C.
(4.11)

By Remark 3, the minimizer of the Kullback-Leibler divergence with predefined mean
µ∗s and variance Σ∗s and prior a Gaussian is again a Gaussian with the given mean and
variance, so

PL((µ∗s,Σ∗s),Nµs,Σs) = Nµ∗s ,Σ∗s .

As a consequence by (4.4) the full matched density reads

PL((µ∗s,Σ∗s),Nµ,Σ)(z) = Nµ∗s ,Σ∗s (x)Nµf |s(x),Σf |s(y). (4.12)

We would like that this matched density is also a Gaussian distribution with mean µ∗
and variance Σ∗ given as

µ∗ =
[
µ∗s
µ∗f

]
Σ∗ =

[
Σ∗s C∗

C∗T Σ∗f

]
.

Suppose there exists a similar factorization for the matched density as for the prior
distribution:

PL((µ∗s,Σ∗s),Nµ,Σ)(z) = Nµ∗,Σ∗(z) = Nµ∗s ,Σ∗s (x)Nµ∗
f |s(x),Σ∗

f |s
(y) (4.13)
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Where the parameters µ∗f |s(x) and Σ∗f |s are defined similarly as in equation (4.11):

µ∗f |s(x) = µ∗f + C∗TΣ∗−1
s (x− µ∗s)

Σ∗f |s = Σ∗f − C∗TΣ∗−1
s C∗.

(4.14)

The first factor in equation (4.13) already equals the marginal normal density of the slow
variables in (4.12), so that the second conditional factors also need to be equal. Equalling
the mean and covariance matrices of the two second factors in (4.11) and (4.14) yields{

µf + CTΣ−1
s (x− µs) = µ∗f + C∗TΣ∗−1

s (x− µ∗s)
Σf − CTΣ−1

s C = Σ∗f − C∗TΣ∗−1
s C∗.

(4.15)

The first equation is a linear polynomial in x, implying that C∗T = CTΣ−1
s Σ∗s. Equality

of the constant terms in the first equation then gives µ∗f = µf + CTΣ−1
s (µ∗s − µs) and

finally the second equation gives the value for Σ∗f = Σf − CTΣ−1
s (Σs − Σ∗s)Σ−1

s C. If we
use these values for the unknowns, then equation (4.12) defines a conditional factorization
of a normal distribution, meaning that PL([µ∗s,Σ∗s]T ,Nµ,Σ)(z) is also normally distributed
with mean µ∗ and covariance Σ∗.

4.2.4 Numerical experiments

The formulas for the mean and variance of the Gaussian distribution after matching with
a Gaussian prior are straightforward to implement and make it possible to check against
numerical experiments. This section contains several experiments on SDE (4.1) with
mean and mean-variance extrapolation to see if they agree with the theoretical results
given by Theorems 2 and 3.

Propagation of mean and variance with the Euler-Maruyama scheme

To verify the implementation of the micro-macro acceleration scheme for correctness over
larger time scales, it is necessary to know how the mean and variance propagate through
the K inner microscopic steps. This thesis exclusively uses the Euler-Maruyama scheme
to perform these microscopic steps. The propagation formulas for mean and variance are
relatively simple in this case. We will compute the propagation formulas for a general
two-dimensional SDE

d

[
X
Y

]
=
[
a b
c d

] [
X
Y

]
dt+

[
Dx 0
0 Dy

]
dt

[
dWx

dWy

]
.

A particle (Xn, Y n) propagates through the linear SDE by

Xn+1 = (1 + aδt)Xn + bδtY n +DxδW
n
x , δWn

x ∼ N (0, δt)
Y n+1 = cδtXn + (1 + dδt)Y n +DyδW

n
y , δWn

y ∼ N (0, δt).
(4.16)
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There exists a useful property, called the martingale property, that states that the
expectation of Brownian increments are zero. Put mathematically,

E[
∫ T

0
(φ(t)dW (t))dt] = 0, or E[dW (t)] = 0, (4.17)

for any function φ(t) and end time T . Taking expectations from both sides and and
employing the martingale property gives how the means µnx and µny propagate

µn+1
x = (1 + aδt)µnx + bδtµny

µn+1
y = cδtµnx + (1 + dδt)µny .

(4.18)

Subtracting (4.18) from (4.16), squaring both sides and taking expectations finally gives
the propagation of the variances σnx , σny and the covariance σnx,y

σn+1
x = (1 + aδt)2σnx + b2δt2σny +D2

xδt+ 2bδt(1 + aδt)σnx,y
σn+1
y = (1 + dδt)2σny + c2δt2σnx +D2

yδt+ 2cδt(1 + dδt)σnx,y
σn+1
x,y = cδt(1 + aδt)σnx + bδt(1 + dδt)σny + ((1 + aδt)(1 + dδt) + bcδt2)σnx,y.

(4.19)

Equations (4.18) and (4.19) completely describe how the mean and variances of a Gaussian
distribution propagate through one step of the Euler-Maruyama scheme with microscopic
step size δt. Together with the formulas for matching with a Gaussian prior, we can
simulate how the exact means and variances should propagate through micro-macro
acceleration for linear SDEs. The following experiments test the numerics against these
formulas.

Experiment 1: extrapolating the slow mean

In the first experiment, we plot the mean and variance for both the slow and fast variables,
given by the micro-macro acceleration algorithm and the analytical expressions stated
in (4.18) and (4.19). This experiment only extrapolates the slow mean before matching,
such that theorem 2 gives the exact expression of the matching operator with a Gaussian
prior. The variance of both variables should remain constant during matching.

The initial condition of the experiment is a Gaussian with mean [1, 2]T and the identity
matrix for the covariance. The inner time stepper is a standard Euler-Maruyama scheme
on the domain [−6, 6]× [−6, 6] with reflective boundary conditions and N = 105 particles.
In practice, very few particles reach these boundaries as the distribution should converge
to the origin, meaning the boundary condition has no impact. The numerical results for
the mean are shown in Figure 4.1.

The blue lines are the exact mean and variance of SDE (4.1). The red lines represent the
analytical solutions of the micro-macro acceleration method by Theorem 2 and (4.18),
(4.19). The green points are the means and variances computed by the acceleration
algorithm at the points in time when the numerical solution is known, i.e. after matching
and each microscopic step. Furthermore, the orange line represents what the extrapolated
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Figure 4.1: Mean (top left) and variance (top right) of the slow variable of (4.1) with
mean-only extrapolation. (Bottom) the same plots for the fast mode. The blue lines are
the exact solution, and the red lines represent the analytical formulas by Theorem 2 and
(4.18),(4.19). The latter curve lies exactly on the orange lines, the numerical results of
the micro-macro acceleration algorithm, confirming the analytical expressions.

means and variances would look like if all of these were extrapolated. The analytical
solution lies almost exactly on the numerical results of the micro-macro acceleration
algorithm at the known times, given by the green crosses. The discontinuities after
extrapolation arise when a certain quantity is not part of the extrapolation operator
and the matching operator corrects these values at each step by Theorems 2 and 3. For
example, the red lines in the figures on the right, displaying the variance, are indeed flat
during extrapolation as Theorem 2 predicts. The experiment confirms that the analytic
expressions and formulas are indeed equal to the numerical results by the acceleration
algorithm up to statistical noise, which confirms a correct implementation.

Experiment 2: extrapolating slow mean and variance

Figure 4.2 shows similar plots as the previous experiment but with extrapolated slow
mean and variance. Both figures again demonstrate that the analytical results agree with
the numerical output of the micro-macro acceleration algorithm.

4.3 Convergence of the micro-macro acceleration method
with slow mean extrapolation

The main result of this chapter is the convergence of the micro-macro acceleration scheme
on the linear SDE (4.1), with only slow-mean extrapolation. Theorem 4 differs from the
main convergence Theorem 1, as the latter requires a hierarchy of macroscopic state
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Figure 4.2: Mean (top left) and variance (top right) of the slow mode with mean-variance
extrapolation. (bottom) the same plots for the fast mode. The numerical results of the
micro-macro algorithm lie exactly on the analytical expression by Theorem 3.

variables to form a complete description of the density it represents. The slow mean
never forms a complete description of the underlying density, as for example the variance
is not known and nor are the fast variables. Theorem 4 is a new result and relies on
Theorem 2. An extension of the proof to non-linear SDEs is non-trivial.

4.3.1 An iterative formula for slow mean-only extrapolation

The convergence proof relies on an iterative formula that defines how the complete
mean and variance propagate through one full step of the micro-macro acceleration
scheme. The formula is also fundamental to the derivation of a stability bound with
slow-mean extrapolation in Section 4 of this chapter. The derivation here assumes only
one Euler-Maruyama inner step of size δt for simplicity, but it can easily be extended to
K inner steps. The derivation of the iterative formula was first done in [10] and is stated
here with a slight change in notation to be consistent with the rest of the text.

Suppose that at time tn = n∆t, the mean vector µn, the covariance matrix Σn and the
matrix A in block-diagonal form are given:

µn =
[
µns
µnf

]
, Σn =

[
Σn
s Cn

(Cn)T Σn
f

]
, A =

[
As 0
0 Af

]
.

The subscript ‘s’ again has the meaning of ‘slow’ variable. After one Euler-Maruyama
step, a particle Xn propagates as

Xn,1 = (I +Aδt)Xn +
√
δtBξn, ξn ∼ N (0, 1),

so that, by taking expectations and employing the martingale property (4.17),

µn,1 = (I +Aδt)µn, Σn,1 = (I + δtA)Σn(I + δtA)T + δtBBT
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Extrapolating the slow mean yields

µn+1
s = µns + ∆t

δt
(µn,1s − µns ) = (I + ∆tA)µns .

By Theorem 2 we know that the covariance matrix Σn stays constant during matching,
and that the fast mean is given by

µn+1
f = (If + δtAf )µnf + (∆t− δt)(Cn,1)T (Σn,1)−1Asµ

n
s .

Bundling the propagation of the complete mean vector in one equation finally gives,

µn+1 =
(
Is+f +

[
∆tAs 0

(∆t− δt)CTn,1(Σn,1)−1As δtAf

])
µn (4.20)

4.3.2 Convergence Theorem

The following theorem shows convergence of the micro-macro acceleration scheme on a
linear SDE with only slow-mean extrapolation.

Theorem 4. Given a linear SDE with a normal initial distribution, and consider the
micro-macro acceleration algorithm with relative-entropy matching and only slow-mean
extrapolation. Also fix an end time T > 0. Denote by Xt the exact distribution of the
linear SDE at time t ∈ [0, T ], and by Xn∆t(t) the distribution obtained by the micro-macro
acceleration scheme at that same time, where n∆t(t) = t/∆t. Then the Kullback-Leibler
divergence H(Xn∆t(t)|Xt) converges uniformly to zero over the interval [0, T ] as δt goes
to zero and ∆t goes to δt,

lim
δt→0

lim
∆t→δt

max
t∈[0,T ]

H(Xn∆t(t)|Xt) = 0. (4.21)

As a consequence, micro-macro acceleration distribution also converges uniformly to the
exact distribution in the same limits.

Proof. If the initial condition of a linear equation is Gaussian, all intermediate distribu-
tions of the exact solution, the Euler-Maruyama method and the micro-macro acceleration
algorithm are Gaussian too. By a well known expression [14], the Kullback-Leibler diver-
gence between the approximation of the micro-macro acceleration scheme and the exact
distribution reads

H(Xn∆t(t)Xt) = 1
2

(
ln
( ∣∣Σt

∣∣∣∣Σn∆t(t)
∣∣
)
− s− f + trace((Σt)−1Σn∆t(t))

)

+ 1
2(µt − µn∆t(t))T (Σt)−1(µt − µn∆t(t)),

where µt and Σt are the mean and variance of the exact solution at time t. Likewise,
µn∆t(t) and Σn∆t(t) are the mean and variance of the approximation by the micro-macro
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acceleration scheme at time t. First, we fix δt ≤ ∆t and expand iteration (4.20) as

µn∆t(t)
s = (Is +As∆t)n∆t(t)µ0

s

µ
n∆t(t)
f = (If + δtAf )µn∆t(t)−1

f + (∆t− δt)(Cn∆t(t)−1,1)T (Σn∆t(t)−1,1)−1Asµ
n∆t(t)−1
s

= (If +Afδt)n∆t(t)µ0
f + (∆t− δt)

n∆t(t)−1∑
k=0

(If +Afδt)n∆t(t)−k−1(Ck,1)T (Σk)−1Asµ
k
s .

(4.22)
As ∆t decreases to δt, n∆t(t) will increase to nδt(t) and the number of terms in the
sum will remain finite. The contribution of the large sum then becomes zero. As a
result, the mean vector µn∆t(t) uniformly approaches his respective mean µnδt(t) of the
Euler-Maruyama scheme. Similarly, the variance stays constant during matching, thus
as n∆t(t) goes to nδt(t), the variances by the micro-macro acceleration scheme converge
uniformly to the variance Σnδt(t) of the Euler-Maruyama scheme. The expression in (4.21)
hence reduces to

lim
δt→0

max
t∈[0,T ]

1
2

(
ln
( ∣∣Σt

∣∣∣∣Σnδt(t)
∣∣
)
− s− f + trace((Σt)−1Σnδt(t))

)

+ 1
2(µt − µnδt(t))T (Σt)−1(µt − µnδt(t)),

which is the Kullback-Leibler divergence between the Euler-Maruyama scheme and the
exact solution. The latter expression converges uniformly to zero because the mean and
variance of the Euler-Maruyama method converges to their respective exact values, as δt
decreases to zero. This concludes the proof.

Theorem 4 is quite remarkable since it does not require the number of state variables to
diverge to infinity at all, just the slow mean is enough. The downside is that it only holds
for linear SDEs with a Gaussian initial as the proof relies heavily on iteration (4.20). At
the moment, no proof exists on convergence with slow mean and variance extrapolation,
because the formulas for matching in this setting (4.10) are a lot more involved.

4.4 Stability of micro-macro acceleration

Besides convergence of a numerical method, it is also important to know what the largest
step size is that one can take before the numerical scheme diverges to infinity. This
concept is called stability and the authors of [10] perform a complete analysis of stability
for the micro-macro acceleration scheme. Stability is also an important aspect of the
efficiency analysis of the micro-macro acceleration scheme, which is the topic of this and
the following three chapters. This section serves as a summary of the results in [10], with
one small additional experiment. In the context of micro-macro acceleration, there are
effectively two time steps at play: the microscopic stepper δt and the extrapolation ∆t.
A stability analysis for both steppers is required.
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4.4.1 Stability of the Euler-Maruyama scheme with additive noise

Stability for ODEs and PDEs is usually studied on a linear test equation since any non-
linear ODE or PDE can be linearised at every time step in a first-order approximation.
In the context of SDEs there is, however, no clear connection between non-linear and
linearised SDEs to study stability [10]. Nevertheless, we can study a stochastic linear test
equation in its own right and derive stability bounds on the time step. We will consider a
general linear test equation, where the matrix A is again decomposed in a block-diagonal
form

dX(t) = AX(t)dt+BdW(t), A =
[
As 0
0 Af

]
. (4.23)

The process governed by (4.23) has a normal invariant distribution with mean 0 and a
finite variance when A is negative definite. A numerical scheme is stable in this context
when the intermediate distributions Pn at times tn = nδt also converge to some invariant
distribution P∞ as time increases, not necessarily equal to the invariant distribution of
the continuous SDE. For instance, for the Euler-Maruyama scheme we can derive the
stability bound by propagating a particle Xn

Xn+1 = (Is+f + δtA)Xn +
√
δtBξn, ξn ∼ N (0, 1) (4.24)

such that by taking expectations and employing the martingale property, the mean µn
and variance Σn at time tn

µn = (Is+f + δtA)nµ0

Σn = (Is+f + δtA)nΣ0(Is+f + δtAT )n +
n∑
k=1

(Is+f + δtA)nBBT (Is+f + δtAT )n,
(4.25)

where Is+f is the s+ f -dimensional unit matrix. The Euler-Maruyama scheme is stable
when these quantities remain finite as n→∞. This is the case when the eigenvalues of
Is+f + δtA lie inside the unit ball centred at the origin, B(0, 1).

For instance, consider the time-scale separated linear equation (4.1) with ε = 0.1. The
smallest eigenvalue of A is −1/ε so the stability bound is δt ≤ 0.2. Figure 4.3 shows
the slow distribution after T = 30 for different microscopic steps δt and computed with
N = 105 particles. For δt < 0.2 the numerical distribution approximates the exact
invariant distribution, obtained by computing (4.25) up to a tolerance of 10−6, When
δt > 0.2, the variance diverges to infinity so the numerical scheme is unstable.

4.4.2 Stability of micro-macro acceleration with mean extrapolation

Stability of the micro-macro acceleration algorithm works in the same setting with
additive noise and a Gaussian initial condition since then there exist analytical formulas
for matching 2. Stability again means that the intermediate distributions computed by
the micro-macro acceleration algorithm converge to an invariant distribution, or put
mathematically Pt → P∞ as t→∞. The goal of acceleration is that ∆t can be much
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Figure 4.3: Invariant distributions of the slow mode of the Euler-Maruyama scheme
(4.25) for linear SDE (4.1) for different step sizes δt with end time T = 30 seconds. The
stability of the method clearly breaks if δt > 0.2.

larger than the microscopic time step δt while still having a stable numerical scheme. A
very attractive property of micro-macro stability is that the stability bound for ∆t only
relies on the slow eigenvalues in the case of mean-only extrapolation. A large spectral
gap is hence favourable for stable extrapolation. The derivation demonstrates stability
for mean-only extrapolation while next section discusses mean-variance extrapolation.
The derivations were taken from [10] but adapted to the notation of this thesis.

We know from previous section that the mean vector propagates as

µn+1 =
(
Is+f +

[
∆tAs 0

(∆t− δt)(Cn,1)T (Σn,1)−1As δtAf

])
µn (4.26)

through the micro-macro acceleration scheme and that the variance stays constant
during matching. The mean vector is thus stable when the time-variant matrix Dn has
all eigenvalues within the unit circle. As Dn is upper block diagonal, its eigenvalues
are union of the eigenvalues of If + δtAf and Is + ∆tAs. The fast components are
stable when the Euler-Maruyama scheme is stable and the extrapolation is stable when
spec(Is+∆tAs) ∈ B(0, 1). The fast and slow components are hence effectively decomposed.
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For instance, consider again the test equation (4.1) with a finite time-scale separation ε.
The eigenvalues of A are -1 and −1/ε such that the Euler-Maruyama scheme is stable
when δt ≤ 0.2. By condition (4.26) the acceleration algorithm is stable when ∆t ≤ 2,
which is a factor of 10 larger than the microscopic integrator. As ε decreases this spectral
gap will become larger but the extrapolation in the micro-macro acceleration scheme will
still be stable independent of ε, i.e. ∆t ≤ 2.

Crossing the stability boundary A first experiment shows the influence of crossing
the stability of extrapolation with ε = 0.1. Figure 4.4 displays the distributions of the
micro-macro acceleration method after T = 300 seconds, as an approximation to the
invariant distributions. On the Figures we indeed see that the micro-macro acceleration
scheme nicely reaches the invariant distribution of the Euler-Maruyama scheme for
∆t ≤ 2, while for ∆t > 2 the adaptive strategy is turned on. The adaptive strategy
halves ∆t when a matching failure occurs and increases it with a factor of 1.2 otherwise.
The maximum number of Newton-Raphson iterations is 8. It happens that the mean of
the extrapolation step size is always below the stability boundary in these experiments
although there is no theoretical ground for this behaviour [10]. The exact mean of ∆t
depends heavily on simulation parameters and such an analysis is not in the scope of
this thesis.

Independence of ε As a second experiment, Figure 4.5 shows that for a different
value of ε, here ε = 0.01, the macroscopic stability bound is exactly the same as for
ε = 0.1 and that the adaptive procedure is only triggered when ∆tmax ≥ 2. The end
time again is T = 300 to make sure that the distributions have reached the invariant
regime. When ∆tmax ≤ 2, the micro-macro acceleration algorithm attains the invariant
distribution of the Euler-Maruyama scheme while for larger step sizes, the micro-macro
acceleration algorithm is unstable, confirming the stability bound (4.26) with slow mean
extrapolation.

4.4.3 Stability with extrapolated mean and variance

There also exist analytical formulas for the stability bound when extrapolating slow mean
and variance, proven in [10]. We will only state the stability criterion and perform a
numerical experiment as a deep stability analysis is not the focus of this text.

In the context of mean-variance extrapolation, the mean vector also evolves through a
time dependent linear system

µn+1 = Dnµn. (4.27)

The covariance matrix can however not remain constant anymore. The authors of [10]
were able to prove that the slow covariance matrix propagates through one step of the
micro-macro acceleration schemes by

Σn+1
s = (Is2 + ∆t(As ⊕As + δt(As ⊗As))).Σn

s + δt(BBT )s (4.28)
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Figure 4.4: Histograms of the slow mode, computed by the micro-macro acceleration
scheme with mean-only extrapolation, on the slow-fast model (4.1) with ε = 0.1 after
T = 300 seconds, with adaptive time stepping, for several values ∆tmax. When ∆tmax ≥ 2,
stability breaks and the adaptivity is activated due to matching failures.

where the operator A.B denotes the inverse vectorization of Avec(B), when B is a square
matrix. The vectorization operator vec(A) on a matrix puts the columns of A vertically
op top of each other. Expression (4.28) also makes use of the Kronecker product (⊗) and
the Kronecker sum (⊕), which are defined in [30].

Stability of the micro-macro acceleration scheme hence depends on the spectrum of
the matrix Lδts = As ⊕ As + δt(As ⊗ As) and micro-macro acceleration is stable when
spec(Is2 + ∆t(Lδts )) ⊂ B(0, 1). Note that, in contrast to mean-only extrapolation, the
stability bound now depends on the microscopic step size δt. If δt � ρ(As), the
largest negative eigenvalue of As, the term δt(As ⊗ As) acts as a small perturbation
on the matrix Is2 + ∆t(As ⊕ As), which describes the extrapolation of the covariance
matrix. The perturbation may change the exact stability bound of the micro-macro
acceleration algorithm slightly by making it larger or smaller than the macroscopic
stability requirement. The authors of [10] investigate the eigenvalues of Lsδt further but
this is out of scope for this text. We end this chapter with a numerical example showing
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Figure 4.5: Histograms by the micro-macro acceleration scheme with mean-only extrapo-
lation, on the slow-fast model (4.1) with ε = 0.1 after T = 300 seconds, with adaptive
time stepping, for several values ∆tmax. The adaptivity activates when the stability
breaks, i.e. ∆tmax > 2, indicating that the stability threshold is independent from ε.

the effect of the microscopic perturbation.

Numerical Experiment Take again the linear test system (4.1) with ε = 0.1 so
that As = −1. The stability bound for mean-variance extrapolation requires that
|1 + ∆t(−2 + δt)| ≤ 1 which is equivalent to ∆t ≤ 2

2−δt . For any δt, the perturbation
ensure that the micro-macro stability bound is larger than the deterministic bound for
the variance. Figure 4.6 depicts the effect of the perturbation for δt = ε = 0.1 after
T = 210 seconds, with stability bound ∆t ≤ 1.053. For ∆t ≤ 1.053 the numerical
invariant distribution of the micro-macro acceleration scheme approximates the invariant
distribution of the Euler-Maruyama scheme very well. When ∆t crosses the stability
boundary, the adaptive strategy activates due to matching failures. The maximum
number of Newton iterations in this experiment is also 8.

Conclusion In this chapter, we proved a new convergence result of the micro-macro ac-
celeration algorithm on a linear scale-separated process wit only slow-mean extrapolation.
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Figure 4.6: Histograms of the slow mode, by the micro-macro acceleration algorithm with
mean-variance extrapolation of the linear system (4.1) with ε = 0.1 after T = 210 seconds
for several values of ∆tmax, below and above the stability bound. Below the stability
bound, the micro-macro acceleration scheme approximates the invariant distribution of
the Euler-Maruyama scheme well, while above the stability bound, the step-size adaptivity
activates. The averaged ∆tmax is always beneath the stability bound of 1.033.

Theorem 4 is an important result in the light of efficiency, since the number of states
doesn’t need to tend to infinity. In Section 4.4, we presented a summary of the stability
results, a second milestone in the efficiency analysis. The stability analysis gives us the
largest extrapolation time step we can take before the micro-macro acceleration scheme
diverges to infinity. Chapter 5 takes the next step and presents a detailed study on
how many macroscopic state variables are required for an accurate simulation for linear
processes, and also considers a non-linear example. Chapter 6 then fixes the number
of state variables for a linear driven process and studies how large the extrapolation
step can be, before existing approximate macroscopic models become more accurate.
Finding a good number of state variables and the maximal extrapolation time step for a
given accuracy is the goal of the efficiency analysis. Chapter 7 ends with two practical
examples where the micro-macro acceleration method outperforms existing approximate
macroscopic models in accuracy and takes larger steps than the microscopic simulation.
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Chapter 5

Effect of the choice of
macroscopic state variables

An important parameter when using the micro-macro acceleration scheme is the number
of macroscopic state functions L to extrapolate and match with. Choosing an inadequate
number of states can be devastating for the performance of the algorithm. If L is too low,
the state functions may not capture most of the dynamics of the probability density. If L
is too high however, the computational cost increases rapidly due to the computation of
the Jacobian in the Newton-Raphson procedure. The micro-macro acceleration algorithm
is very inefficient in this case. If L is too high, the extrapolation stage may even introduce
small modelling errors that can have a big impact with large extrapolation time steps.
More details on this later in Section 5.2 on this matter.

Section 5.1 starts with a short explanation of the so called Fokker-Planck equation, which
is a PDE representation of a general stochastic process (1.1). We also discuss a closure
method for linear SDEs that serves as a reference solution for the remainder of this
chapter. In Section 5.2, we investigate the effect of macroscopic state selection for a linear
scale-separated SDE, where we choose the state variables as moments of the stochastic
process. Finally, in Section 3 we look at different states hierarchies for the non-linear
FENE-dumbbells problem.

5.1 The Fokker-Planck equation and closure relations

The exact intermediate distributions of the linear SDE (4.1) are almost never readily
available, unless the initial condition is Gaussian. To estimate the accuracy of the
micro-macro acceleration algorithm, it is necessary to compare the numerical results with
different methods that simulate the same problem. This chapter considers a deterministic
simulation of the Fokker-Planck equation and simulation of a closure model for the
mean vector and covariance matrix. Since the two methods agree up to their respective
discretization errors, any of the two can serve as an accurate substitution of the exact
continuous solution.
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The Fokker-Planck equation The Fokker-Planck equation associated to an SDE of
the form (1.1) is a deterministic partial differential equation(PDE) that describes how the
probability density ρ(x, t) evolves over time, under influence of the SDE. The probability
density function is defined such that for any region A ⊂ G

P(X(t) ∈ A) =
∫
A
ρ(x, t)dx.

For a general n-dimensional SDE, the Fokker-Planck equation reads

∂ρ(x, t)
∂t

+∇ · (a(x, t)ρ(x, t) = 1
2

n∑
i,j=1

∂2

∂xi∂xj
(bi,j(x)2ρ(x, t)). (5.1)

Simulating this equation instead of the stochastic representation gives equivalent results,
but the computational cost of simulating the PDE directly increases exponentially with
the dimensionality. This is one of the reasons to consider a Monte Carlo simulation of
the SDE in the first place.

When simulating PDE (5.1), it is important to ensure that the numerical solution also
has unit mass. This property could be lost with many simulations techniques. Hence, to
discretize (5.1), we consider a finite volume approach with standard central differences
for the second order term. Appendix A contains the complete mathematical derivation of
the finite volume scheme for the two-dimensional linear Fokker-Planck equation, together
with an order test to verify the correctness.

Closure relations For a general SDE (1.1) there also exists a (possibly infinite) system
of ODEs that describe the evolution of all the moments E[mn(X)], wheremn(x) = xn, n ∈
N as a function of time. One can derive such a system by first writing down the evolution
equation for E[X], which by the martingale property reads

dE[X] = E[a(X, t)]dt.

Usually, the right hand side can be reduced to an expression of higher moments of X. For
an accurate simulation we need an evolution law for these higher moments as well, which
will induce even higher moments in their right hand side, and so on. In practice, it is not
feasible to simulate the infinite system of moment equations. However, as higher and
higher moments add less information of the exact distribution, we can simulate only the
evolution laws for the first M moments and make some approximations. In the case of a
linear SDE, it is possible to prove that only the evolutions for the mean and covariance
are required, as no higher order moments pop up in the derivation of the closure relations.
Appendix B contains a derivation of the closure relations for a general n−dimensional
linear SDE.

Comparison of both methods Figure 5.1 depicts the means and variances of the
slow and fast variables for a Fokker-Planck implementation on a [−6, 6]× [−6, 6] grid with
48 cells in each direction and reflective boundary conditions. It also depicts the simulation
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Figure 5.1: Means (Left) and variances (Right) of the fast and slow modes using the
deterministic Fokker-Planck equations, the closure relations and a standard microscopic
Euler-Maruyama method. The three methods agree up to their respective discretization
errors.

of the closure relations with a step size of 0.1 and the result of an Euler-Maruyama
simulation. The initial condition is a normal distribution with mean [1, 2] and unit
covariance matrix. The three methods agree up to their respective discretization errors,
meaning that we can substitute any of these as exact solution in the efficiency plots. The
blue lines in the experiments from Section 4.3 represent the simulation of the closure
relations as substitute of the exact solution.

5.2 Estimating the number of moments for linear SDEs

A linear SDE, for instance (4.1), with a Gaussian initial condition is completely described
by its mean and covariance. For a two-dimensional process, these are five parameters. In
the context of slow-fast processes, however, we would like to extrapolate only the slow
mean and slow variance, as the slow marginal distribution is completely described by
these two moments. Adding more moments is not necessary, for three reasons. First,
adding moments increases the computational cost of matching. Second, by the stability
condition [10], the extrapolation of the fast moments is bounded by the stiff mode of
the process, resulting in an expensive time stepper. Third, if ε is small, the fast modes
should equilibrate quickly to their conditional equilibrium, given the slow modes, which
renders extrapolating fast modes obsolete. The only upside of extrapolating fast modes
is a possible increase in accuracy, although this is not visible.
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Figure 5.2: The mean (left) and variance (right) of the slow variable for different numbers
of extrapolated slow moments Lx. For Lx = 1 the mean of the micro-macro acceleration
algorithm follows the exact mean well and adding moments does not improve its accuracy.
Similarly, two slow moments are required for the slow variance.

Effect of the number of slow moments Figure 5.2 shows the means and variances
of (4.1), obtained by the micro-macro acceleration scheme with several values for the
number of extrapolated slow moments Lx, without fast moments, i.e. Ly = 0. The
number of Monte Carlo particles is N = 105. We initialise the process with the same
Gaussian distribution as Section 4.2. From the experiments in Chapter 4, we already
know that extrapolating only the slow mean yields inaccurate results for the slow variance,
while extrapolating slow mean and slow variance yields accurate results. This result is
simple to explain, as the exact Gaussian solution is completely determined by its mean
and variance. The numerical simulation gives very accurate results for the slow mean and
variance. When adding the third slow moment, the numerical approximation is almost
the same, confirming the former reasoning. There could however arise a problem with
three slow moments. After K microscopic inner steps, the third moment is a function
of the slow mean and variance, called slaving relations, but after linear extrapolation,
these slaving relations may not hold anymore. The matched distribution will hence not
be Gaussian anymore, while the exact solution is. This effect is rather small.

Adding fast moments to the extrapolation operator The following experiment
uses the same equation (4.1) with Lx = 2 slow moments: the mean and variance, and
adds a few fast moments Ly to the extrapolation operator. Figure 5.3 depicts the slow
and fast means and variances. The figures show that the slow mean and variance are
not more accurate when adding fast moments. To the contrary, they even seem to lie a
bit further away from the exact solution, although the differences are very small. This
experiment confirms that for linear scale-separated processes, two slow moments are
enough to obtain an accurate simulation.

A uniform initial distribution The above experiments demonstrate the situation
where the initial condition is a normal distribution. The same adequate moment selection,
however, also holds with a non-normal initial condition. In this setting, all intermediate
distributions are not Gaussian but they converge to an invariant measure that is normally
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Figure 5.3: The mean (left) and variance (right) of the slow variable for different numbers
of extrapolated fast moments Ly. Adding fast moments to the extrapolation operator
does give more accurate simulations than without fast moments.
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Figure 5.4: The mean (left) and variance (right) of the slow variable for different numbers
Lx of extrapolated slow moments. The conclusion is the same as in Figure 5.2: two slow
moments gives the most accurate simulation results by the micro-macro acceleration
scheme.

distributed. Over time, the slow mean and slow variance hence become more important.
Only in the case of a Gaussian initial condition, the intermediate distributions are too.
As an example, we consider a uniform density over the square [0, 6] × [0, 6] as initial
condition. Figure 5.4 shows the slow means and variances with several number of slow
moments. Indeed, two slow moments gives the most accurate solution, even with a
non-Gaussian initial.

5.3 A non-linear case: FENE-dumbbells
In practice, many stochastic processes are non-linear in nature. An a priori estimation
of an adequate number of state variables is a lot more difficult than in the linear case
and depends heavily on the macroscopic quantities of interest. In this section, we look at
the problem of an accurate estimation of the number of macroscopic states in case of
FENE-dumbbells. Section 3.3 already introduced the FENE model for polymers. The
authors of [32] already performed an analysis of an adequate number of macroscopic
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states in the context of lifting with an additional constrained simulation. This section
performs the same experiments for matching, which has not been done yet.

5.3.1 FENE macroscopic state hierarchies

An important quantity for FENE-dumbbells is the stress tensor (3.9). The FENE SDE
usually occurs in conjunction with the Navier-Stokes fluid equations, which are coupled
through the stress tensor [25]. Hence, we want to approximate the stress tensor as
accurately as possible. The authors of [32] propose three different macroscopic state
hierarchies for approximating the stress tensor:

• Strategy 1: The first L even moments with Rl(x) = x2l, l = 1 . . . L from Section
3.3

• Strategy 2: Start with the first L−1 even moments with Rl(x) = x2l, l = 1 . . . L−1,
and the stress tensor (3.9) as additional final state function RL(x). This choice of
state variables stems from a set of evolution equations that form a closure for FENE-
dumbbels, clearly explained in [32]. We will not go deeper in the mathematical
details.

• Strategy 3: Here we start again with the first even moment R1(x) = x2 and as
additional state variables we add the first L− 1 term in the Taylor expansion of
the stress tensor, by Itôs lemma. The first four state functions then are [32]:

R1(x) = x2, R2(x) = x2

1− x2/γ2−1, R3(x) = x2

(1− x2/γ2)2 , R4(x) = x4

(1− x2/γ2)3 .

(5.2)

For each of these three state hierarchies, the authors of [32] plot the τ -M1 phase diagram
together with the temporal evolution of both states. M1 is the first state variable in every
of the three strategies, i.e. M1 = E[R1(X)]. When the velocity field κ(t) is chosen as

κ(t) = 100t(1− t)e−4t, (5.3)

the τ -M1 phase diagram exhibits hysteresis, depicted in Figure 5.5. The goal of the
following experiments is to analyse how many state variables of each hierarchy are
required to approximate the hysteresis curve accurately. All experiments in this section
use the same initial distribution as Section 3.3, which is the invariant distribution for
κ = 0 (3.10). The parameter values are also the same, i.e. γ = 7, We = 1.

5.3.2 Numerical experiments

Figures 5.6 to 5.8 show the hysteresis curves and time evolution of τ and M1, computed
by the micro-macro acceleration algorithm with relative-entropy matching, for the first,
second and third hierarchy of state variables. The maximal extrapolation step is ∆t = 5δt
and the relative-entropy matching operator allows for a maximum of three Newton-
Raphson iterations, above which it reports a matching failure and halves the extrapolation
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Figure 5.5: The τ -M1 phase diagram for the FENE-process (3.8) with time dependent
velocity field (5.3), simulated with the Euler-Maruyama scheme with time step δt = 2 10−4

up to 2 seconds.

step. Both parameters are small to clearly see the effect of the choice of macroscopic
states. Otherwise, the micro-macro acceleration results may be cluttered by a large
extrapolation error. The number of Monte Carlo particles is N = 5 104.

0 10 20 30 40
M1

0

50

100

150

200

250

300

350

400

τ

Microscopic

Micro-macro L = 1

Micro-macro L = 2

Micro-macro L = 3

Micro-macro L = 4

Micro-macro L = 5

0.0 0.5 1.0 1.5 2.0
0

10

20

30

40

M
1

0.0 0.5 1.0 1.5 2.0
Time [s]

0

100

200

300

400

τ

Figure 5.6: The τ -M1 phase diagram for the first hierarchy of macroscopic state variables
(left) and the evolution of M1 (top right) and of the stress tensor τ (Bottom right). Only
for L = 5 the first hierarchy starts to approximate the hysteresis curve well, although
there still is room for improvement.
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Figure 5.7: The τ -M1 phase diagram for the first hierarchy of macroscopic state variables
(left) and the evolution of M1 (top right) and of the stress tensor τ (Bottom right). The
conclusion is the same as for the first hierarchy of states: only for L = 5 the approximation
of the hysteresis curve is better with a lot of room for improvement. The approximation
here however is already better than for the first hierarchy of states.

For the first hierarchy of state variables in Figure 5.6, the micro-macro acceleration
scheme is not able to capture the hysteresis effect when 2 ≤ L ≤ 4. Only when L = 5, the
approximation by the micro-macro acceleration scheme looks better although there still
is a lot of room for improvements. When turning to the second state hierarchy in Figure
5.7, the approximation of the micro-macro acceleration algorithm with L = 5 is better
than with the first hierarchy. Adding the stress tensor as a state variable, has a positive
effect on the accuracy of the micro-macro acceleration scheme. The approximations for
L ≤ 4 are also a bit closer to the hysteresis curve but they all fail to capture the complete
microscopic dynamics. The third hierarchy of state variables however yields the best
results, visible in Figure 5.8. Already when L = 4, the micro-macro acceleration method
almost exactly approximates the microscopic evolution. Strategy 3 hence requires fewer
state variables and makes better approximations to the exact microscopic dynamics. As
a result, out of the three proposed hierarchies of states, the third one is the best. This
conclusion is very similar to the one obtained in [32] but now for matching instead of
lifting, which is a new result.

5.3.3 Conclusion

Choosing an a priori number of macroscopic state variables is an important aspect of an
efficiency analysis of the micro-macro acceleration algorithm. The numerical simulation
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Figure 5.8: The τ -M1 phase diagram for the first hierarchy of macroscopic state variables
(left) and the evolution of M1 (top right) and of the stress tensor τ (Bottom right). For
the third hierarchy of states, L = 4 already gives much closer approximations to the
hysteresis curve than the two previous hierarchies.

can either be very inaccurate when the number of states is too low, or too costly for a
certain precision when the number is too high. In the case of a scale-separated linear
process, two slow moments is enough for a very accurate simulation without performing
too much work. For non-linear processes however, selecting good states is a much more
difficult task and in many cases there are different state hierarchies to consider. In the
context of FENE-dumbbells, choosing the state variables as terms in the stochastic Taylor
expansion yields very accurate results for a modest number of moments. An algorithm
that adaptively selects the number of states, based on some error estimate could be of
great value, but is a topic for further research.

51





Chapter 6

Accuracy of the extrapolation
step size

Until now, we discussed that the micro-macro acceleration algorithm converges with ∆t
decreasing to zero and stays stable with ∆t depending only on the slow variables. The
micro-macro error depends on the extrapolation time step and the number of macroscopic
state variables. In the previous chapter, we looked at the effect of the number of states,
here we look at extrapolation time step. We first investigate how the error grows as a
function of increasing extrapolation time step. Second, to assess efficiency, we need to
decide what the maximal error is that we are willing to tolerate. In situations where one
can derive an approximate macroscopic model, the computational effort of micro-macro
acceleration is wasted if we can obtain an equally accurate result with the approximate
macroscopic model. Hence, we choose to define efficiency as “faster than microscopic
method” and “more accurate than approximate macroscopic model”.

In Section 6.1 we introduce an averaging technique to derive an approximate macroscopic
model for the slow variables of slow-fast SDEs. We will investigate the question of
efficiency in the linear setting, where we do not need to care about the number of
moments. Section 6.2 presents the linear driven process. We use a periodically driven
system as it is easier to compute errors than for a standard linear process where the
approximate macroscopic model reaches the same steady-state as the true solution. A
similar periodic system was already studied in [24] to prove that implicit methods with
large time steps are of no use for SDEs. In Section 6.3, we show that the method is
generally more accurate than the approximate macroscopic model when the time-scale
separation is moderate (as then, the approximate macroscopic model is insufficiently
accurate). However, also in the limit of an infinite time-scale separation, the micro-macro
acceleration method can be efficient when choosing ∆t appropriately as a function of ε.

6.1 A natural averaging strategy

Suppose we have a slow-fast system of SDEs with a scale separation ε > 0
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dX = f1(X,Y )dt+ α(X,Y )dWx(t), X(0) = X0

dY = 1
ε
g(X,Y )dt+ 1√

ε
β(X,Y )dWy(t), Y (0) = Y0

(6.1)

where Wx and Wy are two independent Brownian motions. Note that the linear system
(4.1) from Chapters 4 and 5 fit in this general framework. For very small values of ε, the
system becomes stiff very quickly and the microscopic time steps are then prohibitively
small. If we are only interested in the slow variable X, there exist an approximate
macroscopic model that only describes the evolution of the slow mode by averaging out
the fast mode. An approximate macroscopic model typically allows for much larger time
steps when there is a large spectral gap between the eigenvalues of X and Y in (6.1),
while attaining a very good accuracy when ε is small.

The idea of averaging is the following: when ε decreases to 0, the fast component
Y (t) settles very quickly to a conditional equilibrium where E[dY ] u 0 such that
E(g(X(t), Y (t)) u 0. As a consequence, it is possible to derive an equivalent SDE
for the slow variable X(t) alone, in the limit when ε decreases to 0. It is then usually
possible to write E[Y ] as a function of X so that we can plug the fast equilibrium in the
slow equation of (6.1). Theorem 5 makes this intuitive reasoning rigorous. The theorem
was taken from [29].

Theorem 5. Given a system of SDEs (6.1) and a fixed end time T . The solution of the
approximate macroscopic SDE

d
_
X = F (

_
X)dt+A(

_
X)dW,

_
X(0) = X0 (6.2)

approximates the solution of (6.1) in the limit as ε decreases to 0. The drift vector F (x)
and diffusion matrix A(x) are given by

F (x) =
∫
Y
f1(x, y)ρ∞(y;x)dy

A(x)A(x)T =
∫
Y
α(x, y)α(x, y)Tρ∞(y;x)dy,

where ρ∞(y;x) is the conditional invariant distribution of the fast variables of (6.1),
given a value of the slow variable x.

Remark 4. Note that the diffusion matrix is inherently not uniquely defined, only
A(x)A(x)T is. As a consequence, there are many SDEs of the form (6.2) that are a
limiting form of (6.1). When X(t) is one dimensional A(x) can have any sign but will
still generate the same macroscopic solution.

The approximate macroscopic model is only accurate for very small values of ε so that in
general, the approximate macroscopic SDE will generate a modelling error for moderate
and larger values of ε. The goal of micro-macro acceleration is to get rid of this modelling
error but still be able to take larger time steps that exceed the stability bound of a full
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microscopic simulation. For moderate values of ε, the micro-macro acceleration scheme
could hence be more accurate then the approximate macroscopic model, but on the other
hand still faster than a complete microscopic simulation due to stiffness. In the range
of moderate ε, the micro-macro acceleration scheme could hence be more efficient than
the approximate macroscopic model (7.3) and a microscopic simulation of (6.1). We
investigate this this phenomenon in more depth on the following example.

6.2 A linear driven process
As an example in this chapter, we consider a linear driven SDE of a form similar to the
one in [24], dX = −λ(X + Y )dt+ E sin(at)dt+ dWx

dY = 1
ε (X − Y )dt+ 1√

ε
dWy.

(6.3)

with λ = 2, E = 10, a = 2π. In practice, we are only interested in E[X]. From Section
5.2 we know that only extrapolating the slow mean is already accurate for the mean and
adding extra slow moments does not improve accuracy. The evolution for µX(t) = E[X(t)]
and µY (t) = E[Y (t)] is by the martingale property given by{

dµX
dt = −λ(µX + µY ) + E sin(at)
dµY
dt = 1

ε (µX − µY ),
(6.4)

which has an analytical solution given by(
µX(t)
µY (t)

)
= etM

(
µX0 −A
µY0 − C

)
+
(
A
C

)
cos(at) +

(
B
D

)
sin(at), (6.5)

whereM =
(
−λ −λ

1
ε −1

ε

)
and

(
µX0

µY0

)
is the initial condition to the equation. The constants

A,B,C and D are the solution of the linear system
−a λ 0 λ
λ a λ 0
0 −1

ε −a 1
ε

−1
ε 0 1

ε a



A
B
C
D

 =


E
0
0
0

 .

The linear driven process (6.3) fits in the framework of Theorem 5 with f1(x, y) =
−2(x+ y), α(x, y) = 1, g(x, y) = x− y and β(x, y) = 1. The approximate macroscopic
model for the driven problem then is

d
_
X = −2

_
Xdt+ 10 sin(2πt)dt+ dW. (6.6)

Note that the external driving force 10 sin(2πt) can be ignored in the computation of the
approximate macroscopic model as it is independent from X and Y . The equation for
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Figure 6.1: The solutions of the slow variables with the microscopic and approximate
macroscopic model with initial condition close to the periodic orbit, for ε = 0.5 (left) and
ε = 0.03 (right). The approximate macroscopic model lies closer to the exact microscopic
dynamics when ε decreases to 0, as Theorem 5 predicts.

_
µ(t) = E[

_
X(t)] of the approximate macroscopic model (6.6) is by the martingale property

d
_
µ

dt
= −2λ_

µ+ E sin(at), (6.7)

with analytical solution

_
µ(t) = (µ0 + aE

a2 + 4λ2 )e−2λt − aE

a2 + 4λ2 cos(at) + 2λE
a2 + 4λ2 sin(at). (6.8)

Figure 6.1 shows the solution of the microscopic and approximate macroscopic model for
two values of the scale-separation, ε = 0.5 and ε = 0.03 and δt = ε/20. The approximate
macroscopic model lies already quite close the the exact microscopic solution and the
approximation gets better as ε decreases to 0. To measure the discrepancy in the slow
variable between the microscopic and approximate macroscopic model, we use the L2-error
between the two over one period. The L2-norm is a good choice as both solutions have
the same phase but a different amplitude. The errors in L2-norm of the micro-macro
acceleration scheme in this chapter are always approximated by a second order trapezoidal
scheme [34], while for the approximate macroscopic model the analytical expressions are
used. Figure 6.2 depicts this L2-error as a function of ε. The Figure shows that the error
by the approximate macroscopic decreases linearly with ε, which is an important result
for the next section.

6.3 Efficiency and accuracy of the micro-macro scheme
A fundamental quantity in the context of the micro-macro acceleration scheme in this
chapter is the extrapolation factor M , i.e. ∆t = Mδt. Figure 6.3 shows the solutions of
the slow mode of the micro-macro acceleration scheme to the linear driven process for
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Figure 6.2: L2-error of the approximate macroscopic model compared to the exact
solution of the microscopic model, as a function of ε. The error decreases linearly with ε.

several values of M and only slow-mean extrapolation, with an intermediate of ε = 0.1.
The number of Monte Carlo particles is N = 105. One difference between the approximate
macroscopic model and the micro-macro acceleration method is that the former always
has a lower amplitude than the exact solution, while the latter always overshoots the
true solution. The overshooting behaviour is due to the extrapolation of the slow mean,
because the micro-macro acceleration scheme follows the steep slope for longer time steps
than a full microscopic simulation.
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Figure 6.3: Solutions of the slow variable for the micro-macro acceleration scheme for
several values of M and ε = 0.1. The smaller M , the better the approximation of the
micro-macro acceleration scheme. For larger M , the approximate macroscopic model is
more accurate than the micro-macro acceleration scheme, while for small M it is the
other way around.

When M = 2, 3, the micro-macro acceleration scheme follows the microscopic dynamics
very well, while if M = 4, the amplitude of the micro-macro acceleration solution is
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Figure 6.4: First order convergence in ∆t of the micro-macro acceleration error of the
slow variable for large ε = 0.5 (left). Second order convergence for small ε = 0.03 (right).

different in every peak. For small M , the micro-macro acceleration method is more
accurate than the approximate macroscopic model, while for larger M it is the other way
around. The fundamental question is how far we can extrapolate before the approximate
macroscopic model for the slow mode is more accurate than the micro-macro acceleration
method, measured in the L2-norm over one interval. In other words, for a given ε, we
are interested in the maximal M(ε).

To quantify M(ε), we first need to know how the micro-macro acceleration error depends
on the extrapolation step size ∆t. Figure 6.4 depicts the convergence order of the
micro-macro acceleration error for a larger (ε = 0.2) and smaller (ε = 0.03) time-scale
separation. If ε is large, the error of the micro-macro acceleration scheme decrease linearly
with ∆t, as Theorem 1 predicts. However, for smaller ε, hyper convergence sets in and
the error decreases quadratically. There is, however, no direct explanation for hyper
convergence in the context of micro-macro acceleration. For small ε, the error of the
micro-macro acceleration scheme can be written as

EmM = α(ε)(Mδt)2 = α(ε)(M ′ε)2, M ′ = CM (6.9)

because δt = Cε with C a constant as the microscopic stability domain scales with
ε. The function α(ε) is for each ε the proportionality constant between the error of
the micro-macro acceleration method and the extrapolation time step. Putting it all
together, we are able to deduce a formula when the micro-macro acceleration scheme is
more accurate than the approximate macroscopic model. Figure 6.2 demonstrated that
the error of the approximate macroscopic model decreases linearly, i.e. Eavg = βε. The
micro-macro acceleration scheme and approximate macroscopic model have the same
accuracy when

α(ε)(M ′ε)2 = βε, (6.10)

which gives M ′ =
√

β
α(ε)ε . The only unknown is the function α(ε), which is hard to

deduce theoretically.

As a numerical illustration, Figure 6.5 shows, for a range of ε-values, where the micro-
macro acceleration error (solid lines) crosses the error of the approximate macroscopic
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Figure 6.5: The L2-errors of the micro-macro acceleration scheme (solid lines) for several
values of ε and the L2 errors of the approximate macroscopic model (dashed lines). The
crosses indicate when the micro-macro acceleration method becomes as accurate as the
approximate macroscopic model. The maximal extrapolation factor increases when ε
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Figure 6.6: The maximal extrapolation factor M(ε) before the approximate macroscopic
model is more accurate than the micro-macro acceleration method, as a function of
ε(left), and the corresponding maximal ∆t (right). For small ε, M(ε) scales with ε which
is an important result in the efficiency analysis.

model (dashed lines). The former are the full decreasing lines while the latter are the
constant dashed lines. The points where the error of the micro-macro acceleration method
and approximate macroscopic cross each other are depicted in Figure 6.6, on the left.
These points are exactly M(ε). Figure 6.6 (left) shows these crossover points. For high ε
the gain of the micro-macro acceleration scheme is almost constant, while for smaller
ε, in the regime with hyper convergence, the extrapolation factor seems to increase like
ε−1/4. The corresponding ∆t hence decreases as ε3/4, which is better than the scaling law
for a microscopic simulation.. There is, however, no theoretical explanation for the exact
scaling law for the micro-macro acceleration scheme since α(ε) is unknown. For small
ε, we can hence take larger extrapolation steps than a complete microscopic simulation,
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6. Accuracy of the extrapolation step size

while attaining an accuracy that is better than the approximate macroscopic model.

Conclusion The stability result in Section 4.4 states that the maximal extrapolation
step is independent of ε, at least for block-diagonal linear processes. However, for
accuracy, the maximal time step ∆t allowed before the approximate macroscopic model
is more accurate than the micro-macro acceleration scheme depends on ε. The main
result of this chapter is that for a wide range of ε, the micro-macro acceleration scheme
gains efficiency over the microscopic method as it is able to take larger steps. For small ε,
the micro-macro acceleration gain even increases. The micro-macro acceleration method
is as accurate as the approximate macroscopic model, when ∆t = O(ε3/4). Moreover,
any accuracy level between the microscopic and approximate macroscopic model can be
achieved by tuning ∆t, while taking larger steps than the microscopic model. This is a
new result and demonstrates the merit of the micro-macro acceleration scheme for small
ε. These results, however, have not been fully analysed yet and more experiments with
smaller values of ε are required.
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Chapter 7

Applications

In Chapters 2 and 3, we dealt with convergence and an implementation of the micro-macro
acceleration scheme while in Chapter 4, we introduced the linear slow-fast system as the
first step in the efficiency analysis. Chapter 4 also contained a summary of the stability
of the micro-macro acceleration method and presented a new convergence result. In
Chapter 5, we discussed an adequate number of state variables that is required for an
accurate simulation, both for the linear slow-fast model and FENE-dumbbells. Chapter
6 presented a scaling law for the extrapolation factor on a linear driven process and this
factor increases when the time-scale separation get stronger. This final chapter opens up
the application domain of the micro-macro acceleration scheme to important areas such
as molecular dynamics.

This chapter contains two numerical examples, a bistable system in Section 7.1 and a
model for a molecule consisting of three atoms in Section 7.2. For both models, there
exist approximate macroscopic models for the slow dynamics, but these models make
a large steady-state error for some parameter settings. The micro-macro acceleration
method will be able to alleviate these modelling errors while allowing for larger time
steps than a complete microscopic simulation.

7.1 A bistable system

A first case that depicts the power of the micro-macro acceleration scheme is given by a
bistable system of SDEs

dX = −(2X + Y )dt+AdWx

dY = 1
ε

(Y − Y 3)dt+ 1√
ε
dWy = −1

ε
∇V (Y )dt+ 1√

ε
dWy.

(7.1)

The bistable process is inspired from the more complex bistable problem, introduced
in [4], while retaining its critical features. The constant A determines the noise on the
slow variable. The fast variable Y is autonomous and governed by a double-well potential
V (y), plus the effect of Brownian motion. The potential energy function is defined as
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V (y) = 1
4εy

4 − 1
2εy

2. The invariant distribution of the fast variable is in general given as
a function of the potential energy,

ρ∞(y) = 1
Z
e−V (y) (7.2)

with Z =
∫
R e
−V (y)dy the normalization constant. Figure 7.1 depicts the potential energy

function on the left and the associated invariant distribution on the right. The points
y = ±1 are stable point and y = 0 is unstable.
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Figure 7.1: The double well potential for ε = 0.1 corresponding to (7.1) (left) and the
associated invariant measure according to (7.2) (right).

As an effect, if a particle starts in one well, it will oscillate around the stable point due
to the inherent random Brownian increments and will occasionally switch wells when the
Brownian increment is suddenly large. The particle then oscillates a while in the other
well before it moves again to the first well. This switching process repeats constantly.
Figure 7.2 shows the motion of one particle in the potential well and the influence on
the slow particle, for ε = 0.1, A = 0.1 and for ε = 0.01, A = 0.1. When ε is small, the
fast variable (blue) switches quickly between the wells while the slow variable (red) stays
relatively constant. For large ε however, the slow variable feels the switching behaviour
of the fast variable. The slow mode increases when the fast part is in the left well and
decreases when it resides in the other well, because the fast variable stays for a longer
time in one of the wells. This switching behaviour is explained in much detail in [4], but
we will not go deeper into details.

7.1.1 The modelling error in the approximate macroscopic model

For small ε, it is possible to derive an approximate macroscopic model for the slow variables
as these do not change under the influence of the fast variables. The bimodal equations
(7.1) fit in the framework of (6.1) with f1(x, y) = −2x− y, g(x, y) = −V (y), α(x, y) = A
and β(x, y) = 1. According to Theorem 5 the bistable system is well approximated by
the approximate macroscopic system

d
_
X = −2

_
Xdt+AdWx, (7.3)
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Figure 7.2: Behaviour of a fast particle through the double well potential in blue and the
effect of well switching on the slow variable in red for ε = 0.1 (left) and ε = 0.01 (right).
For large ε, the fast particle resides longer in one well and its effect on the slow variable
is visible, while this effect is averaged out for small ε.

because

F (x) =
∫
Y

(−2x− y) 1
Z
e−V (y)dy = −2x− E[Y ] = −2x

A(x)2 =
∫
Y
A2 1
Z
e−V (y)dy = A2.

Hence, the double well potential is completely eliminated and replaced by a constant
value Y = 0 in the approximate macroscopic model. The approximate macroscopic model
introduces a modelling error by ignoring the motion of the fast variable, which has an
effect on the slow variable, as seen in Figure 7.2 on the left. Figure 7.3 displays the
slow and fast means, variances and histograms for the bimodal problem with ε = 0.1
and A = 0.1, all computed with N = 105 particles. The initial condition is chosen so
that all fast particles reside in the left well and the slow particles are in equilibrium, so
that X = −Y/2. The slow steady-state variance in the microscopic and approximate
macroscopic models are different, indicating a severe modelling error by the approximate
macroscopic model. The slow histogram in Figure 7.3 indeed depicts that the approximate
macroscopic model fails to capture the variance of the microscopic model.

The approximate macroscopic model does, however, approximate the slow microscopic
behaviour better in two cases: when the time-scale separation is stronger and when the
noise level A on the slow variables is higher. The former case is due to Theorem 5, while
in the latter case, the Brownian motion in the slow equation of (7.1) starts to dominate.
The slow distribution will start looking more like a Gaussian, as the Brownian motion is
larger in amplitude than the bimodal behaviour of the fast variables. Figure 7.4 depicts
the variances and histograms for both cases.

To sum up, for moderate scale separations ε and small noise levels A the macroscopic
model makes a non-negligible modelling error on the microscopic distribution. The
approximate macroscopic model is hence of little use in this regime.
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Figure 7.3: Means (top left), variances (top right) and histograms (bottom) after 2
seconds of the microscopic and approximate macroscopic model (7.3) of the slow variable
of (7.1) for the bimodal problem. The model parameters are ε = 0.1 and A = 0.1. There
is a clear steady-state error by the approximate macroscopic model in the slow variance,
also visible in the histogram.

7.1.2 Improvements by the micro-macro acceleration scheme

The offset of the micro-macro acceleration scheme is that it interleaves microscopic
simulations of the complete SDE with extrapolations of only slow state variables. This
way, the acceleration scheme is also truthful to the underlying microscopic behaviour, in
contrast to the approximate macroscopic model from previous section. Figure 7.5 depicts
the variances and histograms of the slow variables for the same parameter values as in
Figure 7.3. The micro-macro acceleration scheme does not make a modelling error, while
allowing for larger time steps. For larger extrapolation factors however, the micro-macro
acceleration method becomes less accurate in the transient state. It does however always
converge to the exact steady-state solution of the slow variance. An adaptive step size
strategy would be of great value in this setting, taking smaller steps in the transient and
larger steps when the steady-state is almost reached.

Conclusion In the example problem from this section, the micro-macro acceleration
scheme does not make a modelling error in the mean and variance of the slow mode.
This result is clearly visible in case of larger ε and modest noise levels and is an
improvement over the approximate macroscopic models for the slow variables. Also when
the process has an inherent large scale separation or a large noise level, the micro-macro

64



7.1. A bistable system

0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Time [s]

Microscopic
approximate macroscopic

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8
0

2

4

6

8

X

0 1 2 3 4 5
0

2

4

6

Time [s]
−10 −5 0 5 10

0

0.05

0.1

0.15

X

Figure 7.4: Variance (top left) and histogram (top right) of the slow variables using the
microscopic and approximate macroscopic model (7.3) with model parameters ε = 0.01
and A = 0.1. The bottom two figures are similar with parameters ε = 0.1 and A = 5. In
both cases, the approximate macroscopic model lies closer to the microscopic dynamics.
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Figure 7.5: The slow variances (left) and histograms after 2 seconds (right) of the micro-
scopic and approximate macroscopic model, together with the micro-macro acceleration
scheme with extrapolating the first two moments and several given extrapolation step
sizes. The model parameters are ε = 0.1, A = 0.1. The micro-macro acceleration scheme
does not make a steady-state error, improving greatly over the approximate macroscopic
model. The histograms of the microscopic and by the acceleration scheme are also
indistinguishable.
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acceleration method does not make a modelling error either. However, in these two
cases, the approximate macroscopic model is very accurate and the improvements by the
micro-macro acceleration scheme are not clearly visible. To conclude, the micro-macro
acceleration scheme gains in accuracy by getting rid of the modelling errors made by the
approximate macroscopic model. At the same time, the scheme increases the efficiency
while allowing larger time steps than a full microscopic simulation.

7.2 A tri-atom molecule

A second practical application arises from the field of molecular dynamics and describes
a planar molecule consisting of three atoms, A, B and C. The authors of [22] studied
this problem in detail. The atoms move under influence of deterministic potential energy
function V and Brownian motion depending on the temperature T . For a unique solution,
we fix molecule B = (0, 0) in the origin of the plane and A = (xa, 0) can only move on
the positive x-axis, i.e. xa > 0. Molecule C has coordinates C = (xc, yc). Figure 7.6
depicts the conformation of the molecule and its motion is described by the over-damped
Langevin dynamics, taken from [5]


dxa = − ∂V

∂xa
dt+

√
2β−1dWxa

dxc = − ∂V
∂xc

dt+
√

2β−1dWxc

dyc = − ∂V
∂yc
dt+

√
2β−1dWyc ,

(7.4)

where β = 1/T is the inverse temperature. The potential energy V (xa, xc, yc) is given by

V (xa, xc, yc) = 1
2ε(xa − leq)2 + 1

2ε(
√
x2
c + y2

c − leq)2 +W (θ), (7.5)

with leq the equilibrium distance between molecules A and B and B and B = C. The
potential energy in the angle between A and C is bimodal and reads

W (θ) = k

2 ((θ − θsaddle)2 − δθ2). (7.6)

The parameter values in this section are ε = 10−3, leq = 1, k = 208, θsaddle = π
2 and

δθ = θsaddle − 1.1187. Note that the parts of xa and rc =
√
x2
c + y2

c are stiff, while W (θ)
is bimodal and represents the slow motion in the molecule. The peaks of the bimodal
distribution are located in θ = 1.187 and θ = π − 1.187. In practice, the solution of (7.4)
is expensive to simulate while only the bimodal behaviour of θ is of interest. The angle
determines which shapes the molecule can take, which is a generally important topic in
chemistry [27]. There however exists a closed model with only one equation that tries
to model the bimodality of the system, while allowing for larger time steps. We discuss
such a closure model in the following section.
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7.2. A tri-atom molecule

Figure 7.6: The planar tri-atom molecule with B fixed at the origin and A constrained
to the x-axis.

7.2.1 Approximate macroscopic models for over-damped Langevin
dynamics

In the context of Langevin dynamics, there is no 1√
ε
present in the stiff equations, only

an inverse temperate that does not scale with ε. As a result, Theorem 5 does not hold
for the tri-atom molecule. There however exist general approximate macroscopic models
for over-damped Langevin problems. The authors of [22] study this problem extensively,
and the results are summarized shortly here, with the same notation. Suppose we have a
general system of SDEs described a potential function V ,

dX = −∇V dt+
√

2β−1dW, X ∈ Rn (7.7)

and we are interested in the behaviour of a scalar variable z = ξ(X), also called a reaction
coordinate [22]. The approximate macroscopic dynamics of z is given by the SDE

dz = b(z)dt+
√

2β−1σ(z)dW, (7.8)

where b(z) and σ(z) are defined by averaging out the fast variables

b(z) =
∫

(−∇V (x) · ∇(x)ξ + β−14ξ(x))Ψ∞(x)δξ(x)=zdx

σ2(z) =
∫
|∇ξ(x)|2Ψ∞(x)δξ(x)=zdx,

(7.9)

with Ψ(x) = 1
Z expV (x) the invariant distribution of (7.7). The authors of [22] have

proven that the approximate macroscopic model converges in path-wise sense to the
microscopic dynamics when ε → 0, which validates the use of the approximate model
(7.8). The integrals in (7.9) however, are only tractable to compute for very simple
reaction coordinates. Usually, numerical integration in some points z is required, with
linear interpolation between these values.
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The authors of [22] consider two reaction coordinates for the tri-atom molecule. The first
is ξ1(X) = θ and the second ξ2(X) = ‖A− C‖2 = (xa− xc)2 + y2

c , which is similar to the
first reaction coordinate at first sight. Note that the first reaction coordinate appears
readily in (7.4) and is purely slow. It is possible to show by calculating the integrals in
(7.9) that (7.8) for ξ1 reduces to

dθ = −W ′(θ)dt+
√

2β−1dW (7.10)

The derivation is tedious but elementary and not given here. The dynamics is however
logical since θ appears readily in the expression for the potential energy (7.5). The
reaction coordinate ξ2 however, contains both a slow and fast component due to the
presence of θ and rc in ‖A− C‖2. The analytical derivation of a closed model for ξ2(t) is
not immediately possible, since we need to compute the integrals (7.9) over a infinite
skew cylinder (xa − xc)2 + y2

c = z = constant. For this non-trivial reaction coordinate,
we compute the integrals numerically in 100 uniformly distributed grid points z in the
interval [0, 5] by a Monte Carlo procedure with xa ∈ [−5, 5], θ ∈ [0, 2π] sampled uniformly
with N = 105 particles. The resulting functions b(z), σ(z) are depicted in Figure 7.7.
The critical points where b(z) = 0 correspond exactly to the critical points of W (θ).
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Figure 7.7: The drift term b(z) (left) and diffusion term σ(z) (right) of the approximate
macroscopic model with reaction coordinate ξ2 (7.9), computed by numerical integration
and linear interpolation.

Suppose we have an initial condition that is very far from equilibrium, where xa is
uniformly distributed between 0.4 and 0.5, θ is chosen around one well, and the position
of atom C is defined by xc = 2 cos(θ), yc = 2 sin(θ). Figure 7.8 shows the evolution of
the mean and histogram of θ after six seconds using a time step of δt = ε and N = 5 104

particles, for both the microscopic model and the approximate macroscopic model with
reaction coordinate ξ1. The approximate macroscopic model follows the exact dynamics
of θ very well and the histograms are indistinguishable. For the bad reaction coordinate
ξ2 however, the approximate macroscopic model makes a modelling error in the mean of
‖A− C‖2, depicted in Figure 7.9. As a consequence, the peaks in the histograms have a
different magnitude. The authors of [22] ascribed the modelling error to the fact that
ξ2 is not completely slow. The bimodality of ‖A− C‖2 is hence biased by the second
reaction coordinate. Also note that with reaction coordinate ξ2, the mean changes very
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abruptly in the beginning. This phenomenon has been studied extensively in [35] and is
also due to the fact that ξ2 is not entirely slow.
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Figure 7.8: Evolution of the mean of θ (left) and the histogram of θ at time T = 6
seconds (right) for the microscopic and approximate macroscopic model with reaction
coordinate ξ1 (7.10). The approximate macroscopic model has no modelling error.

0 1 2 3 4 5 6

1.5

2

2.5

3

3.5

Time [s]

Microscopic
Approximate macroscopic ξ2

1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

(A− C)2

Figure 7.9: Evolution of the mean of ‖A− C‖2 (left) and the histogram of ‖A− C‖2at
time T = 6 seconds (right) for the microscopic and approximate macroscopic model with
reaction coordinate ξ1 (7.10). The approximate macroscopic model makes a modelling
error in the mean, also visualized by the difference in amplitude in the two peaks.

To conclude, it is important to take a good reaction coordinate to capture the bimodality
in (7.4). However, choosing a decent reaction coordinate in advance is not always
straightforward. The micro-macro acceleration scheme will reduce this difficulty.

7.2.2 Improvements by micro-macro acceleration

For the micro-macro acceleration scheme it is important to select adequate state variables
in advance for accuracy. What states to select also depends on the quantities of interest.
In the following experiments, we will choose three different states to extrapolate: the
mean θ, the mean of ‖A− C‖2 and the first two moments of xc together with the first two
moments of yc. All three choices are a big improvement over the bad reaction coordinate
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ξ2 and compete with the good reaction coordinate ξ1, but some choices are still more
accurate than others.

Extrapolating the reaction coordinates Figure 7.10 depicts the means and his-
tograms of θ and ‖A− C‖2 obtained by the micro-macro acceleration scheme with only
extrapolating the mean of θ, for several extrapolation step sizes. Micro-macro follows
the exact microscopic dynamics very well for the angle as well as the distance, regardless
of the extrapolation step. The acceleration method gets completely rid of the modelling
error made by reaction coordinate ξ2 while attaining the same accuracy in θ as reaction
coordinate ξ1. This is a remarkable result since the distance is not part of the extrap-
olation, ‖A− C‖2 is only a function of θ when xa and rc are slaved to leq. Even if we
only extrapolate the mean of ‖A− C‖2 in Figure 7.11, the micro-macro acceleration
method again approximates the mean of θ and ‖A− C‖2 very well, for rather large
extrapolation steps. This is another strong result, since ξ2 is a bad reaction coordinate for
the approximate macroscopic model, but not for the micro-macro acceleration technique.
There is hence no a priori choice of one reaction coordinate of the two over the other, in
the context of the acceleration scheme.
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Figure 7.10: The evolution of the mean of θ (top left) and the histogram of θ after 6
seconds (top right) for the microscopic model, approximate macroscopic model with
ξ1 and the micro-macro acceleration method with only extrapolating the mean of ξ1,
for several extrapolation steps. The bottom plots are the same but show the evolution
and histograms of ‖A− C‖2 with the approximate macroscopic model with reaction
coordinate ξ2. The micro-macro acceleration scheme does not make a modelling error.
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Figure 7.11: The evolution of the mean of θ (top left) and the histogram of θ after 6
seconds (top right) for the microscopic model, approximate macroscopic model with
reaction coordinate ξ2 and the micro-macro acceleration method with only extrapolating
the mean of ξ1, for several extrapolation steps. The bottom plots are the same but show
the evolution and histograms of ‖A− C‖2 with the approximate macroscopic model with
reaction coordinate ξ2. The micro-macro acceleration scheme again does not make a
modelling error.

Extrapolating moments of xc and yc Besides one of the reaction coordinates, it is
also possible to extrapolate moments of xc and yc since these two variables determine
the angle θ completely. Figure 7.12 shows the results of the micro-macro acceleration
scheme with the first two moments of xc, yc after six seconds and 104 particles. Again,
the acceleration scheme approximates the exact mean and histogram of θ and ‖A− C‖2
very well, but the error increases faster with the extrapolation step than during the
previous experiments. We already saw for the FENE-dumbbells model in Section 5.3 that
extrapolating raw moments may not give the most accurate simulation results. In case
of the tri-atom molecule, the variable yc is purely fast and extrapolating this moment
further may yield less accurate results. As a result, the micro-macro acceleration method
performs slightly worse than the approximate macroscopic model on the variable θ but
still removes the modelling error of ξ2 on ‖A− C‖2. An adaptive time stepping strategy
based on accuracy could alleviate the small error of the micro-macro acceleration method.
Note that in this experiment, the noise amplitude is also larger, which is an effect for
further investigation.
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7. Applications
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Figure 7.12: The evolution of the mean of θ (top left) and the histogram of θ after 6
seconds (top right) for the microscopic model, approximate macroscopic model with
ξ1 and the micro-macro acceleration method with the first two moments of xc and yc,
for several extrapolation steps. The bottom plots are similar but display the evolution
and histograms of ‖A− C‖2 with the approximate macroscopic model with reaction
coordinate ξ2.

Conclusion The micro-macro acceleration scheme is a big improvement over the ap-
proximate macroscopic dynamics. Regardless of the state variables in the extrapolation
operator, the acceleration algorithm approximates the microscopic dynamics very accu-
rately. The micro-macro acceleration method does not make a modelling error when
compared to the approximate macroscopic model with the bad reaction coordinate, and
has the same accuracy in case of a good reaction coordinate. There is hence a priori no
best choice of which states to include in the extrapolation operator. For some choices
of macroscopic states however, the error increases more rapidly with the extrapolation
step. The third experiment is an example of this behaviour. An adaptive time stepping
procedure could be of great value for the third experiment to reduce the error. The
micro-macro acceleration algorithm is hence a great substitute for the approximate
macroscopic models, while being more efficient than the microscopic simulation.
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Chapter 8

Conclusion and Outlook

The objective of this thesis consists of two main parts. The first part introduces the
micro-macro acceleration algorithm consisting of four steps and discusses its convergence,
matching operators and proposes an efficient object-oriented implementation. Stability
of the micro-macro acceleration scheme is also discussed. The second main part of
the thesis is original material and presents an extensive analysis on the efficiency of
micro-macro acceleration. One aspect of the efficiency analysis is the effect of the number
of macroscopic states to extrapolate. The second aspect investigates how large the
extrapolation step of the micro-macro acceleration method can be before approximate
macroscopic models become more accurate, as a function of the time-scale separation.

8.1 Results

In Chapter 4, we prove a new convergence result for the micro-macro the acceleration
algorithm in the case of linear SDEs, with only slow-mean extrapolation. The theorem is
a new result since the general convergence theorem 1 requires an infinite hierarchy of
macroscopic state variables that completely describe the underlying distribution. In the
new result however, there is only one slow moment. Also for linear SDEs, in Chapter 5
we discuss the most accurate selection of macroscopic states for micro-macro acceleration
approximation, without performing superfluous work. Extrapolating the slow mean and
variance gives most accurate results with the least computational work possible. For
non-linear examples, choosing an efficient number of state variables is much more involved
and Chapter 5 presents a case-study on FENE-dumbbells. A similar study was already
performed for lifting, but not for matching. For FENE-dumbbells, the stress tensor is of
great importance and choosing the state variables as states in the evolution equation of
the stress yields good results for a modest number of states.

For the second part of the efficiency analysis, Chapter 6 finds that the maximal extrap-
olation factor M increases with decreasing ε, for a linear driven SDE. For moderate
time-scale separations, M stays relatively constant. This is an interesting result since it
relies on the hyper-convergence of the micro-macro acceleration scheme. In Chapter 6 we
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8. Conclusion and Outlook

prove that the micro-macro acceleration scheme can take larger steps than a microscopic
simulation, while being more accurate than the approximate macroscopic model.

Finally, in Chapter 7 we present two more cases where with a similar conclusion. For the
bimodal problem, there is an intermediate regime of intermediate ε and large slow noise
levels where the macroscopic model makes a large modelling error and the micro-macro
acceleration method does not. For smaller ε or larger noise variances, the macroscopic
model is very accurate, making it hard to see the gain of the micro-macro acceleration
scheme. For the tri-atom molecule, the micro-macro acceleration scheme follows the
exact transient dynamics and steady-state of the two considered reaction coordinates
up to discretization errors. This is the case even when the extrapolation operator only
contains the mean of the bad reaction coordinate. In case of a bad reaction coordinate,
the approximate macroscopic model makes a modelling error and the micro-macro
acceleration scheme does not, clearly proving the merit of the new acceleration algorithm.
Only when extrapolating the first two moments of atom C, the micro-macro acceleration
scheme makes small transient errors and exhibits larger noise amplitudes, which is the
topic of further research. All three applications from Chapter 6 and 7 prove that there
are important problems where the micro-macro acceleration algorithm is more accurate
than current state-of-the-art approximate macroscopic models, while being more efficient
than a brute-force microscopic simulation.

8.2 Outlook to future work
Although the thesis proves the merit of the micro-macro acceleration algorithm, a couple of
important questions need further attention. In the experiments on the bimodal problem
and FENE-dumbbells, there is a larger transient deviation between the microscopic
simulation and the micro-macro acceleration scheme. A possible solution is to device
an adaptive procedure, based on accuracy. An algorithm that adaptively changes the
extrapolation step size or the number of macroscopic state variables, could greatly
improve the transient approximations. Until now, adaptivity only activates when there is
a matching failure.

Second, an analysis of how noise propagates through the micro-macro acceleration scheme
could deepen the understanding of the algorithm. In case of the tree-atom molecule,
when extrapolating the first and second moment of the position of molecule C, there is a
much larger noise variance than with the other macroscopic state variables.

Finally, there are many more important problems in science and industry that are high
dimensional, where brute-force simulations take too much time. An example of such a
situation occurs when simulating the kinetic equations in fusion reactors [11]. Applying
the acceleration in similar contexts could be of great value.
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Appendix A

Finite volume method for the
Fokker-Planck equation

Section 5.1 (5.1) uses the results of simulating the Fokker-Planck equation (5.1) associated
to a linear SDE. This appendix contains the derivation of a finite volume scheme for the
two-dimensional Fokker-Planck PDE. The content is largely bases on [26].

Consider a general linear two-dimensional SDE with additive noise:

dX = (aX + bY )dt+DxdWx

dY = (cX + dY )dt+DydWy

where Wx(t) and Wy(t) are Wiener processes. The Fokker-Planck equation describing
the joint density ρ(x, y, t) is then given by

∂tρ+ ∂x((ax+ by)ρ) + ∂y((cx+ dy)ρ) = 1
2(Dx∂xxρ+Dy∂yyρ)

We want that the total mass is numerically conserved, being equal to one. Therefore we
will use a finite-volume method to discretize the drift term, while using a finite difference
scheme for the second order diffusion term. The following section contains a derivation
of a first order scheme for the Fokker-Planck with a general drift term.

∂tρ+ ∂xF (ρ) + ∂yG(ρ) = 1
2(Dx∂xxρ+Dy∂yyρ)

A.1 Derivation of a finite volume scheme
Suppose for simplicity that we are using a rectangular grid Ci,j with box dimensions
(∆x,∆y), and central points (xi, yj) = ((i − 1

2)∆x, (j − 1
2)∆y) in the middle of each

rectangle, as in Figure A.1. Finite volume methods are based on the integral form of the
PDE. Integrating the Fokker-Planck equation over a small rectangle Ci,j yields

d

dt

∫
Ci,j

ρ(x, y, t)dxdy+
∫
Ci,j

∇·(F (ρ), G(ρ))dxdy = 1
2

∫
Ci,j

Dx∂xxρ(x, y, t)+Dy∂yyρ(x, y, t)dxdy.
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A. Finite volume method for the Fokker-Planck equation

Figure A.1: The two-dimensional finite volume grid. This figure was taken from [26].

By Green’s theorem, the surface integral of the divergence of (F (ρ), G(ρ)) equals the line
integral around Ci,j , counter clockwise, of the vector field (F (ρ), G(ρ)) itself. Filling this
in yields

d

dt

∫
Ci,j

ρ(x, y, t)dxdy +
∫ y

j+ 1
2

y
j− 1

2

F (ρ(xi+ 1
2
, y, t))− F (ρ(xi− 1

2
, y, t))dy+

∫ x
i+ 1

2

x
i− 1

2

G(ρ(x, yj+ 1
2
, t))−G(ρ(x, yj− 1

2
, t))dx = 1

2

∫
Ci,j

Dx∂xxρ(x, y, t)+Dy∂yyρ(x, y, t)dxdy.

(A.1)

Before discretizing the integrals, let’s first introduce the cell average of ρ(x, y, t) over a
cell Ci,j as

ρ̄i,j(t) = 1
∆x∆y

∫
Ci,j

ρ(x, y, t)dxdy.

We can now approximate each of different terms occurring in (A.1). For the diffusion we
use standard finite differences, reading

∂xxρ̄i,j u
ρ̄i−1,j − 2ρ̄i,j + ρ̄i+1,j

∆x2

and similarly
∂yyρ̄i,j u

ρ̄i,j−1 − 2ρ̄i,j + ρ̄i,j−1
∆y2

while for the drift terms we introduce the numerical fluxes on the edges of Ci,j

Fi± 1
2 ,j

(t) u 1
∆y

∫ y
j+ 1

2

y
j− 1

2

F (ρ(xi± 1
2
, y, t))dy

Gi,j± 1
2
(t) u 1

∆x

∫ x
i+ 1

2

x
i− 1

2

G(ρ(x, yj± 1
2
, t))dx

78



A.2. Boundary conditions

where a implicit midpoint rule suffices for an accurate computation of the flux integrals

Fi± 1
2 ,j

(t) = F (ρ(xi± 1
2
, yj , t))

Gi,j± 1
2
(t) = G(ρ(xi, yj± 1

2
, t))

Putting it all together, the finite volume approximation of the Fokker-Planck equation
becomes

d

dt
ρ̄i,j =− 1

∆x(Fi+ 1
2 ,j
− Fi− 1

2 ,j
)− 1

∆y (Gi,j+ 1
2
− Fi,j− 1

2
)

+Dx
ρ̄i−1,j − 2ρ̄i,j + ρ̄i+1,j

∆x2 +Dy
ρ̄i,j−1 − 2ρ̄i,j + ρ̄i,j−1

∆y2

Right now the Fokker-Planck PDE is reduced to a system of ODEs that can be integrated
over time using any standard technique for ODEs like Runge-Kutta methods or alike.
A simple forward Euler will work nicely too. The complete discrete finite volume
approximation thus reads

ρ̄n+1
i,j = ρ̄ni,j −

∆t
∆x(Fi+ 1

2 ,j
− Fi− 1

2 ,j
)− ∆t

∆y (Gi,j+ 1
2
− Fi,j− 1

2
)

+Dx
∆t

∆x2 (ρ̄i−1,j − 2ρ̄i,j + ρ̄i+1,j) +Dy
∆t

∆y2 (ρ̄i,j−1 − 2ρ̄i,j + ρ̄i,j−1).

A.2 Boundary conditions
In principle, the invariant distribution of a linear model is a two-dimensional Gaussian
that stretches out all over the plane R2. The bell-curve decays very rapidly so that we
can approximate the plane R2 by a square grid [x1, x2] × [y1, y2] so that the transient
and invariant distributions are very close to zero on the boundary of the rectangular grid.
A numerical computation on this finite grid also requires boundary conditions. Mass
conservation is very important in the context of probability distributions, which demands
for no-flux boundary conditions. No flux on the boundaries requires that the numerical
fluxes Fi± 1

2 ,j
and Gi,j± 1

2
are zero on the boundary. Also for second order derivatives

near the boundary, the no flux condition implies that Gi,j± 1
2

= 0 on the lower and upper
boundary and Fi± 1

2 ,j
= 0 on the left and right boundary.

A.3 Order test to verify a correct implementation
One way to verify the correctness of the finite volume implementation is by computing the
error between the numerical solution and analytical solution for different grid sizes and
temporal steps. The error should decrease with a certain order, given by the numerical
scheme. We will use the standard forward Euler method so the error should decrease
linearly in time and quadratically in space, due to the central implicit midpoint scheme
to approximate the fluxes and central differences for the second order derivatives. Both
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A. Finite volume method for the Fokker-Planck equation
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Figure A.2: Convergence of the error as a function of the temporal and spatial step size
for a fixed end time for the Fokker-Planck equation. The figure on the left shows more
than first order convergence in time and the graph on the right depicts more than second
order in space, as it theoretically should be.

approximations are second order in space. Figure A.2 depicts the error as a function of
the temporal and spatial step for a Gaussian initial condition with mean µx, µy = 1, 2 and
covariances Σx,Σy,Σx,y = 1, 1, 0 and final simulation time 0.5 seconds. The time step dt
scales quadratically with the spatial grid size dx to keep the numerical scheme stable.
Figure A.2 also shows better than second order convergence in space, it even is third
order, and similarly the convergence in time is better than first order. The higher-order
convergence is called hyper-convergence but more research is needed on why hyper-
convergence manifests on a linear PDE. Both figures confirm a correct implementation of
the finite volume approximation of the Fokker-Planck equation.
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Appendix B

Derivation of a closure model for
linear SDEs

B.1 Derivation of the closure relations
Section 5.1 explains the concept of closure relations for SDEs. For a general linear
process, there exist closed equation for the means and variances alone, without higher
order moments appearing. Consider again an n-dimensional linear SDE with additive
noise. We can write this as

dX = AXdt+DdW

where X ∈ Rn, A ∈ Rn×n, D = diag(D1, . . . , Dn) and W (t) an n−dimensional Wiener
process. Instead of simulating the SDE directly, it is possible to derive a system of ODEs
describing the propagation of means E[X] and covariance E[(X −E(X))(X −E(X))T ] of
the components of the SDE. In the two dimensional case for instance, the SDE reduces
to a system of five ODEs because the covariance matrix is symmetric. The system has
a multidimensional Gaussian invariant distribution. In this setting, the invariant mean
and covariance describe the invariant distribution completely.

For the mean, we can proceed by taking the expectation of both sides

dE[X] = AE[X]dt+DE[dW ].

By the martingale property in Itô-calculus, the final term is zero and we get the first two
relations as dE[X]

dt = AE[X]. For the covariance, a similar derivation is possible, but Itô’s
lemma is required. The derivative of the covariance matrix using Itô’s lemma reads

d(X − E[X])(X − E[X])T = dX(X − E[X])T + (X − E[X])dXT + 1
2DD

Tdt.

Writing the former expression out further gives us

d(X − E[X])(X − E[X])T =
(
AX(X − E[X])T + (X − E[X])XTAT + 1

2DD
T
)
dt

+ dW (X − E[X])T + (X − E[X])dW
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B. Derivation of a closure model for linear SDEs

Again taking expectations from both sides, the terms with Brownian motion will disappear
due to the martingale property, so we end up with

dCov[X] =
(
AE[X(X − E[X])T ] + E[](X − E[X])XT ]AT + 1

2DD
T
)
dt.

The first two expectation-terms equal the covariance matrix, so the system of ODEs
describing the covariance matrix is

dCov(t)
dt

= ACov(t) + Cov(t)AT + 1
2DD

T .

In general, higher order terms pop up in the equations describing the covariance matrix.
For non-linear SDEs, this is usually the case so that in principle an infinite number of
equations are required to describe the intermediate distributions completely. For example,
the two dimensional linear process in Chapter 4 case where

A =
(
a b
c d

)
D =

(
Dx 0
0 Dy

)

the equations for means and covariance reduce to

d

dt


µX
ΣX

µY
ΣY

Cov(X,Y )

 =


a 0 b 0 0
0 2a 0 0 2b
c 0 d 0 0
0 0 0 2d 2c
0 c 0 b a+ d




µX
ΣX

µY
ΣY

Cov(X,Y )

+


0
D2
x

0
D2
y

0


which can be solved directly or simulated using any standard ODE solver.

B.2 Analytical solution of the closure relations

The system of ODEs from above has a simple analytical solution. Denote the system as

dx(t)
dt

= Mx+ b, x(0) = x0. (B.1)

The steady-state solution is given by x∞ = −M−1b and if we denote y(t) = x(t)− x∞,
the evolution law for y(t) is simply

dy(t)
dt

= My(t) (B.2)

such that y(t) = eMty0 and hence

x(t) = x∞ + eMt(x0 − x∞). (B.3)
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B.3. Convergence test for the forward Euler implementation
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Figure B.1: First order convergence in time for the error mean and variance of the slow
and fast variables.

B.3 Convergence test for the forward Euler
implementation

Chapter 4 uses a forward Euler implementation of the two-dimensional closure model to
compare the accuracy of the matching algorithms with the true solution. It is therefore
necessary to be sure that the implementation is correct by carrying out an order test. The
following test compares the analytical solution given by equation (B.3) at time t = 0.5
seconds with initial condition [µx,Σx, µy,Σy,Σx,y] = [1., 1., 2., 1., 0.] with the numerical
solution at the same time as a function of the temporal step size. Figure B.1 shows
the error of the mean and variance of the fast and slow variable relative to the analytic
solution as a function of the step size. The plot shows first order convergence, which is
exactly the order of the forward Euler method. This is sufficient proof that the numerical
implementation is trustworthy and if the step size is small enough, the closure model is
close to the exact solution.
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Appendix C

Poster

Figure C.1 shows the poster that was presented at the Master’s thesis fair on the 23rd of
April at KU Leuven.
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C. Poster

Fo
cu

s o
f t

he
 th

es
is:

 Effi
cie

nc
y

M
an

y
sy

st
em

sa
re

 in
he

re
nt

ly
 st

oc
ha

st
ic

 w
ith

 
a 

st
ro

ng
 sc

al
e 

se
pa

ra
tio

n 
!

•
Fo

r !
≪
1

di
re

ct
 co

m
pu

ta
tio

ns
 a

re
 

in
tr

ac
ta

bl
e 

bu
t a

ve
ra

ge
d 

m
od

el
s e

xi
st
[%
]

•
Fo

r !
≈
1

th
e 

st
an

da
rd

 m
et

ho
ds

 a
re

 
ef

fic
ie

nt
 a

nd
 a

cc
ur

at
e

•
Fo

ri
nt

er
m

ed
ia

te
!

di
re

ct
 co

m
pu

ta
tio

ns
 

ar
e 

st
ill

 e
xp

en
siv

e 
w

hi
le

 a
ve

ra
ge

d 
m

od
el

s 
ar

e 
no

t a
cc

ur
at

e.

Co
nt

ex
t

M
as

te
r 

W
isk

un
di

ge
in

ge
ni

eu
rs

te
ch

ni
ek

en

M
as

te
rp

ro
ef

Ha
nn

es
 

Va
nd

ec
as

te
el

e

Pr
om

ot
or

Pr
of

. d
r. 

Ir.
 

Gi
ov

an
ni

 
Sa

m
ae

y

Ac
ad

em
ie

ja
ar

20
17

-2
01

8

Effi
cie

nc
y 

of
 m

icr
o-

m
ac

ro
 a

cc
el

er
a8

on
 fo

r s
ca

le
-s

ep
ar

at
ed

 S
DE

s

M
icr

o-
m

ac
ro

 a
cc

el
er

a8
on

[(
]

Ge
ne

ra
l f

ou
r s

te
p 

pr
oc

ed
ur

e:

Si
m

ul
at

e
1.

en
se

m
bl

e
(*
+
) +

ov
er

 
-

m
ic

ro
sc

op
ic

 st
ep

s o
f s

ize
.
/

Re
co

rd
 m

ac
ro

sc
op

ic
 m

om
en

t f
un

cK
on

s 
2.

of
 in

te
re

st
 a

t e
ve

ry
 st

ep
0
12
,4
=
6
7
[8

1(
9
)]

Ex
tr

ap
ol

at
e 

3.
th

es
e 

m
om

en
ts

  o
ve

r a
 

la
rg

er
 st

ep
 ∆
/

0
12
;
<
=
0
12
+
∆
/

.
/
0
12
,>
−
0
12

Fi
nd

 
4.

a 
ne

w
 d

ist
rib

uK
on

 a
t /

2
;
<

th
at

 is
 

co
ns

ist
en

t w
ith

 (0
12
;
<
) 1

w
hi

le
 

m
in

im
izi

ng

It 
is 

kn
ow

n 
th

at
 th

is 
m

et
ho

d 
co

nv
er

ge
s a

nd
 

th
e 

ex
tr

ap
ol

aK
on

 st
ab

ili
ty

 b
ou

nd
 is

 
in

de
pe

nd
en

t o
f .
/.

[1
] 

•
D

E
B

R
A

B
A

N
T,

 K
ri

st
ia

n
; 
S

A
M

A
E

Y
, 
G

io
va

n
n

i; 
Z

IE
L

IŃ
S

K
I,
 P

rz
e

m
ys

ła
w

. 
A

 m
ic

ro
-m

a
cr

o
 a

cc
e

le
ra

tio
n

 m
e

th
o

d
 f
o

r 
th

e
 M

o
n

te
 C

a
rl

o
 s

im
u

la
tio

n
 o

f 
st

o
ch

a
st

ic
 d

iff
e

re
n

tia
l e

q
u

a
tio

n
s.

S
IA

M
 J

ou
rn

al
 o

n 
N

um
er

ic
al

 A
na

ly
si

s,
 

2
0

1
7

, 
5

5
.6

: 
2

7
4

5
-2

7
8

6
..

[2
]

•
P

A
V

L
IO

T
IS

, 
G

ri
g

o
ri

s;
 S

T
U

A
R

T,
 A

n
d

re
w

.
M

ul
tis

ca
le

 m
et

ho
ds

: 
av

er
ag

in
g 

an
d 

ho
m

og
en

iz
at

io
n.

 S
p

ri
n

g
e

r 
S

ci
e

n
ce

 &
 B

u
si

n
e

ss
 M

e
d

ia
, 

2
0

0
8

.

•
Bi

m
od

al
 m

od
el

: M
ic

ro
-m

ac
ro

 a
cc

el
er

at
io

n 
re

m
ov

es
 m

od
el

lin
g 

er
ro

r

•
Fo

ra
dr

iv
en

 li
ne

ar
 sy

st
em

th
e 

ac
ce

le
ra

tio
n 

m
et

ho
d 

co
nv

er
ge

s f
as

te
r 

to
 th

e 
m

ic
ro

 m
od

el
 w

he
n 
∆
/
≅

!
th

an
 

th
e 

m
ac

ro
 m

od
el

W
hi

le
fo

rt
he

 m
ic

ro
sc

op
ic

m
od

el
.
/
≅
!
.

B
*
=
−
2
*
B
/
+
D
B
E

*
+2
,4
;
<
=
*
+2
,4
+
F
*
+2
,4
.
/
+
G
*
+2
,4
B
E

φ
x
=
a
rg
m
in

P
Q R

S
9
ln

S
9

U
9

B
9

B
*
=
−
V
*
+
W
B
/
+
X
YZ
[
/
B
/
+
B
E
\

B
W
=
−
1 !
W
−
*
B
/
+
1 !
B
E
]

B
*
=
−
2
*
+
W
B
/
+
D
B
E
\

B
W
=
−
1 !
W
^
−
W
B
/
+
1 !
B
E
]

Figure C.1: The poster.
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