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Abstract

Contemporary developments in the perception of our environment have caused a completely new pro-
cess industry. Production processes now have to operate as optimal as possible with respect to different,
often conflicting, objectives as for instance optimality with respect to societal, environmental and eco-
nomical aspects. In such case, no one optimal solution exists and decision makers need to resort to
trade-off (or Pareto optimal) solutions. The problem of optimising a process with respect to different con-
flicting objectives, is called a multi-objective optimisation problem (MOOP). MOOPs have gained a lot
of attention in different applications throughout the past decade. MOOPs are however mathematically
challenging problems and are generally solved via the use of dedicated algorithms. The two major al-
gorithm categories are deterministic and stochastic algorithms. The former converts the MOOP in a set
parameterised single-objective optimisation problems (SOOPs), while the latter tackles the MOOP in its
entirety. The focus of this thesis is on the stochastic algorithms, and more specifically on the evolution-
ary algorithms Non-dominated sorting genetic algorithm-II (NSGA-II) and Non-dominated sorting genetic
algorithm-III (NSGA-III). These algorithms are widely acclaimed but still show two major shortcomings:
(i) they are incapable of distinguishing between solutions based on their trade-off and distribution; (ii)
they utilise a problem-irrelevant stopping criterion (i.e. reaching a pre-defined number of iterations). The
lack of a trade-off based selection procedure results in a Pareto front that contains solutions that present
no relevant information to the user. The flawed stopping criterion results in an unnecessary high com-
putation time. To alleviate these shortcomings, the tM- and eventually tDOM-algorithms are developed.
These algorithms can distinguish between solutions based on their trade-off via the implementation of
t-domination. The tM-algorithm furthermore uses the convergence of solutions as a stopping criterion, via
an additional user defined parameter. The tDOM-algorithms stop if all the solutions of two subsequently
generated solution populations do not t-dominate each other. Both novel algorithms are capable of gener-
ating a Pareto front with a trade-off based solution resolution and display a significant gain in computation
time.

Key words: Multi-objective optimisation problems, NSGA-II, NSGA-III, Evolutionary algorithms, Trade-off,
t-domination
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Samenvatting

Hedendaagse ontwikkelingen in de perceptie van ons milieu hebben een compleet nieuwe procesindus-
trie veroorzaakt. Productieprocessen moeten nu zo optimaal mogelijk werken met betrekking tot ver-
schillende, vaak tegenstrijdige, doelstellingen op vlak van maatschappelijke, milieu- en economische as-
pecten. In dergelijke gevallen bestaat er geen optimale oplossing en moeten beslissers hun toevlucht
nemen tot trade-off (of Pareto-optimale) oplossingen. Het optimaliseren van een proces met betrekking
tot verschillende tegenstrijdige doelen (of objectieven), wordt een multi-objectief optimalisatieprobleem
(MOOP) genoemd. MOOP’s hebben het afgelopen decennium veel aandacht gewonnen in verschillende
toepassingsgebieden. MOOP’s zijn echter wiskundig uitdagende problemen en worden in het algemeen
opgelost door middel van speciale algoritmen. De twee belangrijkste algoritmecategorieën zijn deter-
ministische en stochastische algoritmen. Terwijl de eerstgenoemde de MOOP converteert in een reeks
optimaliseringsproblemen met een enkel objectief (SOOP), behandelt de laatste de MOOP in zijn geheel.
Deze scriptie focust op de stochastische algoritmen en meer specifiek op de evolutionaire algoritmen Non-
dominated sorting genetic algorithm-II (NSGA-II) en Non-dominated sorting genetic algorithm-III (NSGA-
III). Deze algoritmen worden alom geprezen, maar vertonen twee belangrijke tekortkomingen: (i) ze zijn
niet in staat onderscheid te maken tussen oplossingen op basis van hun afweging; (ii) ze gebruiken een
probleem-irrelevant stopcriterium (nl. het bereiken van een vooraf gedefinieerd aantal iteraties). Het ont-
breken van een selectieprocedure gebaseerd op de afweging van een oplossing, resulteert in een Pareto
front dat oplossingen bevat die voor de gebruiker geen relevante informatie bevatten. Het gebrekkige
stopcriterium resulteert in een onnodige hoge rekentijd. Om deze tekortkomingen te verhelpen, zijn de
tM-, en uiteindelijk tDOM-algoritmen ontwikkeld. Deze algoritmen kunnen een onderscheid maken tussen
oplossingen op basis van hun afweging via de implementatie van t-dominatie. Het tM-algoritme gebruikt
als stopcriterium de convergentie van de oplossingen via een extra, door de gebruiker gedefinieerde
parameter. De tDOM-algoritmen stoppen als alle oplossingen van twee achtereenvolgend gegenereerd
oplossingsverzamelingen elkaar niet t-domineren. Beide nieuwe algoritmen zijn in staat om een Pareto
front te genereren met een afweging-gebaseerde oplossingsresolutie, en vertonen simultaan een signifi-
cante winst in rekentijd.

Sleutelwoorden: Multi-objectieve optimalisatie problemen, NSGA-II, NSGA-III, Evolutionaire algoritmes,
Trade-off, t-dominantie
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Wetenschappelijke samenvatting

Sinds enkele decennia heeft een compleet nieuwe en duurzame procesindustrie zich steeds prominenter
geprofileerd. Door het toenemende besef dat klimaatverandering wel degelijk een acuut probleem vormt,
wordt er steeds naar nieuwe manieren gezocht om energie te besparen en minder broeikasgassen uit te
stoten. Niet alleen overheden staan hierdoor voor een aanzienlijke uitdaging, maar ook de industrie moet
de handen uit de mouwen steken. Waar het vroeger voldoende was dat industriële processen functioneel
waren en een relatief hoge opbrengst leverden, moeten ze nu ook duurzaam en energiezuinig zijn. Deze
extra eisen zorgen ervoor dat heel veel processen moeten geoptimaliseerd worden.

Aangezien productieprocessen, uit welke industrietak ook, vaak complex zijn, is hun optimalisatie der-
halve ook niet eenduidig. Zo moet er aan verschillende eisen simultaan voldaan worden, hoewel dit
vaak tot tegenstrijdige resultaten leidt. Wanneer bv. een chemisch proces beschouwd wordt, zal een
energiebezuiniging in de vorm van een verlaging van de reactortemperatuur vaak ook aanleiding geven
tot een verlaging in opbrengst. Terwijl er dus in een bepaald objectief gewonnen wordt (i.e. energie be-
sparen), wordt in een ander objectief verloren (i.e. opbrengst). Dergelijke optimalisatieproblemen waarbij
simultaan aan verschillende eisen of objectieven moet worden voldaan, worden multi-objectieve optima-
lisatie problemen (MOOP) genoemd. Een MOOP heeft niet één, maar oneindig veel optimale oplossingen.
Het hoeft niet te verwonderen dat, indien het proces dat geoptimaliseerd moet worden op zich reeds com-
plex is, de mathematische beschrijving ervan in de vorm van een MOOP nog veel complexer is. Daarom
wordt meestal gebruik gemaakt van (computer-)algoritmes voor het minimaliseren van een MOOP.

Er bestaan twee hoofdcategorieën onder deze computeralgoritmes: deterministische algoritmes en sto-
chastische algoritmes. De eerstgenoemde algoritmes vormen een MOOP om tot een reeks van optima-
lisatieproblemen met maar een enkel objectief (SOOP) door middel van parameters. Deze SOOP worden
vervolgens individueel opgelost waardoor een oplossing van de initiële MOOP verkregen wordt. Deze
oplossingen worden ook wel Pareto-optimaal of niet-gedomineerd genoemd. De verzameling van al deze
oplossing wordt het Pareto front genoemd. Ondanks dat deterministische algoritmes zeer populair zijn,
hebben ze ook enkele niet onmiskenbare tekortkomingen. Zo kan het feit dat ze maar één oplossing
per iteratie kunnen genereren als een nadeel gezien worden. Deterministische algoritmes zijn ook meer
gevoelig om naar lokale optima te convergeren. Bovendien zorgt het feit dat een groot aantal SOOP’s
moeten opgelost worden ervoor dat de algoritmes vaak tijdrovend en complex zijn.

De hoofdfocus van deze scriptie ligt echter bij de stochastische algoritmes. Dit type algoritmes behandelt
de MOOP in zijn integriteit en is in staat meerdere Pareto-optimale oplossingen te genereren per iteratie.
Evolutionaire algoritmes vormen een subcategorie van de stochastische algoritmes. Non-dominated sort-
ing genetic algorithm-II (NSGA-II) en non-dominated sorting genetic algorithm-III (NSGA-III) zijn veruit de
meest gekende evolutionaire algoritmes. De algemene werkmethode van dit type algoritmes is gebaseerd
op seksuele voortplanting en selectie, net zoals in de natuur. Een random initiële populatie van MOOP
oplossingen wordt gebruikt om nieuwe oplossingen te genereren. Door telkens de beste (meest optimale)
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oplossingen te selecteren voor verdere reproductiestappen, convergeren de oplossingen uiteindelijk naar
het Pareto front.

Hoewel NSGA-II en NSGA-III alle lof verdienen, vertonen ze echter wel twee fundamentele tekortkomin-
gen. Zo zijn deze algoritmes niet in staat een onderscheid te maken tussen de gegenereerde oplossingen
op basis van de afweging van de oplossingen in kwestie. Oplossingen met een hogere afweging worden
namelijk geprefereerd door de beslissingsmaker. Een tweede tekortkoming van de NSGA-II en NSGA-III
algoritmes is hun gebruik van een probleem-irrelevant stopcriterium. De algoritmes worden enkel onder-
broken wanneer een bepaald aantal iteraties bereikt is. Dit arbitraire stopcriterium, welke gedefinieerd
moet worden door de gebruiker, zorgt er vaak voor dat dure rekentijd onnodig verbruikt wordt. Aangezien
zowel NSGA-II als NSGA-III elitaire algoritmes zijn, zullen oplossingen zich niet terug verwijderen van het
Pareto front eenmaal ze volledig geconvergeerd zijn. De beste oplossingen van de vorige oplossingsgen-
eratie worden namelijk onveranderd overgenomen in de huidige oplossingsge-neratie. Het voortzetten
van de algoritmes nadat dit punt bereikt is, is dus nutteloos.

De bovenstaande tekortkomingen hebben in eerste instantie aanleiding gegeven tot de ontwikkeling van
de nieuwe tM-algoritmes. Deze algoritmes zijn in staat om oplossingen met een hoge afweging te beklem-
tonen en beschikken over een probleem-relevant stopcriterium. Dit resulteert in de generatie van Pareto
fronten met een duidelijke, afweging gerelateerde oplossingsresolutie enerzijds, en anderzijds een signif-
icante daling in de vereiste rekentijd. Oplossingen met een hoge afweging worden onderscheiden van die
met een lage afweging door middel van het aantal oplossingen die zich in hun regio’s van praktisch on-
betekenende afweging (PIT-regio) bevinden. De PIT-regio werd geı̈ntroduceerd door Mattson et al. (2014)
en is een kruisvormige ruimtelijke eenheid met in het centrum de oplossing in kwestie. De PIT-regio van
een oplossing wordt gedefinieerd door enerzijds de afweging ∆t en anderzijds de distributie ∆r. Deze
twee parameters worden door de gebruiker aan het systeem opgelegd en zijn gebaseerd op minutieus
onderzoek. De zogenoemde afwegingsteller wordt in de tM- en tDOM-algoritmes gebruikt om aan te to-
nen hoeveel andere oplossingen er zich in de PIT-regio van een bepaalde oplossing bevinden. Indien de
oplossing in stijgende volgorde gesorteerd worden op basis van hun afwegingsteller, zullen de oplossin-
gen met een hoge afweging in de hogere posities van de oplossingsverzameling gesorteerd worden.

Hoewel het stopcriterium van de tM-algoritmes de algoritmes in staat stelde om veel rekentijd te besparen,
werd er nog steeds een grote tekortkoming waargenomen. Het stopcriterium van de tM-algoritmes was
gebaseerd op de convergentie van de oplossingen. De mean ideal distance (MID) werd als prestatiepa-
rameter gebruikt om de convergentie van de oplossingen te kwantificeren. Deze parameter stelt namelijk
de genormaliseerde gemiddelde euclidische afstand voor tussen de genereerde oplossingen enerzijds
en het Utopia punt (i.e. het punt dat alle individuele minima van de beschouwde objectieven bevat) an-
derzijds. Aangezien NSGA-II en NSGA-III elitaire algoritmes zijn, kan aangenomen worden dat indien
de convergentie van de oplossingen niet verbetert, of stagneert, de oplossing hoogstwaarschijnlijk het
Pareto front bereikt hebben. Deze stagnatie in convergentie kan waargenomen worden in de nagenoeg
identieke MID-waarde van twee opeenvolgende oplossingspopulaties. Het tM-algoritme stopt wanneer het
verschil in MID tussen twee opeenvolgende oplossingspopulaties kleiner wordt dan een tolerantiewaarde
∆MID, welke door de gebruiker dient gedefinieerd te worden. Aangezien deze laatste echter vaak geen
idee heeft wat een goede convergentie is voor zijn/haar beschouwd optimalisatieprobleem, zal de ∆MID
waarde opnieuw arbitrair vastgelegd worden.

De gebruiker kan echter wel gefundeerde waarden opgeven voor de reeds vernoemde afweging ∆t en
distributie-parameters ∆r. Er kan bovendien gesteld worden dat indien een algoritme in staat is actief
die oplossingen te selecteren die de hoogste diversiteit hebben en algemeen de hoogste toegevoegde
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waarde aan de oplossingspopulatie bieden, dat algoritme ook in staat is vast te stellen wanneer de
oplossingen dat het genereert niet langer aan de eisen van de gebruiker voldoen. Het stopcriterium van
de tDOM-algoritmes is hierop gebaseerd. Deze algoritmes worden stopgezet indien alle oplossingen van
twee opeenvolgend gegenereerde oplossingspopulaties zich in elkaar PIT-regio bevinden. De oplossin-
gen van die twee populaties worden door de gebruiker namelijk niet langer als verschillend beschouwd.
Aangezien NSGA-II en NSGA-III elitaire algoritmes zijn, zal dit scenario zich enkel voordoen indien de
oplossingen voldoende convergeert zijn naar het Pareto front. Het stopcriterium van de tDOM-algoritmes
vereist dus geen additionele parameter, maar maakt gebruikt van gefundeerde eisen opgelegd door de
gebruiker. Merk op dat de in deze thesis ontwikkelde algoritmes gebaseerd zijn op fundamenteel on-
derzoek. Doordat ze niet specifiek geworteld zijn in een bepaalde ingenieurstak, zijn ze veelzijdig en
toepasbaar in verscheidene ingenieurstoepassingen.
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Chapter 1

Introduction and positioning the thesis
topic

Background

The biochemical and chemical industry is a strong economical player and employer in Belgium. In 2015,
the chemical, plastics, and life science industry in Belgium was responsible for a turnover of more than 64
billion Euro, 90,000 direct employees and 150,000 indirect jobs. Almost one third of the total manufactur-
ing added value of 2015 in Belgium was derived from chemical industry (CEFIC, 2017).

Although delivering multiple job opportunities and great turnover figures, the chemical industry faces ever-
increasing challenges. The chemical industry is known to be a potential big polluter and in the context
of climate change and resource shortages, regulations are becoming increasingly strict. Companies are
therefore looking for new ways to save on energy, resources and money. When optimising a (bio-)chemical
process, often multiple objectives must be met simultaneously. Because these objectives are commonly
determined by several independent variables and have contradictory optima, solving a multi-objective
optimisation problem does not yield one optimal solution but an infinite set of optimal solutions. These
solutions are located on the so-called Pareto front (Vallerio et al., 2015).

In order to generate a Pareto front with a sufficient solution resolution, convergence and spread, various
solving methods have been developed. A major category within these solving methods, are the evolution-
ary algorithms. One of their main features is that they are capable of generating multiple Pareto-optimal
solutions (i.e solutions located on the Pareto front) in a single run. This makes them an excellent choice
to solve multi-objective optimisation problems, especially if the decision maker is interested in a diverse
set of solutions.

Thesis goal and objectives

Early evolutionary algorithms were lacking elitism and had a high computational complexity. Elitism al-
lows the algorithm to keep the best solutions of the previous iteration unchanged in the current one, which
significantly increases the convergence speed of the algorithm. In order to maintain a decent spread in
solutions, the user had to define a sharing parameter. However, the overall efficiency of the algorithm
was highly dependent on the value of this sharing parameter. The lack of elitism of the first evolutionary
algorithms on the other hand prevented a fast convergence to the Pareto front.
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More contemporary evolutionary algorithms like non-dominated sorting genetic algorithm II (NSGA-II)
resolved the shortcomings of the early algorithms (Deb et al., 2002). Non-dominated sorting genetic
algorithm III (NSGA-III) is based on the framework of NSGA-II, but was especially developed to handle
multi-objective problems with four or more objectives (Deb and Jain, 2014). Although these algorithms
were a big step in the right direction, several improvements can still be done.

The overall goal of this thesis is therefore to point out the shortcomings of the currently available NSGA-
II and NSGA-III algorithms and to resolve these shortcomings. The focus will be laid on the spread of
solutions on the Pareto front, and more specifically in the high trade-off regions of the Pareto front. A so-
lution has a high trade-off if a small change in the value of one objective (or in the corresponding process
variables) has a big influence on the values of other objectives. One of the main targets of this thesis
will be to enable evolutionary algorithms to distinguish low trade-off solutions from high trade-off solutions
and subsequently favouring the latter ones. This will eventually lead to the development of novel genetic
algorithms that take the trade-off a generated solution into account.

Additionally, the stopping criteria of the currently available NSGA-II and NSGA-III algorithms are arbitrary
chosen and have little relevance to the main goal of the algorithms, i.e. generating Pareto-optimal solu-
tions. The possibilities to improve these stopping criteria will be further examined and will be implemented
in the novel algorithms.

Thesis outline

In the literature study a distinction is made between multi-objective optimisation and evolutionary algo-
rithms. In the first chapter of this part, the concept of multi-objective optimisation is explained together
with three widely used scalarisation solving methods (Weighted sum, Normal boundary intersection, and
(enhanced) Normalised normal constraint method).

The following chapter focuses on evolutionary algorithms. Firstly their advantages over the previously
described scalarisation solving methods will be emphasised together with other general considerations.
Subsequently NSGA-II and NSGA-III are thoroughly discussed. A constraint-handling scheme is pre-
sented along the presentation of both algorithms.

In the following part, the materials and methods used during the course of this thesis are discussed. The
used case studies are also presented in this part as well as the used software and source codes.

The remaining part of the thesis is dedicated to the representation and discussion of the made obser-
vations and improvements. The first chapter of this part focusses on enabling both the NSGA-II and
NSGA-III algorithms to handle constrained multi-objective problems. Two feasibility checks are introduced
and the obtained so-called constrained-algorithms are tested on the case studies. The case studies en-
able simultaneously to point out the shortcomings of the original NSGA-II and NSGA-III algorithms.

In the subsequent chapter, these shortcomings are further examined, leading up to the proposal of a
novel tM-evolutionary algorithm. This algorithm is based on the NSGA-II and NSGA-III algorithms but
uses a problem-relevant stopping criterion and is capable in distinguishing between solutions based on
their trade-off. The tM-algorithms will likewise be tested on the numerical case studies. Based on the re-
sults of these case studies, a more advanced and final novel algorithm is proposed: the tDOM-algorithm.
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The tDOM-algorithms are discussed in detail in Chapter 7. These algorithms use, additionally to non-
dominated sorting, a t-non-dominated sorting algorithm. t-domination is a variant of non-domination and
allows the algorithm to pinpoint when it is suitable to stop, based on the trade-off of the generated solu-
tions. Because the trade-off of solutions is a property that is imposed by the user, based on underpinned
arguments, the tDOM-algorithms use in fact a parameterless and problem-relevant stopping criterion.
This, jointly with the trade-off based Pareto front solution resolution, makes the tDOM-algorithms very
promising in view of further use and implementation in commercial software.

The last part of this thesis focuses on the formulation of a conclusion of the made observations and
obtained results. Some perspectives for further research are provided simultaneously.
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Chapter 2

Multi-Objective Optimisation Problems

2.1 Introduction

In a world of increased awareness of climate change and resource depletion, it is not surprising that
chemical production companies, and other companies in general, are becoming more interested in opti-
mising their workflow and processes. Using optimised processes enables companies to simultaneously
increase their yield and save energy, resources, and money.

The optimisation of, for instance, a fed-batch reactor consists of multiple objectives which all have to be
considered at the same time. The goal is to optimise the separate objectives whilst keeping in mind that
the (optimal) values of the individual objectives are often linked and dependent on each other. In the case
of the fed-batch reactor, the feed rate of reagents, the temperature of the reactor, the vigorousness of the
stirrer, etc. all have an influence on the overall yield of the reactor and its energy demand (Vallerio et al.,
2015).

If it is possible to identify the independent process variables that influence the values of the considered ob-
jectives and if these objectives are translatable into mathematical equations, a multi-objective optimisation
problem (MOOP) can be formulated. The convention is that an optimisation problem is mathematically
formulated as a minimising problem, despite certain objectives might have optimal maximum values (for
instance the process yield). Objectives that have to be maximised are however easily converted to objec-
tives that have to be minimised by multiplying the objective function in question by −1.

In this chapter, a multi-objective optimisation problem will be mathematically described. Subsequently the
two major solving strategies will be explained, being scalarisation methods and vectorisation methods. At
the end of this chapter, three commonly used scalarisation methods are introduced.

2.2 Mathematical description of a multi-objective optimisation problem

In general it is possible to describe an optimisation problem mathematically as follows (Das and Dennis,
1997):

min
x∈C

F(x) (2.1)

Equation (2.1) is a scalar equation: F stands for a certain goal that needs to be minimised (e.g. cost). x
is the optimisation variable or process variable, in this case a scalar (e.g. time). The process variable is
often subjected to constraints. The constraints render a feasible region C. Only process variables that are
part of C will provide a feasible solution of the optimisation problem.

On a more general note however, it is more likely that an optimisation problem consists out of multiple

9



10 2 Multi-Objective Optimisation Problems

goals that need to be optimised at the same time and that can have contradictory optima. In this scenario,
Equation (2.1) becomes (Das and Dennis, 1997):

min
x∈C

F(x) =

 f1(x)
...

fM(x)

 (2.2)

with:
C = {x : h(x) = 0; (g(x)≤ 0; a≤ x≤ b} (2.3)

and
F : Rn 7→ RM (2.4)

h : Rn 7→ Rne (2.5)

g : Rn 7→ Rni (2.6)

A solution x∗ of the MOOP is Pareto-optimal or non-dominated if there exist no other solution x for which
F(x) ≤ F(x∗) and additionally for this solution x also at least one of the objectives fk(x) < fk(x∗) with
k ∈ {1 . . .M}. If there exist such a solution x, then x∗ is not Pareto-optimal. M stands for the number of
objectives, n is the number of decision variables, ne is the number of equality constraints and ni is the
number of inequality constraints (Das and Dennis, 1997). The Pareto front of an optimisation problem is
the visual representation of a set of Pareto-optimal solutions.

Equation (2.3) defines the solution space C. Every possible solution x of the MOOP is part of this set and
is subjected to several equality constraints (Equation (2.5)), inequality constraints (Equation (2.6)) and
boundaries a and b, which represent the lower and upper boundary respectively of the decision variables
(Das and Dennis, 1998). These boundaries mostly represent safety precautions. For example: if the
temperature T of a chemical reactor is a variable of the MOOP, this variable will be subject to boundaries
so that the reactor does not overheat.

2.3 Solving methods: scalarisation and vectorisation

A MOOP has usually not one optimal solution but an infinite set of optimal solutions known as the Pareto
front or the Pareto set. Finding or describing this Pareto front is the main goal when solving a MOOP. The
human decision maker (DM) will choose one optimal solution from the Pareto front as a working point. It
is desirable to produce a diverse Pareto set in a minimal computing time (Vallerio et al., 2015). Two major
classes of MOOP solving methods exist: scalarisation methods and vectorisation methods (Logist et al.,
2010).

Scalarisation methods employ deterministic algorithms and translate the MOOP into a set of single-
objective optimisation problems (SOOP) via the use of weight factors. The SOOP are then minimised
independently from the other objectives. This renders one non-dominated solutions for each SOOP. Solv-
ing the set of SOOP eventually results in the calculation of several solutions that are located on the Pareto
front (Logist et al., 2010).

Deterministic algorithms solve a certain problem via a sequence of solutions which are known upfront and
have a causal connection, i.e. the current generated solution results from a previously generated solution.
The advantage of this method is that these algorithms can handle large numbers of decision variables
and constraints. The major drawback of deterministic algorithms is that they incline to converge to local
optima. Other drawbacks of some deterministic algorithms is that they cannot reach non-convex areas of
the Pareto front or that these algorithms generate non-Pareto solutions (i.e. solutions that are not located
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on the Pareto front but are dominated by others) (Logist et al., 2010).

Vectorisation methods use stochastic algorithms to solve a MOOP and tackle the MOOP as a whole. Vec-
torisation methods can be easily implemented and do not tend to converge to local optima, but are mostly
unable to deal with complex constraints. Because all the objectives must be repeatedly compared, the
algorithm can be time consuming when handling many-objective problems (i.e. multi-objective problems
with four or more objectives). Thus vectorisation methods are practically limited to low dimensional search
spaces (Hashem et al., 2017; Logist et al., 2010).

Although this thesis focuses on the use of a specific subset of the stochastic algorithms to solve multi-
objective optimisation problems, scalarisation solving methods are widely used as well. Their major ad-
vantages are that they can be easily run computer wise, accompanied with relatively short computing
time, and are therefore suitable to solve a MOOP. The three most commonly used scalarisation methods
are briefly presented in the next sections. The concerned methods are the Weighted sum method, the
Normal boundary intersection method and the (enhanced) Normalised normal constraint method.

2.3.1 Weighted sum method

The weighted sum method (WS) is the most widely used scalarisation method to solve a MOOP because
of its simplicity. The method is based on combining the multiple objectives into a single convex combina-
tion of the objectives, via a weight factor wi for each objective function fi. The multi-objective problem as
described in Equation (2.2) is translated to minimising the convex combination of the objectives (Das and
Dennis, 1997):

min
x∈C

M

∑
i=1

wi fi(x) = wT F(x) (2.7)

M weights wi are chosen with 0 ≤ wi ≤ 1 and ∑
M
i=1 wi = 1. wT is a 1×M matrix and F(x) is a M× 1

matrix. The solution x∗ of Equation (2.7) is also a solution of the original MOOP (Das and Dennis, 1997).
The WS method is applied for an even spread of weights wi in order to obtain different points on the
Pareto front. Figure 2.1 graphically displays the overall process of the WS method.

Figure 2.1: Graphical representation of the overall process of the WS scalarisation method for a bi-objective prob-
lem with objectives F1 and F2 (Das and Dennis, 1997).

Figure 2.1 displays a bi-objective problem for the sake of clarity. The Pareto front has a non-convex area
which will prove to be a difficulty for the weighted sum method.
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The objectives F1 and F2 as displayed in Figure 2.1 are normalised, rendering F1,n and F2,n respectively.
The convex combination of the two normalised objectives can be seen as a vector of the unit circle
with length 1 and angle arccos(1/w1). w1 is the weight corresponding to F1,n and w2 is the weight
corresponding to F2,n. The tangent on the unit circle perpendicular to the constructed vector, is moved
towards the feasible space, rendering the Pareto-optimal solution x1. During each iteration the weights
are altered, rendering only one Pareto-optimal solutions each time.

As already mentioned, reaching the Pareto-optimal solutions of the non-convex area of the Pareto front
via the weighted sum method proves to be impossible. This is displayed in Figure 2.1 with the additional
vector with a length of 1 and an angle of arccos(1/w′1). The tangent perpendicular to this vector renders
the Pareto-optimal solutions x′1 and x′2. The Pareto-optimal solutions of the non-convex area are never
reached because no tangent can be constructed that is simultaneously perpendicular to a vector that
is constructed via a convex combination of the considered objectives. To summarise, the two major
shortcomings of the WS method are (Hashem et al., 2017):

1. Non-convex points of the Pareto front cannot be reached via this method.

2. An even spread of the weights wi does not necessarily produce an even spread of points on the
Pareto front.

New scalarisation methods were developed to circumvent these two shortcomings.

2.3.2 Normal boundary intersection method

The normal boundary intersection method (NBI) was developed to bypass the shortcomings of the WS
method. In order to briefly describe the method, a few typical terms need explanation first.

The Utopia point F∗ is defined as the vector in RM that contains all the individual global minima f ∗i of the
different objectives (Das and Dennis, 1998; Hashem et al., 2017):

F∗ =

 f ∗1
...

f ∗M

 (2.8)

Usually the Utopia point cannot be achieved by one single x. Let x∗i be the individual minimiser of fi with
i = 1 . . .n then the Convex Hull of Individual Minima (CHIM) is defined as the hyperplane that connects all
the individual minimisers x∗i (Das and Dennis, 1998). The initial step of the NBI method consists out of the
rescaling of all the individual objectives of the original MOOP so that the Utopia point is shifted towards
the origin of the vector space RM and all the individual minimisers of the different objectives are 1 unit
away from the Utopia point (see Figure 2.2) (Messac et al., 2003).
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(a) The initial design metric space (b) The rescaled design metric space

Figure 2.2: Rescaling of a bi-objective problem with objectives F1 and F2 (Messac et al., 2003).

Figure 2.2 displays a bi-objective optimisation problem for the sake of clarity. The individual minimisers
of both objectives are respectively represented as x∗1 and x∗2 and the rescaled minimisers as x∗1 and x∗2
respectively. The Pareto front is situated on the edge of the feasible region that is closest to the Utopia
point F∗. The feasible region is another term for the solution space C as defined in Equation (2.3).

The NBI-method continues by dividing the rescaled or normalised CHIM into several segments via the
construction of quasi-normal lines on the CHIM (not shown in Figure 2.2). When the distance between
the Utopia point and the CHIM is maximised along these quasi-normal lines, a Pareto-optimal point is
found. It is clear that a uniform distribution of quasi-normal lines will lead to a uniform distribution of points
on the Pareto front (Das and Dennis, 1998; Hashem et al., 2017). With this method it is also possible to
reach non-convex points on the Pareto front. The major shortcomings of the NBI method however are
(Das and Dennis, 1998):

1. Impossible to variate the resolution of the Pareto front.

2. Non-Pareto-optimal points can be produced.

Considering the first remark, it would be desirable to be able to alternate the resolution of the Pareto front,
or at least of certain areas of the Pareto front. Only points and/or areas of the Pareto front that surpass an
established trade-off value, are of interesting value to the DM. Generally these solutions are located on
the steep segments of the Pareto front (Hashem et al., 2017). This problem will be tackled in the context
of genetic algorithms during the course of this thesis via the development of novel genetic algorithms that
take the trade-off of a solution into account.

2.3.3 (enhanced) Normalised normal constraint method

The (enhanced) normalised constraint method ((E)NNC) for solving a MOOP is in many aspects similar to
the NBI-method. The Utopia point and individual minimisers of all the M objectives are determined. The
feasible space and the M objectives are rescaled in the same way as described in 2.3.2. The rescaled
individual minimisers are connected via a hyperplane in RM, the so-called Utopia line (the Utopia line is
in every aspect the analogue of the CHIM). The major distinction between the NBI-method and (E)NNC-
method is that the latter minimises one objective function while the other M− 1 objective functions are
incorporated as inequality constraints and thus reduce the feasible space. As a result of this reduction,
many solutions are excluded, which increases the speed of the algorithm (Messac et al., 2003; Hashem
et al., 2017).
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2.4 Conclusion

In this chapter, the concept of multi-objective optimisation problems has been practically as well as math-
ematically introduced. The major incentive to optimise ((bio-)chemical) processes is to save money (be
it in the form of energy, a higher yield, etc.). Multi-objective optimisation problems do not render a sin-
gle optimal point but an infinite set of optimal points. Two major categories of solving methods have
been developed to solve multi-objective optimisation problems and to generate Pareto-optimal solutions:
scalarisation methods and vectorisation methods.

Scalarisation methods use deterministic algorithms to solve a MOOP and translate it into a SOOP which
is then solved independently. This renders one Pareto-optimal solution. Via the use of weight factors,
multiple SOOPs are formed in order to obtain a spread in solutions on the Pareto front. Vectorisation
methods on the other hand, use stochastic algorithms and tackle the MOOP as a whole. A sub-field of
stochastic algorithms are the evolutionary algorithms, which are thoroughly examined in the next chapter.



Chapter 3

Evolutionary Algorithms

3.1 Introduction

Multi-objective optimisation problems have been introduced both practically and mathematically in the
previous chapter. Three commonly used scalarisation methods have been introduced simultaneously.
However, throughout this thesis stochastic algorithms will be used to solve multi-objective optimisation
problems. A sub-field of the stochastic algorithms are the evolutionary algorithms (EA), on which the
overall focus of this thesis will be. In this chapter, the global philosophy and method of evolutionary algo-
rithms is revised. Subsequently two specific evolutionary algorithms are explained in detail: NSGA-II and
NSGA-III.

The use of evolutionary algorithms to solve multi-objective optimisation problems has proven its value over
the last decades. Their general advantage over other solving methods is that these algorithms are able
to generate multiple Pareto-optimal solutions in a single simulation run. Nonetheless early evolutionary
algorithms received some criticism which led to the development of NSGA-II and eventually NSGA-III.
The main critiques on the early evolutionary algorithms were their high computational complexity, lack of
elitism and need to specify a sharing parameter (Deb et al., 2002).

3.2 General considerations

An evolutionary algorithm is a population-based optimisation method which draws its basic philosophy
from biological evolution. Mechanisms such as reproduction, selection of the fittest, mutation, etc. that
are commonly accepted in the context of biological reproduction and evolution, are also found in an
evolutionary algorithm (Back, 1996).

In order to create a set of Pareto-optimal solutions of a multi-objective optimisation problem, a first (ran-
dom) set of parent solutions is created. All the solutions p of that set are compared to one another and
are sorted into several non-dominated fronts (NDF). The first non-dominated front contains all the solu-
tions that do not dominate each other but dominate all the other solutions. The solutions of the second
non-dominated front are dominated by the solutions of the first front, do not dominate each other, but
dominate the solutions of the third front and so on.

Of this first generation of solutions, only the fittest solutions are retained. The fittest solutions are those
that are closest to the Pareto front i.e. the solutions located in the first few non-dominated fronts. These
solutions are combined with each other and are mutated in order to create a new generation of solutions.
At their turn, these solutions are sorted into several non-dominated fronts after which the process repeats
itself. Because after each iteration only the best solutions of each generation are retained, the set of

15
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solutions will eventually converge to the Pareto front. When after several iterations the difference between
the solutions of two subsequent generations becomes negligible, it can be concluded that the Pareto front
has been reached. Figure 3.1 graphically displays the global philosophy of evolutionary algorithms.

Figure 3.1: General representation of a solving method for multi-objective optimisation problems based on an evo-
lutionary algorithm.

The solutions displayed in Figure 3.1 as the solutions of the first iteration, are the randomly generated
solutions within the feasible region. Via subsequent selection, mutation and crossover actions during the
following iterations, the generated solutions move closer to the Pareto front. The solutions of the final n-th
iteration are located in the close proximity of the Pareto front. Non-convex areas of the Pareto front can
be reached as well as convex areas and a uniform spread of solutions can be maintained.

The high computational complexity of the early algorithms was a consequence of the used non-dominated
sorting approach. Computational complexities reached as high as O(MN3) (with M the number of objec-
tives and N the size of the solution-population). These computational complexities were reduced in newer
algorithms via the use of less complex sorting approaches. Other improvements seen in these algorithms,
is their use of elitism and crowded comparison. Elitism entails that the best individuals of a generation
are kept unchanged in the next generation. This leads to a faster convergence to the Pareto front. The
sharing parameter of the early algorithms was replaced by the crowded comparison approach to keep
enough diversity amongst the solutions in a set (Deb et al., 2002).

Thanks to these three major improvements, new algorithms like NSGA-II and NSGA-III have grown very
popular and are commonly used. Nonetheless further improvements can still be made. For instance, it
would be desirable to create a Pareto front with an adaptable solution resolution. The Pareto front can
namely be subdivided in areas containing high trade-off solutions and areas containing low trade-off so-
lutions. High trade-off solutions are of bigger interest for the decision maker and are located on steep
segments of the Pareto front while solutions with a low trade-off are located on the flat sections (Hashem
et al., 2017). If the decision maker decides to switch between one Pareto-optimal solution and another
Pareto-optimal solution, a trade-off occurs. Because of the switch, the value of several objectives will
increase (i.e. become less optimal) while those of other (targeted) objectives will decrease. A switch to
a solution with a high trade-off is characterised by a large decrease in values of one or more objectives
while the increase in value of other objectives is negligible. Because of this high trade-off, and although
several qualities will have been lost, the switch is profitable.

The following chapters will delve deeper into the trade-off of generated solutions and how to eventually
obtain a Pareto front with an adaptable resolution. Firstly, the NSGA-II and NSGA-III algorithms, as
mentioned before, are thoroughly discussed.
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3.3 Non-dominated sorting genetic algorithm II

Figure 3.2: Flow sheet of the NSGA-II algorithm.

The flow sheet of the NSGA-II algorithm is represented in Figure 3.2. NSGA-II is a multi-objective evolu-
tionary algorithm developed as an answer to the shortcomings of the early EA’s. It uses non-dominated
sorting and sharing, like all other EA’s, but it was one of the first EA’s to employ elitism and crowded
comparison. NSGA-II uses a novel fast non-dominated sorting mechanism which allowed the reduction
of the computational complexity of the algorithm to O(MN2) (Deb et al., 2002).

3.3.1 The main loop

During the first iteration, N initial random solutions are generated and are put into the parent set P0. The
solutions in this parent set are sorted according to their fitness via a fast non-dominated sorting algorithm
and a crowding distance calculation. Hereupon the sorted solutions are used to form an offspring set Q1
(Q1 = Pc,1∪Pm,1 and |Q1|= N). Offspring solutions are achieved via selections, recombinations and mu-
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tations of the solutions in the parent set. The non-dominated sorting of the parent set is only a separate
step during the first iteration. The solutions of the parent sets of all the following iterations have already
been appointed their corresponding non-dominated rank during the previous iteration (Deb et al., 2002).

Elitism implies that the best solutions of the parent set of the previous iteration are kept unchanged during
the current iteration. NSGA-II obtains this by merging both the parent set Pt−1 and the corresponding
offspring set Qt of the tth iteration into a combined population Rt and |Rt |= 2N (Deb et al., 2002). All the
2N solutions of the combined population are sorted in their corresponding non-dominated fronts and their
crowding distance is calculated. Then, based on the rank of the non-dominated front to which they belong
and their crowding distance, the best N solutions are retained. These solutions form the Pt parent set, i.e.
the parent set of the t-th iteration. Note that when the non-dominated fronts together contain more than
N solutions, further non-dominated sorting is futile because these extra solutions will be rejected in the
selection step (Deb et al., 2002).

To solve a MOOP via NSGA-II the number of iterations, the size of the solution population and the con-
ventional EA-parameter like the crossover probability and mutation probability must be pre-defined by the
user.

3.3.2 Recombination or crossover

The solution population set Pt of the t-th iteration is used as the parent solution population of the (t+1)-th
iteration. One of the possibilities to create new solutions is via the recombination, or crossover, of two
randomly picked solutions. Two parent solutions form two offspring solutions. The crossover action can
be compared to biological meiosis. The user pre-defines the probability pc of a crossover to occur. This
probability pc is one of the so-called conventional EA-parameters that have to be pre-defined by the user
before the algorithm can be initialised (Valadi and Siarry, 2014). The optimal value of pc is problem depen-
dent but both Valadi and Siarry (2014) and Deb et al. (2002) propose a crossover probability pc of 90.00 %.

Two random parent solutions are selected from the parent solution set with a probability of pc. The values
of the process variables of these two randomly selected solutions are used to generate the values of
the process variables of the two offspring solutions. The crossover algorithm as used in NSGA-II and
NSGA-III is represented in Algorithm 1 (Valadi and Siarry, 2014):

Algorithm 1 Crossover (Kalami, 2015, 2016)

Require: p, q
N = size(p)
α = rand(N,0,1)
p′ = α× p+(1−α)×q
q′ = α×q+(1−α)× p
return p′, q′

α is a randomly generated 1×N matrix operator containing random numbers between 0 and 1. The
number of variables of α equals the number of process variables of p (and q). The offspring solutions p′

and q′ created via the crossover algorithm are linear recombinations of the two parent solutions p and q.
This process is graphically displayed for offspring solution p′ in Figure 3.3 for a bi-objective problem for
the sake of clarity. The corresponding α-operators are denoted α1 and α2 for the F1- and F2-variables
respectively.
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Figure 3.3: Graphical representation of the crossover process for a bi-objective problem with objectives F1 and F2.

The crossover algorithm generates two solutions that are in the proximity of the two parent solutions.
This allows the algorithm to further explore already discovered areas of the Pareto front. Moreover, the
two parent solutions do not necessarily have to be two random selected solutions. If it is opted to only
crossover solutions that are, for instance, already in each others proximity or that are part of the same
non-dominated front (see 3.3.4), the generated solutions will have more specific properties. Implementing
such additional restriction allows the user to direct the algorithm to certain areas of the Pareto front or
increase the convergence speed (Valadi and Siarry, 2014).

Especially a high convergence speed is a desirable algorithm property. The convergence speed of the
algorithm will decrease if the generated offspring solutions are located further away from the Pareto front
than their parents. By randomly selecting two parent solutions from a parent solutions set containing only
members who are already in each others proximity, this risk is reduced (Valadi and Siarry, 2014).

Although the crossover algorithm is very suitable to generate new offspring solutions, it is not designated
to preserve sufficient diversity amongst the generated solutions. As the number of iterations increases,
the solutions will become increasingly more related to each other if only a crossover functions is used
to generate new solutions. To obtain and preserve sufficient diversity amongst the solutions, a second
solution generating function is used: the mutation function (Valadi and Siarry, 2014).

3.3.3 Mutation

In biological genetics it is possible that during mitosis or meiosis a mutation of one or multiple genes
occurs. This eventually gives rise to the development of new species and subspecies. The mutation algo-
rithm used in evolutionary algorithms is used for exact same reason. It allows the algorithm to diverse its
solution population set and generate new offspring solutions with very different properties in comparison
to their parent solution (Valadi and Siarry, 2014). Algorithm 2 represents the mutation algorithm as used
in NSGA-II and NSGA-III.
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Algorithm 2 Mutation (Kalami, 2015, 2016)

Require: p, µ, σ

N = size(p)
nVar = dµ×Ne
∆Var = randsample(N,nVar)
p′ = p
for all members of ∆Var do

p′i = p′i − σ×rand(0,1)
end for
return p′

The randsample(N,nVar) function returns a nVar×1 matrix containing random selected integers, with-
out replacement, between 1 and N. rand(0,1) returns a random value between 0 and 1, denoted as
βi. p′i stands for the i-th variable of solution p′. A random solution p is selected from the parent solution
population set with a probability of pm. Deb et al. (2002) and Liagkouras and Metaxiotis (2017) propose
a mutation probability pm of 1/n, with n the number of process variables. On a more general note, the
mutation probability pm is, just like the crossover probability pc, dependent on the MOOP in question. The
mutation process is graphically represented in Figure 3.4 for a bi-objective problem for the sake of clarity.
In the represented process only one variable is mutated, nVar = 1.

Figure 3.4: Graphical representation of the mutation process for a bi-objective problem with objectives F1 and F2.

Together with pm, µ and σ have to be pre-defined by the user. µ is the mutation rate and specifies how
many variables are mutated of a selected parent solution p. σ is the mutation step size and defines
the magnitude of the mutations. If pm, µ, and σ all have large values, a lot of diverse solutions will be
generated, maintaining a large diversity in the solution population. However, it can be expected that the
convergence speed in this scenario will be low (Valadi and Siarry, 2014).

Eventually, the offspring solutions of the t-th iteration, generated via mutation and crossover, are bundled
in the offspring set Qt . NSGA-II and NSGA-III are elitist algorithms thus the parent solution set Pt−1 is
not discarded. By doing so it is possible to retain the best solutions of the previous iteration unchanged in
the current one, and simultaneously increasing the convergence speed of the algorithm. The solutions of
the combined solution set Rt have to be sorted according their fitness in order to select the fittest ones.
NSGA-II and NSGA-III use a fast non-dominated sorting algorithm theretofore (Deb et al., 2002; Deb and
Jain, 2014).
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3.3.4 Fast non-dominated sorting

As already mentioned, the early EA’s had often a computational complexity as high as O(MN3) because
they all used a rudimentary non-dominated sorting approach. In order to sort all the (randomly) gener-
ated solutions into their corresponding non-dominated fronts, each solution had to be compared to all the
others and this occurred for each objective. This led to a computational complexity of O(MN) in order to
determine if a solution is non-dominating or not. Doing this for each of the N solutions led to a complexity
of O(MN2). At this point only the first non-dominated front had been determined. In the worst case each
of the N solutions is part of a different non-dominated front, so to determine all the non-dominating fronts,
MN3 comparison were needed or, in other words, the computational complexity of the complete sorting
algorithm could reach as high as O(MN3) (Deb et al., 2002).

NSGA-II uses a fast non-dominated sorting algorithm which allows its computational complexity to be low-
ered to O(MN2) in the worst case, i.e. all the N solutions are in different non-dominated fronts. The initial
steps of the fast non-dominated sorting algorithm are identical to that of the rudimentary non-dominated
sorting algorithm as described above. The objective values of each solution i are compared to those of all
the other solutions in the solution population. This requires MN2 comparisons. Whilst doing this, for each
solution i it is calculated by how many solutions it is dominated. This leads to the domination counter ni.
All the solutions that are dominated by i are put into a separate set Si (Deb et al., 2002).

Considering the t-th iteration, all the solutions with a domination counter ni = 0 are non-dominated and
are members of the first non-dominated front Ft,1. The domination counters of all the members of their
sets Si are reduced by one. If, by doing so, the domination counter of one or more of these solutions
becomes zero, then these solutions are members of the second non-dominated front Ft,2. Each time
members of a non-dominated front are determined, they are put in a separate set, leading in a steadily
decrease in size of the original solution space. When a solution is appointed to a non-dominated front, it
is never visited again (Deb et al., 2002). In the worst case the domination counter of a solution adds up to
N−1 which means that this solution is, after being visited N times during the initial comparisons, revisited
N−1 times before its domination counter equals zero and that it can be appointed to its non-dominated
front. In total N2 visits and MN2 comparisons are needed to determine all the non-dominated fronts so
the computational complexity is O(MN2) in a worst case scenario (Deb et al., 2002).

3.3.5 Crowded comparison

The solutions of a MOOP obtained via some scalarisation methods tend to converge to local optima. In
order to prevent this from happening when an EA is used, and to maintain a good spread in solutions,
solution density management is needed. In early EA’s this was obtained by using a sharing parameter.
This parameter represents the distance two solutions should be apart in order to be considered two dif-
ferent solutions. Solutions that were closer to each other than the sharing parameter were removed from
the solution population. The efficiency of this work method was highly dependent on the value of the
chosen sharing parameter. Another major drawback of this approach was that the distance between all
the solutions had to be calculated, resulting in an overall computational complexity of O(N2) (Deb et al.,
2002).

NSGA-II uses a crowded comparison method instead of sharing parameter. This abolishes the necessity
of a user-defined (sharing) parameter. The new crowded comparison method contains two major parts:

1. Estimating the density of the solutions

2. Selecting solutions to obtain a satisfactory spread
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Firstly in order to obtain an estimate of the density of solutions around a solution i, the average distance
between two solutions on either side of the solution i is calculated in the direction of each objective. This
average distance is defined as the crowding distance id and is the average length of the sides of the cuboid
formed by using the closest neighbouring solutions as vertices (Deb et al., 2002). This is represented in
Figure 3.5. In this example, for the sake of clarity, only two objectives are used and thus id = d1+d2

2 .

Figure 3.5: Estimating the density of solutions around a solution i for a bi-objective problem with objectives F1 and
F2 (Deb et al., 2002).

To be able to determine the neighbouring solutions in the direction of an objective, all the solutions of the
same non-dominated front must be sorted in ascending order in regard to the objective direction and all
the objectives must be normalised. When the obtained crowding distance of a solution is small, it can be
concluded that this solution is more crowded by other solutions. In the following step, the more crowded
solutions will be sorted out of the solution space to obtain an even spread in Pareto-optimal solutions (Deb
et al., 2002).

3.3.6 Solution selection procedure

At this point in the main loop, each solution is now sorted into a non-dominated front and is appointed
its crowding distance. To determine which solutions to retain in the eventual Pareto-optimal solutions set,
a comparison is needed between these two properties. Only a number of solutions are selected to be
retained. The offspring set Pt generated during the t-th iteration of the main loop must have the same
size as the initial parent set Pt−1, i.e. N solutions. Until the size of the offspring set Pt = N, solutions are
added in the following order (Deb et al., 2002):

1. Solutions from a lower non-dominated front are preferred

2. Solutions with a bigger crowding distance are preferred

Firstly all the members of the first (or lowest) non-dominated fronts are appointed to the solution set Pt . If
however adding a complete extra non-dominated front would surpass N, then only the solutions with the
highest crowding distance of this particular non-dominated front are added to the solution set Pt until it
contains N solutions. To simplify this procedure, the solutions in the combined solution set Rt are sorted
based on their non-dominated rank and crowding distance. Rt can be considered as an array containing
2N members, each with multiple properties. During the initial step of the solution selection procedure, the
solutions of Rt are sorted in descending order according to their crowding distance. The solutions of the
achieved array are subsequently sorted in ascending order according to their non-dominated rank. The
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sorted Rt set (or array) now consists out of solutions with low non-dominated ranks and high crowding
distances in the first array positions. The selection of N solutions with the lowest non-dominated rank and
highest crowding distance is now reduced to selecting the first N solutions of the sorted combined solution
set Rt . This process is graphically displayed in Figure 3.6. By way of illustration, a simplified combined
solution set Rt is provided. Note that the non-dominated rank and crowding distance of a solution should
be seen as inherent properties of the solution itself. This is also applies to the value of the process
variables and the corresponding objective functions values.

Figure 3.6: Graphical representation of the population sorting process based on non-dominated rank and crowding
distance for a thought experiment (Deb et al., 2002).

In Figure 3.6, N = 4. Only the solutions in the top 4 array positions are selected to form the solution set Pt .
The last N solutions of the sorted combined solution set Rt are rejected. Note that this might not be the
best approach to select solutions because little attention is given to the crowding distance of the selected
solutions. Even if all the solutions of the first k−1 non-dominated fronts have small crowding distances,
they will be added to the solution set Pt nonetheless because of their low non-dominated rank. Only the
solutions of the last added non-dominated front Ft,k are selected based on their crowding distance.

3.3.7 Constraints

In the context of using NSGA-II (and -III) to optimise real ((bio-)chemical) processes via multi-objective op-
timisation, it is important to be able to verify the obtained solutions to certain constraints. In the discussion
so far, no attention has been given to working with a constrained feasible solution space. If constraints
are taken into account, the definition of domination has to be altered. A solution p constraint-dominates a
solution q if one of the following is true (Deb et al., 2002):

1. Solution p is feasible and solution q is infeasible

2. Solution p and q are both feasible and solution p dominates solution q (p is member of a lower
non-dominated front or has a smaller crowding distance than solution q)

3. Solution p en q are both infeasible but solution p violates the constraints less than solution q
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By adding a so-called feasibility counter FC(x) to the fast non-dominated sorting algorithm, the feasibility
of solutions in regard to constraints can be taken into account. If a solution is feasible, the feasibility
counter is set to zero. If a solutions breaches a constraint, the feasibility counter FC(x) equals the
summation of all the normalised constraint breaches. Normalising the constraint functions g(x)≤ c1 and
h(x) = c2 is done by dividing the constraint functions by the constant term (see Equation (3.1) and (3.2)
respectively):

gn(x) =
g(x)
c1
−1≤ 0 (3.1)

and

hn(x) =
h(x)
c2
−1 = 0 (3.2)

A breach of the normalised inequality constraint function will, in this case, yield a positive value. If the
normalised inequality constraint function yields a negative value, this value should be converted to zero
because then there is no breach in terms of inequality constraints. This is obtained by the 〈α〉 operator
which returns α if α > 0 and returns zero if α≤ 0.

The normalised equality constraint function can yield in case of a breach both a positive or negative value.
Only if the obtained value equals zero, there is no breach in terms of equality constraints. By only taking
the absolute value of the obtained value into account, the feasibility counter will amount to a positive
value in case of a breach and will equal zero in case the solution x is feasible and does not violate any
constraint functions. Thus, the feasibility counter FC(x) can be defined as (see Equation (3.3)) (Jain and
Deb, 2014):

FC(x) =
ni

∑
i=1
〈gn,i(x)〉+

ne

∑
j=1
|hn, j(x)| (3.3)

This method for handling constraints can be used for any EA (Deb and Jain, 2014; Jain and Deb, 2014).

3.4 Non-dominated sorting genetic algorithm III

Non-dominated sorting genetic algorithm III (NSGA-III) was developed in order to handle many-objective
problems more easily (M ≥ 4). Its basic structure is similar to that of NSGA-II but it uses a different
approach to keep diversity in the solution set and uses a different solution selection procedure. The made
alternations ensue from several difficulties that arise when handling many-objective problems. The major
difficulties that need consideration are listed below (Deb and Jain, 2014):

1. With increasing objectives, the amount of generated solutions that are non-dominated increase.
Because NSGA-II uses an elitist approach, the space for generating new solutions becomes smaller
because the best solutions are retained unchanged in the next generation.

2. The calculation of the crowding distance becomes increasingly more difficult and computational
more expensive when working in a large dimensional space.

3. It is not uncommon when working with many-objective problems that solutions of the parent set Pt−1
are isolated from each other. The recombination of such solutions produces offspring solutions that
are, in their turn, isolated from their parents.

NSGA-III alleviates these difficulties via the use of reference points that are uniformly spread out in the
search space. However, NSGA-III still uses non-dominated sorting as its fundamental approach to select
the best solutions of the t-th generation. Mainly because of the first difficulty as listed above, and even
with the use of reference points, the obtained solutions after the predefined number of iterations are highly
diverse but the convergence of NSGA-III to the Pareto front can be slow. To alleviate this disadvantage,
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an alternative θ-non-dominated sorting genetic algorithm III (θ-NSGA-III) was developed. This algorithm
uses θ-non-dominated sorting instead of non-dominated sorting. This allows θ-NSGA-III to have a better
convergence to the Pareto front whilst retaining the high solution-diversity of NSGA-III (Yuan et al., 2014).
Because of this significant improvement, both NSGA-III and θ-NSGA-III will be presented in the following
sections.

3.4.1 The main loop

(a) NSGA-III (b) θ-NSGA-III

Figure 3.7: Flow sheet of the (a) NSGA-III algorithm (Deb and Jain, 2014) and (b) the θ-NSGA-III algorithm (Yuan
et al., 2014).

NSGA-III and θ-NSGA-III, like NSGA-II, do not need extra input besides the conventional EA parameters
like the solution population size, number of iterations, and the parameters concerning the recombination
and mutation of parent solutions in order to generate offspring solutions. The flow sheets of the NSGA-III
and θ-NSGA-III algorithms are represented in Figure 3.7(a) and 3.7(b) respectively.



26 3 Evolutionary Algorithms

The first steps in the NSGA-III and θ-NSGA-III main loops do not differ much from each other. The parent
solutions set Pt−1 (|Pt−1|= N) is used to form an offspring solution set Qt (Qt = Pc,t ∪Pm,t and |Qt |= N)
and both sets are merged into the combined solution set Rt = Pt−1∪Qt and |Rt | = 2N. In the NSGA-III
algorithm, the combined solution set Rt is sorted into its various non-dominated fronts, via a fast non-
dominated sorting algorithm, until the non-dominated fronts contain together more than N solutions. With
regard to generating the parent set Pt for the (t + 1)-th iteration, N solutions must be selected from the
combined solution set Rt .

θ-NSGA-III does not use a non-dominated sorting algorithm but bundles all the 2N solutions in Rt around
various reference points and their corresponding reference lines. The solutions in each bundle are then
sorted according to their fitness using a θ-non-dominance sorting algorithm. This algorithm also stresses
the convergence of the generated solutions to the Pareto front. Two solutions that are in the same non-
dominated front in NSGA-III (and thus have the same fitness), can have a different θ-non-dominance.
When a solution is closely located to the Pareto front, it will have a higher θ-non-dominance than a so-
lution that is further away form the Pareto front. The convergence of a solution to the Pareto front is
estimated via the distance between the perpendicular projection of the solution on its reference line and
the origin of the objective space. NSGA-III only uses the distance between the solution itself and its
perpendicular projection on its reference line as a replacement for the crowding distance of NSGA-II. No
attention is given to the convergence of solutions to the Pareto front (Yuan et al., 2014; Deb and Jain,
2014).

The NSGA-III algorithm continues by sorting the selected solutions into a temporary parent solution set
St until |St | ≥ N. Solutions located in the lowest non-dominated fronts Ft,i are given priority. If the non-
dominated front Ft,k is the last non-dominated front to be sorted into St and for which |St | ≥ N for the first
time, then two situations are possible: (i) |St |= N and then Pt = St or (ii) |St |> N.

In the second situation the first k−1 non-dominated fronts are sorted into Pt . From the kth non-dominated
front only those solutions are selected that maintain the highest solution diversity. In NSGA-II this was
achieved via the crowding distance, but in NSGA-III solutions are associated to reference points rather
than calculating their crowding distance. This procedure is more thoroughly explained in section 3.4.4. If
more than one solution is associated to a reference point, only the solution with the shortest perpendicular
distance to the according reference line, is sorted into the parent set Pt . This process is conducted for all
the reference points (and, if necessary, repeated) until |Pt | = N. This parent solution set is send to the
next, (t +1)-th iteration and the main loop is repeated (Deb and Jain, 2014).

Because θ-NSGA-III uses a θ-non-dominance sorting algorithm (see 3.4.5) rather than a non-dominated-
sorting algorithm, the selection of the fittest solutions can be reduced to selecting random solutions from
the first θ-non-dominated fronts of each reference points until |Pt |=N. This random selection procedure is
possible because the allocation of the 2N solutions of the combined solution set Rt to their corresponding
reference point, already guaranteed solution diversity (Yuan et al., 2014). By implementing convergence
as an extra selection parameter, the solutions generated via θ-NSGA-III will converge quicker to the Pareto
front than the solutions of NSGA-III.

3.4.2 Reference points

Reference points are used to structure the search space. They can be generated via a systematic ap-
proach or they can be preferential points provided by the DM. When it is opted to generate reference
points, Das and Dennis (1998) offers an approach in which H reference points are constructed. The
reference points are situated on the hyperplane that intersects all the normalised objective vectors at a
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value of one. This approach is used in NSGA-III. The amount of reference points that are generated is
dependent on the number of objectives M (Das and Dennis, 1998):

H =
(M+d−1)!
d!(M−1)!

(3.4)

In Equation (3.4), d stands for the amount of subdivisions made alongside each objective. The size N of
the solution population is related to the amount of reference points H, as N ≈H. This is in aspiration that
approximately one generated solution can be linked to one reference point. When working with many-
objective problems however, which is the major target of NSGA-III, it is clear that H, and thus N, can
become very large. This is a first complicated feature of the NSGA-III algorithm (Yuan et al., 2014). Figure
3.8 represents the structured reference points located on the normalised hyperplane of a three-objective
problem and d = 5.

Figure 3.8: Graphical representation of the structured reference points of the NSGA-III algorithm of a three-
objective problem with objectives F1, F2, and F3 (Deb and Jain, 2014).

Considering the problem represented in Figure 3.8 is a three-objective problem (M = 3) and it is opted
to divide each objective in 5 subdivisions (d = 5), Equation (3.4) states that the number of generated
reference points H = (3+5−1)!

5!(3−1)! = 21. This is indeed confirmed via Figure 3.8.

θ-NSGA-III however uses a more flexible but comparable approach to construct H reference points. The
solution population size N can now be chosen and the number of reference points H = N. The reference
points hi are randomly generated M-dimensional points defined as hi = (hi,1,hi,2, . . . ,hi,m)

T (Yuan et al.,
2014).

In both algorithms, generated solutions are associated to the reference points via reference lines which
connect reference points to the origin of the multidimensional space. The main objective of the reference
points is to assist in the maintenance of diversity in the solution population. They substitute the crowding
distance used in NSGA-II.

In NSGA-III, when selecting the solutions for the parent set Pt of the next iteration, priority is given to
non-dominated solutions and, secondarily, to solutions that are in the proximity of a reference point. The
θ-NSGA-III algorithm allocates all the solutions of the combined set Rt to their corresponding reference
points. In both cases, the allocation of a solution to a reference point is conducted in a similar way and
this is explained in section 3.4.4 (Deb and Jain, 2014).
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3.4.3 Normalisation of solutions

Because the reference points of NSGA-III are located on a normalised hyperplane, the solutions in the
temporary parent solution set St must be normalised first before they can be correctly allocated to a
reference point. The second complicated feature of the NSGA-III algorithm is however that this Adaptive
normalisation method as presented by Deb and Jain (2014) is a very elaborate and a computational
highly demanding method. Yuan et al. (2014) proposes to use a more intuitive normalisation method
which has better results than the elaborate normalisation method of Deb and Jain (2014) when handling
many objectives. NSGA-III will only normalise the solutions of St , while θ-NSGA-III normalises all the
solutions in Rt .

Both normalisation methods of NSGA-III and θ-NSGA-III start with the the determination of the ideal point
ā of the set St or Rt respectively. ā is defined as (Deb and Jain, 2014; Yuan et al., 2014):

ā = (amin
1 ,amin

2 , . . . ,amin
M )T (3.5)

It is possible to calculate the exact value of ā but this would be a very computational demanding step. In
Equation (3.5), amin

i (and i = 1, . . . ,M) stand for the minimum value of the i-th objective function that has
been generated thus far. This value is updated when a new minimum value is found. Along with the ideal
point, the maximum values amax

i (and i = 1, . . . ,M) of all the M objective function fi are determined from
the solution set St (or Rt in the case in the case of θ-NSGA-III) and amax = (amax

1 , . . . ,amax
M )T (Deb and

Jain, 2014; Yuan et al., 2014).

The normalisation method of NSGA-III continues by first subtracting each objective fi by its correspond-
ing minimum value amin

i : f̄i = fi− amin
i . By doing so, the ideal point ā is translated to the origin of the

M-dimensional search space. Then, an M-dimensional hyperplane is constructed containing all the trans-
lated maximum values āmax

i . The intercepts of this M-dimensional plane with the translated objectives f̄i

are defined as ai. The eventual normalised objective f ′i is defined as (Deb and Jain, 2014):

f ′i (x) =
fi(x)−amin

i
ai

=
f̄i(x)
ai

(3.6)

The adaptive normalisation method as used in the NSGA-III algorithm is represented in Figure 3.9.

Figure 3.9: Graphical representation of the adaptive normalisation method as used in the NSGA-III algorithm, for a
three-objective problem with objectives f1, f2, and f3 (Deb and Jain, 2014).

Figure 3.9 represents the second step of the adaptive normalisation method. At this point, the objective
functions fi and the maximum values amax

i have already been translated.
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θ-NSGA-III uses a more intuitive normalisation method (Yuan et al., 2014):

f ′i (x) =
fi(x)−amin

i

amax
i −amin

i
(3.7)

In this normalisation method, as presented in Equation (3.7), there is no need to calculate the intercept
points of an M-dimensional hyperplane, which severely diminishes the computational complexity of the
proposed normalisation algorithm.

3.4.4 Bundling of solutions around reference points

For each normalised solution, the metric perpendicular distances di between the solution and the different
reference lines is calculated. The solution is allocated to the reference point for which its metric perpen-
dicular distance to the corresponding reference line is the smallest. This allocation process is the same
in both NSGA-III and θ-NSGA-III but the sets of which the solutions are allocated, are different (St and Rt

respectively). Figure 3.10 graphically displays the bundling process.

Figure 3.10: Graphical display of the bundling process of NSGA-III and θ-NSGA-III (Yuan et al., 2014).

In Figure 3.10, the distance d1 is the smallest metric distance so the concerned solution x will be allocated
to reference point RP1. If H reference points are created, H cluster sets Bi of solutions are generated
after the bundling process, with Bi the cluster set corresponding to the i-th reference point. |B1..H |= |St |
in the case of NSGA-III and |B1..H | = |Rt | in the case of θ-NSGA-III (Yuan et al., 2014; Deb and Jain,
2014).

3.4.5 Non-dominated sorting or θ-non-dominated sorting

While NSGA-III uses the same fast non-dominated sorting algorithm as NSGA-II (see 3.3.4), θ-NSGA-III
uses θ-non-dominated sorting.

When two solutions x1 and x2 of the combined solution set Rt are considered, then x1 θ-dominates x2 if
both solutions are members of the same cluster set Bi and Di(x1)< Di(x2) with Di = di,1(x)+θ∗di,2(x).
Both distances are displayed in Figure 3.11 (Yuan et al., 2014).
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Figure 3.11: Estimation of the convergence of a solution to the Pareto front of a bi-objective problem with objectives
F1 and F2, using θ-NSGA-III (Yuan et al., 2014).

While Figure 3.11 only considers one solution x, the subscript i of the distances di,1 and di,2 is neglected.
Notice that the Pareto front and solutions are not normalised in Figure 3.11 to prevent overcrowding of
information. When the solution x is perpendicularly projected on its corresponding reference line, di,1 is
defined as the distance between the origin of the (normalised) objective space and this perpendicular
projection. di,2 is defined as the Euclidean distance between the solution x and its reference line. θ is a
pre-set parameter which can be any number in the interval ]0,20] (Yuan et al., 2014).

The θ-parameter defines the importance attached to distance di,2. If θ equals 0, only the convergence
of the solutions to the Pareto front is taken into account. Then no attention is given to the spread of the
solutions. Yuan et al. (2014) finds that in this scenario, the θ-NSGA-III algorithm shows the worst results.
In general the θ-NSGA-III algorithm shows stable results in a wide range of θ values. Yuan et al. (2014)
however opted for θ = 5 in its presented case studies.

3.5 Conclusion

Evolutionary algorithms use biological features such as mutation and reproduction to generate solutions
of a multi-objective optimisation problem. Each iteration starts with a parent solution set which is used
for the generation of new solutions via crossovers (the reproduction equivalent of the algorithm) and
mutations. Evolutionary algorithms show high potential to be used as a solving method for multi-objective
optimisation problems. They are able to generate multiple solutions in a single simulation run. Early
algorithms however showed a low convergence speed due to their lack of elitism and their performance
was highly dependent on a user-defined sharing parameter.

NSGA-II is an elitist evolutionary algorithm that uses crowding distance comparison to maintain a uniform
spread in its generated solutions. Solutions are ranked in descending order according to their crowding
distance (less crowded solutions are preferred) and in ascending order according to their non-dominated
rank (solutions with a low non-dominated rank are preferred). The solutions obtain their non-dominated
rank via a fast non-dominated sorting algorithm, which is one of the core features of the NSGA-II algorithm.
Eventually, during each iteration, solutions with a high crowding distance and low non-dominated rank are
sorted into the highest levels of the solution population and are used as the parent solution set of the
following iteration.

NSGA-III is based on the framework of NSGA-II but was especially developed to handle many-objective
optimisation problems. These are optimisation problems with four or more objective functions. NSGA-II is
unable to generate a sufficient amount of new solutions because with increasing objective functions, an
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increasing number of generated solutions are non-dominated. Additionally, the calculation of the crowd-
ing distance becomes increasingly difficult when handling many objectives. In NSGA-III it is therefore
replaced by a reference points allocation.

In the following part of the thesis text, the materials and methods used during the course of this thesis will
be presented together with several case studies. In Chapter 5 the initial NSGA-II and NSGA-III algorithms
will be updated to be able to handle constrained optimisation problems. The obtained algorithms will be
tested on several case studies, which will simultaneously enable a comparison between both methods
and the determination of potential shortcomings.
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Materials and methods
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Chapter 4

Numerical methods and software

4.1 Methods used to solve multi-objective optimisation problems

This thesis focusses on the use of evolutionary algorithms to solve multi-objective optimisation problems.
In particularly NSGA-II and NSGA-III are extensively used for this purpose. Both algorithms have been
explained in detail in the literature study and will therefore be no further discussed in this context.

In the remainder of this thesis text, the NSGA-II and NSGA-III algorithms will be modified so that the
algorithms meet the needs of the discussed case studies, which will be presented shortly. Initially the
source codes of NSGA-II and NSGA-III will be modified so that they can handle constraints. Furthermore,
the algorithms will be analysed on further shortcomings, the eventual aim of which is to alleviate them.

The eventual target is to present improved versions of NSGA-II and NSGA-III that can handle constraints,
generate a Pareto front with a trade-off based solution resolution, and make use of a problem-relevant
stopping criterion.

4.2 Software

4.2.1 Matlab

The main software package used during the course of this thesis is Matlab R2017a. The Matlab license
is provided by the KU Leuven and is for academic use only. Matlab is used to solve the multi-objective
optimisation problems presented in this thesis and all additional codes which will be presented in the
remainder of this thesis text, are written as functions or scripts in Matlab.

4.2.2 NSGA-II and NSGA-III source codes

The initial source codes of NSGA-II and NSGA-III are provided by Kalami (2015) and Kalami (2016)
respectively. The source codes of the improved versions of NSGA-II and NSGA-III, as presented in the
following chapters, are based on the initial source code of the corresponding algorithm. The basic layout
of the source codes will largely be kept unchanged. The required additional algorithm properties will be
added in the form of Matlab functions to the existing source codes. The source codes will furthermore be
simplified and made more accessible for novice Matlab users.

35
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4.3 Numerical case studies

To test the performance of the developed algorithms, several case studies are needed. Six case studies
are selected, in order to introduce enough diversity in the tackled optimisation problems. Four bi-objective
case studies, one three-objective case study, and one many-objective case study with 5 objectives are
used. The case studies are mathematically presented in the following paragraphs, together with their
corresponding benchmark Pareto fronts.

4.3.1 Bi-objective case studies

The benchmark Pareto fronts of the bi-objective case studies are represented in Figure 4.1. The corre-
sponding mathematical definitions are presented in the following paragraphs.

(a) BIOBJ-problem (b) DO2DK-problem

(c) CONSTR-problem (d) TNK-problem

Figure 4.1: Benchmark Pareto fronts of the bi-objective case studies with their respective objectives F1 and F2.

Numerical bi-objective problem

The numerical bi-objective problem (BIOBJ) is provided by Hashem et al. (2017) and is based on a
problem defined by Mattson et al. (2014). The problem is mathematically formulated as follows:

min
z
(F1,F2) (4.1)
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with
Fi = zi, i = 1,2 (4.2)

and (
z1−10

10

)8

+

(
z2−5

5

)8

−1≤ 0 (4.3)

z1 ∈ [−10,10] (4.4)

z2 ∈ [−10,10] (4.5)

The Pareto front has a sharp curve in the origin area of the objective space and a long and flat regions for
higher objective values (see Figure 4.1(a)). The sharp curve represents a high trade-off region while the
flat areas represent low trade-off regions.

DO2DK-problem

The DO2DK-problem is provided by Hashem et al. (2017) and is based on a problem described by Branke
et al. (2004). It is developed to test (genetic) algorithms on their ability to generate a Pareto front that has
a certain skewness and a number of high trade-off knees. The skewness of the DO2DK-problem can be
altered via the variable s. The amount of knees can be altered via the variable k. The variable n represents
the number of decision variables. The variables s, n, and k are the so-called additional DO2DK variables.
The DO2DK-problem is mathematically formulated as follows:

min
z
(F1,F2) (4.6)

with

F1(z) = g(z)r(z1)sin
(

π
z1

2s+1 +

(
1+

2s−1
2s+2 π

)
+1
)

(4.7)

F2(z) = g(z)r(z1)
(

cos
(

π
z1

2
+π

)
+1
)

(4.8)

(4.9)

and

g(z) = 1+
9

n−1

n

∑
i=2

zi (4.10)

r(z1) = 5+10(z1−0.5)2 +
1
k

cos(2kπz1)2s/2 (4.11)

zi ∈ [0,1], i = 1,2, . . . ,n (4.12)

The additional DO2DK variables of the benchmark Pareto front, as presented in Figure 4.1(b), are set as
follows: s = 1.00, n = 300, k = 4. The Pareto front indeed shows four knees or high trade-off areas.

CONSTR-problem

The CONSTR-problem is provided by Deb et al. (2002). It is mathematically formulated as follows:

min
z
(F1,F2) (4.13)
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with

F1(z) = z1 (4.14)

F2(z) = (1+ z2)/z1 (4.15)

subject to

g1(z) = z2 +9z1 ≥ 6 (4.16)

g2(z) =−z2 +9z1 ≥ 1 (4.17)

and

z1 ∈ [0.1,1.0] (4.18)

z2 ∈ [0,5] (4.19)

The Pareto front of the CONSTR-problem is characterised by a steep section, preceded by a sharp knee
and a flat region (see Figure 4.1(c)). Although this problem is comparable to the numerical bi-objective
problem, the CONSTR-problem is also included in the case studies because it was observed that the
constrained NSGA-II and NSGA-III algorithms deliver better representations of the Pareto front of this
problem than of that of the numerical bi-objective problem (see Chapter 5). To be able to compare the
functionalities of the constrained NSGA-II and NSGA-III algorithms and the improved versions of both
algorithms, it is important to dispose of case studies for which the initial algorithms also show good
convergence and solution diversity.

TNK-problem

The TNK-problem is provided by Deb et al. (2002) and is based on a problem formulated by Tanaka et al.
(1995). It is mathematically formulated as follows:

min
z
(F1,F2) (4.20)

with
Fj = z j, j = 1,2 (4.21)

subject to

g1(z) =−z2
1− z2

2 +1+0.1cos(16arctan(z1/z2)) ≤ 0 (4.22)

g2(z) = (z2−0.5)2 +(z1−0.5)2 ≤ 0.5 (4.23)

and
z j ∈ [0,π], j = 1,2 (4.24)

The Pareto front is represented in Figure 4.1(d). The Pareto front contains several discontinuities, which
represent additional difficulties for the genetic algorithms.

4.3.2 Three-objective case study

The selected numerical three-objective case study is the three-objective variant of the DTLZ2-problem,
described by Deb et al. (2005). This is a scalable case study and can be adjusted to contain a desired
amount of objective functions. In the context of a three-objective case study, the case study is scaled
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to the so-called DTLZ2.3-problem. The DTLZ2.3-problem is mathematically formulated as follows (Deb
et al., 2005):

min
z
(F1,F2,F3) (4.25)

with

F1 = (1+g(z))cos
(

z1
π

2

)
cos
(

z2
π

2

)
(4.26)

F2 = (1+g(z))cos
(

z1
π

2

)
sin
(

z2
π

2

)
(4.27)

F3 = (1+g(z))sin
(

z1
π

2

)
(4.28)

and

g(z) =
12

∑
i=3

(zi−0.5)2 (4.29)

zi ∈ [0,1], ∀i ∈ {1,2, . . . ,12} (4.30)

The DTLZ2.3-problem consists out of 3 objectives Fi and 12 decision variables z j. Pareto-optimal solu-
tions are located on the sphere segment with a radius of 1 and as centre the origin of the objective space.
The benchmark Pareto front of the DTLZ2.3-problem is represented in Figure 4.2.

Figure 4.2: Benchmark Pareto front of the three-objective DTLZ2.3-problem, with its corresponding objectives F1,
F2, and F2.

4.3.3 Many-objective case study

NSGA-III was specifically developed to handle many-objective optimisation problems (M > 4). NSGA-II
and NSGA-III should perform similarly on the case studies that have been presented so far. In order to
thoroughly evaluate the performance of NSGA-III, a many-objective case study should be included. It is
opted to scale up the DTLZ2-problem of Deb et al. (2005) to 5 objectives, rendering the DTLZ2.5-problem.
The problem is mathematically formulated as follows:

min
z
(F1, . . . ,F5) (4.31)
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)
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and

g(z) =
14

∑
i=5

(zi−0.5)2 (4.37)

zi ∈ [0,1], ∀i ∈ {1,2, . . . ,14} (4.38)

The DTLZ2.5-problem consists out of 14 decision variables zi and 5 objectives Fj.

4.4 Performance parameters

To be able to evaluate the convergence, the solution diversity and the overall performance of the different
algorithms, several performance parameter or performance metrics are calculated. These metrics are
used to quantify certain properties of the algorithms in order to objectively compare them. These param-
eters only have a significance if they are related to a multi-objective optimisation problem and the used
evolutionary algorithm (Asefi et al., 2014; Rabiee et al., 2012).

4.4.1 Fraction of Pareto-optimal solutions

The fraction of Pareto-optimal solutions (FPOS) is the ratio of the number of generated non-dominated
solutions to the total number of generated solutions. If N is the total number of generated solutions and
Nnd is the number of generated non-dominated solutions, then FPOS is defined as (Asefi et al., 2014):

FPOS =
Nnd

N
(4.39)

FPOS is a number between 0 and 1 and gives a qualitative evaluation on the performance of the con-
cerned algorithm. The more FPOS tends to converge to 1, the higher the overall performance of the
algorithm (Asefi et al., 2014). To evaluate the consistency of the algorithms, the FPOS will be determined
as the average FPOS value of 10 repetitions of the same case study with the same algorithm.

4.4.2 Mean ideal distance

The mean ideal distance (MID) is a performance metric which quantifies the convergence of the non-
dominated solutions to a pre-defined ideal point c. The MID of a certain problem and algorithm is defined
as (Asefi et al., 2014; Rabiee et al., 2012):

MID =
∑

Nnd
i=1

√
∑

M
j=1(Fj(i)−Fj(c))2

Nnd
(4.40)
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In Equation (4.40), Nnd is the number of non-dominated solutions and Fj is the j-th objective with
j = 1, ..,M. In general, the Utopia point as defined in Equation (2.8) is defined as the ideal point c.
If the objective space is normalised via (3.7), then the Utopia is translated to the origin of the normalised
objective space. In this scenario, Equation (4.40) can be simplified to (Rabiee et al., 2012):

MID =
∑

Nnd
i=1

√
∑

M
j=1 Fj(i)2

Nnd
(4.41)

In order to evaluate the consistency of the algorithms, the MID will be determined as the average MID
value, taken over 10 repetitions. The smaller the MID value of a certain problem and algorithm, the higher
the convergence of the corresponding generated Pareto-optimal solutions. The MID is namely the mean
Euclidean distance between the generated solutions and the ideal, or Utopia point c. Solutions located
in the vicinity of the Utopia point are preferred, and those solutions are indicated with a small MID value.
Note that, regardless of the normalisation procedure, the MID can have a value higher than 1. This is
graphically represented in Figure 4.3 for a bi-objective problem:

Figure 4.3: Graphical representation of two normalised Pareto fronts and their MID.

If the Pareto front is mainly located within the hypersphere that connects the normalised individual maxima
of the objectives, then the MID of the solution population located on this Pareto front, will be smaller than
1. Pareto front 1 in Figure 4.3 is an example of this situation. If the Pareto front is mainly located outside
of this hypersphere, like Pareto front 2 in Figure 4.3, then the MID will be greater than 1. The Nadir point
is, just like the Utopia point, an extremity of the normalised solution space. The Nadir point contains all the
normalised individual maxima of the objectives and is therefore the worst case scenario, while the Utopia
point represent the best case scenario. The Matlab code CalculateMID is developed to calculate the
MID of a solution population and is included in Appendix A.1.

4.4.3 Spread of non-dominated solutions

The MID value of a certain problem and algorithm enables the determination of the overall spread or
diversity of the generated solutions. Alongside with the convergence of the solutions to the Pareto front,
the obtained solution diversity is an important performance criterion of an evolutionary algorithm. The
used diversity performance parameter in this thesis, is the so-called spread of non-dominated solutions
(SNDS) (Asefi et al., 2014; Rabiee et al., 2012):

SNDS =

√
∑

Nnd
i=1(MID−∑

M
j=1(Fj(i)−Fj(c)))2

Nnd−1
(4.42)
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Equation (4.42) represents the general definition of the SNDS of a certain problem and algorithm with
Nnd the number of non-dominated solutions and Fj the j-th objective with j = 1, ..,M. The MID value of
the concerned algorithm and problem, which is determined via Equation (4.40), must relate to the same
ideal point c as used in Equation (4.42). The higher the SNDS value of a certain problem and algorithm,
the more diverse the generated non-dominated solutions are. The SNDS value is namely the standard
deviation of the average Euclidean distance (MID) between the ideal point c and the generated solutions
(Asefi et al., 2014). The Matlab code CalculateSNDS is developed to calculate the SNDS of a population
and is included in Appendix A.2.
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Chapter 5

Constrained NSGA-II and NSGA-III

5.1 Introduction

In this chapter the source codes of the NSGA-II and NSGA-III algorithms, respectively provided by Kalami
(2015) and Kalami (2016), are updated to enable them to handle constrained optimisation problems. This
is accomplished via the introduction of two feasibility tests. Firstly, both feasibility tests are presented.
The obtained constrained NSGA-II and constrained NSGA-III algorithms are subsequently presented.
Both algorithms are eventually tested on the case studies that were presented in 4.3, and the acquired
results are discussed in detail. The observed shortcomings will finally give rise to the development of the
tM- and tDOM-algorithms, which are presented in Chapters 6 and 7 respectively.

5.2 Updating the source code

The source codes of the NSGA-II and -III algorithms were provided by Kalami (2015) and Kalami (2016)
respectively. However, both source codes were not suited to handle constraints. Bearing in mind that it
is far more common that the solutions of a practical MOOP are subject to constraints, it was decided to
extend the existing source codes to the point of being able to handle constrained optimisation problems.
For ease of use, the source codes of NSGA-II and NSGA-III were merged into one. This was possible
because both algorithms are based on the same framework.

In the literature study, a theoretical constraint handling scheme was presented (see 3.3.7). This scheme
involved a new solution domination definition and the addition of a feasibility counter as a new inherent
property of a generated solution. The presented constraint handling scheme however does not exclude
infeasible solutions. If the number of feasible solutions generated during the t-th iteration is less than
N, also infeasible solutions will be included in the eventual solution population Pt . Although the included
infeasible solutions violate the imposed constraints by the smallest degree of all the infeasible solutions,
they are still practically invalid solutions.

Therefore it is opted to discard all infeasible solutions and to only work with feasible solutions. The
constraint handling scheme as presented in 3.3.7 was replaced by two so-called feasibility tests. Both
feasibility tests compare the solution to the imposed constraints but return a different output if the solution
violates the constraints. The first feasibility test returns a new, feasible solution if the initial solution was
found to be infeasible. This type of feasibility test is used to create the random, but feasible, parent
solution set P0 during the initialisation step of the algorithm. The pseudo code of the first feasibility test is
represented in Algorithm 3.

45



46 5 Constrained NSGA-II and NSGA-III

Algorithm 3 Feasibility test 1

Require: p, a, b, constraint functions
p′ = p
N = size(p)
while p violates constraint functions or p < a or p > b do

p′ = GenerateRandomSolution(N,a,b)
end while
return p′

The second feasibility test returns a logical value: logical 0 (or false) if the solution is feasible and logical
1 (or true) if the solution is infeasible and thus violates one or more of the constraints. This second
feasibility test is used to verify the feasibility of offspring solutions that are generated during the crossover
or mutation steps. It is namely possible that a feasible parent solution is converted into an infeasible
offspring solution during both these steps. The logical value is used to regulate a while function: as long
as the created solution is infeasible, the mutation or crossover loop is repeated until a feasible solution is
generated. The pseudo code of the second feasibility test is represented in Algorithm 4.

Algorithm 4 Feasibility test 2

Require: p, a, b, constraint functions
if p violates constraint functions or p < a or p > b then

logic = true

else
logic = false

end if
return logic

The complete constrained NSGA-II and NSGA-III algorithms are represented in Algorithms B.1 and B.2
respectively in Appendix B. The basic framework of the algorithms, as provided by Kalami (2015) and
Kalami (2016), is kept unchanged. Only the feasibility tests are added.

5.3 Case studies

The six case studies as presented in section 4.3 will be used to demonstrate the constrained NSGA-
II and NSGA-III algorithms and compare the two algorithms. The algorithms will be evaluated on overall
efficiency, convergence and solution diversity via the determination of the performance parameters as pre-
sented in section 4.4. The used settings of the algorithm parameters of each case study are summarised
in Table 5.1.
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Table 5.1: Algorithm parameter settings used for the case studies.

Parameter Value

Iterations 75
Population size 100
Crossover probability pc 90.0 %
Mutation probability pm 10.0 %
Mutation rate µ 5.0 %
Mutation step size σ 0.05× (b−a)
Objective subdivisions 99 (∗), 13 (∗∗), 5 (∗∗∗)
Reference points 100 (∗), 105 (∗∗), 126 (∗∗∗)

a and b are the lower and upper boundary respectively of the process variables. Concerning the number
of objectives subdivisions and reference points, (∗) refers to the bi-objective case studies, (∗∗) to the three-
objective case study and (∗∗∗) to the many-objective case study. The number of subdivisions have been
intentionally chosen so that the number of reference points H ≥ N.

5.3.1 The bi-objective case studies

(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.1: Pareto front of the BIOBJ-problem generated via constrained NSGA-II(a) and constrained NSGA-III(b).
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(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.2: Pareto front of the DO2DK-problem generated via constrained NSGA-II(a) and constrained NSGA-III(b).

(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.3: Pareto front of the CONSTR-problem generated via constrained NSGA-II(a) and constrained NSGA-
III(b).

(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.4: Pareto front of the TNK-problem generated via constrained NSGA-II(a) and constrained NSGA-III(b).

The Pareto front of the BIOBJ-problem is represented in Figures 5.1(a) and 5.1(b). These Pareto fronts are
generated with constrained NSGA-II and constrained NSGA-III respectively. Note that both constrained al-
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gorithms do not have a built-in method that enables the algorithm to distinguish between solutions based
on their trade-off. Despite the lack of such a method, both the constrained NSGA-II and constrained
NSGA-III algorithms tend to generate solutions that are located in the high trade-off area of the Pareto
front, i.e. the knee. The solution diversity in both cases is therefore poorly compared to the benchmark.
The generated solutions of both algorithms have however, despite the unwanted convergence to the high
trade-off area, converged to the benchmark Pareto front. Note that the Pareto fronts represented in Figure
5.1, and all the ensuing figures, are only snapshots of the algorithms performances. These Pareto fronts
are namely generated during one repetition of the algorithm and are not based on the mean performances
of the algorithm. It was opted to include them nonetheless because several general conclusion and re-
marks can be based on the representation of the generated Pareto fronts. The performance parameters,
represented in Table 5.2, will give a more inclusive overview of the performance of both algorithms.

The Pareto front of the DO2DK-problem is represented in Figures 5.2(a) and 5.2(b). The generated solu-
tions of both algorithms are highly diverse and are spread uniformly on the Pareto front, in contrast to the
generated solutions of the BIOBJ-problem. Additionally it is clear that the generated solutions have, for
both constrained-algorithms, converged to the benchmark DO2DK Pareto front.

Figures 5.3(a) and 5.3(b) represent the Pareto front of the CONSTR-problem. The CONSTR-problem
has, just like the BIOBJ-problem, distinct high and low trade-off regions. Regardless of the high level of
similarity, it is found that the constrained NSGA-II and constrained NSGA-III algorithms produce a more
diverse solution population for the CONSTR-problem than for the BIOBJ-problem, and thus show a better
overall performance. This phenomenon might indicate that the (overall) performances of the two algo-
rithms are problem-dependent. This is naturally an unwanted algorithm property. This problem will be
extensively studied in Chapter 6 and Chapter 7, after which an according algorithm improvement will be
presented.

Finally, the Pareto fronts of the TNK-problem are represented in Figures 5.4(a) and 5.4(a). This case
study was included in order to test the algorithms abilities to handle discontinuous Pareto fronts. Based
on Figure 5.4 it can be concluded that both constrained NSGA-II and constrained NSGA-III are capable
of handling discontinuous Pareto fronts. In both cases no solutions were generated in the discontinuous
areas and the extremities of the continuous parts of the Pareto front are not problematic points. Addition-
ally, all the generated solutions have converged to the benchmark TNK Pareto front.

The necessity to objectively compare and quantify the performance of the two algorithms per problem,
calls for the use of the three performance parameters FPOS, MID, and SNDS that were presented in
4.4. Both algorithms were repeated ten times for each problem. Table 5.2 display the mean value and
standard deviation of the performance parameters, which were calculated after each repetition. The mean
values and standard deviations were calculated using the mean function and the std function of Matlab
respectively.
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Table 5.2: Performance parameters and runtime of the bi-objective case studies. The best mean value, per case
study, of the concerned performance parameter is set in bold.

Constr. NSGA-II Constr. NSGA-III
Performance parameter Mean St. dev. Mean St. dev.

BIOBJ-problem
FPOS [-] 1.0000 0.0000 1.0000 0.0000
MID [-] 0.4548 0.0604 0.4377 0.0631
SNDS [-] 0.1861 0.0282 0.1548 0.0103
Runtime [s] 217.9184 12.0773 314.2116 6.6605

DO2DK-problem
FPOS [-] 1.0000 0.0000 1.0000 0.0000
MID [-] 0.6270 0.0108 0.6230 0.0217
SNDS [-] 0.1653 0.0031 0.1620 0.0032
Runtime [s] 233.4890 5.4313 305.4324 12.4681

CONSTR-problem
FPOS [-] 1.0000 0.0000 1.0000 0.0000
MID [-] 0.6240 0.0112 0.5795 0.0132
SNDS [-] 0.1693 0.0051 0.1730 0.0107
Runtime [s] 200.6040 12.3410 323.3773 31.9706

TNK-problem
FPOS [-] 1.0000 0.0000 1.0000 0.0000
MID [-] 0.9417 0.0147 0.9514 0.0088
SNDS [-] 0.3002 0.0111 0.2726 0.0110
Runtime [s] 156.0805 8.3336 242.7833 35.7819

Concerning the BIOBJ- and DO2DK-problem, the constrained NSGA-III showed the best convergence
and the constrained NSGA-II showed the best solution diversity. For the BIOBJ-problem, the constrained
NSGA-III displayed a 3.760 % better convergence and the NSGA-II displayed a 16.82 % better solution
diversity. The differences in performance are smaller for the DO2DK-problem and add up to a 0.6380
% and 1.996 % improvement respectively. When considering the CONSTR- and TNK-problem however,
a completely different scenario is observed. The constrained NSGA-III algorithm outperforms the con-
strained NSGA-II algorithm both in convergence and solution diversity in case of the CONSTR-problem,
while the opposite scenario is observed in case of the TNK-problem. The constrained NSGA-III algo-
rithm displays a 7.131 % and 2.139 % increased convergence and solution diversity respectively for the
CONSTR-problem. In case of the TNK-problem, the constrained NSGA-II algorithm outperforms the con-
strained NSGA-III algorithm by 1.020 % and 9.194 % on convergence and solution diversity respectively.
The inconsistency in which the two algorithms outperform each other can be another indicator that the
overall performance of the considered algorithms is problem-dependent.

The fact that the constrained NSGA-II algorithm slightly outperforms the constrained NSGA-III algorithm
on solution diversity in case of the BIOBJ- and DO2DK-problem, is a surprise. NSGA-III uses uniformly
spread reference points in the objective space in order to achieve sufficient solution diversity. The overall
expectation is that the uniform spread of the reference points is eventually mirrored in the solution spread.
Nevertheless there are no diversity restriction for the initial, randomly generated, population. This is also
the case for the NSGA-II algorithm. If this population is not diverse enough, it will take both algorithms
a substantial, and often non-practical, amount of iterations to finally achieve a diverse solution set. The
magnitude of this complication is however very problem-dependent. Based on the graphical representa-
tion of the Pareto fronts of both problems in Figures 5.1 and 5.2 respectively, it can be concluded that
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the problem of the insufficient solution diversity only takes substantial proportions for the BIOBJ-problem
and not for the DO2DK-problem. This is also confirmed by the increased relative difference in solution
diversity between the BIOBJ- and DO2DK-problem (16.82 % vs. 1.996 %).

In general it can be concluded that constrained NSGA-II and constrained NSGA-III perform similarly when
handling bi-objective problems. Furthermore it can be concluded that the largest performance differences
are made on the spread of the generated solutions. The uniform spread of solutions on the Pareto front,
still proves to be a difficulty, despite the incorporation of crowding distances or reference points. It should
be noted however that the used performance parameters MID and SNDS are not independent from each
other. This can be easily understood when Equation (4.42) is considered. The MID value is used to
calculate the SNDS value. The two parameters must always be considered simultaneously. A higher MID
value does not always indicate a decreased convergence, but can easily be the result of a more diverse
solution population. The MID and SNDS performance parameters are mainly selected for their intuitive
performance quantification and easy implementation but they do not offer an all-embracing description of
the nature of the Pareto front and the performance of the algorithm.

A more practical performance parameter is also included in Table 5.2, being the runtime of the algorithm. It
goes without saying that it is desired that the runtime of the algorithms is as minimal as possible, i.a. from
a practical point of view. In this context, the constrained NSGA-II algorithm significantly outperforms the
constrained NSGA-III algorithm for all four case studies. When handling a small amount of objectives, the
allocation of solutions to reference points is probably too cumbersome and is therefore slowing the algo-
rithm down. Note that the extensive use of the non-dominated sorting function and the diversity-enabling
functions in both algorithms are also major contributors to the total runtime. For instance when the con-
strained NSGA-II algorithm is run and the maximum number of iterations equals t, the non-dominated
sorting function and the crowding distance function are run 2t + 1 times each (see Algorithm B.1). Both
these functions contain repeated sorting and comparison steps and are the two most time consuming
functions of the entire algorithm. In Chapter 6 and Chapter 7 it will be evaluated if, in some cases, the
non-dominated sorting function or diversity-enabling function of the considered algorithm, can be left out
to save computing time.

Lastly, the most obvious observation that can be made based on Table 5.2, is that for all the bi-objective
case studies that were concerned, and for both algorithms, the FPOS performance parameter is always
equal to 1. This means that the eventual obtained solution population always entirely consisted out of
non-dominated solutions. Moreover it was observed that the maximum number of iterations, i.e. 75,
was set too high. The solution population already consisted entirely out of non-dominated solutions after
approximately 15 iterations. Subsequently a lot of computation time was spent on unnecessary further
iterations. The only valid arguments to continue iterating nonetheless, are on one side the anticipation
that the solutions will further converge to the Pareto front, and on the other side the anticipation that the
solution diversity will increase.

The first argument however implies that eventually, whilst the iteration process continues, new non-
dominated solutions are generated. Because these solutions are more closely located to the Pareto
front, it can be expected that they will dominated one or more solutions of the non-dominated solutions
of the previous iteration. Thus, if it were the case that the solutions would further converge to Pareto
front, it is likely that the number of non-dominated solutions would fluctuate. This is however not the case.
Once the solution population consists entirely out of non-dominated solutions, it stays this way until the
maximum number of iterations is reached.
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In order to estimate the necessity of continued iterating after the maximum number of non-dominated so-
lutions is reached, the performance parameters are additionally calculated during each iteration of the ten
repetitions of both algorithms. The mean values and standard deviations of the performance parameters
per iteration of the constrained NSGA-II algorithm are graphically displayed in Figure 5.5. These are the
so-called performance plots. The corresponding performance plots of the NSGA-II algorithm are included
in Appendix B.1. The conclusion about constrained NSGA-II algorithm, drawn based on Figure 5.5, can
be extrapolated to the constrained NSGA-III algorithm.

(a) BIOBJ-problem (b) DO2DK-problem

(c) CONSTR-problem (d) TNK-problem

Figure 5.5: Performance plot of the constrained NSGA-II algorithm in case of the bi-objective problems (average
taken over 10 repetitions).

Figure 5.5 clearly displays that once the FPOS equals 1, this value does not change when the iteration
process continues. The number of iterations needed to obtain the maximum FPOS value of 1, is highly
problem dependent. When the CONSTR- and TNK-problem are concerned, it can be seen that these two
problems need approximately the same number of iterations (± 15) before FPOS reaches its maximum
value. The DO2DK-problem needs far less iterations (± 2), and the BIOBJ-problem needs more (± 30).

Additionally it can be seen that the average MID-values of the BIOBJ- and CONSTR-problem increase
after the FPOS has reached its maximum value and the iteration process continues. The average MID-
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values of the DO2DK- and TNK-problem on the other hand reach a constant value after FPOS has
reached its maximum value and the algorithm is not stopped. An increase in MID means that the av-
erage Euclidean distance between the solutions and the Utopia point increases, i.e. the solutions move
away from the Utopia point. This is obviously an unwanted scenario because this means that convergence
of the solutions to the Pareto front diminishes if the algorithm is not stopped. As said before, an increase
in MID can also indicate that the solution population becomes more diverse. However, for both the BIOBJ-
and CONSTR-problem, Figure 5.5 indicates that the SNDS stabilises (or even decreases) for both case
studies after the FPOS reaches its maximum value. Therefore it can be concluded that the diversification
of the solution population is here not the reason why the MID increases.

A decrease in convergence however, is an unexpected phenomenon. NSGA-II and NSGA-III are elitist
algorithms and thus the best solutions of the previous iteration are kept unchanged in the current one.
A decrease in convergence implies that the selected solutions of the current iteration are, on average,
located further away from the Pareto front than the selected solutions of during the previous iteration.
This is in contradiction to the elitist basis of the algorithms because solutions that display a decreased
convergence are by definition worse than solutions with a higher convergence. This observed anomaly
is most likely the result of a flawed solution sorting and selecting procedure. The non-dominated rank of
a solution is emphasised too strongly when selecting N solutions from the combined solution set Rt (see
3.3.6) if |F1|< N. If however |F1| ≥ N, then the crowding distance is emphasised too strongly, resulting
in the preference of diverse solutions with a lower convergence, whilst remaining non-dominated.

For the other two case studies, the DO2DK- and TNK-problem, there is no decline or improvement de-
tected in the convergence of the solutions. This observations also renders further iterating futile because
of the lack of improvement. The risk of potentially moving away from the Pareto front is an additional
incentive to stop the algorithm when the FPOS reaches its maximum value of 1. It can therefore be con-
cluded that the first argument to continue iterating, i.e. the anticipation of a better convergence, is invalid
based on the observations made above.

The second argument to continue the iteration process after the FPOS has reached its maximum value,
i.e. the anticipation that the solution diversity will increase, is also proven invalid based on Figure 5.5. An
increase in solution diversity is indicated by an increase in the SNDS-value. However, it can be seen in
the case of the BIOBJ- and CONSTR-problem, that continued iterating results in a decrease in the SNDS-
value. These two problems also show an increase in the MID-value when iterating continues. Solutions
thus move away from the Utopia point, or Pareto front, and become less diverse. This is a worst case
scenario and has to be avoided. Considering the other two case studies: for the DO2DK-problem it can
be seen that the SNDS stabilises when the iteration process is continued. Only the TNK-problem displays
a small increase in its SNDS-value.

The general trend when the iteration process is continued after the FPOS reaches its maximum value, is
that solutions move away from the Pareto front and become less diverse, or that the situation stabilises
and no improvement or decline is seen. Based on these two remarks, it is concluded that further iterating
after the FPOS has reached its maximum value is futile and should be avoided.
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5.3.2 The three-objective case study

(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.6: Pareto fronts of the DTLZ2.3-problem, generated via constrained NSGA-II (a) and constrained NSGA-III
(b).

(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.7: Performance plot of the constrained NSGA-II and NSGA-III algorithms in case of the DTLZ2.3-problem
(average taken over 10 repetitions).

The Pareto fronts of the DTLZ2.3-problem are represented in Figure 5.6. The Pareto fronts are gen-
erated with constrained NSGA-II and constrained NSGA-III with 105 reference points respectively. The
corresponding performance plots are represented in Figure 5.7. The final values of the performance
parameters are included in Table 5.3.
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Table 5.3: Performance parameters and runtime of the DTLZ2.3-problem. The best value of the concerned perfor-
mance parameter is set in bold.

Constr. NSGA-II Constr. NSGA-III
Performance parameter Mean St. dev. Mean St. dev.
FPOS [-] 1.0000 0.0000 1.0000 0.0000
MID [-] 0.9081 0.0575 0.9756 0.0295
SNDS [-] 0.4604 0.0407 0.4303 0.0181
Runtime [s] 217.4329 17.9190 301.1893 23.6377

Figure 5.7 displays that the FPOS quickly reaches its maximum value. Just like for the bi-objective
DO2DK-problem, only ± 2 iterations are needed to obtain a solution population that completely con-
sists out of non-dominated solutions. The MID keeps increasing, but this is accompanied with an increase
in SNDS while FPOS<1. The early increase in MID is therefore most likely the result of the diversification
of the solution population. However, when the FPOS=1 and the iteration process is continued, the MID
continues to increase but the SNDS tends to stabilise. At this point, the increase in MID is no longer the
result of the diversification of the solution population but a result of the diminishing convergence of the
solutions.

Based on the performance parameters displayed in Table 5.3, it can be concluded that the constrained
NSGA-II algorithm outperforms the constrained NSGA-III algorithm on convergence, solution diversity,
and runtime. The failing performance of the constrained NSGA-III algorithm is again most likely due to
the cumbersome allocation of solutions to the reference points.

5.3.3 The many-objective case study

In order to fully exploit and test the strength of the constrained NSGA-III algorithm, the DTLZ2.5-problem
is included which is a many-objective optimisation problem consisting out of 5 objective functions (see
4.3.3). The Pareto front of the DTLZ2.5-problem is represented in Figure 5.8 via the use of a parallel-
coordinate plot. The objective costs of each generated solution are plotted on a different, parallel axis.
The plots corresponding to the same solution are subsequently connected. This technique enables the
user to graphically represent high-dimensional data. The performance plots are displayed in Figure 5.9.

(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.8: Graphical representation of the Pareto front of the DTLZ2.5-problem via parallel-coordinates plots.
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(a) Constr. NSGA-II (b) Constr. NSGA-III

Figure 5.9: Performance plot of the constrained NSGA-II and NSGA-III algorithms in case of the DTLZ2.5-problem
(mean taken over 10 repetitions).

Table 5.4 summarises the final mean values of the performance parameters and the mean runtime of both
constrained algorithms.

Table 5.4: Performance parameters and runtime of the DTLZ2.5-problem. The best values of the concerned per-
formance parameter is set in bold.

Constr. NSGA-II Constr. NSGA-III
Performance parameter Mean St. dev. Mean St. dev.
FPOS [-] 1.0000 0.0000 1.0000 0.0000
MID [-] 0.7976 0.0412 1.0105 0.0730
SNDS [-] 0.6427 0.0650 0.8159 0.0988
Time per loop [s] 231.8878 3.2028 325.4437 11.0706

Based on Figure 5.8, a first conclusion can be drawn about the convergence of the solutions. On av-
erage, the costs of all the objective functions will be lower for the solutions generated via constrained
NSGA-II than for those generated via constrained NSGA-III. This observation is also confirmed by Figure
5.9 and the MID values displayed in Table 5.4. However it can be seen in Figure 5.9(b) that for the first
20 iterations, the MID and SNDS increase in a similar manner. The increase in MID is in this scenario
thus more likely the result of the diversification of the solution population. This is confirmed by the simul-
taneous increase in SNDS. The subsequent increase in MID is on the other hand more likely the result
of a decrease in convergence while the SNDS has stabilised at this point. For the constrained NSGA-II
algorithm, a similar, but less noticeable, phenomenon can be seen.

Again it is concluded that the unnecessary continuation of the iteration process is detrimental for the per-
formance of the algorithm. In this instance, especially solution convergence is negatively affected by the
continuation of the iteration process. This case study is nonetheless the first case study for which limited
continued iterating, after the FPOS reached its maximum value, proved to be beneficial for the solution
diversity. To conclude it is again found that the constrained NSGA-III algorithm is significantly more time
consuming than its NSGA-II equivalent.

The main doubt regarding this case study is how representative many-objective case studies are for real-
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life optimisation problems. The decision maker will often prefer a 2D or 3D representation of the Pareto
front. This would enable him/her to facilitate the decision making process. The artificial Pareto front rep-
resentation of many-objective optimisation problems by means of parallel coordinates, is not an intuitive
representation to work with. It is for instance more difficult to distinguish between multiple solutions and to
establish how different solutions are related to each other. If an optimisation problem requires many ob-
jectives, it is more appropriate to ascertain if all the concerned objectives are equally important. If not, an
objective reduction is recommended so that the objective space is reduced to a two- or three-dimensional
space.

Objective reduction however offers a complete new set of challenges which will not be further discussed
in this thesis. Based on the low added value of a many-objective optimisation problem, it is opted to not
further examine this case study.

5.4 Conclusion

With regard to enabling the source codes of the NSGA-II and NSGA-III algorithm (provided by Kalami
(2015) and Kalami (2016) respectively) to handle constraints, two feasibility test were introduced in the
onset of this chapter. The subsequently acquired constrained algorithms are included in Appendixes B.1
and B.2. On this point, the basic framework of the algorithms was kept unchanged. Only the feasibility
tests were added. The constrained algorithms were eventually tested on the case studies that were pre-
sented in 4.3. The performance parameters, as presented in 4.4, and the mean runtime of the algorithm,
were used to quantify the algorithm’s performance. The most important observations that were made are
the following:

1. The overall performance of the algorithms was often highly problem-dependent. For instance both
algorithms displayed a poor solution diversity for the BIOBJ-problem, but a high solution diversity
for the DO2DK-problem. Despite the use of diversity-enabling function (the crowding distance or
the use of reference points), solutions tended to converge towards local optima rendering an non-
uniform solution spread on the Pareto front. Also the runtime of the algorithm was highly problem-
dependent. The extensive use of the time consuming non-dominated sorting and diversity-enabling
functions, were also a main reason for this.

2. As a result of a naive stopping criterion (reaching a pre-defined number of iterations), a lot of
computational time was uselessly spend on the continuation of the iterating process, while the
fraction of generated non-dominated solutions already equalled 1. The only two valid arguments
to continue iterating nonetheless, were proven invalid. The first argument is that continuing the
iteration process would increase the convergence of the solutions to the Pareto front. In practice it
was seen that in most cases the opposite scenario was observed, or in the best case, no change
at all. The second argument to continue the iterating process, is the anticipation that the solution
diversity will increase. Again, often the opposite scenario was observed.

3. Constrained NSGA-III, although specifically developed to handle many-objective optimisation prob-
lems, was more often than not unable to press home its built-in advantages over the constrained
NSGA-II algorithm. The convergence of the solutions generated via constrained NSGA-III dimin-
ished with an increasing number of objective functions and the solution diversity was only for two
case studies (CONSTR-problem and DTLZ2.5-problem) higher than the solution diversity of the
constrained NSGA-II algorithm. The most striking observation regarding constrained NSGA-III was
that its runtime was always significantly higher than the runtime of constrained NSGA-II for the cor-
responding problem. The allocation of solutions to the reference points is probably cumbersome,
slowing the algorithm down.
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An additional major shortcoming of both algorithms is that they are unable to distinguish between solutions
based on their trade-off. A sufficient solution diversity, with an emphasis on high trade-off solutions is
desired. All these observed shortcomings form the basics on which the tM- and tDOM-algorithms are
based. Both types of algorithms are presented in Chapter 6 and Chapter 7 respectively.



Chapter 6

tM-NSGA-II and tM-NSGA-III

6.1 Introduction

While testing the constrained versions of NSGA-II and NSGA-III on the case studies presented in 4.3,
three major shortcomings of the algorithms surfaced. The NSGA-III algorithm was found to be slow and
was in many instances outperformed by the more intuitive NSGA-II algorithm. Also, the performance of
both algorithms was highly problem-dependent. The same algorithm for instance generated solutions
with a poor diversity for one problem, but a highly diverse solution set for another problem. Especially the
BIOBJ-problem proved difficult in this respect.

The naive stopping criterion was another major shortcoming of both algorithms. Up until now, the algo-
rithms were stopped when a pre-defined number of maximum iterations is reached. While this value is
arbitrary chosen and has no relevance to the concerned optimisation problem, it resulted in the waste of
computation time. In all the tested case studies, only a small fraction of the pre-defined iterations was
needed to obtain a solution population that completely consisted out of non-dominated solutions and thus
for FPOS to reach its maximum value 1. Continuing the iteration process after this point could be bene-
ficial if the convergence and/or the diversity of the generated solutions increased. These two arguments
were proven to be invalid and in several case studies it was even found that continuing the iteration pro-
cess was detrimental with respect to those two properties.

The above shortcomings will be remedied by the implementation of a problem-relevant stopping criterion
and the simplification of both algorithms. For instance the extensive use of time consuming functions, like
the non-dominated sorting function, will be restricted. Additionally a trade-off function will be introduced,
enabling the algorithm to emphasise high trade-off solutions over low trade-off solutions. In this chapter,
tM-NSGA-II and tM-NSGA-III will be presented. ’t’ refers to the built-in trade-off functions, and ’M’ refers
to the novel stopping criterion. In Chapter 7, tDOM-NSGA-II and tDOM-NSGA-III will be presented. The
same built-in trade-off function is included in these algorithms to emphasise high trade-off solutions, but
in these algorithms, the trade-off of solutions is also used as a stopping criterion.

The built up of this chapter is the analogous of that of the previous one: firstly the new algorithm functions
will be presented, in this case the trade-off function and the novel stopping criterion. Subsequently the
complete tM-algorithms will be presented in detail. Eventually both algorithms will be tested on the case
studies that were presented in 4.3 and the obtained results will be discussed and compared to those of
the constrained algorithms.

59
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6.2 Trade-off as a second crowding distance

Pareto fronts are generated to supply multiple equivalent solutions of an optimisation problem. The solu-
tions are equivalent in the way that all the solutions minimise the concerned optimisation problem, but they
do so in a different manner. The decision maker has to choose one solution from the generated solution
population and this can prove to be difficult. Mattson et al. (2014) states that it can be advantageous to
reduce the solution population to a smaller population which only contains solutions with a high probability
of being selected by the decision maker. The decision maker’s main interest are namely solutions that
display a certain trade-off ∆t and distribution ∆r.

The decision maker can specify his/her preferred solutions before the solution population is generated (a
priori decision making), yet this scenario is fairly uncommon. The decision maker often does not dispose
of the information enabling him/her to select his/her preferred solutions upfront. The most common ap-
proach to reduce the size of a solution population is by filtering preferred solution from an initially large
solution population (a posteriori decision making), based on the decision maker’s desired solution trade-
off ∆t and distribution ∆r. It is this approach that will be included in the tM- and tDOM-algorithms.

The main disadvantage of a posteriori decision making however is that this method requires the genera-
tion of a large number of solutions, of which a substantial fraction is discarded at the end of the filtering
process. Discarding those solutions simultaneously implies that a large amount of computing time is used
to generate useless solutions. Hashem et al. (2017) introduced a divide and conquer scheme, enabling
deterministic algorithms, like NBI (see 2.3.2), to only generate solutions that meet the minimal required
trade-off ∆t and distribution ∆r. Solutions are generated at a rate of one solution per iteration via a re-
cursive scheme. If a generated solution does not meet the minimal required trade-off ∆t or distribution ∆r
any longer, the algorithm is stopped or is urged to stop exploring the concerned area of the Pareto front.
The trade-off ∆t and distribution ∆r of solutions are thus additionally used as a stopping criterion. The fact
that stochastic algorithms generate multiple solutions per iteration causes the divide and conquer scheme
of Hashem et al. (2017) to be unsuitable for evolutionary algorithms like NSGA-II and NSGA-III.

In order to suppress the futile generation of excessive useless solutions the trade-off and distribution
of a solution should be made an inherent solution property, based on which they can be sorted and
selected. Solutions that are generated via NSGA-II and NSGA-III can be considered as units with multiple
properties. This is, for the case of NSGA-II, graphically represented in Figure 6.1:

Figure 6.1: Graphical representation of a solution p, generated via NSGA-II, with its inherent solution properties
(blue ovals) and its trade-off and distribution as an additional solution property (orange oval).
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6.2.1 PIT-region

The trade-off ∆t and distribution ∆r of a solution p can be seen as properties imposed on the spatial
distribution of other solutions around solution p, and show therefore great resemblances to the crowding
distance of a solution, as used in NSGA-II. The crowding distance of a solution is defined as the average
length of the edges of the cuboid formed around the concerned solution, with its neighbouring solutions
as vertices. Because the desired solution trade-off ∆t and distribution ∆r are generally different for each
objective function, the spatial form that they describe will often be much more complicated than a cuboid.
Mattson et al. (2014) presented in this respect the so-called region of practically insignificant trade-off,
or the PIT-region. The PIT-region is graphically displayed in Figure 6.2 for a bi-objective optimisation
problem. Solutions that are located in the PIT-region of a solution p (red solutions) have no significant
trade-off in regard to solution p and also to do not contribute to the overall solution diversity. They render
no added value to the solution population and can therefore be discarded. The solutions located outside
of the PIT-region of the concerned solution p are kept in the population (green solutions).

Figure 6.2: Graphical representation of the PIT-region of a solution p for an optimisation problem with normalised
objectives F ′1 and F ′2 (adapted from Mattson et al. (2014)).

The PIT-region, as presented by Mattson et al. (2014), has a cross-like shape in case of a bi-objective
problem. The PIT-region presented by Mattson et al. (2014) only consisted out of the shaded sections.
Because in the presented trade-off function, the trade-off and distribution of solutions will be determined
one non-dominated front at a time, the PIT-region can be simplified to a complete cross, built up out of
rectangles circumventing the concerned solutions. Solutions that are located in sections (1) or (2) of the
PIT-region will namely be part of a lower or higher non-dominated front respectively. Note that the dimen-
sions of the PIT-region, defined by ∆t and ∆r, are not necessarily the same for each objective.

Mattson et al. (2014) used the PIT-region to reduce the size of a large solution population to eventually
obtain two population sets: one set P1 that contains all the discarded solutions and another set P2 consist-
ing out of the selected solutions that meet the required trade-off ∆t and distribution ∆r. In this scenario,
all the solutions are sorted in ascending order according to the objectives. Subsequently the solutions
are visited in ascending order and the PIT-region is constructed around the concerned solution. While
the visited solution is allocated to the population set P2, all the solutions that are located in its PIT-region
are discarded and are allocated to population set P1. The discarded solutions are not visited and their
PIT-region is therefore not constructed.



62 6 tM-NSGA-II and tM-NSGA-III

6.2.2 Trade-off function

The presented trade-off function will not discard solutions based on their trade-off and distribution but
will downgrade them. Just like solutions with a low crowding distance are disfavoured and downgraded
during the selection procedure, solutions with a crowded PIT-region are disfavoured as well. The main
aim of the trade-off function is to count the number of solutions in the PIT-region of a concerned solu-
tion. A so-called trade-off counter is added as an additional solution property. The more crowded the
PIT-region of a solution is, the higher its trade-off counter will be. As a result of the cross-like shape of the
PIT-region, solutions that are located in high trade-off areas of the Pareto front, i.e. steep segments and
knees, will have a sparsely crowded PIT-region and their trade-off counter will therefore amount to a low
value. Solutions located in the flat, low trade-off areas of the Pareto front on the other hand, will have a
densely crowded PIT-region and their trade-off counter will amount to a high value. The pseudo code of
the trade-off function is presented in Algorithm 5.

Algorithm 5 Trade-off function

Require: pop, F , ∆t, ∆r
for i=1 to |pop| do

% Reset trade-off counter
pop(i).TradeOffCounter=0

end for
popn = NormaliseCosts(pop)
for i=1 to |F | do

popi = SelectSolutions(popn,Fi)
Costs= SelectCost(popi)
for j=1 to M do

Costs=SortCosts(popi.Cost( j), ascending)
for k=1 to |Costs| do

itUp=1
itDown=1
while k-iterDown>0 do

if InPIT(Costs(itDown), Costs(k), ∆t, ∆r)
then

pop(k).TradeOffCounter++
end if
itDown++

end while
while k+itUp<|Costs| do

if InPIT(Costs(itUp), Costs(k), ∆t, ∆r) then
pop(k).TradeOffCounter++

end if
itUp++

end while
end for

end for
end for

The trade-off function requires a solu-
tion population pop, which is sorted in
its non-dominated fronts F , and the de-
sired trade-off ∆t and distribution parame-
ter ∆r which are pre-defined by the de-
cision maker. For the sake of clarity
it is assumed that ∆t and ∆r have the
same value for all the M objective func-
tions. In a first instance the trade-off coun-
ters of all the solutions in pop are re-
set to zero. Additionally, while ∆t and ∆r
are disclosed as percentages, the objec-
tive costs of all the solutions in pop are
normalised. This is done via Equation
(3.7).

The trade-off counter of the solutions is deter-
mined at a rate of one non-dominated front
at a time. A new solution population popi

is constructed for each non-dominated front,
which contains all the solutions that are al-
located to this front. The objective costs
of the solutions in popi are clustered in the
M × |popi| objective costs matrix, Costs.
One column of Costs contains all the objec-
tive costs of one solution and can be consid-
ered as column vector in the objective space
between the objective space origin and the
solution. The trade-off function continues by
sorting the column vectors of Costs in as-
cending order according to the concerned
objective of the optimisation problem. Sub-
sequently, for each k-th column vector of the

sorted objective cost matrix Costs, it is determined if the neighbouring objective costs, both in ascending
en descending order according to the concerned objective, are located in its PIT-region. If this is the case
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the trade-off counter of the solution corresponding with the objective costs in the k-th column vector, is
incremented by 1. The developed Matlab code of the trade-off function CalcTradeOff is included in
Appendix A.4.

The trade-off counter is subsequently used as an additional sorting parameter. Ahead of sorting the
solutions of the combined solution set Rt according to their crowding distance and non-dominated rank,
they are sorted according to their trade-off counter in ascending order. This result in emphasising solutions
with a sparsely crowded PIT-region. Because the dimension of the PIT-region of a solution is not only
dependent on a desired objective trade-off but also on a minimal solutions diversity requirement, solution
diversity will be more emphasised in t-algorithms.

6.3 MID as a stopping criterion

At the end of the main loops of the NSGA-II and NSGA-III algorithms, as presented by Deb et al. (2002)
and Deb and Jain (2014), a generation counter is incremented with one (see Figure 3.2 and Figure 3.7).
This gives rise to the conclusion that the number of main loop iterations acts as the termination parameter
of both algorithms. The authors, Deb et al. (2002) and Deb and Jain (2014), sometimes mention that a
maximum number of iterations is defined and not an absolute number of iterations. Accordingly, one can
be tended to conclude that the algorithm can be aborted prematurely if wanted before the pre-defined
maximum number of iterations is reached. However, in the outlines of NSGA-II and NSGA-III there is no
attention given to the calculation or generation of a different termination parameter which could override
the default termination parameter (i.e. the number of iterations). Additionally, in regard of the case studies
presented in Deb et al. (2002) and Deb and Jain (2014), only the Pareto-optimal solution set, achieved
after a pre-defined number of iterations is presented. Although Deb et al. (2002) and Deb and Jain (2014)
touch upon the implementation of a different and more advanced stopping criteria, this is not further elab-
orated.

The previous chapter undeniably showed that the current stopping criterion of both algorithms is flawed.
As of the solution population entirely consist out of non-dominated solutions, but the iteration process is
continued nonetheless, no improvement in solution convergence or diversity is observed, let alone the
large amount of computation time that is unnecessary spend. In several case studies even a decline
in convergence was observed. It is obvious that repeating the algorithm’s main loop for a pre-defined
number of times has no relation to the concerned optimisation problem. On the other hand, because
no information is generated about the convergence or diversity of the solutions, the algorithms are not
capable to determine whether continuing the iteration process is still beneficial or not.

The implementation of the convergence and solution diversity parameters MID and SNDS in the Matlab
code gave rise to the following understanding: if a solution population has converged to the Pareto front
of a constraint optimisation problem, the MID of the population will stabilise. While NSGA-II and NSGA-III
are both elitist algorithms, once the solutions have converged to the Pareto front, continuing the iteration
process will namely only result in the solutions fluttering on the Pareto front itself. Because the mean
Euclidean distance between the solutions on the Pareto front and the Utopia point will not change as a
result of this, the stabilising of the MID can be seen as signal that further iterating has become futile.

After each iteration of the main loop, the MID of the solution population is calculated and saved. If the
solution population completely consists out of non-dominated solutions and it is found that the difference
in MID between two consecutive generations drops below a pre-defined value, the iteration process is
aborted prematurely. The pseudo code of this algorithm termination process is presented in Algorithm 6:
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Algorithm 6 MID-based termination process

for i=1 to MaxIt do
popi,Fi = mainLoop(popi−1, pc, pm,σ,µ,∆t,∆r,Obj, Constr)
MIDi = CalculateMID(popi)
FPOSi = |Fi,1|/N
if |MIDi−MIDi−1| ≤ ∆MID and FPOSi = 1 then
breakMainLoop

end if
end for

It is still necessary for the deci-
sion maker to pre-define a maxi-
mum number of iterations MaxIt.
After the main loop is completed,
the MID and FPOS of the gener-
ated solution population popi are
calculated. Then it is determined
if the difference between the MID-
value of the current population and
the previous one, is smaller than
a pre-defined ∆MID value. This
∆MID represents the maximum

acceptable deviation in MID to consider the two values as equal. If the difference between the MID-
values of two consecutive populations is indeed smaller than ∆MID and FPOS = 1, the main loop is
stopped.

6.4 The tM-evolutionary algorithm

The basic framework of the tM-algorithms is the analogous of the constrained algorithms. The pseudo
codes of tM-NSGA-II and tM-NSGA-III are included in Appendices C.1 and C.2 respectively. The four
major changes are:

1. The initial solution population contains the anchor points of the M objectives.

2. The trade-off function is incorporated, following the non-dominated sorting functions.

3. The function used to sort and select N solutions from the combined solution set is replaced by the
t−SortPopulation.

4. The MID of the solution population is used as a stopping criterion.

The anchor points, or individual minimisers, of the objective functions are determined with the built-in
fmincon function in Matlab. While the tM-NSGA-II and tM-NSGA-III algorithms are stochastic, the fmin-
con Matlab function uses a deterministic algorithm. The anchor point of an objective is determined via a
single objective optimisation problem. The M anchor points are included in the initial solution population
to ascertain the extremities of the Pareto front are sufficiently explored, which often was a problem in
the constrained algorithms. The often unsatisfactory solution diversity of the constrained algorithms can
namely be the result of an initial population with an insufficient solution diversity. Because the anchor
points are non-dominated and contribute to the solution diversity, they will be retained in the subsequent
solution populations.

The initial idea was to use the anchor points to create the CHIM in the objective space (see 2.3.2). The
formula which mathematically describes the CHIM could be used as an additional constraint for the initial
population. This would allow to create a uniformly spread initial population, located on the CHIM. This
would simultaneously increase the convergence speed and solution diversity of the final solution popula-
tion. In order to create solutions located on the CHIM, a deterministic algorithm would be needed. This
would however bypass the need for an evolutionary algorithm, while the deterministic algorithm can be as
easily used to generate solution on the Pareto front rather than solutions on the CHIM. Only including the
anchor points in the initial population does not bypass the need for an evolutionary algorithm and therefore
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the CHIM is not constructed.

Note that the remaining N−M initial solution are randomly generated in the feasible space. Nonetheless,
it could be beneficial to structure the feasible space. This could be done with a grid for instance. Then,
instead of generating random solutions in the feasible space, the vertices of the grid can be used as the
initial solution population. If these vertices are located outside of the feasible space, a random solution
can be generated within the feasible space instead. This would eventually result in a more structured
initial population with a high solution diversity, containing both structured and random solutions. Figure
6.3 graphically displays this process for a bi-objective case study. The structured initial population can
have the same benefits as an initial population located on the CHIM, but does not require the use of
deterministic algorithms. This structured initial solution population is not implemented in the tM- or the
tDOM-algorithms but is only cited as a possible additional improvement.

Figure 6.3: Example of a possible scheme to structure the initial population.

One of the two main improvements of the tM-algorithm, is the implementation of the trade-off function.
While the trade-off function can be seen as an additional crowding distance, it is incorporated in the al-
gorithm after the calculation of the crowding distance (in the case of tM-NSGA-II), or the allocation of
solutions to the reference points (in the case of tM-NSGA-III). Because the solution population has to be
already sorted in its non-dominated fronts, the trade-off function must always be preceded by the non-
dominated sorting function.

The sorting function is extended with a sorting step based on the trade-off of the solutions, rendering the
t-sorting function. The function consists out of three subsequent sorting steps. In a first step, the solutions
of the population are sorted in ascending order, based on the value of their trade-off counters. The sorting
than continues with the two sorting steps that are also included in the constrained NSGA-II and NSGA-III
algorithms. Firstly, the solutions are sorted based on their crowding distance (in the case of NSGA-II) or
distance to their associated reference point (in the case of NSGA-III) in descending or ascending order
respectively. To conclude, the solutions are sorted in ascending order based on their non-dominated rank.
As a result of the three sorting steps of the t-sorting function, the solutions with a sparsely populated PIT-
region, high contribution to the overall solution diversity, and low non-dominated rank will be sorted in the
highest positions of the population.

The novel stopping criterion is incorporated as the last step of the tM-algorithms’ main loop. Both the MID
and FPOS of the generated population are calculated. If the difference in MID of two consecutive solu-
tion populations is found to be lower than a user pre-defined ∆MID, the algorithm’s main loop is stopped.
The algorithm, and Matlab code, are however thus programmed that the algorithms can only be stopped
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if, additionally, the FPOS of the current population has reached it’s maximum value of 1. This is done
to avoid the algorithm from stopping if the amount of non-dominated solutions is not sufficient yet. The
combination of both the FPOS and MID renders a stopping criterion which has an increased relevance to
the concerned optimisation problem than the default stopping criterion of reaching a pre-defined number
of iterations.

An additional modification that is made in the tM-algorithms, is the abolishment in futile use of the time
consuming non-dominated sorting function and diversity-enabling functions. If, for instance, the con-
strained NSGA-II algorithm (see B.1) and tM-NSGA-II algorithm (see C.1) are compared, this cutback
can be clearly seen. During the initialisation step, the non-dominated sorting function, crowding distance
calculating step, and sorting step are discarded. This is justified by the fact that the initial population
is only needed to create offspring solutions via a mutation and crossover step. The obtained offspring
solutions set is subsequently merged with the parent solutions set. It is only sensible to determine the
non-dominated ranks and crowding distances of the solutions in this combined solution population while
this population has to be sorted in order to select the best N solutions. After the selecting procedure, the
constrained NSGA-II algorithm continues by updating the non-dominated ranks and crowding distances
of the selected solutions. From a practical point of view, it is however only sensible to update the non-
dominated ranks of the selected solutions. Therefore, in tM-NSGA-II, the crowding distances update is
discarded.

The major expectations for the tM-algorithms’ performance and solution quality are the following:

1. A significant decrease in computation time.

2. A higher solution diversity.

3. A Pareto front with a high solution density in high trade-off areas and a low solution density in low
trade-off areas.

6.5 Case studies

tM-NSGA-II and tM-NSGA-III are tested on the case studies that are presented in 4.3. The many-objective
case study is not further examined, based on the reasoning quoted in 5.3.3. The used settings for the EA
parameters, used for each case study, are summarised in Table 6.1.

Table 6.1: The EA parameters settings, used for each case study.

Parameter Value

Maximum iterations 75
Population size 100
Crossover probability pc 90.0 %
Mutation probability pm 10.0 %
Mutation rate µ 5.00 %
Mutation step size σ 0.05× (b−a)
Objective subdivisions 99 (∗), 13 (∗∗)
Reference points 100 (∗), 105 (∗∗)
Trade off ∆t 5.00 %
Distribution parameter ∆r 10.0 %
∆MID 1.00 %
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Just like for the constrained NSGA-II and NSGA-III algorithms, the number of objective subdivisions d
in the tM-NSGA-III algorithm is set so that the number of reference points H ≥ N. The trade-off ∆t and
distribution parameter ∆r have the same value for each objective, for the sake of clarity.

6.5.1 The bi-objective case studies

(a) tM-NSGA-II (b) tM-NSGA-III

Figure 6.4: Pareto front of the BIOBJ-problem generated via tM-NSGA-II (a) and tM-NSGA-III (b).

(a) tM-NSGA-II (b) tM-NSGA-III

Figure 6.5: Pareto front of the DO2DK-problem generated via tM-NSGA-II (a) and tM-NSGA-III (b).
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(a) tM-NSGA-II (b) tM-NSGA-III

Figure 6.6: Pareto front of the CONSTR-problem generated via tM-NSGA-II (a) and tM-NSGA-III (b).

(a) tM-NSGA-II (b) tM-NSGA-III

Figure 6.7: Pareto front of the TNK-problem generated via tM-NSGA-II (a) and tM-NSGA-III (b).

Based on the graphical representation of the Pareto fronts of the bi-objective case studies, generated
via tM-NSGA-II and tM-NSGA-III, already one improvement can be clearly seen, namely the increased
spread of solutions on the Pareto front. Especially the BIOBJ-problem displayed an unsatisfactory so-
lution diversity in case of the constrained algorithms. Now however, solutions are generated over the
complete length of the Pareto front and not only in the vicinity of the local high trade-off area (see Figure
6.4). For the ease of formulation, solutions generated via the tM-algorithms will be referred to as ”tM-
solutions”, and solutions generated via the previously discussed constrained algorithms will be referred to
as ”constrained-solutions”.

Another difference between the constrained- and tM-solutions, is that the latter show a variable resolution,
based on the trade-off of the Pareto front area in which they are located. In the instance of a bi-objective
optimisation problem, Pareto front areas that are parallel with an objective especially display a low trade-
off. In all the Pareto fronts of the bi-objective case studies, it can be seen that the tM-solutions are more
sparse in these areas than the constrained-solutions. The high trade-off areas of the Pareto front how-
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ever, show a much higher tM-solution density. Incorporating this trade-off based Pareto front resolution in
evolutionary algorithms, was one of the main goals of this thesis. The fact that the filtering of solutions
based on their trade-off, is obtained without the generation of an excess amount of solutions, is most
certainly an advantage.

Concerning the DO2DK-problem (see Figure 6.5), it can be seen that for both tM-algorithms, the con-
strained solutions display a better convergence than the tM-solutions. This is especially the case for the
tM-NSGA-II algorithm. A similar problem can be established for the TNK-problem (see Figure 6.7). In
that case, the tM-NSGA-II algorithm displays a bad convergence at the extremities of the Pareto front.
Generally, the tM-NSGA-III algorithm seems to display a better convergence, however the solution diver-
sity seems to be higher for the tM-NSGA-II algorithm. In comparison with the constrained algorithms,
both tM-algorithms display a higher solution diversity and a trade-off based Pareto front resolution, but a
slightly worse convergence.

In order to objectively compare the tM-algorithms with each other and with the constrained algorithms,
the mean performance parameters and runtime of the two tM-algorithms are summarised in Table 6.2.
The last column of Table 6.2 contains the relative difference between the best value of the performance
parameter or runtime of the tM-algorithm, and the corresponding best value found for the constrained
algorithm.

Table 6.2: Performance parameters and runtime of the bi-objective case studies for the tM-algorithms. The best
value, per case study, of the concerned performance parameter is set in bold. The last column contains
the ratio of the best value of the tM-algorithms to the best value of the constrained algorithms.

tM-NSGA-II tM-NSGA-III Constr. EA
Performance parameter Mean St. dev. Mean St. dev. Ratio tM/Constr. [%]

BIOBJ-problem
Iterations [-] 24.1 1.6 23.5 1.4 -68.67
MID [-] 0.2780 0.0350 0.2308 0.0213 -47.27
SNDS [-] 0.1772 0.0277 0.1518 0.0241 -4.78
Runtime [s] 74.3129 5.1056 110.8429 19.5521 -65.90

DO2DK-problem
Iterations [-] 4.4 0.7 4.9 1.3 -94.13
MID [-] 0.5392 0.0147 0.5236 0.0166 -15.96
SNDS [-] 0.1590 0.0072 0.1566 0.0140 -3.81
Runtime [s] 23.0996 3.2567 30.9766 6.5203 -90.11

CONSTR-problem
Iterations [-] 14.5 1.1 13.4 1.6 -82.13
MID [-] 0.5811 0.0263 0.5403 0.0378 -6.76
SNDS [-] 0.1718 0.0047 0.1693 0.0060 -0.69
Runtime [s] 51.3015 3.7196 61.4631 7.7600 -74.43

TNK-problem
Iterations [-] 13.9 1.0 14.8 1.6 -81.47
MID [-] 0.9453 0.0030 0.9442 0.0053 +0.26
SNDS [-] 0.3134 0.0154 0.3197 0.0155 +6.50
Runtime [s] 50.9809 4.4607 69.3380 7.2593 -67.34

In Table 6.2, the FPOS value is not included because this value is defined by the tM-algorithms’ structure
and always equals 1.
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Table 6.2 confirms the assumption made based on Figures 6.4 to 6.7, that the tM-NSGA-III algorithm
display the best convergence. A surprise however, following from Table 6.2 is that in all the case stud-
ies (except for the CONSTR-problem), the MID has decreased. This decrease could be the result of an
increased solution convergence. However this is found to be unlikely, mainly based on the graphical rep-
resentations of the Pareto fronts in Figures 6.4 to 6.7. For instance, the DO2DK-problem displays both
for tM-NSGA-II and tM-NSGA-III a decreased solution convergence. Nonetheless, based on Table 6.2,
the best average MID value of the tM-algorithms is 15.96 % smaller than the best average MID value of
the constrained algorithms. This decrease in MID should suggest an increased solution convergence, but
from a visual comparison this is found not to be the case.

The decrease in MID is most likely the result of the incorporation of the anchor points in the initial popula-
tion. As already mentioned, the anchor points are likely to remain in the subsequently generated solution
populations up to and including the final solution population. Therefore, the objective costs of the an-
chor points provide, on one side, the Utopia point, but also the Nadir point of the population. Before
calculating the MID of the final solution population, the objective costs of the solutions in the population
are normalised. This is done based on Equation (3.7), which requires the Utopia and Nadir point of the
population. If however the anchor points remain remote of the bulk of the solutions in the population, the
normalisation based on Equation (3.7) will be disproportionate, and eventually rendering an unjustified
decrease in MID. Figure 6.8 displays the Pareto fronts of the DO2DK-problem, only this time with objec-
tive axes that also contain negative objective values. In all the other representations of Pareto fronts thus
far, the objective axes were cropped to only contain positive objective values, whilst negative objective
values are in most cases practically irrelevant.

(a) Constrained NSGA-II (b) tM-NSGA-II

Figure 6.8: Pareto fronts of the DO2DK-problem with negative objective axes, generated via constrained NSGA-II
(a) and tM-NSGA-II (b).

Figure 6.8(b) clearly shows that the anchor point of the first objective is remote from the bulk of the gen-
erated solutions. In comparison with Figure 6.8(a) it can be seen that, except for two solutions, all the
tM-solutions are located within the same range as the constrained-solutions. In Figure 6.8 this is indicated
by the cost tags. Because the remote anchor point of the first objective is however used to normalise the
solution population, the range within the solutions are located, becomes immediately significantly larger
in case of the tM-NSGA-II algorithm. The normalised Euclidean distance between the majority of the
tM-solutions and the Utopia point will therefore decrease, be it artificially, in comparison with that of the
constrained-solutions. Because the bulk of the solutions are located within the same objective range, the
standard deviation of these normalised Euclidean distances will remain roughly the same. Table 6.2 con-
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firms this. If the two remote tM-solutions are left out of the solutions population, the MID of the tM-solutions
amounts to 0.6315, which is, as expected based on Figure 6.5, 1.35 % higher than the best average MID
of the constrained algorithms for the DO2DK-problem. Note that in case of the BIOBJ-problem, the same
phenomenon occurs.

Continuing with the discussion of the results summarised in Table 6.2, the most striking difference between
the constrained-algorithms and the tM-algorithms, is the decrease in runtime and iterations that were
needed. The novel stopping criterion, based on the MID and FPOS of the solution population, resulted in
an average 74.45 % decrease in computation time. If the two tM-algorithms are mutually compared on the
basis of their required runtime and iterations, it can be seen that tM-NSGA-II outperforms tM-NSGA-III in
the case of all four bi-objective case studies in terms of runtime. However, in terms of needed iterations,
tM-NSGA-III outperforms tM-NSGA-II in two cases. It would expected that if an algorithm requires less
iterations, it would also require less runtime, but this is not the case. The only difference between the
tM-NSGA-II and tM-NSGA-III algorithm is the use of reference points. Based on the results displayed in
Table 6.2, the assumption made in the previous chapter (see 5.3.1), which states that the allocation of
solutions to the reference points is cumbersome, is hereby proven.

(a) BIOBJ-problem (b) DO2DK-problem

(c) CONSTR-problem (d) TNK-problem

Figure 6.9: Performance plots of the tM-NSGA-II algorithm and constrained NSGA-II algorithm for the bi-objective
case studies (average taken over 10 repetitions). The iteration axis is cropped.

Figure 6.9 graphically displays the performance plots of the tM-NSGA-II algorithm and the constrained
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NSGA-II algorithm for the bi-objective case studies. For the sake of clarity, the iterations axis is cropped.
The according performance plots for the tM-NSGA-III and constrained NSGA-III algorithm, are included in
Appendix C.3. In Figure 6.9, the dashed line represents the average value of the concerned performance
parameter for the constrained-solutions, whilst the dotted line represent the standard deviations.

Regarding the progress of the FPOS performance parameter, it is apparent based on Figure 6.9, that the
speed with which non-dominated solutions are generated, is slightly higher in case of the tM-algorithms.
For the BIOBJ-, CONSTR-, and TNK-problem, the average FPOS of the tM-solutions during a particular
iteration step, is higher than the average FPOS of the constrained-solutions during the same iteration
step. The fraction non-dominated tM-solutions that have been generated up until that iteration step, is
therefore higher than the fraction non-dominated constrained-solutions that had been generated thus far.
In Figure C.1, this phenomenon is even more pronounced.

6.5.2 The three-objective case study

(a) tM-NSGA-II (b) tM-NSGA-III

Figure 6.10: Pareto front of the DTLZ2.3-problem, generated via tM-NSGA-II (a) and tM-NSGA-III (b).
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(a) tM-NSGA-II (b) tM-NSGA-III

Figure 6.11: Performance plots of the tM-NSGA-II and tM-NSGA-III algorithms for the DTLZ2.3-problem (average
taken over 10 repetitions). The iteration axis is cropped.

The Pareto fronts of the DTLZ2.3-problem that are generated by the tM-algorithms, display a high solution
diversity and uniform solution spread. This however was also the case for the constrained-solutions, so
at first glance no improvement in solution diversity is witnessed. Additionally it is noticeable, based on
Figure 6.10 that the convergence of the tM-solutions is worse than that of constrained-solutions. This
loss in convergence was also noticed in the bi-objective case studies. Based on a visual comparison,
tM-NSGA-II displays the worst solution convergence. The performance parameters in Figure 6.11 and
Table 6.3 confirm this assumption.

Although the MID of the tM-NSGA-III algorithm is higher than that of tM-NSGA-II algorithm, the former
displays a better convergence. The increased MID of the tM-NSGA-III algorithm is again the result of an
increased solution diversity. The SNDS namely displays a similar progress in function of the number of
iterations like the MID. The tM-NSGA-II algorithm displays a similar SNDS and MID progress, yet less
pronounced. In Table 6.3 a comparison is made between the best performance parameters of the tM-
algorithms and the best corresponding performance parameters of the constrained-algorithms. Again,
the most significant improvements are made in terms of the number of iterations that are needed and
computation time.

Table 6.3: Performance parameters and runtime of the tM-algorithms for the DTLZ2.3-problem. The best value of
the concerned performance parameter is set in bold.

tM-NSGA-II tM-NSGA-III Constr. EA
Performance parameter Mean St. dev. Mean St. dev. Relative difference [%]
Iterations [-] 4.3 0.5 4.4 0.5 -94.27
MID [-] 0.8107 0.1395 0.8472 0.0948 -10.73
SNDS [-] 0.4242 0.0794 0.4511 0.0636 -2.02
Runtime [s] 22.1558 2.7660 29.0646 3.9129 -89.81

Because the performance parameter indicating the convergence of the solutions is used as a stopping
criterion, it might be so that if the stopping criterion ∆MID is set more rigorously, in this case to 0.50 %,
the tM-solutions display a better convergence. This scenario is represented in Figure 6.12. By decreasing
the allowed tolerance in convergence between two subsequent solution populations, the solutions indeed
display an increased overall convergence. Figure 6.12(b) shows that the iteration process is continued for
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a longer amount of iterations after the FPOS value has reached its maximum value. If the ∆MID value was
set to 1.00 %, the tM-algorithm was aborted more quickly and, based on the bad solutions convergence,
too hastily. This could also have been deduced based Figure 5.7, in which it is visible that the MID and
SNDS of the DTLZ2.3-problem stabilise more in case of a higher number of iterations.

(a) Pareto front (b) Performance plot

Figure 6.12: Graphical representation the Pareto front and performance plot of the solutions generated with tM-
NSGA-II and ∆MID = 0.50 %. The iteration axis of the performance plot is cropped.

6.5.3 General observations

The major recorded improvement of the tM-algorithms is undoubtedly the saving of computation time.
In all the case studies, significantly less iterations were used to generate a solution population with the
required properties. In case of the bi-objective case studies, the Pareto fronts clearly displayed a trade-off
and distribution dependent resolution and this was achieved without the excess generation of solutions.
Also the incorporation of anchor points rendered a more diverse solution population, and most likely ad-
ditionally increased the speed at which non-dominated solutions were generated. The latter assumption
is yet not proven. The three-objective case study did not show a significant increase in solution diversity,
and because the high trade-off areas of the Pareto front are less distinct, the introduced trade-off based
solution resolution was not clearly visible.

Both the bi-objective and the three-objective case studies however displayed a loss in solution conver-
gence in comparison to the constrained-solutions. This can be undone by increasing the rigorousness of
the ∆MID stopping criterion, but this is not practical. The major disadvantage of the tM-algorithms is that
the used stopping criterion is still (be it arbitrary) defined by the user, just like the maximum number of
iterations in the constrained-algorithms. Although the stopping criterion now has more relevance to con-
cerned optimisation problem, it still requires an additional external parameter that has to be defined. The
tDOM-algorithms, which are presented in the following chapter, have no need of an additionally externally
defined stopping criterion, but instead use the density of solutions in the PIT-region as a stopping criterion.

The problem-dependent overall performance of the constrained-algorithms is not entirely resolved. The
standard deviation of the performance parameters of the tM-algorithms, was still within the same range
as those of the constrained-algorithms. However more consistency in the overall performance was ob-
served. The tM-NSGA-III algorithm always displayed the best solution convergence for the bi-objective
case studies, whilst the tM-NSGA-II was always the fastest and often rendered the most diverse solution
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set. Also the convergence of constrained-solutions to local optima was not perceived for the tM-solutions.
The question is however if this problem-dependent performance is a practical issue. Both tM-algorithms
namely show satisfactory results on convergence, speed, and solution diversity.

6.6 Conclusion

In the previous chapter, the constrained-NSGA-II and NSGA-II algorithms were presented. These algo-
rithms showed however several shortcomings. The constrained algorithms were time consuming, had a
naive and problem irrelevant stopping criterion and the constrained-solutions tended to converge to local
optima. The tM-algorithms, that were presented in this chapter, were developed to alleviate the shortcom-
ings of the constrained algorithms on one side, but also to incorporate the trade-off of generated solutions
as an additional selection criterion. The name ”tM-” is a contraction of trade-off and MID: the algorithm em-
phasises solutions with a high trade-off and uses the MID of the solution population as a stopping criterion.

In the first two sections of this chapter, the concepts of the trade-off function and MID-stopping criterion
were further explained. The trade-off is incorporated in the tM-algorithms as a second crowding distance.
To achieve this, the PIT-region, as presented by Mattson et al. (2014), is used to estimate the trade-off of
a solution. However Mattson et al. (2014) uses this PIT-region to a posteriori reduce an initially large so-
lution population to a small solution population that only contains solutions that meet the required solution
properties. This method requires an excessive amount of solutions that have to be generated, only to be
discarded during the filtering process. This means that a large amount of the computation time is used to
generate futile solutions. Because time is money, Hashem et al. (2017) presented a ”divide-and-conquer”
scheme for deterministic algorithms, that allows the algorithm to recursively generate solutions with a min-
imal trade-off without the excessive generation of futile solutions. The presented trade-off function also
uses this idea, but adopted to evolutionary algorithms. A trade-off counter is introduced as an additional
inherent solution property and the trade-off function is used to establish the amount of solutions in the
PIT-region. The trade-off counter of the solution that is concerned, amounts to this number. The higher
this value, the more crowded the PIT-region of that solution is, and the less favourable the solution is in
terms of trade-off or attribution to the overall population diversity. Solutions with a high trade-off counter
are therefore downgraded, just like those with a high non-dominated rank or low crowding distance.

The second main feature of the tM-algorithms, is the use of the MID as a stopping criterion. Because
NSGA-II and NSGA-III are elitist algorithms, solutions will only move about on the Pareto front itself once
they have converged and the iteration process is not stopped. This movement of solutions on the Pareto
front however does not change the overall convergence, or MID, of the population. Thus the stabilisation
of the MID is a signal that the solution population has converged to the Pareto front and the algorithm can
be stopped.

A last additional feature of the tM-algorithms, is the incorporation of the individual minimisers, or anchor
points, of the objectives in the initial population. The anticipation is that this will allow for a diverse initial
population, easing the generation of diverse and non-dominated solutions. The idea of structured initial
population is touched upon, but is not incorporated in the tM-algorithms.

The general expectations of the tM-algorithms’ performances for the case studies are a significant de-
crease in computation time, the generation of a Pareto front with a trade-off based resolution, and a
higher solution diversity. The first expectation, i.e. the decrease in computation time, was satisfied for all
the case studies. The tM-algorithms also generated, especially in the case of the bi-objective case stud-
ies, Pareto fronts with a high solution density in high trade-off areas and a low solution density in the other
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Pareto front areas. However, and although the MID performance parameter indicated differently due to a
disproportionate normalisation procedure, the convergence fo the tM-solutions was worse than that of the
constrained-solutions. Additionally it was found that the value of the user-defined ∆MID had an influence
on this problem. The more rigorous the MID-stopping criterion was set, the better the convergence.

In spite of the fact that the MID-stopping criterion is one with relevance to the concerned problem, its
value still has to be pre-defined by the user. Because the user only has well founded requirements in
terms of minimal solution trade-off and distribution, the MID-stopping criterion is anew an arbitrary defined
parameter. The user namely has no founded estimation of what a good solution convergence is for the
concerned optimisation problem, and thus how much tolerance, or ∆MID, that can be allowed. Stimulated
by this flaw, the algorithms presented in the next chapter will use the trade-off and distributions of solutions
as a stopping criterion. These algorithms are the so-called tDOM-algorithms.



Chapter 7

tDOM-NSGA-II and tDOM-NSGA-III

7.1 Introduction

The major shortcomings of the constrained-algorithms were largely resolved via the tM-algorithms that
were presented in the previous chapter. The computation time was significantly reduced, the Pareto front
had a trade-off based solution resolution and the solution diversity was improved (in the sense that the
tM-solutions no longer converged to local optima). However, one major shortcoming was found: the use of
the difference in MID, or convergence, between two subsequent solution populations is no valid stopping
criterion. Although the MID-stopping criterion had more relevance to the concerned optimisation problem
than the default iteration-stopping criterion, it was still an additional parameter which had to be pre-defined
by the user. Because the user only has founded requirements for the number of solutions that have to
be generated, and the minimal trade-off and distribution they must display, the MID-stopping criterion was
anew an arbitrary stopping criterion. The user namely has no idea what a good solution convergence is
for the concerned optimisation problem, and therefore also has no idea what tolerance, or ∆MID, that can
be allowed.

Moreover it can be stated that the MID-based stopping criterion is an unnecessary complication. Because
the tM-algorithms were capable of determining the value of the solutions it generated, in terms of trade-off
and distribution, it also is capable to determine if the continuation of the iteration process is still mean-
ingful. If it is found that this is not the case, the algorithm itself should be able to generate a termination
parameter which can overrule the pre-defined number of iterations. This would mean that the discontin-
uation (or continuation for that matter) of the iteration process is no longer dependent on an externally
and arbitrary defined parameter, but on inherent, problem related parameters which are formulated by the
user based on underpinned considerations.

Hashem et al. (2017) also presented this idea. In their ”divide and conquer” scheme for deterministic
algorithms, the exploration of a certain area of the Pareto front is ceased if the generated solution no
longer displays the required trade-off or distribution. The so-called tDOM-algorithm, which are presented
in the remainder of this chapter, adapt the concept stated above to evolutionary algorithms. This is also
achieved by the use of the PIT-region. The name ”tDOM-algorithm” is a reference to the algorithms appli-
cation of t-domination.

In the remainder of this chapter, the adapted trade-off function will be presented. This trade-off function
will allow the algorithm to determine the trade-off counter of the generated solutions, but also the degree
in which they are different to the solutions of the previously generated population. The latter property will

77
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be determined via the use of t-domination, which is a variant non-domination. t-domination also takes the
solution trade-off into account, besides its objective costs. After the introduction of the adapted trade-off
function, the complete tDOM-algorithms will presented and will be subsequently tested on the numerical
case studies that were presented in 4.3.

7.2 Trade-off as a stopping criterion

In the previous chapter, the concept of the PIT-region (see 6.2.1) and trade-off function were introduced
(see 6.2.2). The trade-off function at hand however only used the minimal required trade-off ∆t and
distribution ∆r as an additional crowding distance or diversification measure. The trade-off function that
will be presented in this chapter, will also evaluate if the algorithm can be stopped. In order to do so, two
additional inherent solution properties are added. For the ease of formulation, solutions that are generated
via a tDOM-algorithm, will be further denoted as tDOM-solutions.

Figure 7.1: Graphical representation of a tDOM-solution with its inherent solution properties.

Figure 7.1 graphically displays a tDOM-solutions with its inherent solution properties. The two added so-
lution properties are two logical values (the orange properties). A first one is used to distinguish solutions
of the previous population from those of the current population, while the second one is used to determine
if the tDOM-algorithm can be stopped or not. To be able to explain the concept of using the trade-off of a
solution as a stopping criterion, the concept of t-domination has to be introduced first.

7.2.1 t-Domination

The concept of non-domination or Pareto-optimality has been mathematically introduced in 2.2. As a
reminder: A solution x is non-dominated or Pareto-optimal if there exists no solution x∗ for which ∀i ∈
{1, . . . ,M} : fi(x∗) ≤ fi(x) and ∃i ∈ {1, . . . ,M} : fi(x∗) < fi(x) with fi, i ∈ {1, . . . ,M} the M objective
function of the concerned optimisation problem. Figure 7.2(a) graphically represents the concept of non-
domination in case of a bi-objective problem. Based on the above non-domination definition, solution p1
is dominated by solution q4. q4 is therefore a non-dominated or Pareto-optimal solution. t-domination
however also takes the PIT-region of the solution into account. A solution z is t-non-dominated if there
exists no solution z∗ for which ∀i ∈ {1, . . . ,M} : fi(z∗) ≤ fi(z) and ∃i ∈ {1, . . . ,M} : fi(z∗) < fi(z) and
z∗ /∈ PIT (z), with fi, i ∈ {1, . . . ,M} the M objective function of the concerned optimisation problem.
t-domination is graphically represented in Figure 7.2(b) in case of a bi-objective problem. Although q2
dominates p1, it does not t-dominates p1 while it is located in the PIT-region of p1. q1 on the other hand
does t-dominate p1, and is therefore t-non-dominated.
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(a) Non-domination (b) t-domination

Figure 7.2: Graphical representation of non-domination (a) and t-domination (b) in case of a bi-objective problem.

In section 6.2.1 of the previous chapter, it was mentioned that if a solution q is located in the PIT-region of
another solution p, there is no significant difference between the two solutions. Because solution q does
not display the required trade-off ∆t or distribution ∆r in comparison to solution p, it does not contribute to
the diversification of the solution population, nor does it represent a significantly different process design
than solution p. There is therefore no need of keeping q in the solution population and it can be discarded
or downgraded.

If the concept of t-domination is extended to the whole solution population, it can be turned into a stopping
criterion: if all the solutions of two subsequent solution populations are located in each others PIT-regions,
there is no significant difference between the two populations and therefore the algorithm, or iteration pro-
cess, can be stopped. This is graphically represented in Figure 7.3.

Figure 7.3: t-domination as a stopping criterion.

Figure 7.3 displays simultaneously a possible shortcom-
ing of the t-domination stopping criterion. Because all
the solutions of the (t − 1)-th iteration are located in
the PIT-regions of the solutions of the t-th generation,
the algorithm will be stopped because no new t-non-
dominated solutions have been created. The black so-
lutions of the t-th generation represent thus the final so-
lution population. It is clear however that the final so-
lution population has not converged to the Pareto front.
Although Figure 7.3 represents a thought experiment, it
can be assumed that if the tDOM-algorithm is not ca-
pable to produce diverse offspring solutions, the algo-
rithm will be prematurely stopped. If for instance the
crossover and mutation parameters are carelessly de-
fined, it can be the case that the offspring solutions are
generated within the PIT-region of their parents. And
although these solutions might display a slightly better
convergence to the Pareto front than their parents, the
algorithm does not consider them different enough. Therefore the algorithm will stop, rather than allowing
the solutions to creep towards the Pareto front. On the other hand, if the user desires solutions with a
high trade-off and distribution, it might also pose difficulties in terms of solution convergence to the Pareto
front. The larger the PIT-region of a solution is, the higher the chance that its off-spring solution is located
within its PIT-region. In order to rigorously test the performance of the tDOM-algorithm, these assump-
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tions must evaluated. Therefore, in section 7.5, the influence of the crossover, mutation, and trade-off and
distribution parameters on the solution convergence and diversity, will be evaluated. Firstly, the adapted
trade-off function is presented.

7.2.2 The adapted trade-off function

Algorithm 7 Adapted trade-off function

Require: popt , popt−1, ∆t, ∆r
for i=1 to |popt | do

popt(i).TradeOffCounter=0
popt(i).Stop= false

end for
poptot = popt ∪ popt−1
poptot ,Ftot = NonDominatedSorting(poptot)
poptot,n = NormaliseCosts(poptot)
for i=1 to |Ftot | do

...
for k=1 to |Costs| do

...
if Costs(k)∈ popt then

if InPIT(Costs(itDown), Costs(k), ∆t, ∆r) then
if Costs(itDown)∈ popt then

pop(k).TradeOffCounter++
else

pop(k).Stop= true

end if
end if
...
if InPIT(Costs(itUp), Costs(k), ∆t, ∆r) then

if Costs(itUp) ∈ popt then
pop(k).TradeOffCounter++

else
pop(k).Stop= true

end if
end if
...

end if
end for

end for

The adapted trade-off function, as presented
in Algorithm 7, uses the same framework
as the trade-off function as presented in
6.2.2. Only the different properties of
the adapted trade-off function will be dis-
cussed.

Suppose the algorithm is in its t-th iteration.
The adapted trade-off function requires the
trade-off parameter ∆t, the distribution pa-
rameter ∆r, and two solution populations: the
current solution population popt and the pre-
vious solution population popt−1. In the ini-
tialisation step, the trade-off counter of the
solutions in popt is reset to zero. Additionally
the stop property of these solutions is set to
false. If it is found that a solution of the popu-
lation popt−1 is located within the PIT-region
of a solution of the popt population, this stop
property will be set to true.

Subsequently the two solution populations
are merged into the total solution popula-
tion poptot . Because the trade-off counter
of solutions is still determined at a speed
of one non-dominated front at a time, the
population poptot first has to be sorted in
its non-dominating fronts Ftot . Also the ob-
jective cost of the solutions have to be nor-
malised. Because the best N solutions have
yet to be selected from popt , it still contains
2N solutions, while |popt−1| = N. Because
|poptot | = 3N, the non-dominated sorting
function and cost normalisation step can be
time consuming. From this point, the algo-
rithm continues like the trade-off function as
presented in 6.2.2.

If a solution is found to be located in the PIT-region of a concerned solution k, it is verified if the solution is
part of popt . If this is the case, the trade-off counter of the solution k is incremented with 1. If not however,
the stop property of the solution k is set to true. Note that the PIT-region is only constructed for solutions
in popt .
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7.3 The tDOM-evolutionary algorithm

If the adapted trade-off function is completed, all the trade-off counters of the solutions in popt will have
been determined. The population can than be sorted based on the same principles as presented in 6.4,
allowing the selection of the N best solutions. However, in case that all the solutions of popt were found
to have at least one solutions of popt−1 in their PIT-region, it is no longer necessary to continue the iter-
ation process. The solutions of popt are namely not different enough than the solutions of the previous
population popt−1.

Yet, it is again opted to include the FPOS of the solution population as an additional stopping criterion. It
was already mentioned that in some cases non-dominated solutions are more easily generated than in
others. This is confirmed by the significant difference in needed iterations of the different case studies
before the FPOS amounts to 1 (see Figure 5.5 for instance). Including the FPOS as an additional stopping
criterion allows the algorithm to at least generate the amount of solutions that is desired by the user. The
complete pseudo-codes of the tDOM-algorithms are included in Appendix D.

The tDOM-algorithms are in many aspects the equivalent of the tM-algorithms. The only major difference
is that the tDOM-algorithms use a stopping criterion, which remains relevant to the concerned optimisation
problem, but does not require extra user-defined parameters. The trade-off parameter ∆t and distribution
parameter ∆r are namely no additional parameters but requirements that are imposed by the user. One
of the expected disadvantage of the tDOM-algorithms however is that the value of the trade-off and dis-
tribution parameter will have an influence on the convergence of the tDOM-solutions. Additionally it is
expected that the EA-parameters which determine the generation of offspring solutions, will also have an
influence on the overall performance of the tDOM-algorithms. Lastly it might be possible that the tDOM-
algorithm is slower than the tM-algorithm because the time consuming non-dominated sorting function is
used on a large solution set.

7.4 Case studies

tDOM-NSGA-II and tDOM-NSGA-III are tested on the case studies that were presented in 4.3. The used
settings of the EA, trade-off, and distribution parameters, used for each case study, are summarised
in Table 6.1. In 7.5, the influence of these settings on the performance of the tDOM-algorithm will be
evaluated.

Table 7.1: The EA, trade-off, and distribution parameters setting, used for each case study.

Parameter Value

Maximum iterations 75
Population size 100
Crossover probability pc 90.0 %
Mutation probability pm 10.0 %
Mutation rate µ 5.00 %
Mutation step size σ 0.05× (b−a)
Objective subdivisions 99 (∗), 13 (∗∗)
Reference points 100 (∗), 105 (∗∗)
Trade off ∆t 5.00 %
Distribution parameter ∆r 10.0 %
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Just like for the constrained-NSGA-II and the tM-NSGA-III algorithm, the number of objective subdivisions
d in the tDOM-NSGA-III algorithm is set so that the number of reference points H ≥ N. The trade-off ∆t
and distribution parameter ∆r have the same value for each objective for the sake of clarity.

7.4.1 The bi-objective case studies

(a) tDOM-NSGA-II (b) tDOM-NSGA-III

Figure 7.4: Pareto front of the BIOBJ-problem generated via tDOM-NSGA-II(a) and tDOM-NSGA-III(b).

(a) tDOM-NSGA-II (b) tDOM-NSGA-III

Figure 7.5: Pareto front of the DO2DK-problem generated via tDOM-NSGA-II(a) and tDOM-NSGA-III(b).
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(a) tDOM-NSGA-II (b) tDOM-NSGA-III

Figure 7.6: Pareto front of the CONSTR-problem generated via tDOM-NSGA-II(a) and tDOM-NSGA-III(b).

(a) tDOM-NSGA-II (b) tDOM-NSGA-III

Figure 7.7: Pareto front of the TNK-problem generated via tDOM-NSGA-II(a) and tDOM-NSGA-III(b).

Figures 7.4 to 7.7 represent the Pareto fronts of the bi-objective case studies that were generated with
tDOM-NSGA-II and tDOM-NSGA-III. The generated Pareto fronts allow to draft several conclusion based
on a visual comparison with the constrained-solutions and the benchmark Pareto front.

In Figure 7.4, the Pareto fronts of the BIOBJ-problem are represented, generated by tDOM-NSGA-II and
tDOM-NSGA-III respectively. The tDOM-solutions of the BIOBJ-problem display a similar convergence to
the benchmark Pareto front as the constrained-solutions, but display a higher solution diversity. At first
glance, the solution diversity of the tDOM-NSGA-II algorithm seems to be higher than that of the tDOM-
NSGA-III algorithm. The performance parameters, which are summarised in Table 7.2, indicate however
the opposite scenario but these will be discussed more in detail hereafter. Also, both tDOM-Pareto fronts
display the desired trade-off based solution resolution.

The tDOM-Pareto fronts of the DO2DK-problem, represented in Figure 7.5, display a reduction in solu-
tion convergence in comparison to the constrained-Pareto front. This reduction was also visible in the
tM-Pareto fronts (see Figure 6.5). If the tDOM-Pareto fronts and tM-Pareto fronts of the DO2DK-problem
are compared with each other however, it is visible that the tDOM-Pareto front does not as clearly show
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the trade-off based solution resolution as the tM-Pareto front. Because achieving such a trade-off based
Pareto front resolution was one of the main targets of the tDOM- and tM-algorithms, this can be seen as
a disadvantage of the tDOM-algorithm compared to the tM-algorithm.

The CONSTR-problem does show the desired trade-off based Pareto front resolution but displays a poorer
solution convergence in the vicinity of the Pareto front extremities. Although the steep part of the Pareto
front, located between the F1 costs 0.4 and ±0.65, is a high trade-off area, the solution resolution of the
tDOM-NSGA-II Pareto front is low between the F1 costs 0.4 and ±0.475. Apparently the solutions gen-
erated by the tDOM-NSGA-II algorithm have converged to the local optima of the Pareto front, which is
located in the vicinity of the bend. This problem is not as distinct in case of the tDOM-NSGA-III algorithm.
The TNK-problem displays a similar difficulty. The tDOM-Pareto fronts of the TNK-problem namely display
an unsatisfactory solution convergence and density in the vicinity of the Pareto front extremities.

The performance parameters of the tDOM-algorithms are summarised in Table 7.2. The best values
of each performance parameter is again compared to the best corresponding value of the constrained-
algorithms, and also to that of the tM-algorithms. These ratios are included in the second last and last
column respectively. The FPOS performance parameter is not included in Table 7.2, because the value
of this performance parameter is fixed by the outlay of the tDOM-algorithms. The performance plots of
the tDOM-NSGA-II algorithm are included in Figure 7.8. The performance plots of the tDOM-NSGA-III
algorithm for the bi-objective case studies, are included in Appendix D.3.

Table 7.2: Performance parameters and runtime of the tDOM-algorithms for the bi-objective case studies. The best
value, per case study, of the concerned performance parameter is set in bold.

tDOM-NSGA-II tDOM-NSGA-III Constr. EA tM-EA
Performance

Mean St. dev. Mean St.dev.
Relative Relative

parameter difference [%] difference [%]
BIOBJ-problem

Iterations [-] 23.7 1.7 22.8 2.5 -69.90 -2.98
MID [-] 0.2829 0.0324 0.2934 0.0429 -35.37 +22.57
SNDS [-] 0.1828 0.0140 0.1883 0.0276 +1.18 +6.26
Runtime [s] 328.4456 23.0812 347.2643 28.9220 +50.72 +341.98

DO2DK-problem
Iterations [-] 3.8 1.3 3.6 0.8 -95.20 -18.18
MID [-] 0.5320 0.0192 0.5271 0.0236 -15.39 +0.67
SNDS [-] 0.1573 0.0069 0.1611 0.0140 -2.54 +1.32
Runtime [s] 60.3186 17.4929 58.1949 11.7676 -75.08 +151.93

CONSTR-problem
Iterations [-] 14.7 5.2 12.7 1.0 -83.07 -5.22
MID [-] 0.5693 0.0272 0.5917 0.0165 -17.60 +5.37
SNDS [-] 0.1719 0.0052 0.1759 0.0061 +1.68 +2.39
Runtime [s] 187.8517 70.1929 174.0846 14.7861 -13.22 +239.33

TNK-problem
Iterations [-] 9.4 1.3 13.2 0.9 -87.47 -32.37
MID [-] 0.9651 0.0131 0.9442 0.0032 +0.27 +0.00
SNDS [-] 0.3361 0.0100 0.3138 0.0149 +11.96 +5.13
Runtime [s] 134.3552 23.3241 194.0388 14.1227 -13.92 +163.54
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(a) BIOBJ-problem (b) DO2DK-problem

(c) CONSTR-problem (d) TNK-problem

Figure 7.8: Comparing performance plots of the tDOM-NSGA-II algorithm and the constrained NSGA-II algorithm
(average taken over 10 repetitions). The iteration axis is cropped.

Table 7.2 indicates a decrease in the number of iterations needed in case of the tDOM-algorithm, in com-
parison both to the constrained-algorithm and the tM-algorithm. However, when the required runtime is
compared with the the one of the tM-algorithm, for all the case studies a significant increase is noticed.
The tDOM-algorithm even requires a higher runtime than the constrained-algorithm in case of the BIOBJ-
problem. This observation confirms the concern that was stated in 7.3. The Matlab software allows the
user to time parts of the code, which allows the user to pinpoint time consuming sections in the Matlab
code. This is done for the tDOM-NSGA-II algorithm in case of the BIOBJ-problem.

It was found that, on average, the Matlab code of the adapted trade-off function requires 235.9672 s of
the total computation time of the algorithm, which is 71.84 % of the total average runtime of the tDOM-
algorithm. The non-dominated sorting function is accountable for 95.20 %, on average, of the fraction
of the computation time taken up by the adapted trade-off function. These figures clearly indicate that
the use of the non-dominated sorting function on the large solution population, is the main decelerator
of the tDOM-algorithms. The performance results of the tM-algorithms indicate that the trade-off function
in these algorithms (see 6.2.2) is undoubtedly less cumbersome and time consuming than the adapted
trade-off function of the tDOM-algorithms. Replacing the adapted trade-off function by the trade-off func-
tion as used in the tM-algorithms is therefore highly recommended. This can be achieved by only using
the adapted trade-off function if the FPOS additionally is equal to one. Based on the layout of the tDOM-
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algorithm, then and then alone the algorithm can be stopped (if additionally the solutions that are currently
generated do not t-dominate the solutions of the previous iteration). The required runtime of the improved
tDOM-algorithms is summarised in Table 7.3 for each bi-objective case study.

Table 7.3: Runtime of the improved tDOM-algorithms and comparisons to the un-improved tDOM-algorithms.

Case Improved Decrease Improved Decrease
study tDOM-NSGA-II [s] [%] tDOM-NSGA-III [s] [%]
BIOBJ 86.5082 ± 13.3024 -73.66 111.9432 ± 5.0804 -67.76
DO2DK 22.1332 ± 8.8652 -63.31 26.7371 ± 5.3611 -54.06
CONSTR 49.0207 ± 7.5310 -73.90 63.1692 ± 10.0027 -63.71
TNK 57.3110 ± 1.6490 -57.34 71.7257 ± 8.2896 -63.04

The well-considered use of both versions of the trade-off function indeed results in a significant decrease
in required computation time. This is confirmed by the decreases, in terms of percentages, summarised
in Table 7.3. For all the tested bi-objective case studies, the decrease in computation time, when using
the improved tDOM-algorithm instead of the tDOM-algorithm, amount to more than 50.00 %.

7.4.2 The three-objective case study

(a) tDOM-NSGA-II (b) tDOM-NSGA-III

Figure 7.9: Pareto fronts of the DTLZ2.3-problem, generated via tDOM-NSGA-II (a) and tDOM-NSGA-III (b).
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(a) tDOM-NSGA-II (b) tDOM-NSGA-III

Figure 7.10: Performance plots of the tDOM-NSGA-II and tDOM-NSGA-III algorithms for the DTLZ2.3-problem
(average taken over 10 repetitions). The iteration axis is cropped.

Based on the Pareto fronts of the DTLZ2.3-problem (see Figure 7.9), it is obvious that the solution conver-
gence is weak. Based on a visual comparison, this is especially the case for the tDOM-NSGA-II algorithm
and low F3 objective costs. The solution convergence of the tDOM-NSGA-III algorithm is better but the
respective performance plot (see Figure 7.10(b)) and MID performance parameter summarised in Table
7.4, contradict this. The increased MID of the tDOM-NSGA-III algorithm can however be partially assigned
to an increase in solution diversity. The corresponding performance plot namely indicates that the SNDS
performance parameter evolves similarly to the MID performance parameter, with an increasing number
of iterations. As previously mentioned, these two performance parameters are correlated to one another.

Table 7.4: Performance parameters and runtime of the tDOM-algorithms for the DTLZ2.3-problem. The best value
of the concerned performance parameter is set in bold.

tDOM-NSGA-II tDOM-NSGA-III Constr. EA tM-EA
Performance

Mean St. dev. Mean St.dev.
Relative Relative

parameter difference [%] difference [%]
Iterations [-] 3.9 3.0 3.2 1.3 -95.73 -25.58
MID [-] 0.7214 0.0959 0.8178 0.1407 -20.56 -11.02
SNDS [-] 0.3839 0.0458 0.4149 0.0750 -9.88 -8.02
Runtime [s] 45.3282 31.9464 56.7563 22.5728 -79.15 +104.59

On a general note, no other significant differences are noticed between the tM-algorithms and tDOM-
algorithms in case of the DTLZ2.3-problem. Thus instead of delving deeper into the results of the tDOM-
algorithms for the three-objective case study, it is opted to study the influence of the trade-off parameters
∆t and ∆r, and the influence of the EA-parameters on the performance of the improved tDOM-algorithm.

7.5 Influence of the EA- and trade-off parameters

For the sake of clarity, and avoidance of overloading the reader with information, the influence of the
EA- and trade-off parameters is only conducted for the improved tDOM-NSGA-II algorithm and on one
bi-objective case study: the TNK-problem. Based on the results, a recommendation scheme for defining
the EA- and trade-off parameters will be drafted.
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7.5.1 The EA-parameters

Several parameters are covered by the term ’EA-parameters’. The main interest in this scenario lies with
the EA-parameters that control the generation of offspring solutions. The parameters in question are the
pc and pm parameters on one hand, which define the probability of a parent solution to participate in a
crossover or mutation, and the µ and σ parameters on the other hand, which control the mutation rate and
magnitude respectively. It is assumed that an ill-considered definition of these parameters can lead to a
decreased performance of the improved tDOM-algorithm.

In the tDOM-NSGA-II, a precautionary additional consideration has already been implemented. Using
the value of the FPOS performance parameter as an additional stopping criterion prohibits the premature
interruption of the algorithm. To thoroughly examine the influence of the EA-parameters, and the trade-off
parameters for the same matter, the additional FPOS stopping criterion is removed from the improved
tDOM-NSGA-II algorithm’s outlay. This additional parameter ensured that the number of generated non-
dominated solutions was equal to the desired population size N. It is therefore possible that the results
of the benchmark situation will differ from the results presented in 7.4.1 and 7.4.2. The influences of the
EA-parameters and trade-off parameters will be compared to this new benchmark. This new benchmark
Pareto front is presented in Figure 7.11, accompanied with its performance plot.

(a) Pareto front (b) Performance plot

Figure 7.11: Pareto front and performance plot of the TNK-problem, generated with the improved tDOM-NSGA-II
algorithm without the FPOS stopping criterion.

The performance plot confirms the expected decrease in FPOS. While the tDOM-NSGA-II algorithm with
the additional FPOS stopping criterion was forced to continue the iteration until N non-dominated solu-
tions were generated, the improved tDOM-NSGA-II is not forced to do so and is stopped on a FPOS of
0,4160 ± 0,0794.

The tested EA-parameter configurations are presented in Table 7.5. The first configuration represents the
benchmark situation, which has been used for all the case studies thus far. Configuration 2 represents
a situation in which both the crossover and mutation have small values. This configuration is used to
simulate a scenario in which the offspring solutions are generated in the vicinity of their parents. While
the step size of the crossover is not controllable (see 3.3.2), its probability is halved. The step size of the
mutation is controllable and therefore the probability of a mutation is accordingly increased, but its step
size is ten times smaller than in the benchmark configuration. Configuration 3 represents a scenario with a
large mutation probability which has additionally an increased step size. Lastly, configuration 4 represents
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a scenario with an increased crossover probability. The trade-off parameters will be kept constant in all
the configurations.

Table 7.5: Test configuration for determining the influence of the EA-parameters on the performance of the improved
tDOM-NSGA-II algorithm.

Configuration pc pm µ σ ∆t ∆r
1 0.90 0.10 0.05 µ(b−a) 0.05 0.10
2 0.45 0.55 0.005 q q q
3 0.45 0.55 0.50 q q q
4 0.99 0.01 0.05 q q q

In Table 7.5, a and b respectively represent the lower and upper boundaries of the n decision variables
and are thus vectors. The expectation is that if the offspring solutions are generated in the vicinity of the
parent solutions, the algorithm will stop more quickly, resulting in a unsatisfactory solution convergence.
Configuration 2 represents this scenario. The reasons for this, is explained in 7.2.1. The different Pareto
fronts of configurations 2, 3, and 4 are represented in Figure 7.12 up to and including Figure 7.14 with
their corresponding performance plot.

(a) Configuration 2 (b) Configuration 2

Figure 7.12: Pareto front and performance plot of configuration 2 of Table 7.5, compared to configuration 1.
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(a) Configuration 3 (b) Configuration 3

Figure 7.13: Pareto front and performance plot of configuration 3 of Table 7.5, compared to configuration 1.

(a) Configuration 4 (b) Configuration 4

Figure 7.14: Pareto front and performance plot of configuration 4 of Table 7.5, compared to configuration 1.

A visual comparison of the Pareto fronts represented in Figure 7.12 up to and including Figure 7.14, does
not indicate a noteworthy difference between the tested EA-configuration. The only major difference that
is noticeable, is the difference in the number of non-dominated solutions that have been generated. This
is also confirmed by the performance plots in Figure 7.12 up to and including Figure 7.14. The third
configuration, in which the mutation step dominates the offspring generation, displays the lowest average
FPOS value (0.3220 ± 0.0673). Moreover, the average amount of iterations that were needed for this
configuration were the lowest of all the configurations. It appears that for this configuration the improved
tDOM-NSGA-II algorithm was stopped prematurely. This resulted in a low number of non-dominated so-
lutions that were generated. This result is however contradictory to the expectations. It was expected that
configuration 2 would show the worst solution convergence and algorithm performance.

The Pareto fronts of the different EA-configurations, nor the corresponding performance plots indicate a
significant difference in performance of the improved tDOM-NSGA-II algorithm. This is an unexpected
results while it is sensible to assume that if the offspring solution do not differ much from their parents,
they are more likely to be located in the PIT-region of the latter. Yet, bearing in mind that Deb et al. (2002),
Valadi and Siarry (2014) and Liagkouras and Metaxiotis (2017) have recommended a crossover probability
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of 90.0 %, or a pc = 0.90, a mutation probability pm of 1/n, with n the number of process variables, it is
most likely that the user will follow these recommendations. It is only more assuring to observe that the
settings of the offspring EA-parameter do not influence the performance of the tDOM-NSGA-II algorithm.

7.5.2 The trade-off parameters

The tested trade-off parameter configurations are presented in Table 7.6. The first configuration is the
benchmark configuration, which has been used for all the case studies so far. The second configuration
simulates a scenario with an increased trade-off parameter, while the third configuration simulates a sce-
nario with an increased distribution parameter. The last configuration simulates a scenario in which both
the trade-off parameter and distribution parameter have increased values.

Table 7.6: Test configurations for determining the influence of the trade-off parameters on the performance of the
improved tDOM-NSGA-II algorithm.

Configuration pc pm µ σ ∆t ∆r
1 0.90 0.10 0.05 µ(b−a) 0.05 0.10
2 q q q q 0.25 0.10
3 q q q q 0.05 0.50
4 q q q q 0.25 0.50

Again, the expectation is that the improved tDOM-NSGA-II algorithm will display a decrease in overall per-
formance in case of configuration 4. Because in this scenario, the PIT-regions of the solutions are larger,
the probability that the parent solutions are located within the PIT-region of their offspring, increases. The
generated Pareto fronts, and the corresponding performance plots, of configurations 2 to 4 are presented
in Figures 7.15 up to and including Figure 7.17.

(a) Configuration 2 (b) Configuration 2

Figure 7.15: Pareto front and performance plot of configuration 2 of Table 7.6, compared to configuration 1.
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(a) Configuration 3 (b) Configuration 3

Figure 7.16: Pareto front and performance plot of configuration 3 of Table 7.6, compared to configuration 1.

(a) Configuration 4 (b) Configuration 4

Figure 7.17: Pareto front and performance plot of configuration 4 of Table 7.6, compared to configuration 1.

Based on a visual comparison, some differences in the Pareto fronts can be distinguished. When the
Pareto fronts of configuration 2 and 3 are compared, it can be seen that the low trade-off areas of the
Pareto fronts are distinctively less populated in configuration 3 than in configuration 2. This is because
configuration 3 highly stresses on the distribution of the solutions with its increased distribution parameter
∆r. As already mentioned in 6.2, the ∆r parameter defines how crowded the low trade-off areas of the
Pareto front will be. The higher the ∆r value, the lower the amount of solutions that will be generated in
these low trade-off areas. The Pareto front of configuration 3 affirms this.

A second observation, based on the comparison between configuration 4 on one hand and configuration
2 and 3 on the other hand, is that the improved tDOM-NSGA-II algorithm is less capable to distinguish
the trade-off of solutions if the PIT-region becomes larger. This statement is made based on the loss of
the trade-off based Pareto front resolution in configuration 4. If PIT-regions become larger, chances are
that all the generated solutions have a high trade-off counter and the differences in high and low trade-off
solutions becomes less distinct. Additionally the Pareto front of configuration 4 indeed displays the worst
solution convergence of all the configurations, so the expectation that large PIT-regions will have a nega-
tive effect on the convergence of the final solution population to the Pareto front, is legit. However, if the
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user desires such high trade-off and distributions in solutions, he/she also allows more tolerance to the
convergence of the solutions. This is graphically represented in Figure 7.18.

Figure 7.18: Graphical representation of the toler-
ance on the convergence of solutions
with a high ∆t and high ∆r in case of a
bi-objective optimisation problem.

If the PIT-region is constructed around solutions that
have converged to the Pareto front, a so-called zone
of insignificance is formed. The four solutions displayed
have indeed converged to the Pareto front, but the so-
lutions that are located in their PIT-region are not con-
sidered to be different by the user. If the number of
solutions is low, than the PIT-region form distinct re-
gions of insignificance. However, if the number of so-
lutions increases, the PIT-regions of the solutions that
have converged to the Pareto front will overlap and will
eventually form a band or zone of insignificance. Any
solutions within this zone is insignificantly different to
the solutions that have actually converged to the Pareto
front. This zone becomes naturally increasingly large if
the user defines ∆t and ∆r parameters with high values.
This means that solutions which are increasingly further
away from the Pareto front, are as valuable to the user
as solutions that have fully converged. This leads to
the conclusion that the lack of solution convergence in
configuration 4 does not pose as a problem, as long as
the generated non-dominated solutions have converged
within the zone of insignificance. Note that although the
visual representation of the Pareto fronts gives rise to the conclusion made above, no real difference in
average performance is witnessed based on the performance plots.

7.5.3 Recommendations

Based on the made EA- and trade-off parameter sensitivity analysis, one major recommendation can be
drafted when considering the definition of the tested parameters, which is the following: if the user is
aware of the meaning and use of the defined parameters, and the assigned values are based on founded
arguments, no decrease in performance is witnessed.

Concerning the EA-parameters, it was nonetheless unexpectedly found that the values of the pc-, pm-,
µ- and subsequently σ-parameters do not have a major influence on the algorithms performance or the
convergence of the solutions to the Pareto front. If the recommendations of Deb et al. (2002), Valadi and
Siarry (2014), and Liagkouras and Metaxiotis (2017) are followed for the pc- and pm-parameters, the al-
gorithm performs satisfactorily, even with the abolishment of the additional FPOS stopping criterion. The
only performance change that was noticed, was a small difference in the number of non-dominated solu-
tions that were generated in the four configurations. However, on a more general note, it can be stated
that the improved tDOM-NSGA-II algorithm displays little dependency on the value of the EA-parameters
concerning the formation of offspring solutions.

On the contrary, the performance of the improved tDOM-NSGA-II algorithm was found to be more depen-
dent on the values of the trade-off parameters ∆t and ∆r. It was found that the ∆r value had an influence
on the crowdedness of the low trade-off areas of the Pareto front. But because this is additionally the
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major purpose of this parameter, this came as no surprise. When both parameters became increasingly
large, it was apparent that the algorithm had more difficulty in distinguishing low trade-off solutions from
high trade-off solutions, which eventually resulted in a loss of the trade-off based Pareto front resolution.
The convergence of the solutions to the Pareto front was simultaneously found to be worst in this sce-
nario (i.e. configuration 4). However, because the user desires such high trade-off’s ∆t and distributions
∆r, he/she also allows more tolerance on the convergence of the solutions to the Pareto front. This was
demonstrated via the zone of insignificance in Figure 7.18. The user should therefore be aware that with
increasing trade-off parameters, the trade-off based resolution of the Pareto front will diminish and the
convergence of the solutions to Pareto front will decrease. If the high trade-off parameters are imposed
based on founded reasons, these two phenomena are however not a decrease in performance of the
algorithm, but rather the inherent results of the imposed trade-off parameters.

7.6 Conclusion

The tM-algorithm, which was introduced in the previous chapter, was a big step forward when compared
to the constrained-algorithms of Chapter 5. The introduction of a trade-off function allowed for the gener-
ation of Pareto front with a trade-off based solution resolution without the generation of futile solutions. An
additional major advantage was the introduction of a problem-related stopping criterion: the MID-stopping
criterion. This stopping criterion was based on the elitism of the NSGA-II and NSGA-III algorithms. Be-
cause the best solutions of the previous iteration are kept unchanged in the current one, it can be assumed
that once the solutions have converged to the Pareto front, they will not move away from it. If however in
that scenario the iteration process is not interrupted, new solutions will be generated on the Pareto front
itself. The overall convergence however will not change, resulting in a stabilisation of the MID performance
parameter. The tM-algorithm was aborted if the difference in MID between two subsequent solution pop-
ulation was smaller than a pre-defined ∆MID tolerance. This ∆MID value had to defined by the user.

The major disadvantage of this stopping criterion is that the user often does not have a notion of what
a good solution convergence is for his/her concerned optimisation problem. The user is thus unable to
define what an acceptable convergence tolerance is. The ∆MID value is therefore again an arbitrarily
defined parameter, just as this was the case when the maximum number of iterations was used as a stop-
ping criterion. The only parameters of which the user often does have a founded notion, are the trade-off
and distribution parameters.

It was concluded that the ∆MID value was an unnecessary additional performance parameter. Thanks
to the implemented trade-off function, the algorithm is now able to determine the value of the generated
solutions for the user. If solutions are densely located within each other PIT-regions, the user will not see
them as different from each other. By extrapolating this to two subsequent solution populations, it can
be said that if the solutions of two subsequent populations are located within each others PIT-regions,
they are not different from each other. This scenario will only happen if the solutions have sufficiently
converged to the Pareto front therefore allowing the termination of the iteration process. This idea was
also presented by Hashem et al. (2017) in their ”divide and conquer” scheme.

The stopping criterion of the tDOM-algorithms can be formulated as follows: If no solution of the current
population t-dominates a solution of the previous population, then the two population are not distinguish-
able from each other and the algorithm can therefore be stopped. The evaluation of the t-domination of
the solutions is done via the adapted trade-off function. This trade-off function has a bivalent use while it
calculates the trade-off counter of the solutions of the current iteration. On the other hand, it also sets a
solution inherent logic value to true if a solution of the previous iteration is located in the PIT-region of a
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solution of the current iteration. If for all the solutions of the current iteration this solutions inherent logic
value has been set to true, the algorithm is stopped.

Using t-domination as a stopping criterion in fact abolishes the need for defining a maximum number of
iterations. It is opted not to do this, to avoid the odd chance that the algorithm indefinitely continues iterat-
ing. Additionally the FPOS performance parameter is again incorporated as a second stopping criterion
in order to assure the generation of the desired N non-dominated solutions.

The case studies display however one major flaw of the t-domination stopping criterion and this is that
the adapted trade-off function is cumbersome. It requires the non-dominated sorting of solution set with
a size of 3N, which takes up most the computation time for which the adapted trade-off function is ac-
countable for. Because of the additional FPOS stopping criterion, the algorithm can only be stopped if the
FPOS of the solution population equals 1. It is only in this case rational to use the cumbersome adapted
trade-off function in order to generate the second, trade-off based, stopping criterion. In all other cases,
the faster trade-off function, as used in the tM-algorithms, is used. This resulted in a significant time gain
in comparison to the original tDOM-algorithms.

The sensitivity analysis of the improved tDOM-NSGA-II algorithm led to one striking result, which was
that the overall performance of the algorithm was not dependent on the value of the EA-parameters con-
cerning the generation of offspring solutions. It was expected that if these parameters are ill-chosen and
the offspring solutions are generated in the vicinity of their parents, the algorithm would prematurely stop,
resulting in a bad solution convergence. Based on three test configurations, which all represented a dif-
ferent scenario concerning the generation of offspring solutions, it was found that this was not the case.
Bearing in mind that the user is most likely to follow the recommended EA-parameter settings proposed
by Deb et al. (2002), Valadi and Siarry (2014), and Liagkouras and Metaxiotis (2017), it is concluded that
the EA-parameters have no major influence on the performance of the improved tDOM-NSGA-II algorithm.

The sensitivity analysis of the improved tDOM-NSGA-II algorithm for the trade-off parameters however
showed a different scenario. With increasing ∆r values, the low trade-off areas of the Pareto front become
increasingly less populated. Because the ∆r parameter is used to control this, the stated result comes
as no surprise. Nonetheless, the user should be aware of this consequence. Additionally, the algorithm
had more difficulties distinguishing between high trade-off and low trade-off solutions if both ∆t and ∆r, or
the PIT-region, became increasingly large. In this scenario, the solution convergence also decreased as
a result of the increased tolerance the user consequently allows by defining large trade-off parameters.
Again, this not considered to be a decrease in performance, but rather an inherent result of the selected
trade-off parameters. The main conclusion that resulted from the sensitivity analysis is that user should
always be aware what the consequence are of the parameter values that he/she selects.
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Chapter 8

Conclusions and perspectives for further
research

8.1 Conclusion

The presented thesis has been made in view of the increasing need for an optimised process industry.
The climate treaty of Paris does not only pose big challenges to governments worldwide, but also to the
industry. Process and R&D-engineers in any industry, and in any place, have never been thus challenged
to develop new and sustainable manufacturing processes and to improve existing ones. These optimisa-
tions often involve multiple objectives that have to be simultaneously met. Mostly these objectives relate
to the energy consumption of the process, the yield, and the overall cost. However, these objectives often
have contradictory optima and thus the minimisation of a multi-objective optimisation problem (MOOP)
has an infinite number of solutions. These solutions are located on the so-called Pareto front. But be-
cause solving a MOOP involves complex mathematics, the urge for a tool which allows users to optimise
a process quickly and efficiently, is ever increasing.

In the past, several successful attempts have already been developed. Deterministic algorithms, like
Weighted sum (see 2.3.1), Normal boundary intersect (see 2.3.2), and Normalised normal constraint
(see 2.3.3), are popular solving methods. Deterministic algorithms convert the multi-objective optimisa-
tion problem into a set of parameterised single-objective optimisation problems (SOOP) which are subse-
quently individually solved. This renders one solution per SOOP, or iteration of the deterministic algorithm.
This however is one of the disadvantages of the deterministic algorithms, together with the fact that the
generated solutions are often prone to converge to local optima, do not display a uniform spread, and
non-convex areas of the Pareto front can not be reached in certain cases.

The main focus of this thesis has been on the evolutionary algorithms Non-dominated sorting genetic
algorithm-II (NSGA-II) and Non-dominated sorting genetic algorithm-III (NSGA-III). Evolutionary algo-
rithms are a subcategory of the stochastic algorithms, which are in fact the counterparts of the deter-
ministic algorithms. Stochastic algorithms tackle the MOOP in its entirety, are capable of generating
multiple solutions per iterations run, and do not tend to converge to local optima. The basic philosophy
of the algorithms is based on biological reproduction and evolution. Just like in nature, new solutions are
created from parent solutions and by only selecting the best solutions for further reproduction, the gener-
ated solutions eventually converge to the most optimal solutions of the MOOP, or the Pareto front.

NSGA-II and NSGA-III are developed by Deb et al. (2002) and Deb and Jain (2014) respectively and are
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wildly acclaimed by researchers and users alike. Based on the results of six numerical case studies, it was
found however that the algorithms lack the ability to distinguish high trade-off solutions from low trade-off
solutions. The former are of higher value to the user, so it is desirable to present the user with a Pareto
front that only contains solutions that display a minimal trade-off and distribution (imposed by the user).
These high trade-off solutions are located in the steep sections of the Pareto front. Additionally it was
found that the default stopping criterion proposed by Deb et al. (2002) and Deb and Jain (2014) lacked
problem relevance. The NSGA-II and NSGA-III algorithms were stopped when a pre-defined number of
iterations was reached. This parameter was defined by the user, but the irrelevance of it according to the
concerned optimisation problem, makes it impossible for the user to meticulously define a suitable value.
Often, the stopping criterion will be overestimated by the user, resulting in a significant loss of computation
time.

In a first attempt to resolve these two major shortcomings, the tM-algorithms were developed. These algo-
rithms are capable to distinguish low trade-off solutions from high trade-off solutions via the construction
of regions of practical insignificant trade-off (PIT-region) around the generated solutions. The PIT-region
is introduced by Mattson et al. (2014) and is defined by two trade-off parameters: the trade-off ∆t and
distribution ∆r. Solutions that are located within the PIT-region of a different solution do not display the
required trade-off or distribution, imposed by the user, and are therefore considered as indistinguishable
from one another. These solutions do not contribute to the diversity of the population, nor do they repre-
sent a distinct process design or MOOP-solution, so they can be discarded from the solution population.
In the tM-algorithms, the trade-off based Pareto front solution is however achieved without the excessive
generation of solutions and this is a novelty for evolutionary algorithms.

The default stopping criterion of reaching a pre-defined number of iterations, was in the tM-algorithms
replaced by the MID-criterion. The mean ideal distance, or MID, is a performance parameters used to
quantify the convergence of the generated solutions to the Pareto front. It is the mean Euclidean distance
between the generated solutions and the Utopia point in the normalised objective space. While NSGA-II
and NSGA-III are both elitist algorithms, solutions will not move away from the Pareto front once they
have converged to it. Therefore, if the MID of two subsequently generated solution populations becomes
smaller than a user-defined tolerance of ∆MID, than the algorithm can be stopped.

The tM-algorithms displayed a significant gain in computation time and the Pareto fronts indeed displayed
the desired trade-off based solution resolution. However, the ∆MID stopping criterion was still deemed to
be arbitrary. Although it was more relevant to the concerned optimisation problem, the definition of the
value of the ∆MID stopping criterion was still mainly based on guessing. The user namely has often no
clue what a good solution convergence is for his/her concerned optimisation problem, and can therefore
impossibly define an acceptable tolerance in convergence (i.e. the ∆MID value). The user mainly only has
founded arguments for the parameter values of the trade-off ∆t and the distribution ∆r. This conclusion
led to the eventual development of the tDOM-algorithms.

The name ”tDOM” is derived from the term ”t-domination”, which is a variant of the non-domination of
solutions, as used in NSGA-II and NSGA-III, that also takes the PIT-region of a solution into account. A
solution q t-dominates a solutions p, if it dominates solutions p and is located outside the PIT-region of so-
lution p. Using t-domination is legitimised by the common knowledge that if two subsequently generated
solution population are not significantly different, the algorithm can be stopped. This can be done because
the elitism of the algorithms allows to assume that in that scenario, the Pareto front has been reached.
The PIT-region of solutions defines when the user deems two solutions significantly different. So if the
solutions of two subsequently generated population are located within each other PIT-region, the user will
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not see them as different, so the algorithm can be stopped. The key properties of the constrained-, tM-,
and tDOM-algorithms are summarised in Table 8.1.

Table 8.1: Summary of the key properties of the constrained-, tM-, and tDOM-algorithms.

Constrained-algorithms tM-algorithms tDOM-algorithms
No trade-off based Pareto Trade-off based Pareto front Trade-off based Pareto front
front resolution resolution resolution
Problem-irrelevant stopping Problem-relevant stopping Problem-relevant stopping
criterion criterion criterion
Arbitrary stopping criterion Arbitrary stopping criterion Non-arbitrary stopping criterion
High computation time Low computation time Low computation time

The tDOM-algorithms show very promising results, but it was feared that the definition of the EA-parameters
controlling the generation of offspring, and the trade-off parameters would have a major influence on the
algorithms performance. It was assumed that if solutions are generated within the vicinity of their par-
ents, or if the PIT-regions would become increasingly large, the tDOM-algorithm would under-perform. A
sensitivity analysis demonstrated however that this was not the case. As long as the user is aware of the
inherent consequence the definition of an EA- or trade-off parameter can have on the performance of the
algorithm and the display of the Pareto front, no decrease in performance is witnessed.

The novel tDOM-algorithms display a high potential to solve practical optimisation problems in which the
trade-off and distribution of solutions are also a key additional requirement. Their parameterless and
problem relevant stopping criterion makes them even more attractive. Because they are developed on a
fundamental basis, not focussing on one specific branch within engineering, they can be used to solve
any engineering problem.

8.2 Further research

Viewed from a chemical and biochemical point of view, it would be convenient to link the Matlab codes of
the tDOM-algorithms to Aspen Plus. Aspen Plus is a widely used chemical process simulator, which also
allows for the optimisation of processes. The Matlab codes of the tDOM-algorithms can be linked to Aspen
Plus via INPROP, which is an interface between Matlab and Aspen Plus, developed by Munoz Lopez et al.
(2018). By doing so, the tDOM-algorithms could be used to optimise chemical and biochemical process
that are simulated in Aspen Plus.

Although the tDOM-algorithms already show great potential, they can further improved. For instance, it
was already touched upon in 6.4 that a structured initial solution population could be beneficial for in-
creasing the speed at which non-dominated solutions are generated, but also for the diversity of the final
solution population. It is namely assumed that a diverse initial solution population will more quickly give
rise to the generation of a diverse final solution population.

On a more fundamental note, when the many-objective numerical case study was discussed, it was con-
cluded that many-objective case study have little practical relevance. The decision maker, or user of the
algorithm, most likely desires a graphical representation of the Pareto front. While this cannot be intuitively
done for optimisation problems with four or more objectives, it was stated that in these scenarios it was
more sensible to reduce the number of objectives to ≤3. This could be done via a sensitivity analysis in
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which it is conducted how big the individual influence of the concerned objectives on the overall process
is. Objectives that have little influence on the eventual outcome of the overall process, can be ignored
when solving the MOOP. As already mentioned in 5.3.3, objective reduction poses a complete new set of
challenges that still have to be dealt with.

In the broader spectrum of multi-objective optimisation, it could be beneficial to emphasise more on the
interactive visualisation of Pareto fronts. The optimisation process namely does not stop by generating a
Pareto front with a certain solution resolution. It is often so that the user is not interested in the complete
representation of the Pareto front, but rather in one particular solution or area. An interactive Pareto front
could aid the user in his/her decision making process. In that scenario, the user can guide the algorithm
to certain areas of the Pareto front of his/her preference.
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Appendix A

MATLAB code

A.1 MID Matlab code

function [MID,Mini ,Maxi]=CalculateMID(pop)
% Preamble
n=numel(pop);
Cost=[pop.Cost];
M=size(Cost ,1);
Mini=zeros(M,1);
Maxi=zeros(M,1);
% Normalisation
for i=1:M

SortMatrix=Cost(i,:);
[SortedMatrix ,¬]=sort(SortMatrix);
Mini(i)=SortedMatrix(1);
Maxi(i)=SortedMatrix (end);

end
for i=1:n

for j=1:M
Cost(j,i)=(Cost(j,i)-Mini(j))/(Maxi(j)-Mini(j));

end
end
% MID calculation
MID = 0;
for i=1:n

c = 0;
for j=1:M

c=c+(Cost(j,i)ˆ2);
end
MID = MID + sqrt(c);

end
MID = MID/n;

end

A.2 SNDS Matlab code

function SNDS = CalculateSNDS(F1,MID,Min,Max)
% Preamble
n=numel(F1);
Cost=[F1.Cost];
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M=size(Cost ,1);
d=0;
% Normalisation
for i=1:n

for j=1:M
Cost(j,i)=(Cost(j,i)-Min(j))/(Max(j)-Min(j));

end
end
% SNDS calculation
for i=1:n

c=0;
for j=1:M

c=c+Cost(j,i);
end
d=d+((MID-c)ˆ2);

end
SNDS=sqrt(d/n);

end

A.3 Feasibility checks

A.3.1 Feasibility check 1

function x=FeasibilityCheck1(x,LowerBound ,UpperBound ,VarSize ,nonlincnstr)

[c,ceq]=nonlincnstr(x);
Lower=any((x≥LowerBound)==0);
Upper=any((x≤UpperBound)==0);
while Lower || Upper || any(ceq) || any(c>0)

x=unifrnd(LowerBound ,UpperBound ,VarSize);
Lower=any((x≥LowerBound)==0);
Upper=any((x≤UpperBound)==0);
[c,ceq]=nonlincnstr(x);

end

A.3.2 Feasibility check 2

function yesno = FeasibilityCheck2(x,LowerBound ,UpperBound ,nonlincnstr)

[c,ceq]=nonlincnstr(x);
Lower=any((x≥LowerBound)==0);
Upper=any((x≤UpperBound)==0);
if Lower || Upper || any(ceq) || any(c>0)

yesno=true;
else

yesno=false;
end

A.4 Trade-off function

function pop=CalcTradeOff(pop,F,trade ,spacer)

% Initialisation
M=numel(pop(1).Cost);
n=numel(pop);
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for i=1:n
pop(i).TradeOff=0;

end

% Normalisation of objectives
Cost=[pop.Cost];
CostSorted=zeros(M,n);
IndexSorted=zeros(M,n);
Index=1:n;
Minima=zeros(M,1);
Maxima=zeros(M,1);
Range=zeros(M,1);
for i=1:M

[CostSorted(i,:),IndexSorted(i,:)]=sort(Cost(i,:));
Minima(i)=CostSorted(i,1);
Maxima(i)=CostSorted(i ,end);
Range(i)=abs(Maxima(i)-Minima(i));

end
for i=1:M

for j=1:n
Cost(i,j)=(Cost(i,j)-Minima(i))/Range(i);

end
end

% Trade -off calculation
k=numel(F);
for i=1:k % for all non-dominated fronts

Front_Cost=Cost(:,F{k}); % select needed costs
Front_Index=Index(F{k}); % repmat with indexes in pop of selected solutions
for j=1:M

[¬,Sorter]=sort(Front_Cost(j,:));
Index_sorted_acc=Front_Index(Sorter);
Front_cost_sorted_obj=Front_Cost(:,Sorter);
% for a solution in that front
k_front=numel(F{k});
for l=1:k_front

iterleft=1;
iterright=1;
while l-iterright >0

A=abs(Front_cost_sorted_obj(:,l)-...
Front_cost_sorted_obj(:,l-iterright));

if any(A<trade) || A(j)<spacer
pop(Index_sorted_acc(l)).TradeOff...

=pop(Index_sorted_acc(l)).TradeOff+1;
end
iterright=iterright+1;

end
while l+iterleft <k_front

A=abs(Front_cost_sorted_obj(:,l)-...
Front_cost_sorted_obj(:,l+iterleft));

if any(A<trade) || A(j)<spacer
pop(Index_sorted_acc(l)).TradeOff...

=pop(Index_sorted_acc(l)).TradeOff+1;
end
iterleft=iterleft+1;

end
end

end
end

end
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A.5 Adapted trade-off function

function pop=CalcTradeOff(pop,pop_prev ,trade ,spacer)

M=numel(pop(1).Cost);
n=numel(pop);
n_prev=numel(pop_prev);

% Initialisation
for i=1:n

pop(i).TradeOff=0;
pop(i).Stop=false;
pop(i).PrevIt=false;

end
for i=1:n_prev

pop_prev(i).PrevIt=true;
end
pop_tot=[pop;pop_prev];
[pop_tot , F_tot]=NonDominatedSorting(pop_tot);
n_tot=numel(pop_tot);
k=numel(F_tot);

% Normalisation of objectives
Cost=[pop_tot.Cost];
CostSorted=zeros(M,n_tot);
IndexSorted=zeros(M,n_tot);
Index=1:n_tot; % the solutions of the previous iteration have indexes n+1 ...

until n+n_prev
Minima=zeros(M,1);
Maxima=zeros(M,1);
Range=zeros(M,1);
for i=1:M

[CostSorted(i,:),IndexSorted(i,:)]=sort(Cost(i,:));
Minima(i)=CostSorted(i,1);
Maxima(i)=CostSorted(i ,end);
Range(i)=abs(Maxima(i)-Minima(i));

end
for i=1:M

for j=1:n_tot
Cost(i,j)=(Cost(i,j)-Minima(i))/Range(i);

end
end

% Trade -off calculation
for i=1:k % for all non-dominated fronts

Front_Cost=Cost(:,F_tot{i}); % select needed costs
Front_Index=Index(F_tot{i}); % repmat with indexes in pop of selected ...

solutions
for j=1:M

[¬,Sorter]=sort(Front_Cost(j,:));
Index_sorted_acc=Front_Index(Sorter);
Front_cost_sorted_obj=Front_Cost(:,Sorter);
% for a solution in that front
k_front=numel(F_tot{i});
for l=2:k_front -1

iterleft=1;
iterright=1;
if pop_tot(Index_sorted_acc(l)).PrevIt==false

while l+iterright <k_front
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A=abs(Front_cost_sorted_obj(:,l)...
-Front_cost_sorted_obj(:,l+iterright));
if any(A<trade) || A(j)<spacer

if pop_tot(Index_sorted_acc(l+iterright)).PrevIt==false
pop_tot(Index_sorted_acc(l)).TradeOff...
=pop_tot(Index_sorted_acc(l)).TradeOff+1;

else
pop_tot(Index_sorted_acc(l)).Stop=true;

end
end
iterright=iterright+1;

end
while l-iterleft >0

A=abs(Front_cost_sorted_obj(:,l)...
-Front_cost_sorted_obj(:,l-iterleft));
if any(A<trade) || A(j)<spacer

if pop_tot(Index_sorted_acc(l-iterleft)).PrevIt==false
pop_tot(Index_sorted_acc(l)).TradeOff...
=pop_tot(Index_sorted_acc(l)).TradeOff+1;

else
pop_tot(Index_sorted_acc(l)).Stop=true;

end
end
iterleft=iterleft+1;

end
end

end
end

end
pop=Truncate(pop_tot ,n);

end
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B.1 Complete constrained NSGA-II algorithm

Algorithm 8 Constrained NSGA-II (framework based on Kalami (2015))

Require: Objective functions (Obj), constraints (Constr), N, tmax, pc, pm, µ, σ

INITIALISATION

for i = 1 to N do
pop(i) = RandomSolution(Obj)
pop(i) = FeasibilityTest1(pop(i), Constr)

end for
pop,F = NonDominatedSorting(pop)
pop = CalcCrowdingDistance(pop,F )
pop = SortPopulation(pop)
MAIN LOOP

for it = 1 to tmax do
while logic do

popm = Mutate(pop, pm,µ,σ)
logic = FeasibilityTest2(popm, Constr)

end while
while logic do

popc = Crossover(pop, pc)
logic = FeasibilityTest2(popc, Constr)

end while
popit = pop∪ popc∪ popm

popit ,Fit = NonDominatedSorting(popit)
popit = CalcCrowdingDistance(popit ,Fit)
popit = SortPopulation(popit)
pop = popit(1 : N)
pop,F = NonDominatedSorting(pop)
pop = CalcCrowdingDistance(pop,F )
pop = SortPopulation(pop)

end for
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B.2 Complete constrained NSGA-III algorithm

Algorithm 9 Constrained NSGA-III (framework based on Kalami (2016))

Require: Objective functions (Obj), constraints (Constr), d, N, tmax, pc, pm, µ, σ

INITIALISATION

for i = 1 to N do
pop(i) = RandomSolution(Obj)
pop(i) = FeasibilityTest1(pop(i), Constr)

end for
pop,F = NonDominatedSorting(pop)
pop = NormalisePopulation(pop)
pop = AssociateToRefPoint(pop,F )
pop = SortPopulation(pop)
MAIN LOOP

for it = 1 to tmax do
while logic do

popm = Mutate(pop, pm,µ,σ)
logic = FeasibilityTest2(popm, Constr)

end while
while logic do

popc = Crossover(pop, pc)
logic = FeasibilityTest2(popc, Constr)

end while
popit = pop∪ popc∪ popm

popit ,Fit = NonDominatedSorting(popit)
popit = NormalisePopulation(popit)
popit = AssociateToRefPointpopit ,F )
popit = SortPopulation(popit)
pop = popit(1 : N)
pop,F = NonDominatedSorting(pop)
pop = NormalisePopulation(pop)
pop = AssociateToRefPoint(pop,F )
pop = SortPopulation(pop)

end for
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B.3 Case studies: Performance parameters

(a) BIOBJ-problem (b) DO2DK-problem

(c) CONSTR-problem (d) TNK-problem

Figure B.1: Performance plots of the constrained NSGA-III algorithm in case of the bi-objective case studies (aver-
age taken over 10 repetitions).
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C.1 Complete tM-NSGA-II algorithm

Algorithm 10 tM-NSGA-II (framework based on Kalami (2015))

Require: Objective functions (Obj), constraints (Constr), N, tmax, pc, pm, µ, σ, ∆t, ∆r, ∆MID
for i = 1 to M do

pop(i) = AnchorPoints(Obj,Constr)
end for
for i = 1 to N−M do

pop(i) = RandomSolution(Obj)
pop(i) = FeasibilityTest1(pop(i), Constr)

end for
for it = 1 to tmax do

while logic do
popm = Mutate(pop, pm,µ,σ)
logic = FeasibilityTest2(popm, Constr)

end while
while logic do

popc = Crossover(pop, pc)
logic = FeasibilityTest2(popc, Constr)

end while
popit = pop∪ popc∪ popm

popit ,Fit = NonDominatedSorting(popit)
popit = CalcCrowdingDistance(popit ,Fit)
popit = CalcTradeOff(popit ,Fit ,∆t,∆r)
popit = tM−SortPopulation(popit)
pop = popit(1 : N)
pop,F = NonDominatedSorting(pop)
MIDit = CalculateMID(pop)
FPOSit = |F1|/N
if |MIDit −MIDit−1| ≤ ∆MID and FPOSit = 1 then
break

end if
end for

119



120 C Attachments Chapter 6

C.2 Complete tM-NSGA-III algorithm

Algorithm 11 tM-NSGA-III (framework based on Kalami (2016))

Require: Objective functions (Obj), constraints (Constr), d, N, tmax, pc, pm, µ, σ, ∆t, ∆r, ∆MID
for i = 1 to M do

pop(i) = AnchorPoints(Obj,Constr)
end for
for i = 1 to N−M do

pop(i) = RandomSolution(Obj)
pop(i) = FeasibilityTest1(pop(i), Constr)

end for
for it = 1 to tmax do

while logic do
popm = Mutate(pop, pm,µ,σ)
logic = FeasibilityTest2(popm, Constr)

end while
while logic do

popc = Crossover(pop, pc)
logic = FeasibilityTest2(popc, Constr)

end while
popit = pop∪ popc∪ popm

popit ,Fit = NonDominatedSorting(popit)
popit = NormalisePopulation(popit)
popit = AssociateToRefPointpopit ,F )
popit = CalcTradeOff(popit ,Fit ,∆t,∆r)
popit = tM−SortPopulation(popit)
pop = popit(1 : N)
pop,F = NonDominatedSorting(pop)
MIDit = CalculateMID(pop)
FPOSit = |F1|/N
if |MIDit −MIDit−1| ≤ ∆MID and FPOSit = 1 then
break

end if
end for
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C.3 Case studies: Performance parameters

(a) BIOBJ-problem (b) DO2DK-problem

(c) CONSTR-problem (d) TNK-problem

Figure C.1: Performance plots of the tM-NSGA-III algorithm in case of the bi-objective case studies (average taken
over 10 repetitions). The iteration axis is cropped.
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D.1 Complete tDOM-NSGA-II algorithm

Algorithm 12 tDOM-NSGA-II (framework based on Kalami (2015))

Require: Objective functions (Obj), constraints (Constr), N, tmax, pc, pm, µ, σ, ∆t, ∆r
for i = 1 to M do

pop(i) = AnchorPoints(Obj,Constr)
end for
for i = 1 to N−M do

pop(i) = RandomSolution(Obj)
pop(i) = FeasibilityTest1(pop(i), Constr)

end for
for it = 1 to tmax do

while logic do
popm = Mutate(pop, pm,µ,σ)
logic = FeasibilityTest2(popm, Constr)

end while
while logic do

popc = Crossover(pop, pc)
logic = FeasibilityTest2(popc, Constr)

end while
popit = pop∪ popc∪ popm

popit ,Fit = NonDominatedSorting(popit)
popit = CalcCrowdingDistance(popit ,Fit)
popit = AdaptedTradeOff(popit , popit−1,∆t,∆r)
popit = tDOM−SortPopulation(popit)
pop = popit(1 : N)
pop,F = NonDominatedSorting(pop)
FPOSit = |F1|/N
if all popit .Stop= true and FPOSit = 1 then
break

end if
end for

123



124 D Attachments Chapter 7

D.2 Complete tDOM-NSGA-III algorithm

Algorithm 13 tDOM-NSGA-III (framework based on Kalami (2016))

Require: Objective functions (Obj), constraints (Constr), d, N, tmax, pc, pm, µ, σ, ∆t, ∆r
for i = 1 to M do

pop(i) = AnchorPoints(Obj,Constr)
end for
for i = 1 to N−M do

pop(i) = RandomSolution(Obj)
pop(i) = FeasibilityTest1(pop(i), Constr)

end for
for it = 1 to tmax do

while logic do
popm = Mutate(pop, pm,µ,σ)
logic = FeasibilityTest2(popm, Constr)

end while
while logic do

popc = Crossover(pop, pc)
logic = FeasibilityTest2(popc, Constr)

end while
popit = pop∪ popc∪ popm

popit ,Fit = NonDominatedSorting(popit)
popit = NormalisePopulation(popit)
popit = AssociateToRefPointpopit ,F )
popit = AdaptedTradeOff(popit , popit−1,∆t,∆r)
popit = tDOM−SortPopulation(popit)
pop = popit(1 : N)
pop,F = NonDominatedSorting(pop)
FPOSit = |F1|/N
if all popit .Stop= true and FPOSit = 1 then
break

end if
end for
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D.3 Case studies: Performance parameters

(a) BIOBJ-problem (b) DO2DK-problem

(c) CONSTR-problem (d) TNK-problem

Figure D.1: Performance plots of the tDOM-NSGA-III algorithm in case of the bi-objective case studies (average
taken over 10 repetitions). The iteration axis is cropped.
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