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Abstract 
Future business processes are anticipated to be oriented on ensuring intelligence and actionable 
knowledge in real-time for all elements participating in the value chain. With the enhanced 
understanding of Internet of Things (IoT) capabilities, the required information can now be provided by 
intertwining both paradigms. The common incorporation of IoT into business process architectures is 
still constrained by the absence of a reference architecture. In this thesis, a reference architecture for 
the execution of IoT-enhanced business processes is proposed, preceded by an extensive literature 
review of the current state of the art which allows to establish an architecture to bridge the gap between 
the IoT and business processes. In this architecture, IoT sensors improve business processes with real-
time information provisioning, while simultaneously business processes steer the IoT actuators to 
physically impact the process environment. The latter is what makes this architecture state of the art 
and can ultimately lead to fully automated and efficient processes. After being evaluated by comparing 
the architectural capabilities with other prominent architectures, it is perceived as the most functional 
and capable reference architecture. 

Keywords: 

JEL Code: 

Internet of Things; Business Processes; Architecture 
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1 Introduction 

Modern-day organisations require their business processes (BPs) to be agile, adaptive and flexible.  
A BP can be defined as “a collection of related events, activities, and decisions that involve a number 
of actors and resources and that collectively lead to an outcome that is of value for an organization or 
a customer” (Dumas, La Rosa, Mendling, & Reijers, 2013). Having a business process architecture 
(BPA) in place provides guidance for the actual modelling of the involved business processes and 
assures a consistent and integrated collection of process models with the aim to optimize the value 
creation across the value chain (Dijkman, Vanderfeesten, & Reijers, 2011). Future BPs are anticipated 
to be oriented on ensuring intelligence and actionable knowledge in real-time for the manufacturing 
process and all elements participating in the value chain. BPs require valuable information whilst being 
executed in order to make meaningful decisions. This information can be provided by the Internet of 
Things (IoT).  

IoT allows smart devices, i.e. capable of sensing, identifying, processing, communicating and 
networking, to be sharing data over a network, i.e. the Internet. In the near future a wide application of 
IoT to industries is expected due to the rapid advances in technology and industrial infrastructure (Xu, 
He, & Li, 2014). Sensing and perceiving of the process environment are the fundamental tasks of IoT. 
With emerging wirelessly sensory technologies, the concept of IoT goes beyond these capabilities and 
extends to ambient intelligence and autonomous control (Li, Xu, & Zhao, 2015). Sensor data must be 
aggregated, interpreted and made available to the Business Process Management System (BPMS) in 
order to trigger BP activities or human tasks (Schönig, Ackermann, Jablonski, & Ermer, 2018). The 
insights emerging from using the collected data from smart BP actors allow to facilitate advances in 
operations and customer services through machine failure prevention, real-time production 
performance improvement, etc. (Breivold, 2017). In other words, IoT sensors improve BPs with real-
time information provisioning, while simultaneously BPs enact the IoT actuators to physically impact the 
process environment, which ultimately can lead to fully automated and efficient processes. Therefore, 
they are inseparable. 
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Until recently, the aforementioned paradigms were solely viewed upon as atomic domains. However, 
both fields could considerably benefit when they are combined (Schönig, Ackermann, Jablonski, & 
Ermer, 2018). By embedding intelligence through IoT and BP management (BPM) technology, this will 
help businesses to achieve cost savings and efficiency gains (Schönig, Ackermann, Jablonski, & Ermer, 
2018). Also, the business world itself acknowledges that IoT yields a salient benefit, which is 
demonstrated by the increasing involvement of IoT in organisation’s business strategy (Milojevic, 2017). 
Examples of pioneering industries are manufacturing, transportation and utilities, with anticipated 
expenditures in 2018 (in USD) of respectively $189 billion, $85 billion and $73 billion (Shirer & Torchia, 
2017). In order to successfully combine both fields, an architecture needs to be in place which enables 
the capabilities of both domains.  

In literature, the research gap on the cross-cutting domain of IoT-enhanced BPs (IoT-BPs), is starting 
to gain more attention. Due to the proliferating research on IoT, many IoT architectures (IoTAs) have 
been developed in parallel aiming to address slightly different purposes. On the other hand, the field of 
BP architectures (BPAs) is an established discipline in the academic world, with most reference 
architectures stemming from the 90’s. Articles on combining the two domains are emerging, e.g. by 
describing the mutual benefits and challenges (Janiesch, et al., 2017). Based on this article, a solution 
was proposed to tackle a selection of identified challenges, by building an architecture which integrates 
IoT objects into a BPMS, concentrating on how the communication between both worlds can be 
established (Schönig, Ackermann, Jablonski, & Ermer, 2018). In addition, a reference architecture has 
been proposed to integrate IoT technology, using a resource-oriented approach to provide an end-to-
end integration architecture (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 2015). As formerly mentioned, 
both IoT and BPs yield capabilities, and also when combining both paradigms, possibly new capabilities 
arise which were not visible when examined separately. However, in literature there is no reference 
architecture which covers all capabilities, as well as the aspects that need to be considered whilst 
exploiting the opportunities of combining the capabilities. Therefore, in this thesis a reference 
architecture will be proposed which can be a starting block for future development of a concrete IoT-
BP architecture (IoT-BPA). 

This paper will contribute to current research, i) by providing a clear overview on the current state of the 
art in IoTA, BPA and IoT-BPA; ii) by collecting and discussing the requirements which the reference 
architecture must meet; iii) by proposing and discussing a reference architecture for the execution of 
IoT-BPs and iv) by evaluating the architecture by comparing the proposed architecture with other 
prominent architectures that are discussed in the state of the art section. 

The remainder of this thesis is structured as follows: firstly, Section 2 discusses the adopted 
methodology. Next, the research background and state of the art are described in Section 3. Thirdly, 
Section 4 collects and discusses the common requirements for the reference architecture. 
Subsequently, Section 5 concerns the proposed reference architecture where the different components 
are explained. In Section 6, the reference architecture is evaluated and finally, Section 7 concludes the 
thesis whilst providing guidance for future research. 

2 Methodology 

As depicted in the flow diagram below, the paper will collect and review the state of the art in both 
domains of IoTA and BPA. Additionally, there will be a small section of current literature which combines 
both domains. All relevant findings will be discussed, with a focus on capturing the architectural 
requirements and capabilities. Next, the challenge will be to identify which of the requirements and 
capabilities are necessary in order to achieve a qualitative reference architecture for IoT-BPs. 
Subsequently, an architecture will be proposed which accommodates the furnished list of requirements 
and capabilities, such that the BPs can fully exploit the benefits enabled through IoT technology. Lastly, 
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the architecture will be evaluated by comparing the proposed reference architecture to existing 
architectures, which were discussed in the state of the art.  

The building of the architecture will be established through a reference model-based approach 
(Dijkman, Vanderfeesten, & Reijers, 2011). The reason for following this approach, is that the study 
conducted by Dijkman et al. (2011) showed that architectures which find their roots in reference 
architectures are perceived useful and most likely to be adopted in practice. It unveiled that a reference 
model-based architecture scored the highest on all three measured aspects, i.e. ease of use, 
usefulness, and popularity with these aspects scoring 67%, 62%, and 52% respectively (Dijkman, 
Vanderfeesten, & Reijers, 2011). Consequently, 39 practitioners active in the field of BPM came to a 
consensus that reference model-based was the best approach. It is assumed that these findings are 
relevant for IoTAs as well. In addition, functional requirements vary over time, and therefore it is more 
useful to establish a flexible, adaptable and extensible reference architecture rather than an architecture 
which is built to meet the current prominent requirements of the business. The reference models, which 
will form the roots of the architecture will be discussed in Section 3. 

3 State of the art 

3.1 Business Process Architecture 

“A business process is a collection of related events, activities, and decisions that involve a number of 
actors and resources and that collectively lead to an outcome that is of value for an organization or a 
customer.”  (Dumas, La Rosa, Mendling, & Reijers, 2013). 

The architecture of a BP is defined as “the overview of a set of business processes that reveals their 
inter-relations, which may be extended with guidelines to determine the various relations between 
business processes. Having a business process architecture in place provides guidance for the actual 
modelling of the involved business processes” (Dijkman, Vanderfeesten, & Reijers, 2011). A BPA can 
be enriched by containers, i.e. building blocks which can be reused by different components, along with 
guidelines for which processes can be contained in a particular container. 

Currently, about half of all primary studies is built using a layered approach, while the other half is 
component-based (Pourmirza, Peters, Dijkman, & Grefen, 2017). Considering the ease of merging an 
IoTA and BPA, the layered-approach will be focused on since most IoTAs are layered. From these 
layered BPAs, 71% is designed following the object-oriented Separation of Concerns (SoC) principle. 
In other words, a modular architecture is currently most common. This SoC separates a presentation 
layer, a logic/business layer and a persistent/data access layer. Three reference architectures are 
considered prominent in both the academic world as well as in practice, being the Workflow 
Management Coalition (WfMC) reference model, the Mercurius reference architecture and the Service-
Oriented Solution Stack (S3) reference architecture. These architectures will be discussed below. From 

Figure 1 Adopted methodology 
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the examined primary studies by Pourmirza et al., none were directly based on the S3 reference 
architecture, only one was based on the Mercurius reference architecture and 35% followed the WfMC 
reference model. Note that 60% of the architectures were designed from scratch, and thus not based 
on any reference architecture. Additionally, well-known issues such as dynamicity and security are 
mostly ignored in current reference BPA. There appeared a general lack of modern reference 
architectures. However, more recent architectures will also be discussed such as the RESTful BPM 
architecture by Kumaran et al. (2008) and the process execution architecture by Li et al. (2010). 

Reference architectures 
Up until today, the WfMC reference architecture is one of the most popular reference architectures in 
the field of BPA. This architecture provides a high-level overview for workflow management systems. 
The main aim of this architecture 
was to achieve interoperability 
among different workflow products. 
This was established through a 
standard set of interfaces and data 
interchange formats 
(Hollingsworth, 1994). This 
architecture, as shown in Figure 2, 
is designed in a component-based 
manner, thus not with a layered 
approach. The workflow enactment 
engine is placed central in the 
model, surrounded by interfaces 
called Workflow APIs (WAPI). 
These are the connections 
between the workflow engine and 
the other components of the 
architecture. The interaction with BPs is enabled through the interface to Process Definition Tools, i.e. 
Interface 1, which are used for workflow modelling. These models were stored in a workflow repository, 
ready to be executed at runtime. Hence, implying a strict distinction between build time and runtime. 
BPs were modelled with tools developed by specific vendors, and therefore the modelled BPs were 
heterogenic. The aim of the interfaces is to create a standardized representation of the BPs. 
Communication through this interface is established based on the XML Process Definition Language 
(XPDL). Process diagrams expressed in BPMN can be represented with the XPDL package metamodel. 
Currently, recent attainments in service-oriented 
architectures (SOA) motivate standardization 
efforts in general. For instance, the XPDL has been 
an important step towards solving the workflow 
management system interoperability issue (Weske, 
2012). 

As opposed to the WfMC reference architecture, the 
Mercurius reference architecture explicitly includes 
platform interfaces and data management.  To 
ensure not to be constrained by legacy decisions 
when building on other reference models, the 
Mercurius reference architecture was built from 
scratch. This architecture, as shown in Figure 3, is 
proposed by Grefen & de Vries (1998). It was 
considered ideal because of three reasons; i) it was 

Figure 2 WfMC reference architecture, retrieved from Weske (2012) 

Figure 3 Mercurius reference architecture by 
Grefen & de Vries (1998) 
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independent of any existing workflow management system, and thus not influenced by legacy decisions, 
ii) the design was governed by specific design principles which ensure architectural quality and finally, 
iii) it was designed in context of an extensive project team which ensures completeness of design. From 
a functional point of view, six software layers can be distinguished, i.e. the user interface system, 
application systems, workflow management system, database management system, communication 
system and lastly an operating system. The Wf Server (central on Figure 3) provides all central services 
for workflow enactment and operates on the central database. The design approach maintained for the 
Mercurius reference architecture embraces two aspects; abstraction, i.e. low-level details are excluded, 
and completeness, i.e. they provide a very complete architecture including parts which are mandatory 
and parts which are optional. This trade-off always is an important issue for reference architectures.  
The most recent reference architecture is the Service-Oriented Solution Stack (S3) reference 
architecture (Arsanjani, Zhang, Ellis, Allam, & Channabasavaiah, 2007). This is a response to the 
everchanging business environment which demands more flexible and agile information systems 
(Pourmirza, Peters, Dijkman, & Grefen, 2017).  The authors sought to fulfil the architectural needs for 
the modern-day world, and this would be enabled through a comprehensive nine-layered architecture. 
This BPA is supposed to provide the required flexibility to furnish a solution to better align information 
technology (IT) functions, BPs and business goals. Similar to the Mercurius model, the S3 also proposes 
a comprehensive set of layers, to 
which the user can decide which 
subset is required to build their SOA 
solution. The degree of integration 
that can be obtained depends on 
the maturity of the enterprise’s 
service integration. The layered 
approach also complies with the 
SoC-principle. Considering two 
points of view, i.e. from a service 
provider or a service consumer 
perspective, allows the S3 to be 
flexible enough to tightly integrate 
consumer-provider relation, entirely 
decouple consumer and provider, 
or any degree of integration in 
between.  

Other architectures 
BPs nowadays can be very large, long running, manipulate vast quantities of data, and require 
thousands or millions of concurrent process instances (Li, Muthusamy, & Jacobsen, 2010). For that 
reason, an efficient BPA helps to for instance cut in communications time between workers or enables 
automation which leads to efficiency gains. Typically, as well as in the aforementioned reference 
architectures, BPs are executed by a centralised orchestration engine, based on for example the 
Business Process Execution Language (BPEL). This XML-based language facilitates a SOA by 
enabling Web-services to share data over a network. However, the distributed property of BPs requires 
a dispersed architecture such that processes can be enacted by distributed light-weight agents. Hence, 
a choreography engine is a better fit to be able to cope with this property. Li et al. (2010) propose an 
orchestration architecture which is in line with the distributed nature of BPs in a globally operating 
organisation. In their architecture the process execution is distributed across light-weight agents, which 
all execute a portion of the process. Working with distributed agents implies that parts of the process 
are executed close to the data they operate on, which eliminates the scalability bottleneck, and even 
provides additional efficiencies by reducing data streams over the network. Additionally, the distributed 
architecture allows to change portions of the process, whilst the system remains operational.  

Figure 4 S3 Reference Architecture by Arsanjani et al. (2007) 
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Communication across the network is established over a publish-subscribe (pub/sub) pattern, which 
simplifies the interaction among agents. This layer implies the agents only need to be aware of each 
other’s content-based addresses and thus decouples the agents. However, it is not discussed how 
bidirectional communication would be established, where agents not only execute a part of the process, 
but also share acquired data. This is an important feature which will be required by the architecture 
proposed in this thesis, since not only acquiring IoT data, but also steering IoT devices is aimed to be 
an architectural capability. The benefit of working with an extensive broker network, is the reduction in 
network traffic by letting the broker network decide the optimal point to collect and correlate the 
publications. This also enables fine-grained monitoring without requiring any additional effort. An 
important drawback, however, is that this architecture requires each involved organisation to deploy a 
federation of PADRES brokers. Notable features of this architecture, which are useful infrastructural 
properties for mission-critical enterprise applications include i) user-tuneable fault-tolerance; ii) load-
balancing; iii) system policy management; iv) historic data access; and finally, v) route in cyclic overlay 
networks.  

The next architecture seeks to provide a solution for several issues inherent to BPEL, which is believed 
to be the de facto orchestration language for SOA (Kumaran, et al., 2008). Drawbacks of BPEL include 
that it is often regarded as not supportive on flexible, scalable, and dynamic BPM (Zimmermann, 
Doubrovski, Grundler, & Hogg, 2005). Kumaran et al. (2008) acknowledge this challenge and have 
come up with an execution model based on the architectural style named Representational State 
Transfer (REST). REST holds several beneficial properties over BPEL-based BPM. These include i) 
the ability to evolve gracefully as business requirements change; ii) backward navigation and event-
driven processes are easy and natural to model in our approach; iii) Restful BPM easily supports 
conversational business processes using a conversation pattern between the client and server 
consisting of a pair of self-describing request and response messages; iv) Scalability. The reason why 
this style is not widely applied to BPM, is argued to be the lack of an effective mechanism to easily 
manage the URI namespace. Considering the large number of resources in a process, which is specific 
to BPs nowadays, the management of URI’s can be cumbersome. To overcome this issue, an 
information-centric perspective is taken, and a process model is regarded as a set of communicating 
behaviour models of business entities. This RESTful approach yields features such as process 
adaptability, backward navigation and conversational business services. This RESTful BPM 
architecture is depicted in Figure 5. The resource broker manages both the metadata and the instance 
data, which are both treated as resources. The client uses REST interfaces to request resources from 
brokers, e.g. HTTP methods GET, PUT, POST and DELETE (Kumaran, et al., 2008). A client can either 
be an administrator or regular user. The latter only has the ability to query metadata from the broker, 
while the former has the ability to either request metadata of a business entity, create a new business 
entity definition, modify this definition or remove the business entity. Note that REST is a layered 
architecture, and thus a resource broker may also serve as a client to another resource broker in an 
extended REST model.  

BPM is an established discipline for modelling and executing complex processes in enterprises. If this 
discipline could be extended such that it 
can model IoT-aware BPs, this would 
help achieve a broader implementation 
of IoT technologies  (Haller & 
Magerkurth, 2011). Moreover, whereas 
BPs are currently modelled top-down 
based on the Model-Enact paradigm, the 
increase in accessible big data can be 
exploited by working bottom up, as in the 
Discover-Predict paradigm. This implies 
collecting and interpreting aggregated 
data as input for process mining Figure 5 RESTful BPM architecture by Kumaran et al. (2008) 
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algorithms, which can support decision-making (van der Aalst, 2011). Additionally, if the BP execution 
engine would allow for partial adjustments or improvements to the BPs, this would make the architecture 
more flexible, efficient and agile. Examples of flexible process engines include the Activiti BPMN 
execution engine2, and Camunda BPM execution engine3. In Section 3.3, the architecture proposed by 
Dar et al. (2015) utilises the Acitiviti BPMN execution engine. Also in Section 3.3, the architecture 
proposed by Schönig et al. (2018) uses the Camunda BPMS and communicates with the workflow 
engine through the Camunda REST API. The modelled BPs can be executed in two ways; either i) 
through code generation, where models are executed by translation into an equivalent system code, or 
ii) by model interpretation, where the engine interprets XML-files and directly executes what is specified 
in the file (Serral, Valderas, & Pelechano, 2013). Benefits of working with an interpretation engine 
include; i) faster changes, i.e. a change does not require an entire cycle for regenerating, rebuilding, 
retesting and redeploying; ii) changes at runtime, i.e. the model is available at runtime; iii) update and 
scale, i.e. the interpreter can be changed and restarted with the same model, and scaling can be 
enabled by performing parallel behaviour; and iv) it is more secure since the interpreter provides an 
additional layer on top of the infrastructure, and everything underneath is abstracted from (Serral, 
Valderas, & Pelechano, 2013). However, code generation engines have a strong advantage over 
interpretation models on memory usage and system response time  (Serral, Valderas, & Pelechano, 
2013).  

Conclusion 
The state of the art shows that most reference architectures are built on a layered approach and the 
SoC-principle is maintained. From current reference BPAs, the WfMC appears to be the most commonly 
accepted architecture and surprisingly the S3 framework is barely acknowledged as a viable reference 
architecture although a service-oriented BPA is argued to be the optimal solution to tackle issues such 
as flexibility and interoperability. Where BPAs used to have a centralised orchestration engine, BPs 
currently demand an approach which is more in line with the distributed nature of BPs. Hence, a 
decentralised process execution is argued to make a BPA more flexible and scalable. Moreover, this 
way reconfiguration of the processes at runtime can be achieved more easily. Additionally, a model 
interpretation engine is also preferred over a code-generated engine because this also facilitates 
convenient reconfiguration at runtime. And finally, to overcome the burdens of BPEL, communication is 
mostly established through REST interfaces. 

3.2 Internet of Things Architecture 

“The Internet-of-Things is a dynamic global network infrastructure with self-configuring capabilities based 
on standard and interoperable communication protocols where physical and virtual ‘Things’ have 
identities, physical attributes, and virtual personalities and use intelligent interfaces, and are seamlessly 
integrated into the information network.” (van Kranenburg, 2007). 

The terms Internet and things embody a globally interconnected network fostered by sensory, 
communication, networking and information processing technologies, which may be the successor of 
the current information and communications technology (ICT) (Li, Xu, & Zhao, 2015). IoT aims to bridge 
the gap between the physical and the digital world. Hence, the latter is provided with accurate real-time 
data from the physical environment, captured by sensors and processed by a computer. 
Simultaneously, the digital world has an impact on the physical world by remotely controlling actuators 
(Guth, Breitenbücher, Falkenthal, Leymann, & Reinfurt, 2016). However, because these things may 
move geographically and the processes need real-time interaction, it requires an architecture which is 
adaptive, supports dynamic interaction and ensures seamless integration among devices. The 

 
2 https://www.activiti.org/  
3 https://docs.camunda.org/  
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decentralised and heterogenous nature of IoT requires an efficient event-driven capability of the 
architecture in place. In addition, loose coupling enhances the ease of developing, maintaining and 
modifying an application, since components can be reused and upgraded efficiently. Abstracting 
components and their functionalities into services hides the heterogeneity and allows for an improved 
interoperability. Therefore, the SOA paradigm is considered as the most viable approach to achieve an 
efficient integration of services provided by IoT devices, since its properties best align with the 
aforementioned requirements IoT poses on an architecture (Li, Xu, & Zhao, 2015).  

A mapping study provided a clear overview of the existing research on IoT solutions, i.e. for smart 
industries (Breivold, 2017). A challenge in this transformation is the transition from the traditional multi-
layered architecture to an open structured service-oriented automation system architecture. According 
to this study, the least examined topics are architectural aspects (6%, 7 papers) and another 7% (8 
papers) discussed business aspects. The contribution types of most primary studies are model (42%) 
and method (30%), with a shortage in contributions from experience. Additionally, many studies qualify 
as solution proposal and conceptual proposal. These insights indicate that most techniques and 
solutions are still not mature enough for industry-wide adoption (Breivold, 2017). In literature, IoTAs 
have emerged and mostly provide the same or similar functionalities. The main challenge lays in 
comparing IoT platforms and finding one that is suitable for certain application fields, as  their 
implementation and underlying technologies differ (Guth, Breitenbücher, Falkenthal, Leymann, & 
Reinfurt, 2016). Therefore, a reference architecture must provide an abstract overview of the disposable 
components and clearly define their semantics. In what follows, a reference architecture will be 
discussed which was based on a comparison of several IoT platforms, i.e., OpenMTC4, FIWARE5, 
SiteWhere6 and Amazon Web Services IoT7 (AWS IoT) (Guth, Breitenbücher, Falkenthal, Leymann, & 
Reinfurt, 2016). The reference architecture by Guth et al. (2016) is argued to be a very abstract overview 
in order to be broadly applicable. Similar to the reference BPAs, some components, i.e. layers, are 
optional and thus can be omitted. For example, in case the IoTA is only expected to acquire information 
about the physical environment, e.g. it measures the tire pressure of a truck, actuators do not have to 
be included. However, if the IoT device should also be able to inflate or deflate the tire when a certain 
pressure threshold is exceeded, actuators should be included in the IoTA as well.  

Reference architectures 
To commence, the IoT reference architecture discussed first is depicted in Figure 6. This proposal by 
Guth et al. (2016) is noticeably abstract and has a firm focus on terminology since this is argued to be 
the key enabler for interoperability among systems. Its devices use drivers, which are software to 
process data either from sensors or to actuators. These devices can be either i) self-contained, hence 
depicted as a black box providing a functionality, or ii) connected to another system, e.g. to an IoT 
integration middleware. The gateway receives a proprietary binary message from the sensors in a 
device. The received information will then be translated into JSON or XML and the gateway transmits 
the data to a system in the world wide web. Vice versa, when the gateway receives commands directed 
towards the actuators. A device can communicate directly with the IoT integration middleware layer if it 
holds the following features; i) an appropriate communication technology, e.g., WiFi, or Bluetooth, ii) a 
corresponding transport protocol, e.g. HTTP or MQTT, iii) and a compatible payload format such as 
JSON or XML. If not, the device communicates through a gateway. Additional functionalities of the 
middleware layer include a rules engine, device- and user management as well as data aggregation and 
utilization. This layer is typically accessed through an API, e.g. HTTP-based REST APIs. The application 
layer provides the user insights by requesting sensor data, or to control the physical actions using 

 
4 http://www.open-mtc.org/ 
5 https://www.fiware.org/ 
6 http://www.sitewhere.org/ 
7 https://aws.amazon.com/en/iot/ 
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actuators. To allow for scalability, an application can also be another middleware layer to facilitate the 
integration of multiple systems (Guth, Breitenbücher, Falkenthal, Leymann, & Reinfurt, 2016). 

With the Azure reference IoTA, Microsoft proposes an IoT solution that 
is cloud native, microservice, and serverless based (Microsoft, 2018). 
This architecture consists out of core subsystems, and optional 
subsystems, similar to the architecture discussed above. The core 
subsystems consist of the following layers: i) devices, which can 
securely transmit and receive data from the cloud; ii) a cloud gateway 
service, which accepts data and can provide device management 
capabilities; iii) stream processors, which consume data, integrate the 
data with BPs and store it; and finally, iv) a user interface to visualise 
data and facilitate device management. In the architecture by Guth et 
al. (2016) the functionality in (iii) was included in the IoT integration 
middleware layer. Next, the optional subsystems are: v) intelligent edge 
devices, which enable aggregation or transformation of data and on-
premise processing, vi) data transformation, which allows 
restructuring, combination, or transformation of telemetry data 
received from devices, vii) machine learning, which enables predictive 
methods to be applied to historical data, and viii) user management to 
split functionality among different roles and users (Microsoft, 2018). 

WSO28 proposes a reference architecture, which is built based on their experience in developing IoT 
solutions (Fremantle, 2015). Its architecture consists of five layers, being i) client/external 
communications, ii) event processing and analytics, iii) an aggregation/bus layer, iv) relevant transport 
between devices and the system, and v) the devices themselves. In addition, there are two cross-cutting 
layers, being a device manager and identity and access management. The usefulness of the 
architecture is proven by mapping it onto a modular, open-source enterprise platform. The architecture 
is argued to be a useful, deployable, and effective reference architecture since it is based on real-world 
projects that have been deployed with customers to support IoT capabilities (Fremantle, 2015). 

Finally, the Arrowhead9 architecture is discussed where the dynamic nature of IoT is central. The 
architecture aims at enabling the creation of local automation clouds, which hold an advantage over 
global clouds as it allows for real-time performance and security together with simple engineering and 
scalability. The local clouds consist of three core components, i.e. service registry, authorization, and 
orchestration (Breivold, 2017). The framework is built on the SOA paradigm to enable the Industrial IoT. 
Interoperability is achieved through the loose coupling and discovery properties which come with a SOA 
(Breivold, 2017). Hence, components and functionalities are abstracted into services. In addition, there 
are no hardwired communications since these services are loosely coupled between service consumers 
and providers. Late binding enables to get information at any time, also at runtime, by connecting to a 
specific resource (Delsing, et al., 2017).   

Other architectures  
Currently, the majority of IoT platforms use RESTful APIs to access sensor devices and to retrieve, 
store, update and delete data via the standard HTTP operations such as GET, POST, PUT and 
DELETE. Data transmission is furnished using the XML, JSON or CSV formats. Acquired data from the 
physical environment is stored in centralised, mostly cloud-based, databases for processing and 
accessing. These platforms have differences in some non-core functions, such as business model, data 
storage policy, data management, visualization, data analysis, event notification and access permission 

 
8 https://wso2.com/ 
9 https://www.arrowhead.eu/ 

Figure 6 Reference Architecture 
by Guth et al. (2016) 
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control (Wang, Lee, & Murray, 2017). Apart from the 
refence architectures discussed above, there are 
more IoTAs proposed in literature. The most basic 
approach consists of three layers, i.e. an application  

layer, a network layer and a sensing (or perception) 
layer (Zheng, et al., 2011). This model was proposed 
to create specific types of communication but does 
not cover all of the underlying technologies that 
transfer data to an IoT platform (Molano, Ródriguez, 
Bravo, & Santana, 2017). Several other 
architectures were built based on this three-layered 
architecture (Wu, Lu, Ling, Sun, & Du, 2010; Atzori, 
Iera, Morabito, & Nitti, 2012; Aazam, Khan, Alsaffar, 
& Huh, 2014). Further approaches of layered 
architectures based on SOAs introduced by Liu et al.  
(2014), and Li et al. (2013) continue on this three-
layered approach and add a fourth layer, i.e. an 
abstraction layer based on middleware technology 
therefore called a middleware (or service) layer. A 
four-layered architecture can be applied in a 
business environment, i.e. Industry 4.0. Figure 7 
shows a generic SOA, proposed by Li et al. (2013), 
where the interaction among all four layers is 
illustrated. The functionality of the layers in a four-
layered architecture is briefly discussed in Table 1. 

Conclusion 
Mostly, the service-oriented approach is applied for IoT systems. SOA-based techniques are widely 
supported and are classified into the WS-* family of standards, where SOAP is commonly accepted as 
standard communication protocol. Although, SOAP is not imperative for SOA. These techniques are 
focused on providing a uniform and structured way of communicating with low power IoT devices. On 
the other hand, the resource-oriented architecture (ROA) approach stems from the REST paradigm, 
and could also be classified under service-orientation, but since the capacity of services is not infinite, 
considering objects as resources can be useful.  Regarding the functional components from which the 
IoTA is built, the level of granularity impacts the level of decomposition of the layers. In this thesis, a 
trade-off will be made between abstraction which enables interoperability and still preserving sufficient 
granularity which brings usefulness and clarity. 

Layer Description 
Device This layer is integrated with 

existing hardware (RFID, 
sensors, actuators, etc.) to 
acquire data from the physical 
environment and to steer 
devices with actuators. 

Network This layer supports the required 
communication technologies 
and protocols in both directions 
and for translating data if 
necessary 

Service This layer supports following 
functionalities: i) receives data 
from devices, then ii) processes 
the data, iii) provides the 
information to connected 
applications and finally, iv) 
controls commands sent by 
devices to enact actuators.  

Application  This layer provides interaction 
methods to users and other 
applications. It uses the 
middleware layer to gain 
insights or to control physical 
actions. 

Table 1 Description of common layers in IoTA 

Figure 7 Generic SOA by Li et al. (2014) 
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3.3 IoT-aware Business Process Architecture 

The aim of enhancing BPs with IoT technology is to eliminate the discrepancy between the digital world 
of a BPMS and the real world with IoT devices. This can be achieved by enabling an efficient and 
effective integration of IoT devices and exposing them in such a way that the IoT data can easily be 
integrated into the BPMS. In order to accomplish this goal, a uniform architecture needs to be in place 
to facilitate seamless access to these IoT devices (Kashif et al., 2015). On the other hand, BPs need to 
increase adaptability and be enhanced to exploit the real-time data provided by the IoT devices. This 
will lead to intelligent cutting-edge systems with substantial self-configuration, self-monitoring, and self-
healing properties, which are required to manage the large and fast-growing number of devices (Haller 
& Magerkurth, 2011). In this thesis, an architecture is called IoT-aware when the IoT data is collected 
and used for insights and improvements on the BP. An IoT-enhanced BPA, however, is when the 
system not only interprets the data collected from the IoT objects, but also actively steers the IoT objects 
to act upon the collected data. 

In literature, IoT-aware BPAs are increasingly gaining attraction. For instance, the generic ROA by Dar 
et al. (2015) enables an end-to-end integration of enterprise-level BPs and tiny IoT devices. A resource-
oriented approach was opted for because they are convinced the REST principles will form the 
foundation of smart environments (sensing, computations and communication can easily be mashed 
up). This architecture is built on design principles which can manage the features IoT brings. These 
principles are: i) unified integration, i.e. enabling services over the Web through unique URIs in order 
to integrate them into enterprise-level BPs; ii) event-based interaction, i.e. supported by a device-push 
interaction to ensure resource efficiency, which implies that BPs should not actively detect device-level 
events; iii) a smooth service replacement, which can be managed by retaining the current state of a BP, 
such that it can resume its execution after the service replacement; and lastly, iv) a decentralised 
business process (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 2015). This resource-oriented approach 
is also being adopted by Guinard et al. (2010), where RESTful architectures are considered the most 
effective solution for IoT-aware systems.  

Although there is an increase in this matter, there are still many open challenges to be tackled which 
will allow for a better integration and align both IoT and BPM technology (Janiesch, et al., 2017). A 
subset of these challenges is tackled by Schönig et al. (2018) who propose an architecture that 
addresses i) the placement of IoT sensors in a process-aware way; ii) connection of analytical 
processes with IoT, i.e. data needs to be up-to-date, current, qualitative, and it needs to be clear where 
the data stems from and where it has been used; iii) visualization support for managing manually 
executed tasks, i.e. responsible users must be notified on mobile devices in real time; and iv) improving 

Figure 8 Integrated communication architecture by Schönig et al. (2018) 
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resource utilization optimization, hence provisioning context-specific knowledge that is relevant for the 
user’s particular needs.  

The architecture is shown as Figure 8, consisting of three layers: i) IoT objects; ii) IoT infrastructure and 
communication middleware; and iii) the BPMS. The communication between layer (ii) and the BPMS, 
is furnished by the Camunda REST API, i.e. HTTP requests GET, PUT and POST. Communication 
between the IoT objects, the middleware layer (ii) and the BPMS at layer (iii) is established with a 
Message Queue Telemetry Transport10 (MQTT) broker. MQTT is a simple and lightweight messaging 
protocol for machine-to-machine (M2M) connectivity. It works in a pub/sub fashion and is well-suited for 
IoT networks since it is designed for constrained devices and low-bandwidth, high latency or unreliable 
networks. Next, collected data is sent from the acquisition application to a NoSQL database, i.e. the 
Apache Cassandra database. The BPMS remains updated with the latest IoT values because of the 
distribution application at layer (ii). Evaluating this architecture in practice showed that “the application 
of the IoT enhanced BPMS leads to less machine stops because users need less time to recognize 
work that needs to be done.” (Schönig, Ackermann, Jablonski, & Ermer, 2018). 

Conclusion 
Although the field of IoT-aware BPs is rapidly gaining attention, no mature reference in terms of 
architectural solutions has been commonly acknowledged. Currently, open challenges have been 
identified to achieve the benefits which are ready for exploitation. Possible solutions to subsets of these 
challenges are being proposed, e.g. the discussed integration architecture by Schönig et al. (2018). 
The current architectural trend is prone to a layered architecture where communication is established 
based on the REST paradigm. This is argued to be the most effective solution for IoT-aware systems 
in terms of communication. The IoT is decentralised and heterogenous by nature, and hence a 
decentralised, event-driven architecture is required to cope with this property. Although this field is not 
yet mature enough for industry-wide adoption, it yields very promising features such as intelligent 
cutting-edge systems with substantial self-configuration, self-monitoring, and self-healing properties 
which are required to manage the large and fast-growing number of devices  (Haller & Magerkurth, 
2011). 

4 Common requirements 

The Rational Unified Process®11 has the following definition for any requirement: “a requirement 
describes a condition or capability to which a system must conform; either derived directly from user 
needs, or stated in a contract, standard, specification, or other formally imposed document.”  
More explicit, an architectural requirement can be defined as any requirement that is “architecturally 
significant, whether this significance be implicit or explicit” (Eeles, 2005). This section will enumerate 
the common architectural requirements for a reference architecture to enhance BPs with IoT. In 
addition, it will provide insights on how these requirements are addressed in current literature. In Section 
5, the reference architecture will be built, where the requirements are to be embedded into a reference 
architecture, whilst providing traceability between the architectural features and the common 
requirements. A clear overview on how the requirements are addressed by the proposed architecture 
is provided in Table 2 at the end of Section 5. In the following paragraph all relevant requirements for a 
reference architecture for IoT-BPs are collected and discussed. In this thesis, four different categories 
of requirements are identified, i.e. i) IoT specific requirements, e.g. device management ii) BP specific 
requirements, e.g. process adaptability, iii) cross-cutting requirements which apply to both fields, e.g. 

 
10 http://mqtt.org/ 
11 https://www.ibm.com/ 
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scalability and lastly iv) specific requirements which are not essential in IoTA nor in BPA, but they 
appear necessary in the combination of both domains, e.g. a decentralized process execution. Although 
these categories have been identified, it is hard to determine which requirements entirely belong to a 
certain category since they often overlap, and hence a hard border cannot be drawn.  

4.1 Interoperability 

For architectures it is generally not a question of whether interoperability should be supported, but rather 
the extent to which the architecture must support for interoperability between applications, systems and 
components. In case of no physical connections at all, the systems are fully isolated and thus 
interoperability is inexistent. On the other side of the spectrum, there are universal systems, i.e. 
enterprise-wide shared systems. Typically, the aimed level of interoperability is in between the isolated 
and the universal systems, i.e. distributed systems where heterogeneous product exchange is possible, 
or integrated systems where applications and data can be shared (Tolk & Muguira, 2003).  

Interoperability is defined by The Open Group12 in three-part, i.e. “interoperability is i) the ability to share 
information and services; ii) the ability of two or more systems or components to exchange and use 
information; and iii) the ability of systems to provide and receive services from other systems and to 
use the services so interchanged to enable them to operate effectively together” (The Open Group, 
2018). If systems are able to communicate with each other by means of standard data formats and 
communication protocols, as in (i), it is called syntactic interoperability. Beyond merely communicating 
systems, semantic interoperability, defined by The Open Group in (ii), means systems can automatically 
interpret data meaningfully by accurately determining the meaning of the data such that it holds useful 
information for the end-user. Semantic integration can be achieved by converting entity description into 
a system-readable representation via customized adaptors to then interpret the correct meaning. 
However, this imposes high design complexity to the adaptors, since the interpretation patterns of an 
adaptor are pre-defined. This challenge can be tackled by building ontologies which can describe fine-
grained entities and can still be personalized by third-parties (Wang, Lee, & Murray, 2017). In other 
words, the reference architecture must provide a clear ontology since this allows for third parties to 
customise entities whilst maintaining the (globally consistent) semantic meaning of the described 
entities. This way all systems can share information and interpret it the same way. 

In the Arrowhead architecture, discussed in Section 3.2, three solutions are proposed to support 
interoperability in an architecture, namely: i) an interoperability layer, ii) a translator system and iii) a 
translator as a service (Delsing, et al., 2017). The layer (i) is a contact communication hub which defines 
a suitable technology and semantics. It translates each service from/to the appropriate technology and 
semantics. The translator system (ii) can consume a service from one technology and translate the 
same service to provide the service to another technology. The third option (iii) is very similar to the 
solution in (ii) but allows the translator to be consumed by other systems as a service. Wang et al. 
(2017) address the issue of connecting heterogeneous devices in a similar fashion as described above 
in (i). Interoperability is supported by integrating the distributed proxies in the middleware technology 
layer, which is independent of platforms and networks. 

4.2 Security 

“Corporate information is not only a competitive asset, but it often contains information of customers, 
consumers and employees that, in the wrong hands, could create a civil liability and possibly criminal 
charges” (Rimal, Jukan, Katsaros, & Goeleven, 2011). Hence, building a secure system must not be 
regarded as a marketing attribute, but rather as an imperative requirement of the system to assure the 
wellbeing of all stakeholders. Developing a system with resource-constrained devices inherently 

 
12 https://pubs.opengroup.org/ 
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introduces security risks since the devices itself cannot support adequate security protocols, e.g. proper 
asymmetric encryption (Fremantle, 2015). In addition, legacy systems are not originally developed to 
cope with such weak access points and often lack internal security measures. Traditionally, with pure 
web solutions there is often no available code to attack (i.e. completely server-side implementation), 
but smart IoT devices contain a small amount of code, which is vulnerable for attacks with the aim to 
reverse engineer its security (Fremantle, 2015). The architecture must support devices in preventing 
unauthorized access to the system or the data. In order to provide trust and privacy to all stakeholders 
of the system, security must be assured system-wide, hence security needs to be embedded within all 
layers of the architecture. Devices which are powerful enough should be encrypted such that its data is 
only useful for the intended recipient of the data, and constrained devices should be protected from the 
system, e.g. with an adequate firewall in between the devices and the system.  

A novel approach that is rapidly gaining popularity is the principle of DevSecOps. This approach 
ensures better-secured information systems by combining the fields of development, security and 
operations from the early stages of development. This approach ensures a system-wide security layer 
where security is repeatedly considered whilst developing the system. The reference architecture by 
Fremantle (2015) implies a modular architecture that supports extensions, which copes with the specific 
demands of certain concrete architectures. Identity and access management are considered essential 
security requirements that must be met by, a.o. encrypting devices that are powerful enough, an identity 
model based on tokens (instead of userIDs/paswords) and policy-based and user-managed access 
control for the system based on XACML (Fremantle, 2015).  

A promising technology for safeguarding security is blockchain. However, for networks with constrained 
devices, the technology was not lightweight nor scalable enough. As a response to this challenge, Dorri 
et al. (2017) propose a lightweight application of blockchain technology to secure the entire system, 
adapted to the specific features of constrained devices in IoT networks. Security is assured on three 
aspects being confidentiality, integrity and availability. Confidentiality is achieved using symmetric 
encryption, integrity of data is safeguarded by lightweight hashing to detect changes in a transaction’s 
content during transaction. And finally, highly available services to the user are achieved by limiting 
acceptable transactions by devices and the miner (Dorri, Kanhere, Jurdak, & Guaravaram, 2017). By 
simulating their blockchain method, the findings concluded that the overheads incurred by their method 
are low and manageable for low resource IoT devices. They argue that these overheads are worth their 
weight given the significant security and privacy benefits on offer (Dorri, Kanhere, Jurdak, & 
Guaravaram, 2017). A blockchain architecture for IoT is also proposed by Sharma et al. (2017). Hence, 
also blockchain can be considered as a viable solution to secure a system working with constrained 
devices. Although, a trade-off will need to be made for each specific application. On an architectural 
basis, this security system requires a smart miner which centralises incoming and outgoing transactions 
to and from the system. This miner can be integrated into the local Internet gateway or as a stand-alone 
device  (Dorri, Kanhere, Jurdak, & Guaravaram, 2017). 

4.3 Quality of Service (QoS) 

QoS typically relates to networks, i.e. a measure of network service performance (Duan, Chen, & Xing, 
2011). Common applications of IoT, like delay-sensitive real-time applications or low data rate 
monitoring, are very sensitive to the quality of its consumed services. Therefore, QoS is considered as 
one of the most important architectural requirements for IoT (Yaqoob, et al., 2017). IoTAs are required 
to provide qualitative services to its users and consumers. However, QoS assurance is cumbersome 
with constrained devices and unreliable connections. Two measures are to be considered with QoS, 
i.e. i) prioritization of services and ii) retrieval of required information. By prioritizing services of for 
example real-time processes, the performance of the service can be guaranteed. In addition, by solely 
retrieving the required information as response to a query, unnecessary exchange of data is limited to 
the minimum leading to increased QoS (Yaqoob, et al., 2017). This can be enabled through intermediate 
data processing and filtering (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 2015). 
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QoS can be measured based on specific thresholds with clearly defined measurement techniques. For 
example, the service delay in the application layer, being the lead time between the consumer’s send 
request for a service to receive a response, can be measured in an exact time and hence a threshold 
can be used to determine the quality. For each layer, several measurements can be set up providing a 
clear overview of the overall QoS and where the weak links are. More measurements can be found in 
more detail in (Duan, Chen, & Xing, 2011).  

An architecture can support the QoS requirements by having a cross-cutting QoS management layer 
in place which communicates to QoS brokers, located on each layer to guarantee QoS in each layer. 
This QoS management layer then manifests itself as a control mechanism for transferring and 
translating QoS requirements across layers (Duan, Chen, & Xing, 2011).  

4.4 Device management 

IoT services are by nature more volatile than traditional Web services (WSs), because devices in an 
IoT network may be out of range, low on battery, etc. Hence, broken communication links may lead to 
service unavailability (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 2015). Adding or removing objects 
and services to or from a network, should never influence the existing connections of other objects and 
services. In addition, an unavailable service should be replaced by another (if any) available service 
offering a similar functionality  (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 2015). This cannot be 
established with WS-* standards as these imply predefined and thus hard-coded mechanisms (Wang, 
Lee, & Murray, 2017). The reference architecture is expected to support reconfiguration of virtual 
objects and services at runtime. Wang et al. (2017) propose a service composer which can dynamically 
coordinate interactions, such as coupling or decoupling connections between objects and services in 
order to meet specific application needs (Wang, Lee, & Murray, 2017).  

4.5 Process adaptability  

BPs are currently deterministic, centralised and designed top-down. The latter means that process 
changes originate from the original process model and need to be deployed in the runtime enactment 
environment (Hens, Snoeck, Poels, & De Backer, 2014). With the big data that is generated by IoT 
devices and the associated insights, BPs can constantly be upgraded for more efficient solutions. In 
addition, exceptional situations might occur at runtime, which were not planned at design-time. In order 
to create this flexibility, ad hoc process changes for adapting running process instances must be 
allowed, whilst being aware of the situation and the context (Marrella & Mecella, 2017). Marella et al. 
(2017) introduce Smart Process Management which enables a process to deviate from the execution 
path at run-time without changing its process model. Changing a BP bottom-up implies that the change 
will be performed locally at a specific fragment. This change consists of adapting an event rule and 
propagating this change to other runtime fragments (Hens, Snoeck, Poels, & De Backer, 2014). This 
flexibility can only be achieved by enabling runtime reconfiguration, model-driven development instead 
of hard-coded BPs and ensuring the data at hand is reliable. The extent to which processes ought to 
be flexible, depends on many factors including the nature of the processes, the timeline over which the 
change would be applicable, etc.  

4.6 Efficient connectivity and communication 

In order to connect the devices with the system and to establish a reliable and efficient communication 
between the devices and the system, contemporary communication protocols which are better suited 
for the needs of constrained devices need to be considered. Existing communication protocols such as 
HTTP are mostly designed for people-to-people communication and hence simple and uniform. This 
allowed for third parties to easily provide and consume services. However, the price for these useful 
traits is a high overhead for the devices. This high overhead implies higher memory usage and a higher 
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usage of energy, which are both limited on IoT devices. In addition, human-readable protocols do not 
hold much value since most IoT applications are based on object-to-object (O2O) communication. 
Hence, simple binary protocols are preferred over traditional communication protocols (Wang, Lee, & 
Murray, 2017; Fremantle, 2015). However, not only binary protocols are required to be offered to the 
constrained devices, there should still be the possibility for third parties to share data over traditional 
communication protocols. A key communication requirement for IoT-BPA, is that not only the device 
should send data to the cloud or the server, but also the reverse (Fremantle, 2015).  

In the reference architecture, these communication features are to be integrated into a middleware 
layer. This layer will act as an intermediary to link different protocols and communication technologies 
supporting both unconstrained devices by means of WS-* standards, together with constrained devices 
which are bound to other, more parsimonious communication protocols. The data transmission with 
these constrained devices can be achieved through XML, JSON or CSV data formats which are 
considered best practice to describe objects in IoT networks (Wang, Lee, & Murray, 2017; Yaqoob, et 
al., 2017).   

4.7 Modular services and loose coupling 

Service modularization is virtualizing physical objects or services as primitive middleware components. 
A reusable and modularized service makes providing and consuming services for third-party users 
easier. Combining these modularized services into composed services requires a loosely coupled 
architecture, since this enables the logical separation of virtual objects and services. Hence, primitive 
virtual objects and services can be independently added, removed or reconfigured  (Wang, Lee, & 
Murray, 2017). Modular services and loose coupling are key SOA principles, which improve the 
interoperability between devices and the integration of services provided by these devices (Li, 
Shancang, Xu, & Zhao, 2015; Breivold, 2017). Therefore, the reference architecture will be service-
oriented. 

4.8 High availability 

The entire IoT area network must ensure high reliability in order to achieve high availability of data 
communications, considering the vitality for the actual execution of operations (ITU-T, 2016).  The 
increasing dependence on software-intensive systems drives the need for dependable, robust, 
continuously available systems. Runtime reconfiguration is a critical step in order to achieve this goal. 

High availability is required for an IoT-BPA because often it is applied where real-time interaction 
between BPs and IoT devices in both directions is critical. For example, a robotised surgery where a 
surgeon is in another physical location than the patient. In this case the entire system is required to be 
highly available, approaching .99999 uptime which translates into a weekly downtime of 0.1 seconds. 
The system cannot afford to be down for even the smallest period, because this imposes life-threatening 
situations. In case of a network failure, the applications running on those networks must be able to 
continue operating by using any resources still functioning (Byers, 2017). Important steps to achieve 
high availability are argued to be i) the provisioning of priority redundancies, ii) the identification of 
failures, and iii) the invocation of alleviation mechanisms (Sharma, Chen, & Park, 2017). 

4.9 Event-based 

An essential benefit that IoT brings when integrated with BPs, is that the processes are better aligned 
with what happens in the real world. Inherently, processes are based on events which are either 
detected directly or by real-time analysis of sensor data  (Hens, Snoeck, Poels, & De Backer, 2014). 
Therefore, services deployed on IoT devices must support event-based asynchronous interaction with 
BPs. To limit battery consumption of IoT devices, they should interact with the BPs in a device-push 



  

19 

fashion. This precludes BPs to steadily poll for device-level events, meaning lavish use of energy. 
Instead, the BP is only notified in case of an event  (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 2015). 

In addition, for an event-based architecture to fully support the integration of IoT with BPs current BP 
modelling tools need to be extended with capabilities to handle e.g. unreliable data, unreliable resources 
and highly distributed processes which are specific IoT-BPs (Haller & Magerkurth, 2011). Event-based 
communication is argued to facilitate flexibility for the execution environment allowing for better control 
over load balancing and replication needs (Hens, Snoeck, Poels, & De Backer, 2014).  

4.10 Scalability 

With the proliferating number of connected IoT devices and substantial differences in the interaction 
patterns and behaviours of BPs, supporting elastic scalability of a developed information system is an 
essential requirement for a reference architecture. Scalability can be defined as “managing the 
connectivity among a voluminous amount of network devices without causing any performance 
degradation issues” (Yaqoob, et al., 2017). In other words, adding more capacity to a system should 
bring a (quasi-) linear increase in performance. Prior systems were mostly created and developed for 
the current needs, without reckoning the possible future needs of the system. Therefore, it is crucial to 
keep scalability in mind from early stages in developing the architecture, so that the developed system 
can be scaled-up, scaled-down and new functionalities can be extended, or obsolete functionalities can 
be decommissioned with ease. Scalability can be achieved horizontally, vertically, or both. Vertical 
scalability means increasing the resource capacity of a single node, e.g. increasing the processing 
capacity of a server. This is considered out of scope since the reference architecture ought to be 
independent of infrastructure. Horizontal scalability is typically addressed by load balancing process 
instances across multiple nodes. Load balancing is the mechanism of self-regulating the workloads 
across available resources. In other words, the load balancer provides ways by which application 
instances can be provisioned and de-provisioned to the node (Rimal, Jukan, Katsaros, & Goeleven, 
2011). In this process, the service components are under constant supervision, and when a failover 
occurs, i.e. the component becomes non-responsive, the system instantly gets notified and sends the 
instances to another component (Rimal, Jukan, Katsaros, & Goeleven, 2011; Li, Muthusamy, & 
Jacobsen, 2010). As discussed in Section 3.1, Camunda provides a BPM platform which enables 
clustering of execution engines. By clustering execution engines, the application instances can be 
distributed among several nodes, i.e. replicated execution engines. Camunda defines a cluster as “a 
set of network nodes that all run the Camunda BPM platform against the same database”.  
Another way to provide scalability is, instead of distributing the instances over different clusters, 
fragmenting the whole BP and executing these fragments on different (possibly unique) engines or 
servers (Hens, Snoeck, Poels, & De Backer, 2014). BP model fragmentation means splitting a process 
model into logically different, smaller model fragments. Hens et al. argue that finding the event rule for 
each process model fragment is the most important part in the transformation towards a partitioned and 
distributed BP. Other design choices influencing scalability include, but are not limited to prioritization 
of processing, reducing computational complexity, distributing processing over time, minimising the use 
of shared resources, etc. 

4.11 Decentralised process execution 

Another shortcoming of standard web protocols for IoT applications, in addition to the high overhead 
discussed earlier, is that accessing sensor data indirectly in remote web servers increases access 
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latency. Also, a centralized (orchestration) architecture imposes security, privacy, trust, responsibility 
and data ownership issues (Vermesan, et al., 2011); ergo, BPs should be organised for a decentralised 
(choreography) execution. Decentralised execution enables the domain expert to design and 
simultaneously define the communication between the different BPs (Dar, Taherkordi, Baraki, Eliassen, 
& Geihs, 2015). Hens et al. (2014) argue that the global process flow needs to be transformed into a 
distributed event-based process. This would enable the event-based architecture, as discussed in R9, 
to exploit the loose coupling benefits it imposes. 

4.12 Actuation of devices 

Lastly, there is the architectural requirement to enable the system to steer IoT devices for physical 
actuation. Operational processes happen in real-time, and thus BPs are expected to be executed in 
real-time as well. Thus, devices need to be able to analyse and act on real-time data. Powerful devices 
can utilise engines for event processing and action. However, most devices will only possess simple 
embedded logic to execute tasks (Fremantle, 2015). An important aspect in actuating devices, is online 
conformance checking, i.e. analysing an existing process model and comparing it with an event log of 
the same process (Janiesch, et al., 2017). This improves the alignment of BPs with the actual process 
in the real world.  

5 Proposed reference architecture 

5.1 Building the architecture  

A survey by Breivold (2017) identified common driving forces for the development of IoT reference 
architectures. These include i) the increased complexity and size of systems with the proliferating 
number of IoT devices, ii) the need for shorter time-to-market and rapid development, iii) collaborative 
solutions that demand integrated and coordinated information systems, iv) need for interoperability and 
compliance among devices and systems, and finally v) increased focus on optimising assets and 
operations in and across different plants (Breivold, 2017). These driving forces are in line with (Cloutier, 
et al., 2009). Building a reference architecture holds several advantages. Because of the rapid 
evolvement of new technologies and hence application requirements, a concrete architecture would 
only be valid for a limited amount of time. Therefore, developing a reference architecture holds more 
value over time since it can be adapted to the current needs of the application field, reducing time and 
cost to suit to the changes. Also, a reference architecture provides interoperability by abstracting from 
the specificities which come with heterogenic platforms, devices, etc. Moreover, a reference 
architecture enables third-parties to provide and consume services on public platforms in a simple way  
(Wang, Lee, & Murray, 2017). At the end of this section, Table 2 provides traceability by clearly depicting 
which architectural features address which requirements. For the reference architecture to be deployed 
in various environments, not all layers are required and can be omitted depending on the needs of the 
concrete architecture. For example, if the business process does not require to physically impact the 
environment, actuators do not have to be included. Additionally, if the system only consists of 
unconstrained devices in any way, the devices can directly communicate with the middleware layer, 
and there is no need for a network layer.  
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5.1.1 SOA principle 

Building an architecture in a service-oriented fashion brings several essential features, including 
extensibility, scalability, modularity, and interoperability among heterogeneous devices. IBM13 defines 
a SOA as “an application architecture within which all functions are defined as independent services 
with well-defined invokable interfaces, which can be called in defined sequences to form business 
processes” (Channabasavaiah, Holley, & Tuggle, 2003).  

By developing an architecture according to the SOA paradigm, already many of the collected 
architectural requirements are addressed (Breivold, 2017). Building a SOA yields several advantages, 
which include i) the reduction in development time and cost, i.e. services are built using existing services 
to form composite applications; ii) lower maintenance cost, i.e. reusing services decreases the amount 
of services and internal complexity of enterprise services; iii) lower integration cost because 
standardised services enable various applications to connect easily; and iv) reduce risk since fewer 
reusable services provide a better overview and hence better control of the overall compliance risk of 
an enterprise (Xiao, Guo, Xu, & Gong, 2014; Karande, Karande, & Meshram, 2011). 

5.2 A reference architecture for executing IoT-BPs 

5.2.1 Device layer 

A device is a hardware component that connects wirelessly to a 
network and is capable of transmitting data. A device is 
connected to a sensor or an actuator, or these components are 
integrated into the device. A sensor senses the environment and 
gathers information about the environment. An actuator is able to 
automate a process activity by acting upon the data it receives. 
Actuators are key enablers towards full automation of processes, 
i.e. robotization. Examples of IoT devices can range from 
smartphones, smart heartrate monitors, connected traffic lights, 
a thermostat in a reefer container to even autonomous vehicles. 
Devices in IoT networks are heterogenic by nature because the 
characteristics of different devices vary strongly and hence the 
requirements the heterogeneity imposes on for example 
connectivity and communication vary as well. The key traits to 
distinguish devices are its capabilities, i.e. battery capacity, 
available processing power, accessible networks, etc. These 
factors categorise a device to be either constrained or 
unconstrained. In line with Guth et al. (2016), another distinction 
can be made between devices being either self-contained or 
connected to another system. Connected devices communicate 
with the middleware layer, while self-contained devices create a 
black box of functionality to the system. An example of a self-
contained device could be a thermostat which processes its own 
sensed data and then manages the cooling or heating of a reefer 
container to assure the temperature remains within a certain 
threshold. An active interaction with the IoT environment can be 
achieved with BPMN service tasks provided by the HTTP 

 
13 https://www.ibm.com/ 
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connectors of a BPMN execution engine. These connectors establish either a direct communication 
over protocols such as HTTP or REST, or an indirect communication over a platform, e.g. Node-RED14. 
In case a robot (i.e. an IoT device) would receive a service task, the system would send a HTTP-
command to the IoT platform, where the corresponding URL parameter or POST-body is issued to the 
robot in a supported protocol. In this way a fully bidirectional communication between IoT devices and 
process management systems can be realised, as shown in (Schönig, Jablonski, & Ermer, 2019). 

5.2.2 Network layer 

The goal of the network layer is to furnish a connection between (constrained) devices and the system, 
i.e. the middleware layer. This can be achieved either directly in case of IP-enabled devices, or over a 
gateway in case of constrained devices. Hence, a gateway is required to compensate the limitations 
specific to constrained devices by providing technologies and functionalities such as translating 
between different protocols and forwarding the intended communication to or from the system. 
Constrained devices connect over a gateway, provided in the network layer. Unconstrained devices 
can be IP-enabled and thus connect directly to the middleware layer over the Internet. The Azure 
platform by Microsoft acknowledges the need for two types of gateways in order to limit de data 
transmitted over the network and to improve latency. One gateway is provided at the edge of the 
network, which is capable of data filtering, aggregation and buffering of data, protocol translation, event 
rules processing and device provisioning. The second gateway is a cloud gateway which allows for 
remote devices to communicate with the system (Microsoft, 2018). By intermediate data processing 
and filtering on a gateway at the edge of the network, the required information to a query can be 
determined more easily and limits the network load, ensuring better QoS. In addition, an adequate QoS-
level also ensures high availability of the system. Note that SOAP is not imperative for SOA. Only for 
providing services to third parties over the Internet, WSs are considered the best solution. 
Unconstrained devices can use full HTTP client libraries to properly implement the whole protocol, while 
constrained devices could only partially support the protocol, e.g. only enough code to POST or GET a 
resource (Fremantle, 2015). Hence, systems with constrained devices achieve a better performance 
with binary, rather than text-based, protocols such as MQTT or CoAP since they generate much smaller 
overhead and they lower the data stream (Wang, Lee, & Murray, 2017). 

5.2.3 Middleware layer 

The middleware layer is mainly responsible for receiving and processing data, in addition to facilitating 
the transmission of data between IoT objects and the system, i.e. the workflow engine and the 
connected applications. Communication patterns can be designed as pull, push or pub/sub, to fulfil 
different application needs without concerning the underlying devices or networks (Wang, Lee, & 
Murray, 2017). The required bidirectional transmission of data between IoT objects and the system can 
be established by working with a brokered communication model, where clients can connect an 
outbound connection to the broker, regardless if the device is acting as a publisher or a subscriber. In 
addition, a brokered communication model is also required to support an event-driven architecture (Li, 
Muthusamy, & Jacobsen, 2010). One of the benefits of an MQTT specification is that it enables this 
type of communication (Fremantle, 2015).  

In line with the integration architecture proposed by Schönig et al. (2018), the middleware is responsible 
for three main tasks, i.e. i) acquiring the IoT data, including the meta information to ensure clear data 
provenance, and then ii) storing the acquired data in a well-suited database (e.g. a NoSQL database 
such as Apache Casandra15). Subsequently, iii) a distribution application in the layer provides the 
service layer with all the necessary functionalities to accommodate the workflow engine with the latest 

 
14 https://nodered.org/ 
15 http://cassandra.apache.org/ 
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IoT values. Further, real-time information can be provided to the service layer such that the application 
layer has an easy access to the latest insights on the acquired data. Typically, the middleware layer is 
accessible through APIs, e.g. HTTP-based REST APIs (Guth, Breitenbücher, Falkenthal, Leymann, & 
Reinfurt, 2016). 

Another functionality of this layer is hiding the heterogeneity of hardware and software to provide 
uniformity among objects, hence improving interoperability.  All communication must be translated into 
the correct communication protocol such that the intended message reaches its recipient, and no 
ambiguity is formed. Subsequently, it allows the system to make a connection between the IoT platform 
and the (business) applications, but also with customers and partners. An important element for this 
layer is that the hardware and software should be reusable. 

5.2.4 Service layer 

This layer provides the necessary functionalities to connected applications on one hand and sends data 
to the workflow engine on the other hand. To properly facilitate a SOA, the service functionalities are 
considered in a distinct layer, whereas other architectures may embed these functionalities into the 
middleware layer. The service layer facilitates a seamless integration of the system with the applications 
and the BPs, in combination with the middleware layer. Atomic objects and service components can be 
combined to provide a composed service. By then reusing primitive services, this lowers the 
development cost and improves the ease of deployment. The service layer ought to identify common 
requirements from applications and the workflow engine, and provide the necessary functionalities to 
meet these requirements. These functionalities are provided over APIs and protocols. The principle 
functionalities of the service layer are: i) service discovery, ii) service composition, iii) trustworthiness 
management, iv) service APIs, and v) service replacement management (Li, Xu, & Zhao, 2015).  

5.2.5 Workflow engine 

The middleware layer generates information which the service layer offers to the workflow engine in 
order to execute the process. Communication between the middleware layer and the workflow engine 
typically happens by means of REST APIs, i.e. HTTP requests PUT, POST and GET. Based on the 
available information stemming from IoT data, the engine can calculate available activities.  

The workflow engine is capable of executing and adapting the processes, which can be regarded as 
two layers in the workflow engine. The execution implies managing and coordinating the process 
enactment, i.e. in a distributed way. BPMN is commonly accepted as modelling language for BPs. 
BPMN provides an XML-file which can be interpreted for execution by the engine. The engine is also 
responsible for identifying discrepancies or changes, which it notifies to the adaptation layer. The 
workflow engine sends its commands to the IoT devices over a specific platform to translate the 
communication from the engine into device-readable protocols, e.g. over the NodeRED platform. The 
automatic communication between the execution engine and the IoT device, i.e. the actuator, enables 
the system to fully automated processes. For such processes, down-time of the system is critical, hence 
the workflow engine must be capable of handling high workload efficiently and assure high availability 
by for instance load balancing mechanisms as discussed in Section 4.11. In addition, the workflow 
engine plays an important role in designing an architecture which is scalable to meet the growing 
process instances to be executed (e.g. by clustering the workflow engine). 

Compared to the WfMC reference architecture, the workflow engine is also a stand-alone component 
of the architecture. However, the gravity of this component in the proposed architecture is less dominant 
since it is not only focused on the execution of processes, but also on the transmission of data from the 
sensors through the system, to the actuators. 
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5.2.6 Application layer 

The application layer provides interaction methods to users and other applications. The service layer 
provides services which enable the applications to gain insights or to control physical actions. An 
application can also be another middleware layer, in order to ensure extensibility of the system and to 
integrate multiple systems. Through this layer the IoT data is linked with the IT and operational 
technology (OT) applications such as ERP, CRM, EMS, etc. Therefore, it is a crucial layer to link the 
business with the IoT platform. 

 

Table 2 Overview table on selected requirements 

  

Requirement Architectural feature Also considered by 

R1 Interoperability Service layer /  

middleware layer  

(Wang, Lee, & Murray, 2017); (Xu, He, & Li, 
2014); (Grefen & de Vries, 1998); (Xiao, Guo, 
Xu, & Gong, 2014); (Yaqoob, et al., 2017); (Dar, 
Taherkordi, Baraki, Eliassen, & Geihs, 2015); 
(Fremantle, 2015); (Li, Xu, & Zhao, 2015); 

R2 Security Cross-layer security (Yaqoob, et al., 2017); (Byers, 2017); (Weyrich & 
Ebert, 2016); (Fremantle, 2015) 

R3 QoS Network layer (Yaqoob, et al., 2017);   (Li, Xu, & Zhao, 2015); 

R4 Device management Device layer (Weyrich & Ebert, 2016); (Dar, Taherkordi, 
Baraki, Eliassen, & Geihs, 2015); (Fremantle, 
2015); 

R5 Process adaptability Workflow engine /  

middleware layer 

(Yaqoob, et al., 2017); 

R6 Efficient connectivity & 
communication 

Middleware layer /  

network layer 

(Fremantle, 2015); (Weyrich & Ebert, 2016); 

R7 Modular services and 
loose coupling 

Service layer (Wang, Lee, & Murray, 2017); (Byers, 2017); (Li, 
Xu, & Zhao, 2015); 

R8 High availability Cross-layer  (Fremantle, 2015); 

R9 Event-based Workflow engine (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 
2015); 

R10 Scalability Cross-layer  (Fremantle, 2015); (Li, Xu, & Zhao, 2015); 

R11 Decentralised process 
execution 

Workflow  (Dar, Taherkordi, Baraki, Eliassen, & Geihs, 
2015); 

R12 Actuation of devices Actuators /  

workflow engine 

(Schönig, Jablonski, & Ermer, 2019); 
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6 Evaluation and discussion 

The proposed architecture is evaluated by comparing its capabilities with other architectures, which 
have been discussed in Section 3. In Table 3, the identified requirements for a reference IoT-BPA are 
listed. For each requirement it is shown whether it is a capability of the architecture (ü), or not (û). 
Requirements which were identified in other works, but not considered for this architecture can be found 
in Appendix A including a brief motivation for not considering the requirement.  

By comparing the capabilities, i.e. requirements which are met by the architecture, some insights can 
be gained. Interoperability is commonly acknowledged as an architectural requirement. In contrast, 
there appears to be a lack of attention for security in (reference) architectures. Nevertheless, security 
is considered as an important architectural requirement in this thesis, which is in line with the WSO2 
architecture by Fremantle (2015). For BPAs, the S3 appears to be the most comprehensive reference 
architecture. However, in Section 3.1, this was the least popular BPA to serve as a basis for concrete 
architectures. In contrast to IoTAs, the BPAs are rather simple in terms of architectural requirements. 
For instance, efficient connectivity and communication are mostly considered for IoTA or IoT-BPA, ditto 
for device management. Many of the requirements appear to be necessary for an architecture to cope 
with IoT, whereas the requirements for BPAs are rather limited.  

Notably, only two architectures have the capability to steer actuators, i.e. i) the reference IoTA by Guth 
et al. (2016) and ii) the IoT-BPA by Schönig et al. (2019). The architecture proposed in this thesis, 
however, differs from (i) by including the BPs and facilitating the full integration of both domains, not 
only focusing on IoT. Moreover, it differs from (ii) by being a reference architecture and not a concrete 
architecture. The IoT-BPA by Dar et al. (2015) is a comprehensive and useful architecture for IoT-BPs, 
however it lacks the ability to steer actuators. Therefore, the proposed reference architecture is believed 
to be useful, serving as a basis for concrete architectures or future research.  

However, the outcome and findings from this evaluation should be regarded with due consideration of 
the limitations of this thesis. By reason of time constraints, the evaluation was limited to a comparison 
with 9 other architectures. Hence, the reference architecture is presumed to be more useful than current 
alternatives, but this cannot be generalised. By performing a more extensive comparison of 
architectures, in addition to a (systematic) literature review, the obtained findings can be nuanced. In 
order to assure the quality of the reference architecture, it should be evaluated more thoroughly, in 
addition to the comparison, e.g. by means of a case study. In such case study, various scenarios are 
mapped onto the reference architecture and the reference architecture can prove its value by 
identification of its capabilities and shortcomings. This method was executed by Sharpe et al. (2019) in 
an Industry 4.0 reference architecture. Still, I believe the selected architectures to which the proposed 
architecture is compared are prominent and representative for the majority of (reference) architectures 
and thus the findings are presumed to be useful.  
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A Reference 
Architecture for IoT-
enhanced Business 

Processes 

Interoperability ü ü ü û ü ü ü û ü ü 
Security û û ü û û ü ü û û ü	
QoS û û ü û ü û ü û û ü 
Device management û û û û ü ü ü û ü ü 
Process adaptability û û û ü û û û ü ü ü 
Efficient connectivity & 
communication û û û û ü ü ü ü ü ü 
Modular services and loose coupling û û ü û û û ü û û ü 
High availability û û ü û û ü ü ü û ü 
Event-based û û û ü ü ü ü ü ü ü 
Scalability ü ü ü ü û ü ü ü ü ü 
Decentralised process execution ü ü û ü û û û ü ü ü 
Actuation of devices û û û û ü û û ü û ü 

Table 3 Comparison of architectures; (ü)  enabled by architecture, (û) not enabled by architecture



  

27 

7 Conclusion and future work 

With the steadily maturing IoT platforms and the demand for businesses to enhance its operations with 
this technology, a reference architecture is becoming increasingly relevant for the global implementation 
of IoT. However, there still is a lack in (reference) architectures to facilitate the execution of IoT-BPs. 
The objective of this thesis was to narrow down the architectural gap for the amalgamation of IoT 
devices and BPs.  

First, the state of the art was reviewed in all three domains (i.e. IoTA, BPA and IoT-BPA). This allows 
researchers to quickly gain insight into the matter and serves as a basis for more elaborate research. 
Next, the relevant requirements for a reference architecture for IoT-BPs were identified and discussed, 
also showing how these are addressed in current literature. Subsequently, merging the listed 
requirements lead to an architecture which, in contrast to all other examined architectures, is capable 
to not only integrate the acquired IoT data into BPs, but also enhance the system to physically impact 
the environment by steering actuators. To the best of my knowledge, there is no existing reference 
architecture that utilises the IoT capabilities as extensively (i.e. both sensing and actuating) as the 
proposed reference architecture in this thesis. Respective to the evaluation in Section 6, the proposed 
reference architecture demonstrated its added value in comparison to the discussed alternatives.  

With the introduction of this architecture, it is intended to provide basis for future research or concrete 
architectures. The proposed architecture was focussed on BP execution. Hence, it would be interesting 
to see how the architecture should be extended to support other phases in BPM, for instance 
conformance checking. In addition, ontology is not discussed in detail in this thesis, since this is 
reckoned to be examined more thoroughly in order to be standardised. Guth et al. (2016) argue that 
there is no common terminology on IoT keywords, such as things or devices and that a reference 
architecture must provide clarity in this matter. As also argued by Xu et al. (2014), will the successful 
global use of IoT strongly depend on standardisation, as this enables interoperability, compatibility, 
reliability, and effective operations.  
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Appendix A: Other requirements 

Other requirements Source Motivation 

Multipoint communication  (Wang, Lee, & Murray, 2017) Part of efficient connectivity and 
communication. 

Simplified deployment  
(Wang, Lee, & Murray, 2017) Considered too specific for 

reference architecture, since the 
reference architecture is 
technology independent. 

Virtualization management  

(Rimal, Jukan, Katsaros, & 
Goeleven, 2011)  

(Byers, 2017) 

The architecture provides 
services which can be consumed 
by the applications. Specific 
virtualization is considered too 
specific for a reference 
architecture. 

Fault tolerance  (Rimal, Jukan, Katsaros, & 
Goeleven, 2011) 

Considered part of the high-
availability requirement 

Data collection & processing  

(Weyrich & Ebert 2016),  

(Rimal, Jukan, Katsaros, & 
Goeleven, 2011)  

(Fremantle, 2015) 

Data is not explicitly considered a 
requirement for the reference 
architecture, can be mapped on 
middleware layer. 

Predictive analysis  (Fremantle, 2015) Part of processing of data in 
middleware layer. 

Provider service delivery model  
(Rimal, Jukan, Katsaros, & 
Goeleven, 2011) 

Not relevant for a reference 
architecture focusing on the 
execution of BPs. 

Service centric issues 
(Rimal, Jukan, Katsaros, & 
Goeleven, 2011) 

Addressed by SOA, process 
adaptability and device 
management. 

SOA principle (Wang, Lee, & Murray, 2017) Considered as a principle, rather 
than a requirement. 

Dynamicity and runtime reconfiguration (Wang, Lee, & Murray, 2017) Considered too specific for 
reference architecture. 

Interference management 

 (Yaqoob, et al., 2017) Considered too specific for 
reference architecture, but 
partially addressed by efficient 
connectivity and communication. 

Low latency 

(Byers, 2017) Addressed by efficient 
connectivity and communication. 
Concrete solution is considered 
too specific for reference 
architecture. 

Reduced bandwidth  (Byers, 2017) Considered too specific for 
reference architecture. 

Geographic locality of control  (Byers, 2017) Considered too specific for 
reference architecture. 

Data rich mobility (Byers, 2017) Considered too specific for 
reference architecture. 

Supporting advanced analytics and 
automation 

(Byers, 2017) Partially considered in process 
adaptability at workflow engine 
layer. 

Hierarchical organization  (Byers, 2017) Considered too specific for 
reference architecture. 
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Energy efficiency (Byers, 2017) Part of efficient connectivity and 
communication. 

Multi tenancy  (Byers, 2017) Considered too specific for 
reference architecture. 

Table 4 Other requirements 


