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Abstract

Studying biodiversity, which is necessary to understand the human influence on nature, is often
done using camera traps. The vast amounts of data recorded this way are labelled manually,
which is a labor-intensive task. Automating this process would therefore allow researchers to
spend more time examining the results rather than labelling them.

In this research, images are automatically classified using a Convolutional Neural Network.
This network is trained on camera trap images from the Snapshot Serengeti project in Tanzania.
Additionally, Convolutional Neural Networks trained for regression are used to predict ambient
lighting in order to better understand their ability to deduce metadata from an image. Metadata
for evaluation is extracted from the image files as well as calculated using empirical models. The
inclusion of metadata as additional features to improve classification is examined.

In the conducted experiments, state-of-the-art classification accuracies are obtained. Differ-
entiating between blank images and images containing animals is done with a Top-1 accuracy
of 97.33%, while classifying in 48 animal species reaches a Top-1 accuracy of 91.46%. Moreover,
it is also shown that, while having no apparent influence in the classification process, metadata
can be accurately predicted from images. It therefore can be concluded that using Convolutional
Neural Networks for labelling images can significantly speed up biodiversity research.





Abstract in het Nederlands

Biodiversiteitsonderzoek, noodzakelijk om de invloed van de mens op de natuur te begrijpen,
wordt vaak uitgeoefend met behulp van cameravallen. Het manueel typeren van de enorme
hoeveelheid gegevens die hierbij verkregen wordt, is een tijdrovende activiteit. Bijgevolg zou de
automatisatie van dat proces betekenen dat onderzoekers meer tijd zouden hebben om resul-
taten te bestuderen.

In dit onderzoek worden afbeeldingen automatisch geclassificeerd met behulp van een Convo-
lutioneel Neuraal Netwerk. Dat netwerk leert namelijk afbeeldingen uit het Snapshot Serengeti
project te herkennen. Bovendien wordt er aan Convolutioneel Neurale Netwerken aangeleerd
om door middel van regressie omgevingsbelichting te voorspellen. Zo kan nagegaan worden of
de netwerken metagegevens kunnen afleiden uit een afbeelding. Er wordt ten slotte onderzocht
of rekening houden met diezelfde metagegevens de classificatienauwkeurigheid verbetert.

De uitgevoerde experimenten behalen hoogstaande nauwkeurigheden. Terwijl blanco af-
beeldingen scheiden van afbeeldingen met dieren een Top-1 nauwkeurigheid van 97,33% behaalt,
bereikt de classificatie van afbeeldingen in 48 diersoorten een nauwkeurigheid van 91,46%. Daar-
naast is aangetoond dat, hoewel ze geen invloed hebben op het classificatieproces, metagegevens
nauwkeurig voorspeld kunnen worden vanuit een afbeelding. Er kan besloten worden dat Con-
volutioneel Neurale Netwerken gebruiken om afbeeldingen te typeren een significante tijdswinst
kan betekenen voor biodiversiteitsonderzoek.





Chapter 1

Introduction

Experimentation and observation are two key aspects of science, allowing to verify theorems or
come to new insights. In biology, researching biodiversity gives insight in the variability between
species and the functioning of ecosystems. In times where climate change and pollution are im-
portant topics for society, studying biodiversity would allow to better understand the human
influence on nature. In [1, p. 10] (from 2005) is stated that ”changes in biodiversity due to
human activities were more rapid in the past 50 years than at any time in human history”. This
only adds to the importance of researching biodiversity. One of the practical ways to study bio-
diversity is studying the species present in an area. Doing this imposes a number of difficulties,
however, as it is not self-evident to simply gain all necessary information of one area.

In various national parks, biodiversity is studied using camera traps. Camera traps are an
efficient and cost-effective tool in monitoring wildlife. These cameras automatically trigger and
capture images of wildlife passing in front of them. The advantage of such cameras is that they
are non-intrusive, collect large amounts of data, can access remote locations and require almost
no labour. Common research applications include detecting endangered, elusive and new species,
and monitoring populations. The main issue faced by researchers is the manual classification
of the huge quantity of collected images into useful information, a time-consuming process [2].
Even when applying citizen science (for example as described in [3]) where thousands of volun-
teers participate in scientific research, in this case image classification, this still is a very large
effort. However, with the recent developments in machine learning, specialized algorithms can
be developed for automatic image recognition with near-human precision.

In this Master’s Thesis, machine learning algorithms are trained and verified on the cam-
era trap dataset provided in the Snapshot Serengeti project [4]. In particular, Convolutional
Neural Networks (CNN) are trained to classify the images belonging to the different species in
the dataset. Two state-of-the-art CNNs are trained: MobileNetV2 and ResNet-50 [5, 6]. These
networks are often denoted as Deep learning networks due to their deep layered architecture.
These CNNs are typically trained using only images, but this research applies additional meta-
data such as the irradiation of the Sun, the phases of the Moon as well as technical parameters
extracted from the cameras. The idea is to give the network a notion of the specific conditions
under which the image is captured (e.g. lighting) for better classification performance. All these
examinations and experiments contribute to the final goal of this research: Improving and au-
tomizing the classification of wildlife camera footage. This way, biodiversity researchers would
need to spend less time acquiring data which speeds up their research.

This document is organized as follows. Chapter 2 is the literature study with an in-depth
discussion of the Snapshot Serengeti survey, an introduction to machine learning and deep
learning, the networks MobileNetV2 and ResNet-50, and the empirical models for solar and
lunar parameters. Following this theoretical background is chapter 3, where the implementation
of these technologies and models for this problem is discussed. After conducting experiments



using the methods of chapter 3, chapter 4 provides the results and discussion for each experiment.
Chapter 5 gives improvements that may be applied in the future, and chapter 6 finally concludes
the research.
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Chapter 2

Literature study

Before the performed research activity can be discussed, it is necessary to have a firm grasp
of the underlying concepts and technology. This chapter will touch on the used dataset, ma-
chine learning and the calculation of solar and lunar irradiation, going more in-depth whenever
necessary. While it is impossible to describe every detail of for example machine learning, this
chapter should provide enough information to understand everything that is discussed and done
in the following chapters.

2.1 Snapshot Serengeti

The dataset used in this Master’s thesis originates from the Snapshot Serengeti project [4].
Snapshot Serengeti is a survey that has been installing 225 camera traps from June 2010 to May
2013 across a 1,125 km2 area in the Serengeti National Park in Tanzania (fig. 2.1). The survey’s
objective is to ‘study spatial and temporal dynamics of large predators and their prey ’ [4, p. 2].
During the 99,241 camera trap days, a total of 1.2 million image sequences consisting of 1 to
3 images of 48 animal species are captured. To cope with this enormous amount of data, a
citizen science website (fig. 2.2) is employed on which the image sets are circulated and labelled
by regular users. During classification of an image set, users can specify whether it contains
an animal species or is a misfire, the type of species, the number of animals, the behaviour
and whether youngs are present. The researchers estimate an accuracy of 96.6% for species
identifications and 90% for species counts, and that 75% of the image sets are misfires. The
complete dataset is available in [7] as open data. Section 3.1 discusses the dataset more in-depth.

The Snapshot Serengeti survey uses two camera trap models: Scoutguard SG565 with in-
candescent flash (fig. 2.3) and DLC Covert II with infrared flash. Both camera’s are equipped
with passive infrared (PIR) sensors that are triggered by a combination of heat and motion, for
example by moving animals. Each camera captures 3 images per trigger or capture event during
daytime. At night, the Scoutguard camera can only capture 1 image per trigger due to the
incandescent flash. The camera sensitivity is set to low to minimize misfires by moving shadows
or vegetation. The Snapshot Serengeti team mentions that weather and animals damage 15%
of the camera traps annually, and that the camera’s batteries and SD cards are replaced every
6 to 8 weeks [4].
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Figure 2.1: Geographic location of Serengeti National Park [8, 9].

Figure 2.2: Snapshot Serengeti citizen science website [10].

(a) (b)

Figure 2.3: (a) Scoutguard camera trap [11, p. 2]. (b) Placement in Serengeti Park [4, p. 4].
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2.2 Machine learning and neural networks

2.2.1 Introduction to machine learning

Despite their popularity nowadays, computing and mathematics are no recent inventions. Al-
ready somewhere between 2700 and 2300BC, the ancient Sumerians devised an abacus to per-
form calculations [12]. During all of history, mathematicians and scientists searched for ways
to describe or understand the world. Even algorithms - ’unambiguous specifications of how to
solve a class of problems’ [13] - were already in use by the Ancient Greeks. An example of
this could be the Sieve of Eratosthenes, an algorithm to find all prime numbers in a certain
range [14, p. 166] [15]. However, although computing and algorithms have been around for a
very long time, their use and popularity as known today really can be attributed to the introduc-
tion of the computer. Nowadays, countless tasks can be automated using computer algorithms.

There is, however, a discrepancy between non-machine learning algorithms and machine
learning algorithms. An algorithm that does not use machine learning usually consists of a
number of fixed rules or conditions to process the data. Take for example the sorting of an array
of numbers. By following a set number of rules, it is perfectly possible for example to order
the numbers from low to high. Another example of non-machine learning algorithms is image
processing using carefully chosen, predetermined parameters.
The use of non-machine learning algorithms is not limitless, though, as there is a large amount
of situations where they do not provide efficient or quick solutions. One of the classic examples
of this is the design of a spam classifier. An intuitive way to do this could be to hard code a
very large set of rules to which emails would need to abide in order to not be classified as spam.
This solution is naive and inefficient, however, as it is quite impossible to implement. Even if
the algorithm would finally work, it could easily be circumvented by slightly adapting the spam
emails. Addressing this issue is one of the many potential uses of machine learning algorithms.
The best way to define machine learning is using the definition that is attributed to Arthur L.
Samuel, the researcher who coined the term machine learning [16]: Machine learning is the “field
of study that gives computers the ability to learn without being explicitly programmed.” Another
famous definition that puts this a little more concretely is:

A computer program is said to learn from experience E with respect to some task
T and some performance measure P, if its performance on T, as measured by P,
improves with experience E. [17, p. 2]

That means that instead of hard coding a set of rules or parameters for the algorithm, the
algorithm actually has to learn by itself what those parameters ought to be.
Image recognition or image classification is one of the major areas where machine learning
is utilized. The following sections will discuss the technologies that are used to perform this
classification to finally result in an implementation for the specific issue in this project.

2.2.2 Basics of machine learning

For problems in machine learning, there is no baseline algorithm. Both the input and the
required output are known. The challenge lies in the transformation from the input to the
output [18]. For the example of spam emails mentioned in section 2.2.1, the input data are the
received emails and the output data is the classification of those emails in spam and non-spam.

Supervised and Unsupervised Learning

There generally are two kinds of machine learning: Supervised Learning and Unsupervised Learn-
ing [19]. Supervised Learning is the kind of learning where a training set is provided, including
labels classifying or determining the training examples. That means that for each training
example, a label or value is given expressing what output is required for that training example.
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Take for example a problem where a machine learning algorithm needs to predict housing
prices based on the size of the given houses. In this case, the training set can be written
as a matrix X, where the first column contains the house sizes and the second column the
corresponding prices:

X =


x11 x12
x21 x22

...
...

xm1 xm2

 =


size1 price1
size2 price2

...
...

sizem pricem



Figure 2.4 also illustrates this problem. Using a given training set, a learning algorithm is
used to form a hypothesis h. This h is the model and takes as input the size of a house to return
as output an approximation of the house prize [20]. This way, the algorithm can learn while
being supervised: Its results need to be justifiable corresponding to the given results. It can
compare each price calculated during training against the given prices and adjust itself accord-
ingly. This way, a ‘good and useful approximation’ is found to correctly classify the better part
of the data [18, p. 2].
There are different kinds of supervised learning algorithms. Some of the more well known are
regression and classification [20]. Regression will, for a given input, typically give one or more
scalar values in a continuous range as output. Classification on the other hand strives to assign
the input to one of multiple output classes. Both kinds will be used in this research, but the
focus will lie on classification.

For unsupervised learning algorithms, however, only input data without labels is given. It is
then necessary to find regularities or similarities within this input data [18]. One of the easiest
examples of unsupervised learning is k-means clustering [21].

Figure 2.4: Schematic example of the training and use of a hypothesis h to estimate housing
prices [20].

Basic elements of machine learning

Even though there are a lot of diverse machine learning algorithms available, a number of basic
elements are always returning. As they will be often used throughout this paper, they will
succinctly be discussed.
The dataset is the departure point for machine learning. By using these data, the necessary
algorithm or model has to be automatically generated. While these data can exist in different
kinds - as training data or otherwise - it always needs to be present in order to allow machine
learning to happen. In this sense, machine learning can also be viewed as a data-driven form of
science.
The model is the structure that, given a certain kind of input data, will produce the required
output data. A good example of such a model is given in 2.2.4, where Artificial Neural Networks
are discussed.
The parameters are the elements the model is made of. More specifically, the parameters are the
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elements that allow for the mathematical interaction with the input data. An easy illustration
of this could be equation 2.1 used in linear regression [22]. Let x be the input data vector and
let W be the parameter matrix. With this information, the output vector y can be found.

y = Wx (2.1)

Training, validation and test

For Supervised learning, the given dataset ought to be split up in 3 partitions: the training set,
the validation set and the test set :

• the training set is used to initially train the model. By calculating the deviation of the out-
put compared to the required output using the current parameters, the model parameters
can be adjusted;

• the validation set is used to test the generalization ability [18]. Generalization is further
discussed in the next section;

• finally the test set is used to effectively calculate the prediction error for a model. This
error can for example be used in official publications or statements. [18].

Overfitting, underfitting and generalization

Whenever machine learning is used, it is important to keep in mind to not overfit (or underfit)
the model on the training data. Figure 2.5 based on data from [20] illustrates this very nicely.
Overfitting the model means that the model will learn too many details concerning the training
set, meaning that it will gain high accuracies on the training set. It will however score poorly
on new data it has not seen before, as that data most likely does not have the details the
model is focused on. Underfitting is the opposite of overfitting, meaning that the model is
not sufficiently trained to recognize the data. A model that is generalized will have a lower
accuracy on the training set compared to an overfit model, but it will perform better on data
it has not seen before. Regularization then means ensuring that the model can deal with all
general appearances of data, rather than focusing on specific details that only a small subset of
all possible data contains [18,20].

(a) Overfitting (b) Generalized (c) Underfitting

Figure 2.5: Based on the regularization parameter λ, different ways to fit the model to the given
data are presented. The data represent microchips that are either accepted or rejected after
production, based on two tests. The decision boundary visualizes how the machine learning
algorithm will decide if a microchip is accepted based on given test results. Depending on λ, the
model is either overfitting (a), underfitting (c), or decently generalized (b). Data and figures are
introduced by [20].
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2.2.3 Loss functions and gradient descent

Loss functions

As previously stated, in all supervised learning problems the given dataset contains the correct
output alongside the given inputs. It is therefore necessary to be able to evaluate the calculated
output when compared to the required output. This is done using a loss function1. In [23], the
output of the supervised learning system is presented as M(Zp,W). This stands for the output
of the function M for the pth set of input data Z and the set of parameters W. The cost function
then could be Ep=C(Dp,M(Zp,W)), calculating the deviation of the calculated output of M in
comparison to the actual output D for the pth training example.
Perhaps the most common loss function is the Mean Squared Error MSE, given in eq. 2.2 [20].
In this case, there is a total of m training examples Zp.

MSE =
1

2m

m∑
p=1

(M(Zp,W )−Dp)2 (2.2)

There exist many more loss functions, but discussing those would be beyond the scope of
this research. Whenever a specific loss function is needed, it will be discussed at that point.

Gradient descent

To be able to calculate the error that is made when comparing to the required results is one
thing, using this error to update the model to get smaller errors is another. Very often, this
is done with Gradient Descent. In order to fully grasp what this is, first equation 2.2 should
be observed a little more closely. It is easy to see that the loss will be the smallest when the
model output M differs very little from the actual output D. As this difference increases, the
MSE rises in a quadratic manner. Therefore, if the correctness of output is to be maximized,
the loss function needs to be minimized.
Take for example the output function M with two parameters w0 and w1 in equation 2.3. The
MSE loss function for this output can then be given with equation 2.4.

M(Zp,W ) = w0z0 + w1z1 (2.3)

C(Dp,M(Zp,W )) =
1

2m
(w0z0 + w1z1 −Dp)2 (2.4)

Now, if for training example p the required output would be 0, the loss function could be
plotted in function of w0 and w1. Figure 2.6 shows there is a minimum loss value. At that point,
the output value calculated by M using w0 and w1 will approximate the required output value
the best. This is the point that the model needs to reach.

While this figure provides visual insight in the MSE loss function, it can also help with
understanding gradient descent. In gradient descent, the gradient of the loss function is used to
calculate how weights need to change in order to decrease the loss. For the given example, the
gradient can be found using equation 2.5 [24].

∆C =
∂C

∂w0
∆w0 +

∂C

∂w1
∆w1 (2.5)

Equation 2.5 can be interpreted as following: The change in loss is equal to the change of
each parameter times the partial derivative of that parameter. In this case, the only parameters
are w0 and w1. That means that the gradient can be written as in equation 2.6, while the
parameter vector ∆W is given in equation 2.7 [24].

1Other common names are cost function or error function.
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Figure 2.6: Loss function in equation 2.4 with input value Zp=[1,1] and required output value
Dp=0. Notice that there is a minimum where the parameters W will result in the best approx-
imation of the required output. Here w0 and w1 respectively are on the x-and y-axes and the
loss is on the z-axis.

∇C =

(
∂C

∂w0
,
∂C

∂w1

)T

(2.6)

∆W = (∆w0,∆w1) (2.7)

Using these equations, the change in loss can finally be written as a term of the gradient and
the parameters (equation 2.8).

∆C = ∇C∆W (2.8)

According to equation 2.8, the change of the parameters ∆W can be chosen in such a way
that the change of loss ∆C is negative. Since the loss needs to be minimized, this is exactly
what is needed to change the parameters in such a way that they provide better results [24].

Gradient descent finally consists of updating the parameters using the property of equation
2.8 [20, 24]. For the two parameters in the example, this would result in the equations 2.9 and
2.10, where w′0 and w′1 are the updated parameters.

w′0 = w0 − α
∂C

∂w0
(2.9)

w′1 = w1 − α
∂C

∂w1
(2.10)

α is the learning rate LR, a coefficient that controls how much the parameters change for a
given gradient. With all this information, equation 2.11 finally gives the gradient descent for a
parameter vector W, given the gradient of the loss ∇C.

W ′ = W − α∇C (2.11)

The entire process of gradient descent can intuitively be understood using figure 2.6 again.
If the current loss were a person standing on a point of the graph, gradient descent would be
that person stepping downwards to the bottom of the graph. Every step he takes would be in
the direction of the steepest slope. The learning rate would in that case be the step size. While
in reality no loss functions are as simple as in this example, it does give a good insight in how
gradient descent can be used to train a network.
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2.2.4 Artificial Neural Networks

One of the most well known kinds of machine learning methods is the Artificial Neural Network
(ANN). This section discusses neural networks, their construction and their different compo-
nents.

Neurons

Figure 2.7 gives the basic representation of the ANN. Each neuron is connected to other neurons
by its inputs, its outputs or both. Neurons that only provide output signals are the neurons
of the input layer, while neurons that only have inputs belong to the output layer. All other
neurons have both input and output signals and belong to a hidden layer [20]. Each signal
also has a weight associated with it. The simplest mathematical model of a neuron is given in
equation 2.12, according to [18].

y =

d∑
j=1

wjxj + w0 (2.12)

Figure 2.7: Basic representation of a neural network. Each circle is a neuron, while each arrow
signifies a connection between two neurons. Note: the bias unit is not included in this schematic.

Let the neuron have n input signals xj with weights wj . In that case w0 is the weight
belonging to the bias unit x0 with a constant value of 1. Figure 2.8 visualizes this model. An
equation can also be given for weights and input values that are stored in matrices. Let w be
the 1×n+1 matrix containing all weights, and let x be the n+1-dimensional vector containing
all input signals:

w =
[
w0 w1 . . . wn

]

x =


1
x1
...
xn


If this is the case, equation 2.13 gives a vectorized version of equation 2.12, allowing for

faster computation [18,20].

y = wTx (2.13)
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Figure 2.8: A schematic drawing of a neuron is depicted here. Taking all of its inputs xj and
the corresponding weights wj , the neuron calculates an output y.

Activation function

In the previous section, an example of a neuron with a simple linear activation function is given.
While it makes for an easy example, there is a litte more to the activation function. The acti-
vation function is used to transform the given inputs into an output [25]. It also allows for a
non-linearity to be implemented. Non-linearities allow the network to learn relations between
input and output that are non-linear and more complex than linear relations [26]. [27] proves
that a neural network with only one hidden layer with non-linear sigmoidal activation functions
can approximate about any decision region. On the contrary, in [28] is stated that a multilayer
neural network without non-linearities could be perfectly recreated using a single layer neural
network (with sigmoidal non-linearities). There are many kinds of activation functions. This
section will discuss the most important and common ones.

The sigmoid function is an older non-linear activation function, traditionally used in feed-
forward neural networks. It is currently still used in Recurrent Neural Networks (RNN) [29], for
example in Long Short-Term Memory (LSTM) Networks2. Equation 2.14 presents this sigmoid
function [31], a graphical representation is given in figure 2.9.

f(x) =
1

1 + e−x
(2.14)

Typical for this activation function (and all other commonly used activation functions) is
that it has an output value for all real input values. In addition, it has a positive derivative
for any input value [32]. It is important to note that the sigmoid function has a number of
disadvantages however. These disadvantages include [31]:

• gradient saturation,

• slow convergence,

• nonzero centered output,

• sharp damp gradients.

The ReLU [33] nonlinear activation has demonstrated to be preferable in deep feedforward
neural networks (due to e.g. the vanishing gradient problem in sigmoid that leads to very slow
convergence in deep neural networks). It is first introduced by [34] and provides better general-
ization and performance in deep learning when compared to the sigmoid activation function [31].
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Figure 2.9: The sigmoid activation function.
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Figure 2.10: The rectified linear unit activation function.

As also shown in equation 2.15 and figure 2.10, the ReLU is significantly simpler than its sigmoid
counterpart. It can also be seen as a threshold operation [31].

f(x) = max(0, x) =

{
x, x ≥ 0

0, x < 0
(2.15)

While this activation function is not differentiable in zero, this is no issue as a value of exactly
zero will hardly ever be used as input value. The left and right derivates still exist for zero,
which means that while they are not equal, any value extremely close to zero will still result in
a valid derivate [35]. The reason the sigmoid function (among others) suffers from the vanishing
gradient problem is that values much greater or smaller than zero result in a derivate that is
nearly zero, which significantly reduces propagation throughout the network [36]. ReLu does
not have this issue as values far greater than zero still have a relevant derivate, while values
smaller than zero always result in a derivate of zero. In [37], it is stated that the use of ReLU
results in easier optimization, faster convergence, better generalization and faster computation.

The network

While the study of the individual neurons and their functioning is important, the real strength
of the artificial neural network lies in the combination of many neurons in layers. As previously
discussed, an ANN contains an input layer, an output layer and at least one hidden layer [20].
Figure 2.7 shows this concept for an ANN with two hidden layers. Concretely, the hidden layers
map the input layer to the output layer.
The number of outputs for a neural network depends on the task at hand. If, for example, a
network needs to decide whether a received email is spam or not, the task can be done using only
one output. Providing different elements of the email as input, the network calculates whether
the email is spam or not and output a number between 0 and 1. In this case, a zero could be the
equivalent of certainly not spam, while the 1 would be the equivalent of certainly spam [20]. On
the contrary, if the network needs to recognize for example certain animal species on an image,
multiple outputs are necessary. Each of the outputs then corresponds to one of the possible
classes the image can belong to. Take for example a network that is trained to recognize farm
animals. Possible output classes are then: Cow, Sheep, Chicken and Dog. In this ANN, every
input image will result in a score for each output class. A simple way to decide on the animal
portrayed on the image could then simply be to take the output class with the highest value.
Whenever using ANNs or derivatives of that technology, forward propagation and backpropa-
gation are two very important concepts [20]. They will be briefly discussed in the following
paragraphs.

2An in-depth introduction to RNN and LSTM can be found in [30].
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Forward propagation

Forward propagation is the process in which the input values are forwarded throughout the ANN
to finally result in some output value. To illustrate this, an example based on the course example
in [20] will be used. Considering figure 2.7, let x be the 4-input vector containing the bias unit

1 and the 3 input values. Furthermore, let w(k) be the matrix containing the weights w
(k)
ij for

the layer k, with each row i corresponding to the weights for the inputs of the i -th neuron of
that layer. The first 4×4-matrix w(1), containing the weights mapping the input values into the
first hidden layer, is given below:

w (1) =


w

(1)
00 w

(1)
01 w

(1)
02 w

(1)
03

w
(1)
10 w

(1)
11 w

(1)
12 w

(1)
13

w
(1)
20 w

(1)
21 w

(1)
22 w

(1)
23

w
(1)
30 w

(1)
31 w

(1)
32 w

(1)
33



In addition, let g(x) be the activation function of an individual neuron. Moreover, let a
(k)
i

be the output of a neuron i on layer k. The vector of the outputs of all neurons on layer 1, a(1)

can then be given:

a (1) =


g(w

(1)
00 x0 + w

(1)
01 x1 + w

(1)
02 x2 + w

(1)
03 x3)

g(w
(1)
10 x0 + w

(1)
11 x1 + w

(1)
12 x2 + w

(1)
13 x3)

g(w
(1)
20 x0 + w

(1)
21 + x1w

(1)
22 x2 + w

(1)
23 x3)

g(w
(1)
30 x0 + w

(1)
31 x1 + w

(1)
32 x2 + w

(1)
33 x3)



Here x0 is the value 1 of the bias unit. Considering all this information, equation 2.16 shows
that there is a more succinct notation for finding a(1).

a(1) = g(w(1)x ) (2.16)

Equation 2.17 then gives the more general notation for finding the output of a layer k.

a(k) = g(w(k)a(k-1)) (2.17)

Finally, for the given example, the output is given in equation 2.18.

y = g(w(3)a(2)) = g(w(3)g(w(2)a(1))) = g(w(3)g(w(2)g(w(1)x ))) (2.18)

This simple example shows how the output of an ANN can be calculated using the weights
and the input values. Note that the bias units of the hidden layers have been left out for
simplicity’s sake.

Backpropagation

In machine learning, a training process is necessary to tune all the parameters to correctly
calculate the output values given some input values. For an ANN, these parameters are the
weights connecting the neurons. In order to train these parameters, a backpropagation algorithm
BP is used. The principle of BP has first been discussed in [38], originally published as a master’s
thesis [19]. One of the main papers introducing BP for an actual ANN can be attributed to [39],
where a theoretical base for BP in ANNs is given. In its essence, BP can be viewed as an
operation very similar to forward propagation. As previously mentioned, in forward propagation
the input data is pushed through the network to calculate the output. In BP however, the
output value is used to adjust the weights of the network. This is done by calculating the error
of the output during training (compared to the required output for the given input) and then
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propagating that error from the back to the front of the network. The main problem in doing
this is finding how much a single parameter influences the final output [39].
As previously mentioned, gradient descent is used to adjust parameters to correctly process
data. In a simple linear machine learning model, this process is fairly straightforward. In ANNs
however, backpropagation is necessary to perform the gradient descent correctly. Gradient
descent works by calculating the partial derivatives of the loss with regards to each parameter
for an input training set [23]. These partial derivatives can then be used as the gradient to
calculate the update values for those parameters. Explaining this principle in-depth would lead
too far, however. A good explanation of BP can be found in [23], among other sources.

2.2.5 Deep learning

Conventionally, two kinds of learning with ANNs exist. Shallow ANNs are built using only a
few hidden layers. Deep ANNs on the other hand, consists of many hidden (or other) layers.
Machine learning using Deep Neural Networks DNN is called Deep Learning DL. While many
types of DNNs exist, the focus in this research will lie on the Convolutional Neural Networks.
More information concerning DL and its history can be found in [19].

2.3 Discussion of convolutional neural networks

2.3.1 Convolutional Neural Networks

As a specialized kind of ANNs, Convolutional Neural Networks (CNNs) are a technology used for
image recognition (among other things). One of the earliest examples of something resembling a
CNN is [40, p. 548], where small details or features in a 16×16 image are used to find information
about general features in that image (see also figure 2.11a). The author, Yann LeCun, further
develops this network into LeNet-5 [41, p. 7], where the characteristic shape of the CNN can
already be clearly seen (figure 2.11b). At this point the name Convolutional Network also is in
use. More than a decade later, another CNN revolutionized image recognition. AlexNet [42]
convincingly wins the ImageNet Large Scale Visual Recognition Challenge ILSVRC [43, 44],
gaining significantly higher accuracy ratings than the competition. In its essence, AlexNet does
not structurally differ much from LeNet-5, sporting similar layers as can be seen in figure 2.12.
An important evolution however is that AlexNet can rely on much more powerful hardware to
train, as CNNs were too expensive to handle before that time, as well as the use of the ReLU
(Rectifying Linear Unit) as a non-linear activation instead of the traditional sigmoid function.
Following AlexNet, CNNs rapidly grew in popularity while delivering increasing accuracies in for
example VGGNet [45], GoogLeNet (Inception.v1) [46,47] and ResNet [6]. The following sections
explain the key components of a CNN, allowing for a better understanding of the functioning of
a CNN.

2.3.2 Convolution Layers

The namesake layer of the CNN is the convolution layer. This is the layer responsible for
recognizing distinct features within an image, which is necessary for classification.

Convolution for digital images

Before the convolution layer in the CNN can be discussed, it is important to define what con-
volution is within the context of image processing. Let f be a grayscale image. This image
can then be represented as a m×n matrix, where m and n respectively are the number of pixel
columns and rows of the image. Additionally, let w be a (2k+1)× (2l+1) window. Considering
m, n, k and l ∈ N, f and w can be defined using equations 2.19 and 2.20, for the discrete
variables x and y. The convolution of the image f by window w can then be written following
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(a) Digit Recognition

(b) LeNet-5

Figure 2.11: Two early CNNs designed by Yann LeCun [40, p. 548] and [41, p. 7].

equation 2.21 [48].

f(x, y) =

{
f(x, y) if 0 ≤ x < m and 0 ≤ y < n

0 otherwise
(2.19)

w(x, y) =

{
w(x, y) if −k ≤ x ≤ k and −l ≤ y ≤ l
0 otherwise

(2.20)

(f ∗ w)(x, y) =

k∑
s=−k

l∑
t=−l

w(s, t)f(x− s, y − t) (2.21)

Essentially, w moves over f while continuously calculating the dot product of itself and the
pixels of f it is currently aligned with. The result is then the image formed using these dot
products. Taking the convolution of a RGB image and w can be done by convolving every color
component of the image with w seperately, and then concatenating the results. Alternatively, a
(2k+1)×(2l+1)×3 window can be used to convolve with the image and retain a result a×b×1,
where a and b are the dimensions of the image after convolution. This principle is demonstrated
in figure 2.13.

Figure 2.12: AlexNet, as introduced in [42, p. 5].
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m×n×3 2k + 1× 2l + 1× 3 a×b×1

convolve result

Figure 2.13: The functioning of the convolution layer is demonstrated here.

Additionally, a convolution operation can have a stride. The stride is the number of steps s after
calculating a dot product. For the convolution in equation 2.21, the stride is 1. It is important
to note that not all convolutions seem possible. Take for example the convolution of a 4× 4× 3
image with a 3×3×3 window with a stride of 2. It is easy to see that the window will, after one
step, exceed the image. To resolve this issue, padding can be used. Various kinds of padding
exist, such as for example zero-padding. Zero-padding is the operation artificially adding zeros
to the border of the image to enable specific convolution operations. In the given example,
the zero-padded border needs to be one zero thick to allow the convolution to take place. In
equations 2.19 and 2.20 this zero-padding is included by having the value of respectively f and
w be zero outside of the domain.
The use of this kind of convolution is prevalent in digital image processing, where specific values
for w are used to detect or extract certain features in digital images [49]. If the parameters of w
(the values of w) are trained using machine learning, w can be trained to detect certain details
or features in an image.

Convolution in convolution layers

Using this prelimenary definition of convolution, the convolution layers can be discussed. This
section is based on [22], where a more in-depth explanation can be found. As demonstrated for
a single convolution operation in figure 2.13, the convolution layer takes an input image and
performs a convolution operation upon it. Typically, the convolution has specific 3D dimensions
and a certain stride. The result then has a reduced height and width (if no excessive zero-
padding is used), and a depth of 1. [22] provides more insight regarding the exact change in
height and width.
Fundamentally, the convolution layer is a stack of u windows that are all applied to the same
input image (or activation maps). The resulting stack of output images (activation maps3) then
has a depth of u, given that the result of each convolution has a depth of 1. Specifically, that
means that the chosen number of windows determines the depth of the result. The trainable
parameters of these layers then are the values of each individual window. Applying machine
learning allows for each convolution window to be trained to recognize certain features. Typically,
the first convolution layers detect general features (colors, borders, textures, larger objects,...),
while the final convolution layers help classify into the output classes (as layers are deeper into
the network, the detected features grow more specific) [22].

3Essentially, an activation map can be seen as the output image after the convolution of an input image.
Activation maps are usually not regarded as images, however, as they are inside the CNN and have a depth that
is far larger than the usual depth of an image (RGB images have a depth of 3). Where images are meant to be
visualized, activation maps are intermediate values in a large calculation not meant to be visualized.
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Figure 2.14: Max Pooling according to [22]. The image is divided into 2 × 2 sections, the
maximum of each section is taken and finally used to get the values of the downsampled image.

2.3.3 Pooling Layers

Pooling Layers fulfill a downsampling role in the CNN [22]. They essentially compress the
height and width of one image or activation map. This is done by taking a section of the input,
performing an operation on that section to finally return the result in a single pixel or scalar.
Note that this operation is performed on each activation map in a stack with depth u. Two of
most commonly used layers are max pooling (performing a maximum operation) and average
pooling (performing an averaging operation). Figure 2.14 provides a simple example of max
pooling, inspired by [22].

2.3.4 Fully Connected Layers

Fully connected FC layers finally tie the CNN together by performing classification. They take
the data presented by the convolution and max pooling layers and process it the way a regular
ANN would. This is done by performing a pooling operation on the final convolution activation
maps and flattening the result into one feature vector or hidden layer. Figure 2.15 demonstrates
this concept. Note that many modern networks (for example ResNet [6]) use global average
pooling (section 2.3.5) rather than regular pooling, which alleviates the need for flattening. The
output of this single layer (with an arbritary number of additional FCs) is then finally fed into
a final layer with a softmax activation.
Introduced in [50], the softmax function takes a number of input values and scales them between
0 and 1. The general formula for this function is given in equation 2.22 [50, p. 231]. If N would
be the number input values Ij , Oj would be the corresponding output values according to the
softmax function.

Oj =
eIj

N∑
k

eIk

(2.22)

Taking the output from the previous FC and bundling it for N separate classes (hidden
units), all inputs for the softmax function can be found. A score is then calculated for each class
using equation 2.22 to achieve a prediction between 0 and 1 (where the sum of all scores is 1).
These values are the certainty of the network that the corresponding classes are present on the
input image.
Overall, this means that first the convolution layers detect the presence of particular features
in an image. Next, the FC’s task is to take all this information and tie it together to classify
the image. If for example the image contains wheels, headlights and side mirrors, the FCs could
give the class car a high classification score.

2.3.5 Global average pooling

Where standard pooling layers perform downsampling on an input image, global average pooling
reduces the entire input activation map into a single value. First introduced in [51], its authors
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Figure 2.15: General idea of turning activation maps into a FC.

argue that fully connected layers (see section 2.3.4) are prone to overfitting. To prevent this,
they reduce the need of fully connected layers by directly feeding the pooled output of the
activation maps into the softmax FC layer. This is done by calculating the average value of
each activation map rather than using max/average pooling and retaining a smaller activation
map. Intuitively, this means that each activation map is responsible for the confidence score
of one particular category. Taking the example of the car in section 2.3.4, one activation map
should be responsible for detecting the presence of a headlight. Another map should then give
a confidence score for the presence of side mirrors, and a third should detect wheels. In [51],
the global average pooling is presented as an alternative to other kinds of regularization for
the FC. Networks, such as ResNet [6], have adopted this practice. Figure 2.16 gives a simple
representation of the principle of global average pooling.

5 4 2 6

5 5 0 0

2 10 4 1

1 9 8 2

4

Figure 2.16: Example of a global average pooling operation. Rather than downsampling, the
result is the average of each value in the 4× 4 activation map.

2.3.6 Batch Normalization Layers

While initial CNNs such as AlexNet favor dropout as a regularization methode [42], dropout
has since been replaced by batch normalization layers. Batch normalization [52] is necessary to
counteract Internal Covariate Shift in a network. Internal Covariate Shift is an issue whenever
the update of parameters in the network causes deeper layers to adapt to the new distribution
of their inputs (mainly slowing the training). Solving Internal Covariate Shift can be done using
a trainable normalization layer, the batch normalization layer, that normalizes the input. For
a n-dimensional input x = (x(1), x(2), ...x(n)), equation 2.23 [52, p. 3] gives the normalization of
that input for a mean and variance calculated over the batch. Equation 2.24 [52, p. 3] then gives
the calculation that batch normalization layer performs. Note that the trainable parameters γ
and β allow the network to scale and shift the normalized input.

x̂(k) =
x(k) − E

[
x(k)

]√
Var

[
x(k)

] (2.23)

y(k) = γ(k)x̂(k) + β(k) (2.24)

The advantages of batch normalization, as stated in [52], are two-fold. First, because it
prevents small changes in parameters from having large influences deeper in the network, the
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learning rate can be increased. A second advantage is the regularization that is provided. This
is because the entire batch influences the input value x̂(k), which is found to have a regularizing
effect4.

2.4 Convolutional Neural Network Architectures

Besides discussing the basic building blocks used in CNNs, it is important to examine the
network architectures that will be used in this research. Each of these networks does not simply
use standard convolution or pooling layers, but rather adds refinements to these layers for
improved performance.

2.4.1 ResNet

As a popular and powerful CNN, the ResNet architecture [6] is commonly used for deep learning
image recognition tasks. When ResNet was initially presented, it was designed to handle a
degradation problem (vanishing gradients) introduced in the growing deep learning structures.
With for example VGGNet [45] as a successor of [42], a general tendency was to simply add more
layers in an attempt to increase accuracy. In [6] however, it is proven that adding layers causes
a higher training error rather than increased accuracy. That is why they introduce residual
learning in an effort to keep allowing for increased network depth.

Residual learning

At the base of the architecture of ResNet lies the method of residual learning. This method
entails that a number of layers, greater than two, would need to learn the mapping H(x) where
x is the input of those layers. Corresponding to [6], these layers could also learn the mapping
F (x) = H(x) − x instead of H(x). To ensure that the final output still is H(x), the output of
those layers will then have to be added with x. The output is then F (x)+x, which should result
in the same as H(x). Figure 2.17 demonstrates this principle.
If it is assumed that identity mappings (adding the x) are optimal, then it is reasoned by [6]
that it is easier to push F (x) to zero than to push H(x) to x. Using the residual technique,
training the network would in this case just be bringing the weights of the layers to zero. In
the experiments of [6], it is shown that the learned values for F (x) are small (close to zero),
indicating that the assumption is true enough for the residual learning to improve accuracy.
The practical implementation of the technique of residual learning is shown in figure 2.17 and
indicated in equations 2.25 and 2.26 [6, p. 3]. F (x,Wi) is the residual mapping of the input
x with the weights Wi. By simply adding x to the result of F (x,Wi), the identity mapping
is achieved. This only works if the dimensions of x and y are the same however (eq. 2.25),
otherwise a linear projection Ws is necessary (eq. 2.26).

y = F (x,Wi) + x (2.25)

y = F (x,Wi) +Wsx (2.26)

Residual Networks

Using the practical implementation of residual learning, [6] designed a number of architectures
called Residual Networks or ResNets. They are usually identified as ResNet-n, where n would
be 18, 34, 50, 101 or 152 depending on the number of layers in the network. ResNet-18 and
ResNet-34 perform identity mapping every two layers, while the other architectures do that
every 3 layers instead. Noteworthy is that the convolution windows used for the first are all of
size 3×3, while the latter have windows in the order of 1×1, 3×3 and 1×1 for the three layers

4Otherwise, x̂(k) would not be influenced by other values in its batch.
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Figure 2.17: Base building block of residual learning [6, p. 2].

respectively. All architectures use batch normalization and max pooling between activation
maps and global average pooling to feed the final activation maps into a softmax function.

2.4.2 MobileNetV2

Most deep learning architectures seek to grow ever larger resulting in heavy computational and
memory requirements. This causes them to be unusable by mobile phones or embedded plat-
forms. MobileNet [53] and MobileNetV2 [5] strive to resolve this issue by providing a smaller,
more efficient solution. This is done using several innovations (in this section the main focus
lies on MobileNetV2).
Firstly, they use Depthwise Seperable Convolutions rather than standard convolutions. Depth-
wise Seperable Convolutions occur in two steps. In the first step, the depthwise convolution, a
single filter is applied to each input channel. In the next step, the pointwise convolution, a 1×1
filter combines the outputs of the first step. Standard convolution performs both tasks in one
step, causing a significant increase in computational cost and model size [53].
Secondly, linear bottlenecks reduce the number of input channels for each convolution layer.
A bottleneck layer is a set of layers such as for ResNet-50, ResNet-101 or ResNet-152: 1 × 1
followed by 3×3 followed by another 1×1 layer. The 1×1 layers are used to reduce the number
of channels the 3 × 3 layer needs to process. If the number of input channels would be A, the
first 1 × 1 layer would produce B < A activation maps that the 3 × 3 receives as input. The
last 1 × 1 layer would then return the number of input channels to A. This procedure is more
efficient than simply using a series of convolution layers. In [5], more in-depth explanation and
arguments are given to substantiate this claim. They also refer to the ratio between A and B
as the expansion ratio.
Finally, in [5] the intuition that the bottleneck part (the 3 × 3 part) contains all useful infor-
mation while the 1 × 1 layers (expansion layers) simply provide resizing of the dimension is
followed. Rather than providing shortcuts between expansion layers, as done for residual learn-
ing, shortcuts between the bottlenecks are used instead. This method of working is referred to
as inverted residuals.
Using all these techniques, MobileNetV2 is a memory-efficient network that retains accuracy and
is computationally more efficient than other state-of-the-art networks. To demonstrate this, [5]
compare their performance against NasNet-A [54] (a state-of-the-art architecture) for training
on the ImageNet [44] dataset. Where NasNet needs 5.3 million parameters and has 564 million
Multiply-Adds, MobileNetV2 (only) requires 3.4 million parameters and 300 million Multiply-
Adds while the obtained accuracy for the networks is similar (MobileNetV2 even scores a little
higher).

2.5 Related work

In research, it is important to be able to compare results with relevant work whenever possible.
Therefore, in this section a number of other projects working on wildlife classification based on
camera trap data are discussed.
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2.5.1 Chen et al.

In [3], Guobin Chen et al. describe one of the first attempts to automate animal classification
for camera trap data on a large scale. They first use Ensemble Video Object Cut (EVOC) [55]
to extract the Region Of Interest (ROI) from the images. The resulting ROIs are then used for
image classification using two machine learning algorithms: Bag of visual Words (BOW) [56]
and Deep CNN. Figure 2.18 visualises the used Deep CNN. Their dataset consists out of 14346
training examples and 9530 testing examples for 20 North American animal species. Using this
dataset to train and test their algorithms, they reported an accuracy of 33.507% for the BOW
and an accuracy of 38.315% for the Deep CNN. While these accuracies are quite low, these
results at least indicate that a Deep CNN is more suited for the classification task, compared
to a BOW. The authors expect that collecting more camera trap data will improve the species
recognition performance.

Figure 2.18: The Deep CNN used by Chen et al. to classify cropped camera trap data [3, p. 860].

2.5.2 Gomez et al.

More recent and more relevant to this research is the work of Gomez et al. [57]. Its relevancy in
the first place comes from working on the Snapshot Serengeti dataset, which is the dataset used
in this project. In addition, they examine both different versions of this dataset and different
CNN architectures. More specifically, they use an unbalanced version and a balanced version of
the dataset to demonstrate the effect of unbalance in the dataset. Unbalance in this case means
that some species are far more present in the dataset than other species. Additionally, a version
of the data with only images where an animal is present in the foreground is used. Finally, a
fourth version only uses manually segmented images providing a good view of the visible (part
of the) animal to simulate results in case of an ideal segmentation algorithm. These datasets
are labelled D1 through D4. The used CNNs are AlexNet, VGGNet, GoogLeNet, ResNet-
50, ResNet-101, ResNet-152 and finetuned versions of AlexNet and GoogLeNet, respectively
labelled A through H. These networks are trained using transfer learning. Transfer learning is
repurposing a network that is pre-trained on a certain dataset for a different dataset. In [57],
this is done in two ways. The finetuned networks retrain all layers on the Serengeti dataset.
On the contrary, the other six networks do not retrain the high-level convolution layers, but use
these as an input for a linear classifier.
Figure 2.19 gives the results for the conducted experiments. While for D4 deceptively high
Top-1 (88.9%) and Top-5 (98.1%) accuracies are reported5, it is important to keep in mind that
these results are attained using manually segmented images. As the algorithm to automatically
segment these images does not currently exist, such accuracies cannot be expected in a regular
situation. Accuracies for less tailored versions of the dataset are lower, but still significantly
better than those reported in [3]. When using network E in the situation of [3], higher accuracies
have indeed been reported. More importantly, these experiments indicate that the best results
are always obtained by the ResNet architectures for this dataset.

5The significance of Top-1 and Top-5 accuracies is discussed in section 3.3.6.
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Figure 2.19: Results of the experiments performed in [57, p. 10]. Graphs a through d represent
the results for the datasets D1 through D4, while each bar in the graphs presents the result of
a specific network on that dataset.

2.5.3 Norouzzadeh et al.

In [58] additional research has been conducted on the Snapshot Serengeti dataset. Not only is
the classification of the images researched, but also other classification tasks have been imple-
mented: counting animals, describing the animal activity and detecting the presence of young
animals. Moreover, they claim to have achieved better results than [57], as they report a higher
accuracy and have not limited the dataset in the ways [57] did. Their classification uses a two
step approach. In the first step, the images containing animals are detected. The reported ac-
curacy for this task is ≥ 95.8% for all used networks. Hereafter, images containing animals are
classified. Table 2.1 gives the results of this classification for the various CNNs used. Note that
the classification of animals is tested separately of the classification into blanks and animals.
Consequently, the reported accuracies are calculated solely with the performance on images con-
taining animals (which means it is assumed that all images without animals are filtered during
the previous step). The next steps, respectively counting the animals and detecting attributes
(whether the animals are eating,...) will not further be discussed here. As shown in table 2.1,
the accuracies are significantly higher than in [57]. [58] even claims that they have reached the
same approximate accuracy as the human volunteers responsible for labelling the dataset. At
any rate, these excellent results provide a good point of reference to work with. Disregarding
the ensemble, the ResNet architectures again reach the highest accuracy for the classification
task.

2.6 Solar irradiation

In order to provide a CNN with additional insight, it might be beneficial to use metadata
concerning the processed images to provide additional training features. This section discusses
a possible metadata feature, namely the amount of sunlight in an image. To do this, the clear-
sky model of the American Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) [59] can be used to approximate the solar irradiance incident on a specific location
at a specific time. This section will give the empiric equations provided by [59] that allow to
calculate the solar irradiation for a given location at a given time.
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Table 2.1: Result of Norrouzadeh et al. [58]. NiN stands for Network in Network [51], the
ensemble is created using all the other networks.

Architecture Top-1(%) Top-5(%)

NiN 92.0 98.4

AlexNet 92.4 98.5

VGG 92.4 98.6

GoogLeNet 93.0 98.6

ResNet-18 93.2 98.6

ResNet-34 93.3 98.6

ResNet-50 93.6 98.4

ResNet-101 93.8 98.8

ResNet-152 93.8 98.8

Ensemble 94.9 99.1

2.6.1 Solar irradiation

For all solar irradiation calculations, the solar constant Esc = 1367 W/m2 as defined in [60, p. 10]
will be used. Equation 2.27 then gives a way to calculate the extraterrestrial solar radiance
E0 [59, p. 14.8]. n in this case is the day of the year (January 1 would be n = 1, December 31
would be n = 365 for a non-leap year).

E0 = Esc

(
1 + 0.033 cos

(
360◦

n− 3

365

))
(2.27)

2.6.2 Time

In order to be able to perform the calculations that are defined further on in this section, it is
necessary to find a value for the Apparent Solar Time AST. If the Apparent Sun can be defined
as the Sun as it appears to the observer [61], the AST is the time corresponding to that apparent
location. The AST can be found using equation 2.28 [59, p. 14.8].

AST = LST +
ET

60
+
LON − LSM

15
(2.28)

This equation requires the Local Standard Time LST in decimal hours, the equation of time
ET in minutes, the longitude LON to the East of Greenwich in degrees and the longitude of the
local standard meridian LSM to the East of Greenwich in degrees. Equations 2.29 and 2.30 give
a way to calculate ET [59, p. 14.8], equation 2.31 [59, p. 14.8] gives a way to calculate LSM and
equation 2.32 [59, p. 14.9] finally gives a way to calculate LST for a given Daylight Saving Time
DST. In equation 2.31, TZ stands for the time zone.

ET = 2.2918[0.0075 + 0.1868 cos(Γ)− 3.2077 sin(Γ)

− 1.4615 cos(2Γ)− 4.089 sin(2Γ)]
(2.29)

Γ = 360◦
n− 1

365
(2.30)

LSM = 15TZ (2.31)

LST = DST − 1 (2.32)
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2.6.3 Astronomy parameters

It is necessary to know the current position of the Sun, relative to Earth, to be able to model
the solar energy reaching Earth. The first necessary value is the solar declination δ, the angle
between the Sun-Earth line and Earth’s celestial equator [62]. An approximate value for δ in
degrees can be found using equation 2.33 [59, p. 14.9].

δ = 23.45 sin

(
360◦

n+ 284

365

)
(2.33)

If the declination represents the angular displacement perpendicular to the celestial equator
(the North-South angle), the hour angle ω represents the angular displacement relative to the
local meridian (the East-West angle) as seen in figure 2.20a. Equation 2.34 [59, p. 14.9] gives
the calculation for ω.

ω = 15(AST − 12) (2.34)

(a) (b)

Figure 2.20: Left: The meaning of the solar declination δ and the hour angle ω [63, p. 2]. Note
that the φ depicted here is not the azimuth angle. Right: Graphical overview of the meaning
of solar altitude and azimuth [64]. In this case, the point connected to the observer in C is the
Sun.

Finally, the solar altitude β and the azimuth angle φ can be found using respectively equations
2.35 and 2.36 [59, p. 14.9]. Figure 2.20b gives an overview of what these parameters are.

β = arcsin (cos(L) cos(δ) cos(ω) + sin(L) sin(δ)) (2.35)

φ = arcsin

(
sin(ω) sin(δ)

cos(β)

)
(2.36)

2.6.4 Air mass and clear-sky irradiation

One of the final parameters necessary for the calculation of the solar irradiation is the relative
air-mass m. One way to calculate m is equation 2.37 introduced in [59,65]. In this equation, β
is the solar altitude.

m =
1

sin(β) + 0.50572(6.07995 + β)−1.6364
(2.37)
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Using this value, equations 2.38 and 2.39 respectively give the beam normal irradiance Eb and
the diffuse horizontal irradiance Ed [59, p. 14 20], two values that together give an approximation
of the solar irradiation incident on a certain location.

Eb = E0 exp−τbmab (2.38)

Ed = E0 exp−τdmad (2.39)

In equations 2.38 and 2.39, the values for the beam air mass coefficient ab and the diffuse
air mass coefficient ad can be calculated using equations 2.40 and 2.41 [59, p. 14 20]. τb and τd
finally are location-dependent parameters.

ab = 1.454− 0.406τb − 0.268τd + 0.021τbτd (2.40)

ad = 0.507 + 0.205τb − 0.080τd − 0.190τbτd (2.41)

The solar irradiation calculated in this section is the approximate clear-sky irradiation, im-
plying that this approximation is only legitimate under a clear sky. Whenever clouds or other
dimming phenomena are present, the accuracy of the model will falter.

2.7 Lunar irradiation

As the model used in the previous section only provides information about the Sun’s influence
on a location, its output data only provides useful values during the day. All solar irradiation
values during the night are zero, as there is no direct sunlight at night. That is not a correct
representation of reality however, as that would mean no natural light is present at night. On
the contrary, natural light is present in the form of sunlight reflected on the surface of the Moon.
Taking this source of natural irradiation into account could prove beneficial for a CNNs learning
capability. This section discusses the basic properties of lunar irradiation and possible ways to
calculate the Moon’s influence on Earth.

2.7.1 Lunar phase cycle

Key to understanding the influence of the Moon is sufficient insight in its different phases.
Figure 2.21 from [66] gives a simple and clear representation of how these phases function.
Assume that the Moon starts in position 1. In this point, new Moon, the surface of the Moon
facing Earth is completely dark, as no light from the Sun directly reaches it. The Moon’s orbital
longitude l” equals the Sun’s longitude λ. Starting in this point, the Moon’s position gradually
changes until the Moon is in quadrature. This is the first Quarter at point 3. The Moon’s
surface facing Earth is now partially lit by incident sunlight. Next, position 4 indicates a full
Moon at which point the Moon appears to be completely lit. In position 5 the Moon is again
in quadrature, having reached its third or final quarter. More concretely, the phases new Moon,
first quarter, full Moon and final quarter are when l” and λ differ by respectively: 0◦, 90◦, 180◦

and 270◦ [67]. There are two ways to express the phase of the Moon. One is the age of the Moon
D, expressed in degrees (0◦ to 360◦). Another is the phase F, expressed in %6. Equation 2.42
provided in [66] demonstrates the relation between these two values.

F =
1

2
(1− cos(D)) (2.42)

As lunar irradiation on Earth is dependent on the sunlight reflected by the Moon, and as
that reflection is dependent on the current phase of the Moon, it is clear that it is essential to
be able to accurately obtain that phase to calculate the lunar irradiation on Earth.

6More specifically, F can be viewed as the fraction of the lunar that disc that is illuminated [66]. This can be
expressed as a value between zero (no illumnation) and one (fully illuminated), but is sometimes referred to as a
percentage. Unless otherwise specified, F will be viewed as a value between zero and on in this project.
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Figure 2.21: Different phases of the moon as presented in [66]. The Moon orbits Earth (E), its
phases going from New Moon (1) to Full Moon (4) to return to New Moon after one cycle. l”
is the Moon’s true orbital longitude, D is the Moon’s age, λ the Sun’s longitude and à is the
direction of the first point of Aries, a reference.

2.7.2 Calculation of the lunar phase

While accurately calculating the lunar phase is no easy task (due to the complex Earth-Moon-
Sun relations), several relatively simple approaches exist. One of the first major contributions
to astronomical calculations is given in [68], where simple algorithms are given to calculate
many important astronomical values. One of these algorithms provides a way to calculate the
date on which a new/full Moon or first/final quarter will occur. Since this algorithm does not
allow an easy calculation of the current phase for a given date, and as it is quite outdated, it
is necessary to use a more recent algorithm. The algorithm presented in [66] provides sufficient
accuracy while maintaining a relative ease of computation. This section will briefly introduce
the calculations given in [66]. In order to calculate the phase of the Moon, it is necessary to know
the locations of both the Sun and the Moon, relative to Earth. This principle is demonstrated in
figure 2.22. That means that calculations for both the Sun and the Moon have to be performed.

Figure 2.22: Simple demonstration of what the phase angle of a celestial body (in this case the
Moon) is [69].

Julian Day and epoch

Many astronomical calculations use Julian Day (JD) as a unit of time, rather than local time or
Universal Time (UT). Julian Day basically is the number of days since the beginning of the year
4712 BC [68], and allows for an easy interpretation of differences in days between certain points
in time. Algorithm 1 is the conversion algorithm as provided in [66] that converts a date in UT
to a value in JD. It is important to note that the day in this case is a decimal day, meaning the
hours, minutes and seconds are processed into the notation of the day. Equation 2.43 gives one
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Algorithm 1 Universal Time to Julian Day

1: procedure UT2JD
2: y = year,m = month, d = decimal day
3: if m = 1 or m = 2 then
4: y′ = y − 1
5: m′ = m+ 12
6: else
7: y′ = y
8: m′ = m
9: if date < 1582 October 15 then

10: A = TRUNC(y′/100)
11: B = 2−A+ TRUNC(A/4)
12: else
13: B = 0
14: if y′ < 0 then
15: C = TRUNC((365.25× y′)− 0.75)
16: else
17: C = TRUNC(365.25× y′)
18: D = TRUNC(30.6001× (m′ + 1))
19: JD = B + C +D + d+ 1720994.5

simple way to get this decimal day. If day is the integer value for the day of the month, hour,
minute and second are the time values of that day that need to be added to get the decimal
value.

d = day +
hour

24
+
minute

24 ∗ 60
+

second

24 ∗ 3600
(2.43)

In addition to the previous point, the use of the TRUNC function needs to be explained.
Essentially, this function takes a floating point value and only retains the integer part of that
value. TRUNC(3.99) would for example be 3 while TRUNC(-3.99) would be -3.

Another parameter that is often used in astronomy is T, the number of Julian centuries
since the beginning of a reference epoch. Considering a Julian year is exactly 365.25 days [70],
equation 2.44 gives the usual way to calculate T [66].

T =
JD − epoch

36525
(2.44)

In this equation JD is the point in time for which T must be found in Julian Day, and epoch
is the reference epoch in Julian Day.

Position of the Sun

To be able to calculate the position of the Sun, a number of constants need to be determined.
Important to note is that all values are calculated in reference to epoch 2010 January 0.0 (JD
= 2,455,196.5). In addition, all angular values are in degrees. Finally, all equations in the
following sections are given in [66]. Taking these things into account, εg is the Sun’s mean
ecliptic longitude at the epoch. This value gives the starting point of the Sun if its orbit would
be circular rather than elliptic. Equation 2.45 gives a way to calculate it.

εg = 279.6966778 + 36000.76892T + 0.0003025T 2 (2.45)

Here T is the number of Julian centuries since the reference epoch. In a similar fashion, ωg

and e are respectively the longitude of the Sun at perigee (nearest to Earth) and the eccentricity
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of the Sun-Earth orbit. Equations 2.46 and 2.47 give the formulas to calculate these parameters.

ωg = 281.2208444 + 1.719175T + 0.000452778T 2 (2.46)

e = 0.01675104− 0.0000418T − 0.000000126T 2 (2.47)

Taking these constants, the mean anomaly M can be calculated. This is the angle the Sun
would have travelled since perigee if it moved in a circle at constant speed. If t is the number
of days since the epoch, equation 2.48 gives the calculation of M.

M =
360

365.242191
· t+ εg − ωg (2.48)

By adding some correction terms to M, the longitude of the Sun λ can be found. This value,
given in equation 2.49, is the final solar value necessary for lunar phase calculation7.

λ = M +
360

π
e sin(M) + ωg (2.49)

Position of the Moon

In addition to the position of the Sun, the position of the Moon is vital for correct phase
calculations. If the same epoch is used here, table 2.2 provides the constant values that are
necessary in all calculations in this section. Both M as well as λ, as found in calculations 2.48
and 2.49, are required in some of the following equations. Taking the constants provided in table
2.2, equations 2.50, 2.51 and 2.52 respectively give the mean longitude l, the mean anomaly Mm

and the ascending node’s mean longitude N for the Moon.

l = 13.1763966D + l0 (2.50)

Mm = l − 0.1114041D − P0 (2.51)

N = N0 − 0.0529539D (2.52)

Table 2.2: Constants as defined for epoch 2010 January 0.0 in [66]. The units for all constants
are degrees.

l0 91.929336

P0 130.143076

N0 291.682547

i 5.145396

Calculating the corrections for evection Ev and the annual equation Ae in equations 2.53
and 2.54, the Moon’s anomaly can be corrected (equation 2.55).

Ev = 1.2739 sin(2(l − λ)−Mm) (2.53)

Ae = 0.1858 sin(M) (2.54)

M ′m = Mm + Ev −Ae − 0.37 sin(M) (2.55)

After again applying a number of corrections, the Moon’s corrected longitude l’ can be found
(equation 2.56).

l′ = l + Ev + 6.2886 sin(M ′m)−Ae + 0.214 sin(2M ′m) (2.56)

Finally, for calculating the lunar phase, the Moon’s true orbital longitude l” must be found.
This value can be found using equation 2.57.

l′′ = l′ + 0.6583 sin(2(l′ − λ)) (2.57)
7Additional calculations can be made to find more parameters concerning the Sun’s position [66]. As these are

unnecessary for this research, they are not discussed here.
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Lunar phase

When enough information of the Sun’s and Moon’s positions has been collected, the lunar phase
(angle) can be calculated. Taking the Moon’s longitude l′′ and the Sun’s longitude λ, the age of
the Moon D can be calculated. This is, as previously mentioned, simply the difference between
the two angles. That is also why D is actually represented in degrees rather than a unit of
time. Equation 2.58 gives this difference, and equation 2.42 then allows for the calculation of
the actual phase F .

D = l′′ − λ (2.58)

2.7.3 A model for lunar irradiation

Having calculated the phase of the Moon for a current point in time, the lunar irradiation incident
on Earth must be found. While much research is conducted concerning the surface of the Moon,
not many mathematical models for lunar irradiation exist. In [71] one of the first attempts to
calculate moonlight illuminance on Earth is done. While they achieve fairly accurate results,
the project is not easily reproducible as their descriptions are not very in-depth and their used
sources are outdated. One example of this is that while explaining what the developed program
does, no sufficient explanation of how this is done is given. Similarly, [72] proposes a model
to calculate moonlight brightness, published in 1991. But as they report an accuracy between
8% and 23%, this model will not be further discussed here. Finally, a more recent approach
to calculate lunar irradiation is given in [73]. More specifically, the Top-Of-Atmosphere TOA
irradiance, ETOA, is calculated based on a number of statements. Particularly, they state that
lunar spectral irradiance is subject to:

1. Changes in Sun-Earth, Moon-Earth and Sun-Moon distances.

2. Changes in lunar phase.

3. Changes in sunlight incident on the moon.

4. Influence of the surface of the Moon (craters, ...).

It is worth noting that ETOA represents the lunar irradiation in the top of Earth’s atmo-
sphere, not the lunar irradiation incident on Earth’s surface. Therefore, it is assumed that a
fraction of this irradiation reaches the surface (in [73] one way to calculate this is very briefly
described). As is argued in section 3.2, the exact value must not be known, which is why it will
not be calculated. Taking all of this information into account, a model to calculate ETOA can
be defined.

Lunar magnitude and phase function

Based on [74], [73] define a lunar magnitude m, given in equation 2.59 [73, p. 2319].

m(θp, λs) = a(θp)− b(θp)λs (2.59)

Here θp is the lunar phase angle, and λs is the wavelength of the light that is inspected in
µm. Note that the subscript s has been added to avoid confusion with the solar longitude λ, this
s signifies the spectral character of the irradiation calculated in this model. Another important
remark is that while the lunar age D presented in the previous section is an angle between
0◦and 360◦, θp is an angle that varies between 0◦and 180◦. Finally, the values for a(θp) and
b(θp) have to be interpolated or extrapolated from table 2.3 given in [73]. Using the value for m
calculated in equation 2.59, a value for the phase function f(θp, λs) can be found using equation
2.60 [73, p. 2319]. The resulting value for f can then be used in the following calculations for
lunar irradiation.

f(θp, λs) = 10−0.4m (2.60)

43



Table 2.3: Values of the functions a(θp) and b(θp) for the given input lunar phase angles in
degrees [73, p. 2320]. They are called linear fit coefficients. Values for other phase angles need
to be found through interpolation and extrapolation.

θp a(θp) b(θp)

10◦ 0.30805 0.0652190

20◦ 0.61820 0.1336200

30◦ 0.92169 0.1989200

40◦ 1.23130 0.2668300

50◦ 1.50230 0.2961900

60◦ 1.76490 0.3078300

70◦ 2.04800 0.3204200

80◦ 2.36050 0.3320600

90◦ 2.72480 0.3540200

100◦ 3.15660 0.3995500

110◦ 3.66680 0.4609600

120◦ 4.27780 0.5570100

Lunar albedo

In addition to the phase function, a value for the lunar spectral albedo α, the measure of whiteness
or reflection, is necessary. Equation 2.61 gives α for a wavelength λs in µm in the spectrum.
The values for Ai can be found in table 2.4 [73, p. 2321].

α(λs) =
n∑

i=1

Aiλ
i
s (2.61)

Taking α for a certain wavelength, the reflected portion of the solar irradiation incident on
the Moon can be found. If Em would be the sunlight incident on the surface of the Moon, the
reflected light Lm would be given by equation 2.62 [73, p. 2320].

Lm =
αEm

π
(2.62)

Mean lunar TOA irradiation

When α and f(θm, λs) are found, taking a number of constants given in table 2.5, equation 2.63
gives a way to calculate the mean Top-Of-Atmosphere lunar irradiation ETOA [73, p. 2323].

ETOA = αE0

(
Rse

Rsm

)2(
rm

Rme − re

)2

f(θp) (2.63)

This final equation allows to approximate the lunar irradiation on Earth. It helps to obtain
a better understanding of the influence of the moonlight in an image.

Table 2.4: Coefficients used in equation 2.61 as found in [73, p. 2321].

Coefficient 0.30 < λs < 0.60µm 0.60 ≥ λs < 1.20µm

A0 -0.04944 -0.7317

A1 0.4406 3.621

A2 -0.3150 -5.656

A3 0.1084 3.934

A4 n.a. -0.9999
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Table 2.5: Astronomy constants as found in [73, p. 2318]. Note that E0 defined here is different
from the E0 given in section 2.6.1. While E0 practically represents the same value as Esc in in
section 2.6.1, not every model uses exactly the same value for this solar constant. To be exact,
the value for the solar constant as defined in [60] is 1367 ± 7 W/m2. In [73], the authors decided
to use 1361 W/m2. The reason for choosing this specific value is not specified.

Name Symbol Value

Sun Radius rs 695508 km

Moon Radius rm 1737.4 km

Earth Radius re 6378.14 km

Moon-Earth Perigee Distance Rme,p 356371 km

Moon-Earth Apogee Distance Rme,a 406720 km

Sun-Earth Perihelion Distance Rse,p 147088067.2 km

Sun-Earth Aphelion Distance Rse,a 152104233.4 km

Astronomical Unit AU 14959 870.7km

Mean Sun-Earth Radius Rse 149598022.6 km

Mean Moon-Earth Radius Rme 384.401 km

Total Solar Irradiance E0 1361 W/m2 (at 1 AU)

2.8 Summary

As seen in this chapter, taking the knowledge of machine learning and using CNNs allows for the
classification of the Snapshot Serengeti dataset. More specifically, the MobileNetV2 and ResNet-
50 architectures that have been discussed will be used for experimentation as described in the
next chapter. Additional knowledge can be obtained from research performed by other authors
such as Norouzzadeh et al.. Combining this classification with the calculation of solar and lunar
irradiation might then provide more insight in the functioning of CNNs and their ability to
recognize metadata features. More precisely, the brightness in an image can be correlated with
the sunlight and the moonlight incident at the image’s location at the time of capture. The next
chapter will use all this information to conduct experiments.
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Chapter 3

Method

After explaining the underlying concepts of machine learning and metadata calculation, the
research steps taken are discussed. First, this chapter explains how the dataset has been used
and how the corresponding metadata can be found and used. Next, it gives the steps that are
taken to train classification and regression networks. All this information is required to fully
understand the results and discussion in the next chapter.

3.1 Description of the Snapshot Serengeti dataset

The Snapshot Serengeti dataset comprises 1.2 million image sets of 1-3 images also referred to as
capture events. It contains labeled data for images of 48 different animal species in the Serengeti
National Park including the number or count, behaviour, and presence of young. The Snapshot
Serengeti team hosts the entire dataset on Amazon Web Services using Amazon’s Simple Storage
Service (S3). The labeled data is available in the CSV files from [7]. Based on the information
in the images, raw classification data and consensus data CSV files, all animal species images
and a large subset of the misfires or blank images were downloaded. While the species images
are used to train CNNs to recognize animal species, the blank images together with the species
images allow training CNNs that detect the presence of animals.

Table 3.1 shows that the dataset comprises 805,510 animal species images and 948,168 blank
images. The dataset clearly suffers from class imbalance between the animal species, a typical
problem in machine learning, wherein certain classes are widely represented whilst others are
barely present. Above all, the wildebeest species alone corresponds to 30% of the dataset.
Together with the zebra and Thomson’s gazelle, these 3 species make up 62% of the dataset.
The other 45 species’ image counts in the dataset are much smaller with 21 species having less
than 1,000 images. For example, the zorilla species only has 29 images which is practically
negligible. This imbalance will hinder the neural network’s capacity to equally classify each
species with the same accuracy. Figure 3.1 visualizes some high quality images in the dataset
wherein the animal either is clearly visible (in the case of a species image) or not present at all
(in the case of blank images). It should be noted that the majority of images in the dataset are
not optimal as is shown in figure 3.2, which complicates the neural network’s learning process.

The dataset is split into a training, validation and test set with ratios 70%, 15% and 15%
which translates to respectively 1,207,806 training images, 258,822 validation images and 258,892
test images. Furthermore, 563,801 images of the training set, 120,820 images of the validation
set and 120,889 images of the test set contain animal species. Whilst making these sets, it has
been made sure that the number of images from each animal species adheres to the same split
ratios. Important to know is that not all labels of the species capture events in the dataset are
classified with the same certainty. With the information in the Snapshot Serengeti CSV files,
it is possible to remove or blacklist such image sets. More specifically, for each image set the
ratio of the number of times it has been classified as blank to the total number of times it has
been classified is calculated. If this species image set was classified as blank too often (compared
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against a threshold), it is blacklisted1. The reasoning for this is that if human volunteers have
trouble correctly classifying an image, it will be at least as difficult for a CNN. Rather than
using these vague images to train the network, it is better to learn to classify animals using
clear(er) examples. After applying the blacklist with a threshold value of 25%, 1,164,847 images
are in the train set, 249,832 in the validation set, and 249,889 in the test set. For these sets, the
number of animal species images is 520,935, 111,854, and 111,902 respectively.

1For example, if 25% of the human volunteers classifying an image indicate that they cannot see anything on
that image, that image is blacklisted (if it actually contains animals).
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Table 3.1: Number of images in the Snapshot Serengeti dataset.

Category Total Total in %

Wildebeest 243385 30.22

Zebra 147654 18.33

Thomson’s gazelle 112190 13.93

Hartebeest 33852 04.20

Buffalo 33140 04.11

Human 26239 03.26

Elephant 25090 03.11

Giraffe 21735 02.70

Impala 21590 02.68

Guinea fowl 21587 02.68

Warthog 20780 02.58

Grant’s gazelle 20249 02.51

Other bird 12120 01.50

Spotted hyena 10119 01.26

Female lion 8389 01.04

Eland 6681 00.83

Topi 5805 00.72

Baboon 4415 00.55

Reedbuck 4109 00.51

Cheetah 3330 00.41

Dik-dik 3325 00.41

Hippopotamus 3228 00.40

Male lion 2149 00.27

Ostrich 1869 00.23

Kori bustard 1865 00.23

Secretary bird 1209 00.15

Jackal 1154 00.14

Serval 933 00.12

Hare 890 00.11

Vervet monkey 871 00.11

Waterbuck 811 00.10

Bat-eared fox 717 00.09

Mongoose 643 00.08

Aardvark 541 00.07

Porcupine 441 00.05

Reptiles 388 00.05

Leopard 382 00.05

Bushbuck 352 00.04

Aardwolf 292 00.04

Striped hyena 271 00.03

Caracal 171 00.02

Rodents 138 00.02

Wildcat 105 00.01

Honey badger 83 00.01

Civet 67 00.01

Rhinoceros 66 00.01

Genet 61 00.01

Zorilla 29 00.00

Total 805510 100.00

Category Total Total in %

Species 805510 45.93

Blank or misfire 948168 54.07

Total 1753678 100.00

49



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.1: Optimal images in the Snapshot Serengeti dataset. (a) Wildebeest. (b) Zebra.
(c) Buffalo. (d) Male lion. (e) Impala. (f) Elephant. (g) Thomson’s gazelle. (h) Blank.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.2: Difficult images in the Snapshot Serengeti dataset. (a) Camera error. (b) Blurred
image. (c) Partially visible animal. (d) Close-up shot. (e) Far away animal. (f) Sunlight.
(g) Night image captured with infrared camera trap. (h) Night image captured with incandescent
camera trap.
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3.2 Metadata

In order to help the CNN to better interpret the input images, additional metadata is added
to the models. These metadata mainly concern giving the network an idea of the brightness of
the input image by using a number of different parameters such as solar and lunar irradiation.
Additionally, by telling the network what kind of camera is used to create the images, the
network can account for differences in camera functioning. This section will discuss the different
parameters used, as well as the realization of these parameters.

3.2.1 Solar irradiation

As the Sun is the largest natural source of the light on Earth, and as only a limited amount of
artificial light is present in the images, the sunlight incident on Earth is an important indicator
of the brightness of images. While the technology to accurately capture solar irradiance exists,
no real-life irradiation measurements are available to be used for the images in the Snapshot
Serengeti dataset. Because of this, the model presented by ASHRAE [59], as explained in
section 2.6, will be used. This model is only an approximation of the sunlight incident on a
certain location on Earth, assuming a clear sky. More specifically, a clear sky indicates a lack
of clouds or shade of any other kind. Evidently, this limitation cannot guarantee an accurate
value in many of the cases, yet that is not exactly the point of the model. Rather than using
it for precise weather simulations, it should suffice to give the CNN an idea of the amount
of sunlight present in an image. This value can be normalized, meaning only the relationship
between irradiation values on different times (and at different locations) is relevant. The solar
irradiation at noon for example should be higher than the solar irradiation in the early morning
or the late evening. Since all image locations are in the proximity of one another, the variation
in solar irradiation due to variation in location will be negligible.

General principle

Bundling the equations as provided in section 2.6, a function can be written that takes the date,
time, longitude, latitude, timezone, τb and τd as inputs. Given these required inputs, the function
then gives Eb and Ed as output values. Since the actual operations to perform the calculations
of section 2.6 are fairly simple (the most complicated step is the calculation of an arcsine in
equation 2.35), almost any programming language can be used to practically implement this
function. Considering that the used software for training neural networks is written in Python,
the solar irradiation calculation algorithms are implemented in Python as well. This allows for
easy integration in the other code.

Location, date and time

In order to calculate the solar irradiation for an arbitrary capture event, the function described
above is used. Consequently, each capture event needs to be provided with correct input values
for location, date and time. The date and time parameters simply can be read from the csv
data files, as they are provided in plain text. The location, required as values in longitude and
latitude, poses some issues however. All images that are not blank, have their coordinates given
in Universal Transverse Mercator UTM coordinates as x and y values. Blank images on the
contrary are not provided with any coordinates at all. By taking the average x and y values of
all given coordinates, an approximate value for the location of blank images is found instead.
These average values are x = 712577 and y = 9722377. As converting UTM coordinates to
longitude and latitude is both complex and computationally expensive [75, 76], an optimized
Python library [77] is used.
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Figure 3.3: Left: Overview of the national parks in Tanzania [79]. Serengeti National Park lies
to the right of Lake Victoria, near the border with Kenya. Right: Overview of the measurement
stations providing meteorological parameters for ASHRAE in 2017 [78].

Location dependent parameters

The equations in section 2.6 require two location dependent parameters τb and τd as defined by
ASHRAE. One way to gain access to values for those parameters is using [78]. This website
provides a large number of meteorological parameters defined for measurement stations all over
the world. Among other parameters, the values for τb and τd can be found. Figure 3.3 gives
an overview of the stations, as well as the actual location of Serengeti National Park. While
multiple stations are eligible for use in 2017, only one of those stations is also available for data
from 2009 and 2013. This station, which is located in Nairobi, Kenya rather than in Tanzania,
is the station that will be used in all solar irradiation calculations. In order to get the correct
value for τb and τd from the tables provided in [78], two things have to be taken into account.
Firstly, there is data available for 2009, 2013 and 2017. Only one of these three years can be
used for a capture event. Therefore, it is necessary to determine the year that is closest to the
date (year) of the capture event. The resulting closest year is the year from which the data will
be used. In case of a tie, the year furthest in the past is used in this implementation. Secondly,
the data presented in [78] only gives the values of τb and τd for the 21st day of each month. To
get the correct value for any day, linear interpolation has to be used.

3.2.2 Lunar irradiation

The Sun may be a large source of light during the day, at nighttime no sunlight directly reaches
the Earth. Instead, a fraction of the sunlight incident on the Moon is reflected to the Earth.
This reflection is subject to a number of complicated processes. The positions of the Sun and
the Moon relative to Earth determine the amount (flux) of sunlight reflected by the Moon to
Earth, while the surface of the Moon and the inter-celestial distances determine the intensity
of that light. Approximations of these processes are presented in section 2.7. It can be useful
to study what the lunar influence is on pictures taken at nighttime. Therefore, by selecting a
number of lunar parameters in this section and implementing those parameters as features in a
CNN, their influence can be studied.

53



Lunar phase and lunar phase angle

Two parameters that give an idea of the amount of light reflected by the Moon are the lunar
phase angle D (lunar age) and the lunar phase F . These parameters fluctuate between new
Moon and full Moon and pass all phases of the Moon in between. It is common knowledge that
different fractions of the Moon are lit for these different phases, meaning that the amount of
moonlight also differs for these different phases. Essentially, D and F indicate the same thing,
but they are expressed in different units: D in degrees and F as a fraction. Equation 2.42 gives
the relationship between the two parameters. In order to be sure that any lunar influence is
included, both parameters will be implemented in a CNN2.

The procedure to calculate D and F is explained in 2.7 and can be implemented in a number
of functions. Essentially, starting from a certain date and time, all necessary information is
given to calculate the positions of the Sun and the Moon resulting in the phase parameters. D
can then be returned as an angle between 0 and 360 degrees, while F is returned as a value
between 0 and 1.

Lunar phase angle transformation

While the first part of section 2.7 describes how to calculate the lunar phase (angle), the second
part describes a simple model to approximate the amount of light reaching the the top of Earth’s
atmosphere. This gives even more insight in the actual amount of light (energy) reaching Earth.
One issue, however, is the difference in angular range between D and θp

3. D starts at a new
Moon at 0◦, reaches full Moon at 180◦ and then continues to the 360◦ (as also given in figure
2.21). On the other hand, θp starts at a new Moon at 180◦, reaches its full Moon at 0◦and
then returns to the new Moon at 180◦. Its angles always lie in [0◦,180◦]. Figure 3.4b shows the
differences. This mismatch in angles can be resolved in a couple steps given in Algorithm 2,
converting D into θp. First, the range has to be reduced from [0◦,360◦] to [0◦,180◦] by subtracting
all values of D > 180◦ from 360◦ and defining the result as D′. This generates the correct range,
but a full Moon in D′ now corresponds to a new Moon in θp. To resolve that issue, the D′

has to be inverted by subtracting it from 180◦, resulting in the corresponding value for θp. The
transformation is visualized in figure 3.4.

(a) D’ in function of D (b) θp in function of D

Figure 3.4: Visualization of the transformation of lunar age D to the lunar phase angle θp used
in [73]. The y-axes compare D′ and θp against D on the x-axes. Note that the ranges of both
D′ (left) and θp (right) are [0◦,180◦], while the range of D always is [0◦,360◦].

2As will be explained in section 3.2.7, this implementation only is in the final layer of the CNN. The implications
are extensively discussed in chapter 4.

3D is the lunar phase angle as defined in [66], while θp is the same parameter defined in [73].
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Algorithm 2 Lunar age D to lunar phase angle θp.

1: procedure Convert D to θp
2: if D > 180◦ then
3: D′ = 360◦ −D
4: else
5: D′ = D
6: θp = 180◦ −D′

Lunar irradiation

Once the the lunar phase angle has been transformed, the mean Top-Of-Atmosphere lunar irra-
diation ETOA for that angle for a certain wavelength can be found. There is a number of issues
concerning this calculation however. Firstly, the mean Sun-Moon radius Rsm is not provided
in [73] and quite difficult to accurately calculate in general (due to the orbital movements of
the Moon around the Earth and the Earth around the Sun). A rough estimate is made instead
using the following equation 3.1.

Rsm =

(
Rse,p −Rme

)
−
(
Rse,a +Rme

)
2

(3.1)

When the Earth is in perihelion, it is on its closest position relative to the Sun. If this
distance Rse,p would be a line between the Sun and Earth, and the Moon would lie exactly on
that line, the Sun-Moon distance would be the smallest possible. This distance is represented in
the

(
Rse,p −Rme

)
term of equation 3.1. Similarly, if the Earth would be in aphelion (the point

farthest away from the Sun) and the Moon would be positioned behind the Earth on the line
through the Earth and the Sun, the Sun-Moon distance would be the largest. This distance is
represented in the

(
Rse,a +Rme

)
term of equation 3.1. Taking the average of these two values

gives a very rough approximate of the mean Sun-Moon distance. Rsm resulting from equation
3.1 is 149,596,150.3 km.
Secondly, equation 2.63 only gives ETOA for one spectral wavelength. In order to have a repre-
sentation for the entire visible spectrum (the light reaching Earth also spans the entire visible
spectrum) a (numerical) integration operation would be necessary. As (numerical) integration
is computationally expensive, it would be unwise to perform that calculation for 1.7 million
images. Therefore, only the normalized results for one wavelength will be used. In this way, the
inaccuracies of equation 3.1 are counteracted. That is the case since Rsm is a constant value.
Strictly speaking, it is even unnecessary to calculate Rsm, but it has been included in case the
model would have to be used more accurately in the future (the order of magnitude is correct).
The wavelength that will be used is λs equal to 450nm. For these values of Rsm and λs, a
normalized representation of the lunar irradiation can be calculated.

3.2.3 Time

While used for other metadata (solar and lunar irradiation), the time itself can be used as a
feature too. Logically, the time of the day should give an idea of the amount of sunlight present
in an image. Additionally, some species may only be active at certain times of the day. Both
arguments can be verified by including time itself during classification. Note that only the time
of day (hour, minute, second) is included, not the actual date (day, month, year). The easiest
way to include time is as a single scalar value4, comparable to the decimal day calculated using
equation 2.43. Because only hours, minutes and seconds are taken into account, the decimal

4Time consists of three values: Hours, minutes, seconds. Including all three values independently would be
overly redundant. It would also complicate the neural network model to be trained for approximating this formula.
Instead, these three values can be combined into one scalar value.
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hour is calculated instead (equation 3.2). This is the value that is used in classification.

decimal hour = hours +
minutes

60
+

seconds

3600
(3.2)

3.2.4 Camera model

In the research in [4], two different kinds of cameras are used. Initially, DLC Covert II [80]
cameras were used. However, as these cameras created nighttime images of insufficient quality,
the researchers have changed to Scoutguard SG565 [11] cameras, which perform better. A
significant difference between these two models is that the DLC Covert II cameras capture
nighttime images using an infrared flash, while the SG565 cameras use an incandescent flash
(visible light). This generates two entirely different kinds of nighttime images, as demonstrated
in figures 3.2g (infrared) and 3.2h (incandescent). If the network is notified of the kind of
camera involved for the input image, it might compensate differently. Besides this difference, it
is possible that there are other distinctions that are visible in the images. Including the camera
model as metadata might allow the network to take other possible differences into account as
well.
Practically, the camera model is represented as a Boolean value: A DLC Covert II gives a zero as
input into the network, while the SG565 gives a one. The reasoning behind this method is that
the zero shuts down certain weights in the network, while the one allows them to be used. This
way, different camera models might results in completely different weights that are included.

3.2.5 NightDay

A simple parameter, NightDay, indicates whether it is night or day in the input image. This is
done using the value of solar irradiation. Whenever that value is greater than zero, NightDay
is given the value one to indicate day. On the other hand, if the solar irradiation value is zero,
NightDay also is zero. For the same reason as in the camera model, values of zero and one may
induce the use of different weights.

3.2.6 Flash and Exposure Time

Each captured image corresponds to the EXIF standard [81] and contains a number of interesting
parameters. It is important to note however that these data are incorrect for all images taken
with the DLC Covert II cameras. The ShutterSpeedValue for example is always zero, which
should never be the case. That means that only the images captured using SG565 cameras
contain relevant EXIF metadata. Consequently, these metadata cannot be used in classification.
Otherwise, either all DLC Covert II images are unusable or all DLC Covert II images have
undefined metadata input values. Despite this limitation, two metadata parameters have still
been included for future study and other research (see section 3.4). Extraction of EXIF data in
Python can be done using the exifread library [82].
The Flash parameter indicates whether the flash was fired while capturing the image. For the
SG565, this parameter can take three values as shown in table 3.25. Values zero and one indicate
a image taken without flash, while a two indicates the presence of a flash. Studying the flash
value might again provide insight in the way a CNN handles the brightness of an image.
In addition to the flash, the ExposureTime parameter gives the value of the exposure time in the
form of values for a and b (which are simply the numerator and the denominator of a fraction).
Using a and b, the exposure time T in seconds can be calculated following equation 3.3 [81]. T
indicates the amount of time the camera is exposed to the light source (the environment with
or without flash).

T =
a

b
(3.3)

5This table only serves to illustrate the different values of the EXIF Flash parameter. When training a
network using the flash, it would be unwise to use the values like this. It would be better to provide one
parameter indicating whether a flash was used, and another indicating the flash mode.
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Table 3.2: Different values for the Flash parameter in a SG565 camera.

Value Meaning

0 Flash did not fire, auto mode

1 Flash did not fire, compulsory flash mode

2 Flash fired, auto mode

3.2.7 Implementation of metadata in a network

While accurate data acquisition already is quite elaborate, actually using the data only adds
to the complexity. Since the input of any CNN is an image, the scalar metadata values cannot
simply be added to that input. Perhaps methods exist to add the metadata to the the activation
maps of the convolution layers in the network, but those have not been explored in this research.
Instead, metadata input can also be connected to the fully connected layers at the output of the
network. This is the most intuitive approach using Keras/Tensorflow, but perhaps not the most
logical. While the last layers mainly perform classification, the actual image processing happens
in the first layers. By only adding metadata to the last layer, an import part of image processing
may not be influenced. Considering the complexity of adding metadata in other places in the
network, this has not been done however.
As discussed in section 2.3.4, the final fully connected layers are the result of a (global average)
pooling operation of the last convolution activation maps of the CNN. More precisely, the global
averaging results in one (flattened) fully connected layer of for example 2048 hidden units (this
is the case for ResNet-50 [6]). After potentially adding additional fully connected layers (which
is done in for example in AlexNet [42]), the output is then fed into a softmax layer, calculating
the classification score for each class. Adding metadata to the fully connected layer could then
be achieved as in figure 3.5, where the metadata is concatenated directly on the flattened fully
connected layer. No additional fully connected layers are added, but instead the concatenated
layer is fed into the softmax layer, calculating the output. The idea here, is that the metadata
features have a certain influence on the network’s weights due to the backpropagation of the
gradients possibly leading to a better classification accuracy. Figure 3.6 gives the alternative
using additional fully connected layers instead. This way, assuming that a neural network can
learn any function, an architecture that is able to beneficially use the metadata is sought. One
important remark to make is that using only a few FC layers may be too little correctly model
non-linearity.

Metadata

Avg

Pooling
NetworkImage

Softmax

Out

Figure 3.5: Adding metadata to the output fully connected layer without adding any additional
fully connected layers. The softmax layer consists of 48 (in the case of species classification)
hidden units with the softmax activation function that take the combination of flattened outputs
and metadata as input.

57



Metadata

Avg

Pooling
NetworkImage

Softmax

Out

FC
FC FC

Figure 3.6: Adding metadata to the output fully connected layer while using additional fully
connected layers.

3.3 Training neural networks

3.3.1 Software and hardware

Writing custom software for training neural networks is a tedious and time consuming process.
Therefore, various machine learning frameworks have been developed, for example TensorFlow
from Google, CNTK from Microsoft and Theano from the University of Montreal. These frame-
works are full of features and allow training and interference using Graphics Processing Units
or GPUs. They are not easy to comprehend however, and require a certain learning curve.
That is why the framework Keras is used, which is a high-level neural network API written in
Python that runs on top of TensorFlow, CNTK, or Theano. It provides a simple interface that
abstracts the extensive implementations of the selected backend which is TensorFlow in this
research, and allows fast and flexible prototyping [83]. The software code for this research is
written in the programming language Python and is fully documented. The training and testing
of neural networks is performed on two different computer systems with the specifications given
in table 3.3.

Figure 3.7: TensorFlow and Keras frameworks [83,84]

Table 3.3: Training hardware.

Computer 1 Computer 2

OS Windows 10 Professional Windows 10 Professional

CPU Intel Core i5-6600K Intel Core i7-7700

Memory 8 GB 32 GB

Disk (for dataset) 240 GB SSD 256 GB SSD

GPU NVIDIA GeForce GTX 1080 Ti NVIDIA GeForce GTX 1070 Ti

3.3.2 Dataset preprocessing

The images in the Snapshot Serengeti dataset are RGB images with a resolution of 2,048 × 1,536
pixels. This resolution is too large for deep neural networks due to computational cost restric-
tions. Therefore, the 2,048 × 100 pixel footer is first removed and the images are downscaled to
a 256 × 256 pixel resolution (see fig. 3.8). This downscaling causes the image to deform as the
aspect ratio changes, although this is not an issue for neural networks.

Storing the dataset on disk under the Windows 10 operating system also requires some
additional actions, as simply putting all images of one species in a single directory results in very
slow file access times. Consequently, each species directory contains a number of subdirectories
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that each contain 1,000 images. This simple operation causes a significant speed-up in file access.
Images are named after their capture event (which has an unique string), combined with its rank
in the event (the first picture would be uniqueCaptureEventString 1.JPG).

(a) Original 2048x1536 image (real size is not
presented here).

(b) Downscaled 256x256 image. Note that the
aspect ratio has changed.

Figure 3.8: Dataset preprocessing.

3.3.3 Data augmentation and normalization

Whilst training deep neural networks, it is common practice to perform data augmentation
on the input images. This makes the neural network more robust by creating slightly modified
versions of the original data. Random cropping, horizontal flipping, brightness modifications and
contrast modifications are implemented. Additionally, it is verified whether applying Contrast-
Limited Adaptive Histogram Equalization CLAHE proves to be beneficial. This technique is an
improvement on Adaptive Histogram Equalization (AHE) which is in its turn an improvement
on Histogram Equalization (HE) [85]. HE is an image processing method wherein across the
spatial domain the pixel intensities are uniformally distributed. In other words, the histogram
of pixel intensities is flattened and stretched out to increase contrast. In AHE the image is first
divided into blocks or tiles and then histogram equalization is performed separately on each of
them. The idea is to locally enhance contrast. A problem however, are densely concentrated
pixel intensities which introduce noise artifacts. The solution is applying a clip limit on the
local histogram resulting in the technique CLAHE [85], which is first defined in [86]. The reason
for testing CLAHE in this research is to make the animal fur pattern stand out and to improve
night image quality for better classification. Note that no brightness or contrast augmentation
is performed when CLAHE is used, because that would interfere with the functioning of CLAHE
(that modifies brightness and contrast itself). The random cropping results in images of 224 x
224 pixels which is a standard resolution for deep neural networks. Figure 3.9 shows the image
augmentation steps. Each image is also normalized by subtracting the mean and by dividing the
standard deviation of the pixel values. Figure 3.10 visualizes this normalization of RGB images.
The red cross points at the origin of the plot around which the normalized RGB values are
centered. It should be noted that this center is not exactly the center of the original RGB values
because of the specific software implementation. Therein the mean and standard deviation are
calculated as the combined average of each color channel. The metadata described in 3.2 are
also normalized when possible. These normalization steps improve the learning process of neural
networks with faster convergence [23,87].
One final remark that should be made is that the images are rescaled before training, but that
all other preprocessing happens during training. This method is for example also used by [58].
A case could be made for performing the preprocessing on the original images, but that would
be impractical in this implementation. While it might improve accuracy (as the original images
contain more information), it would also introduce more delay in the training (all operations
would have to be done on larger images, and every image would then have to be rescaled).
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(a) Original image (256x256) (b) Random cropping (224x224)

(c) Horizontal flipping (224x224) (d) Decrease brightness (224x224)

(e) Increase brightness (224x224) (f) Decrease contrast (224x224)

(g) Increase contrast (224x224) (h) Contrast-limited adaptive histogram
equalization (224x224)

Figure 3.9: Image augmentation.

3.3.4 Networks

Two different types of convolutional neural networks are trained, namely ResNet and Mo-
bileNetV2 (see section 2.4). The ResNet architecture has multiple variants with varying depth
from which the version with 50 layers, hereby referred to as ResNet-50, is used. The Keras deep
learning library has both networks available with the option of using pre-trained weights on the
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(a) Original RGB values (b) Normalized RGB values

Figure 3.10: Image normalization.

ImageNet dataset. As the MobileNetV2 network is designed for mobile applications, it features
only 2.22M weights (in Keras). The ResNet-50 network is a very deep network and has 23.53M
weights (in Keras) [83].

There are many tunable settings whilst training neural networks, with each giving different
results. The optimizer used is stochastic gradient descent (SGD) with an initial learning rate
(LR) of 0.005 whilst training MobileNetV2 and 0.01 for ResNet-50, a momentum of 0.9, and a
gradient clip limit of 0.01. The batch size decided upon is 50. To update the learning rate over
the different epochs, a Keras feature is used that divides the learning rate by 10 in the case of
MobileNetV2 and by 2 in the case of ResNet-50 once the validation accuracy has not increased
by 0.0003. As appeared in early tests, there is little difference in results for weights that are
randomly initialized or that are initialized using weights trained on ImageNet. Therefore, later
trainings were conducted on randomly initialized weights, as is also done in [58].

3.3.5 Classification phases

Following the method of [58], classification of the images is done in two phases. In phase 1, the
images are divided into two large groups, namely images containing animals and blanks. Then,
in phase 2 the images containing animals are further classified into their respective species. The
reasoning behind this method is that two phases help alleviate some of the class imbalance
problems. As there are more blank images than all other images combined, training all classes
together would be a bad idea. In such a scenario, either all blanks are used or the amount of
blanks is limited. Both options are poor, as they each result in performance loss. Including
all blanks would mean that the network would mainly learn to recognize all blank images.
Misclassifying most of the species (except perhaps for large classes such as wildebeests or zebras)
would not result in a large loss, as most of the loss generated this way would be offset by the
decrease in loss due to correctly classifying the blanks. While technically still reaching high
accuracies, the precision and recall (and consequently the F1 score) of the model would be
poor. On the other hand, limiting the number of blanks included would decrease the amount
of available data, which increases the risk of overfitting and may result in not achieving the
optimal solution for the network. That is why two phases are used instead.
Note that since many different trainings have been conducted, each training will be indicated
with a letter namely B for phase 1 and S for phase 2, as well as a number presented in tables 3.4
and 3.5. This will allow for convenient data presentation. Additionally, it should be noted that,
unless specified otherwise, blacklisted images are used in neither training nor testing. One final
note should be made regarding the difference between transfer learning, using weights that have
already been trained on on another dataset e.g. ImageNet [44], and training the network without
pretrained weights (training from scratch). [58] mentions that this difference is insignificant, and
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Table 3.4: Training choices for blanks vs. species classification.

Indicator Training settings

B1 MobileNetV2 without brightness and contrast augmentation

B2 ResNet-50 without brightness and contrast augmentation

Table 3.5: Training choices for species classification.

Indicator Training settings

S1 MobileNetV2 with brightness and contrast augmentation

S2 ResNet-50 with brightness and contrast augmentation

S3 MobileNetV2 without brightness and contrast augmentation

S4 ResNet-50 without brightness and contrast augmentation

S5 MobileNetV2 with CLAHE

S6 MobileNetV2 with metadata features without additional FC layers

S7 MobileNetV2 with metadata features with an additional FC layer

S8 MobileNetV2 without metadata features with an additional FC layer

S9 ResNet-50 with metadata features without additional FC layers

S10 MobileNetV2, no brightness and contrast augmentation, image limit of 35,000

that they consequently only trained from scratch. While in later experiments of this research it
appears that the ImageNet weights cause a slightly better Top-1 accuracy (90.38% as opposed
to 88.92% as the best alternative)6, the sentiment expressed in [58] has been followed. This not
only allows for the fairest comparison, it also should give the most freedom for the weights to
evolve to an optimum that uses additional metadata best.

Blanks vs. species

Unlike the classification of species (where 10 different networks were trained), the classification
of blanks has been examined using fewer networks. The reasons for this are two-fold: Since the
experiments for species classification were conducted first (they were deemed more important),
the networks that performed the poorest could be excluded. Besides this, the training of networks
on blanks vs. species classification takes a lot longer (using 643,912 blank and 520,935 species
images rather than only the species images). Following the results from the species classification,
blanks vs. species classification is done on MobileNetV2 (B1) and ResNet-50 (B2) using data
augmentation without brightness and contrast augmentation and without additional metadata.

Species

When the images containing animals have been separated from the blanks, they can be classified
into the different species present in Serengeti National Park. Considering the discussion of
metadata and the use of both MobileNetV2 and ResNet-50, there are many different ways to
train a CNN.
The most basic way to train a CNN is by simply presenting images at the input and evaluating
the output. But even in this case, multiple training possibilities arise. More specifically, during
early experiments it appeared that the brightness and contrast augmentation as presented by [58]
were either too strong (removing too much information) or not of significance. That is why
MobileNetV2 as well as ResNet-50 are trained in this basic scenario with (S1,S2) and without
(S3,S4) brightness and contrast augmentation. Essentially the problem with brightness and

6It is important to note that the higher outcome for ImageNet can partially be attributed to the practical
planning. Earlier in the testing phase, the acquired results for ImageNet were actually lower than those of training
from scratch. Since irregularities might have happend during that earlier training, it was decided to repeat the
training after all other trainings had been completed. As this new training received far more time than all others,
it might have been able to climb a little higher.
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contrast augmentation is that they randomly alter the lighting conditions of the images. This
is unwanted whilst training with the metadata (from section 3.2) which relies on analyzing the
brightness of an image. In addition, the impact of using CLAHE is examined (S5). CLAHE
cannot be used for training with metadata for the same reason.
After conducting these experiments, the influence of the inclusion of metadata is then examined.
This influence is examined in MobileNetV2, by concatenating features at the output (section
3.2) without (S6) or with (S7) an additional FC layer of 768 hidden units. As the amount
of hidden units significantly influences the amount of parameters, 768 is the number chosen,
resulting in 964K extra trainable weights7. This has been deemed as a good choice between
allowing as much complexity as possible (more hidden units means more connections that can
be found), while not entirely blowing up the network. To fully examine the influence of the
FC layer, an additional CNN is trained using the same FC layer without using metadata (S8).
This way, if the accuracy would raise because of adding the FC layers rather than the use of
metadata, that cause can be detected. Additionally, the influence of features without new FC
layers is examined on ResNet-50 as well (S9).
Finally, a basic CNN (without brightness and contrast augmentation) is trained using an image
limit. No more than 35,000 images of a single class can be used (S10). Basically, this image limit
allows for the examination of how to deal with the class imbalances. While this very likely will
result in a lower accuracy, it might increase the performance of classifying species with a very
small amount of sample images. As the image significantly decreases the amount of training
data, the architecture that will be trained is MobileNetV2 rather than ResNet-50, considering
that MobileNetV2 has far fewer parameters to train.

3.3.6 Evaluation

Evaluating the performance of a network is paramount to gain insight in its abilities. There are
a number of values that can be calculated to evaluate the classification, and the ones that will
be used here are Top-1 and Top-5 accuracy as well as F1 score.
Top-1 accuracy simply is the accuracy of correctly classifying images. If 10 images are evaluated,
and 5 are classified correctly, the CNN has a Top-1 accuracy of 50%. Similarly, the Top-5
accuracy indicates whether the correct classification is among the top 5 of predicted images.
More concretely, given some input image, the softmax layer of the CNN calculates a certainty
score for every class. The class with the highest certainty is the predicted class, and the 5 classes
with the highest certainties are the top 5.
While accuracy is a decent measure of performance, it fails to account for class imbalances [20].
That is why sometimes the F1 score is used. This score is calculated using two parameters, the
precision (equation 3.4) and recall (equation 3.5) that are defined in [88].

Precision =
tp

tp+ fp
(3.4)

Recall =
tp

tp+ fn
(3.5)

In these equations, tp are the true positives (positives that are classified as positive), fp are
false positives (negatives classified as positive) and fn are false negatives (positives classified as
negative). The precision then can be seen as the ability of the classification to not falsely include
negatives as positives, while the recall indicates the ability to correctly find all positives. For
problems with more than two classes, precision and recall are calculated for each class separately
by defining that class as positive and all other classes as negative. Taking an average for all
classes then gives the global precision or recall. Note that for this research, these averages are
weighted (which means that the classes with many samples have more influence on the average

7A FC layer of 1000 would result in 1,27M extra weights which is too much, while for example 500 hidden
units would only result in 606K added weights.
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than the classes with few samples).
Taking these measures, the F1 score can be calculated as for example in [89] and is given in
equation 3.6.

F1 = 2 · Precision · Recall

Precision + Recall
(3.6)

It is the harmonic mean of the precision and recall, and gives an idea of the network’s ability
to conform to both precision and recall. For multiple classes. it is calculated similarly to the
precision and the recall. Once again taking a weighted average allows to find the global F1 score
for classification.

3.4 Regression networks

Besides the classification of images using metadata features, it can be interesting to examine if
the networks are actually able to learn to detect those metadata features. Rather than using
classification to inspect the influence of metadata, this section will go into detail of how to use
regression CNNs for predicting metadata values. If a CNN is able to predict the metadata value
for any relevant given image, it can be assumed that the CNN recognizes the metadata features
in an image. An example should put this statement into perspective. In section 3.2 one of the
proposed metadata features is solar irradiation. More specifically, if the CNN knows the solar
irradiation corresponding to an input image, it might be able to interpret the input image in
a certain way. This way, if the solar irradiation is very high, the CNN may compensate for a
high brightness in the image. To test this assumption, a regression CNN can be used to try and
predict the solar irradiation in a given input image. If the CNN can indeed predict the amount
of solar irradiation in an image, it is able to correctly identify indications of solar irradiation
in an image. Taking this into account, if solar irradiation is provided as additional metadata
in a classification task, it can be assumed that the CNN must be able to correctly identify the
indications of that solar irradiation and compensate accordingly. Practically, a regression CNN
is used to predict solar irradiation and exposure time.

3.4.1 Metadata to predict

There are a number of possible metadata features to predict, each of them are discussed in
section 3.2. This section will briefly discuss predicting those different metadata features.

Solar irradiation is one of the features that will be trained on a regression network. Since the
amount of sunlight should directly correlate with the brightness of an image, it should be quite
feasible to accurately predict solar irradiation. It is important to keep in mind however that
the solar irradiation used is based on a model rather than obtained through observation. This
means that for example an overcast image can be correctly predicted, while the corresponding
calculated solar irradiation represents a clear sky. Although this will introduce noise in the
training, it should be robust enough to still present accurate results.

Where solar irradiation is clearly visible in all daylight images (since it is the prime source
of light), lunar features are far less observable on nighttime images. Notably, the SG565 images
that are used in training use an incandescent flash in nighttime images. This flash by far succeeds
the influence of moonlight in the image. As all three lunar features (phase, age and irradiation)
correspond to the amount of moonlight, it might be harder for a network to detect and correctly
interpret the influence of the moonlight in an image. That is why the lunar features will not be
trained in a regression network in this research.

Predicting the hour in an image, while seeming simple, is a difficult and ambiguous task.
In this implementation, the network will have to use features visible in the image to predict
anything. If someone is walking in nature without any device to keep track of time, they still
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have two indicators of time. Firstly, the location of the sun in the sky should give a fairly
accurate indication of the time. Secondly, the amount of sunlight also gives an indication of
time. Of these indicators, only the second is usable in the CNN setting. While some images
may show the Sun in the sky, the orientation is never given. Consequently, even if the Sun is
visible (which is often not the case), it is impossible to say if it is currently in the East, the
South or the West. Using the amount of sunlight (the solar irradiation) is ambiguous however,
as any brightness can correspond to a time in the morning or a time in the afternoon/evening.
Finally, both methods only work during the daytime. At night, when no sunlight is present, it
is far more difficult to give any reasonable predication of time. All these arguments indicate it
is better to not try and predict the time.

Predicting the camera model is interesting if the difference between infrared and incandescent
images needs to be detected. This is classification, however, and not the focus of the research
described in this section. That is why this prediction will not be trained.

Where predicting the solar irradiation seems feasible and useful, predicting the NightDay
parameter seems a little simple. This would only imply that CNN ought to classify between
light and dark images, which is no difficult problem at all. A very simple program that simply
compares the average pixel intensity against a threshold would probably already achieve a good
accuracy on this problem. Using deep learning would be overkill.

Similarly to NightDay, predicting the flash mode (as given in table 3.2) would again result in
a classification. At nighttime (NightDay=0), 46550 of the 58358 SG565 images (79.77%) use a
flash. Taking possible inaccuracies into account (images that are wrongly classified as nighttime
images), it might not be useful to try and classify these images. Likewise, only 888 of 649399
daytime images (0.14%) use a flash. Classifying these images would be completely pointless, as
simply always saying that no flash is used will yield an accuracy of 99.86%. Finally, since this
task would be a classification task, not regression, Flash is not used for regression training.

ExposureTime finally is a fine target for training using regression in a CNN. Theoretically,
the exposure time should be in some relation to the amount of light in the environment. As that
amount of light is visible in the images, a CNN should be able to predict the exposure time of
an input image.

3.4.2 Regression architecture and training

Constructing a CNN for regression rather than classification is quite simple. In principle, clas-
sification into classes only occurs in the final layer, the softmax layer. This is also the layer
that needs to be modified if the network needs to train for a different number of classes. To
change this from classification to regression, the only thing that needs to change is that soft-
max layer. By replacing the softmax layer with a single hidden unit with a linear activation, a
simple regression CNN is created. Rather than creating scores between zero and one, the linear
activation simply performs a weighted sum of the outputs of the previous layer. Consequently,
the network output can be virtually any value, which is what regression should be.
Practically, the training occurs on MobileNetV2, exchanging the softmax layer with a single
linear activation. The batch size is 50, resulting in a total of 10418 batches for solar irradiation
or 8602 batches (only the SG565 images are used8) for exposure time. Using Mean Absolute
Error for a loss function, the reported loss is the actual absolute error (rather than for example
mean squared error). The initial LR is 0.005 with a momentum of 0.9 and a clipping value of
0.01. Whenever an epoch fails to decrease the loss with 2 W/m2 (for solar irradiation) or 0.5s−1

(for exposure time), the LR is divided by 10. Note that rather than training using the actual

8This is because only the SG565 images give correct values for exposure time, while DLC Covert II values are
incorrect.
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value of exposure time in seconds, exposure time−1 is used instead. This is because the values
for exposure time in seconds appear to be too small to be correctly learned by the CNN.

3.5 Summary

This chapter described the way CNNs can be used for classification and regression. First, the
dataset needs to be filtered with a blacklist to remove all images that are too dubious. This
filtered dataset can then be used to generate metadata features that are added to the networks
via concatenation to the output of the global average pooling layer. Taking all this information,
training strategies for classification and regression are defined. The next chapter discusses the
results obtained using these training strategies.
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Chapter 4

Results and discussion

At last, when both the theory and the methods to use that theory have been described, experi-
ments can be conducted. This chapter gives the results for each experiment, as well as adequate
discussion concerning those results. First, the calculations of the metadata (more specifically
solar and lunar metadata) are examined and validated. Next, the classification of the images is
discussed. This is done for both the classification of blanks as well as the classification of the
species. Finally, the last section discusses the results of regression to predict solar irradiation
and inverse exposure time.

4.1 Metadata calculation

This section discusses the results of the calculation of solar irradiation and lunar features. As
they are the result of modelling and calculation rather than experimentation and observation,
it can prove useful to gain insight in the results they provide.

4.1.1 Solar irradiation

Calculating solar irradiation for a certain location at a certain time is utilized at multiple points
in this research. Examining the results and comparing them with available real-life data gives
insight in the performance of the approximation.
Figure 4.1 gives the calculated solar irradiation for the campus of Hasselt University in Diepen-
beek, Belgium. With UTM coordinates of x = 668042 and y = 5644253 for zone 31N and values
for τb and τd interpolated from data of [78] at Kleine Brogel in 2013 the solar irradiation at 21
June and 21 December 2011 can be calculated. While this location does not have anything to do
with Serengeti National Park, it allows the calculation to demonstrate a number of facts clearly.
Firstly, table 4.1 compares the times of sunrise and sunset found in [90] with the times found
using the solar irradiation calculation. Sunrise is interpreted as the first time that the solar
irradiation is greater than zero, while sunset is the last the time solar irradiation is greater
than zero. The difference between real and calculated values is about 6 minutes, which is quite
accurate. For the purposes in this research, where solar irradiation is correlated with brightness
in an images, those six minutes will not make much of a difference (six minutes only account for
a very small amount of sunlight).
Secondly, the calculation clearly shows how the rising of the Sun (up until midday) results in an
increase in solar irradiation, while the afternoon and evening again result in a decrease in solar
irradiation. These transitions demonstrate the influence of the position of the Sun in the sky.
Thirdly, comparing the maximum solar irradiation for the cases in figure 4.1, it is clear that
the time of the year influences the result. Logically, the solar irradiation in the summer (June)
is much higher than the solar irradiation in the winter (December). This indicates that the
calculation takes season and time of the year into account. As this project does not concern
Diepenbeek, however, it is necessary to check the solar irradiation for Serengeti National Park.
To do this, figure 4.2 gives an overview of the average maximum daily solar irradiation per
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Table 4.1: Sunrise and sunset times as found in [90] compared against the sunrise and sunset
times obtained in solar irradiation calculation.

Real Sunrise Calculated Sunrise Real Sunset Calculated Sunset

21 June 05:25 05:19 21:55 22:01

21 December 08:39 08:34 16:33 16:39

(a) 21 December 2011 (b) 21 June 2011

Figure 4.1: Approximate solar irradition at Hasselt University in Diepenbeek, Belgium.

month and the average monthly solar irradiation for 2011 in Serengeti National Park. Unlike
the results for Diepenbeek, in Tanzania the fluctuation is only about 100 W/m2 (where the
situations in figure 4.1 already differ in about 300 W/m2). This graph neatly corresponds to the
seasons of Tanzania [91]. On one hand, December, January and February, the hottest months
in Tanzania, have the highest solar irradiation in the graph. On the other hand, June, July and
August are the coldest months and have some of the lowest solar irradiation values in the same
graph. This again demonstrates the functionality of the solar irradiation calculation.
To conclude, it is important to note that the normalized value of the solar irradiation will be
used, rather than the absolute value. Consequently, the exact values are not important, only
the relative differences and transition. As these results are realistic, the calculation of solar
irradiation can be relevant for classification.

4.1.2 Lunar features

To describe and calculate lunar influence, three lunar features are defined: The lunar phase
F, the lunar age D (also lunar phase angle) and the mean TOA lunar irradiation ETOA. This
section will discuss the results of the calculations introduced in section 2.7.

Lunar phase (angle)

Discussing the lunar phase F or the lunar phase angle D basically boils down to the same thing,
as they are closely correlated (equation 2.42). The main focus will therefore lie on D, as that
is the parameter used in the calculation of lunar irradiation. Figure 4.3 gives F and D for
June 2011. Verifying D can be done using additional data provided by [73]. In these data,
the lunar phase angle θp (as opposed to D) is given for every hour between 1 January 2000
and 31 December 2099. Assuming that this data is correct, this is an easy way to validate the
calculation of D. It is of course necessary to first transform D to θp using algorithm 2. Figure 4.4
gives the result of that validation for June 2011. The difference between the calculated θp and
the θp provided by [73] is negligible. Only around 180◦ a small difference is noticeable, which
consists of rounding a sharp edge of the calculated values. While not presented in any figure,
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Figure 4.2: Average maximum daily solar irradiation per month for Serengeti National Park
(blue). Average monthly solar irradiation for Serengeti National Park (orange). Note that there
is little fluctuation in both values.

Figure 4.3: F (left) and D (right) for June 2011. Note that while D appears to be linear (with
a discontinuity at 360◦), this is not entirely the case.

other months report the same result. It can be concluded that the lunar phase angle D, and
consequently the lunar phase F, are correctly calculated. They provide an accurate enough
representation of reality. Accordingly, D and F should provide insight in the moonlight present
at night.

Lunar irradiation

While D and F already provide some insight in the moonlight present at night (or rather, on
the portion of the moon that is illuminated), the amount of light reflected on the moon and
incident on the Earth is affected by a number of complex parameters (such as the craters on
the surface of the moon and the inter celestial distances [73]). Rather than going too deep into
detail concerning these details, the resulting calculated values for ETOA will be discussed.
Figure 4.5 gives the approximate mean TOA lunar irradiation from 1 June 2011 at 22:00 to 30
June 2011 23:00 for λs=450nm (this specific range has been chosen because it gave the clearest
representation). Once again, the resulting graphs periodically repeat themselves every month1,
meaning that discussing one period satisfies to discuss the entire range of time (regarding the
Snapshot Serengeti project).

From the results in figure 4.5, it is immediately clear that the amount of light reflected on

1Actually, this is a little less than a month. The Moon cycle repeats itself every 29.53 days according to [67].
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(a) June 2011. (b) Close-up.

Figure 4.4: Validation of the lunar phase D angle by comparing its transformed θp (orange)
to data provided in [73] (blue). The close-up on the right shows the only difference in the
comparison. As everywhere else the calculated and provided θp are the same, the blue graph is
not even visible on the left (completely covered by the orange graph).

the surface of the moon is not linearly correlated with the lunar phase angle. Consequently, only
when a large margin of the Moon’s surface is illuminated will the reflected light be significant:
The ETOA is high whenever the lunar phase is near a full Moon, but very small or negligible
in all other cases. Therefore, this peak indicates that if moonlight influences the brightness at
night, it will be around a full Moon. Note that while the absolute value of the peak is very
small (about 0.0025 W/m2), this is only the ETOA for a wavelength of λs = 450nm. Calculating
ETOA over the entire visible spectrum would result in a higher value (although that still would
not matter, as the values are normalized during training). Interestingly, the model described
takes into account infrared radiation2 (wavelengths longer than those of visible red light) as well
as visible light, meaning that the obtained results also count for the infrared images taken with
the DLC Covert II cameras. Concluding whether this resulting lunar irradiation is influential
or useful in classification however, will be done in the discussion of the classification results.

4.2 Classification

This section presents and discusses the results of both convolutional neural networks Mo-
bileNetV2 and ResNet-50 after training on the Snapshot Serengeti dataset for both classification
of blank images and animal species images.

4.2.1 Blanks vs. species

Table 4.2 gives the resulting test accuracies for the classification of blanks on MobileNetV2 and
ResNet-50. Additionally, tables 4.3 and 4.4 give the precision, recall and F1 score for the clas-
sification of blanks on MobileNetV2 and ResNet-50.

Immediately, it is clear that both MobileNetV2 as well as ResNet-50 reach very high classifi-
cation scores. Because the classes are balanced, the accuracies and F1 scores even are nearly the
same for each architecture. Moreover, these results are even higher than the accuracies reported
in [58]. Where Norouzzadeh et al. reported a maximum classification accuracy of 96.8% for the
VGGNet architecture (which means all other accuracies were lower), both MobileNetV2 and
ResNet-50 are slightly better. Of course, with differences of only 0.13% (MobileNetV2) and

2This can be seen in table 2.4, where wavelenghts of up to 1.20µm are included in the calculation. It is
important to remember that Si-based cameras can only capture light with wavelengths of up to about 1µm [92].

70



(a) (b)

Figure 4.5: Results for the calculation of the approximate mean lunar irradiation ETOA. On
the left ETOA is given in function of the day, on the right it is given in function of the lunar
phase angle D. Both graphs are calculated for the range of 1 June 2011 at 22:00 to 30 June 2011
23:00. Note that the lunar irradiation is maximum at full Moon (180◦).

0.53% (ResNet-503), it is hard to say whether the classification is significantly better. As it is
very hard to improve at all at very high accuracies, even very small differences have to be taken
into account. One reason for these results it the use of a blacklist (as described in section 3.1).
By removing very dubious images from the classification process, the networks more correctly
learn exactly what are and what are not blank images. Interestingly, if the blacklisted images
are included in the test set, the obtained accuracy for ResNet-50 is 96.45% which is a decrease
of about 0.9%. As the number of blacklisted images is only about 9,000, it appears that they
have a large influence. While this score is slightly lower than the maximum of [58], it is still
higher than the accuracy obtained by ResNet-50 in that research (96.3%). It can be concluded
that the classification of blanks is very effective, but also that images that are hard to classify
for humans are also hard to classify for CNNs.

Table 4.2: Blanks classification accuracies for MobileNetV2 and ResNet-50. Norouzzadeh is
added for comparison.

Indicator Architecture Accuracy (%)

B1 MobileNetV2 96.93%

B2 ResNet-50 97.33%

Norouzzadeh VGGNet 96.8%

Norouzzadeh ResNet-50 96.3%

Table 4.3: Classification of blanks on MobileNetV2.

Class Precision (%) Recall (%) F1 score (%) Number of images

Blank 96.56 97.93 97.24 137960

Not blank 97.40 95.70 96.55 111890

Weighted average 96.94 96.93 96.93 249850

3ResNet-50 only obtained 96.3% in [58], this comparison is against the result of VGGNet.
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Table 4.4: Classification of blanks on ResNet-50.

Class Precision (%) Recall (%) F1 score (%) Number of images

Blank 96.65 98.59 97.61 137960

Not blank 98.22 95.78 96.98 111890

Weighted average 97.35 97.33 97.33 249850

4.2.2 Species

Figure 4.6 gives the resulting Top-1 and Top-5 accuracies, as well as the F1 scores for all 10
networks trained for species classification. Additionally, table 4.5 gives the same results for more
easily available details. In this table, the precision and recall are included as well. Finally, in
appendix A.1 complete tables are included, giving precision, recall and F1 score for each class
in every network. This way, the results can be studied even more in-depth.

Figure 4.6: Results of each network trained on species classification. Note that the three net-
works crossing the 90% for their Top-1 accuracies are the three networks with the ResNet-50
architecture.

One of the first observations when studying the results is that the three ResNet-50 networks
consistently have a better performance than all other MobileNetV2 networks. This confirms the
idea that deeper neural networks generally should result in better performance (when paired
with sufficient training data). The differences between the ResNet-50 results are very small
or perhaps even negligible across all values. For the MobileNetV2 results however, there is a
noticeable difference. More specifically, the S3 and S6 networks are the best, with around 0.7%
difference with the other MobileNetV2 architectures. These are the networks that did not use
brightness and contrast augmentation (as S1 is the only MobileNetV2 network that used those).
S6 did use metadata though, which is concatenated to the global average pooling output data
of the network. There is a number of conclusions that can be drawn from these observations.

Firstly, for MobileNetV2, it appears that brightness and contrast augmentation provide
no added value to the training. This can be seen as the accuracy and F1 score of S3 (without
brightness and contrast augmentation) are higher than those of S1 (with brightness and contrast
augmentation). Moreover, it could be argued that they actually decrease the accuracy of the
network, which should be avoided. For ResNet-50, the accuracy and F1 score of S2 (with
brightness and contrast augmentation) are actually about 0.2% higher than for their counterparts
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Table 4.5: Species classification results.

Setting Table Top-1 acc (%) Top-5 acc (%) Precision (%) Recall (%) F1 score (%)

S1 A.2 88.18 97.11 87.54 88.18 87.61

S2 A.3 91.46 97.72 91.15 91.46 91.23

S3 A.4 88.92 97.32 88.26 88.92 88.43

S4 A.5 91.24 97.39 90.93 91.24 91.05

S5 A.6 88.26 97.10 87.54 88.26 87.71

S6 A.7 88.92 97.24 88.26 88.92 88.38

S7 A.8 88.26 96.87 87.30 88.26 87.57

S8 A.9 88.14 96.82 87.08 88.14 87.44

S9 A.10 91.27 97.39 90.94 91.27 91.06

S10 A.11 85.35 96.64 85.37 85.35 85.17

in S4 (without brightness and contrast augmentation). As these differences are so minute, it is
dubious to say that brightness and contrast augmentation actually help at all in these scenarios.
At any rate, brightness and contrast augmentation seem to be unnecessary or even detrimental
in training a CNN on the Snapshot Serengeti dataset. There are a number of possible reasons for
this. One could be that, due to the very large amount of training images, the new images added
by brightness and contrast augmentation are unnecessary. Furthermore, it is possible that the
adaptions created by these augmentation methods are adapted in such a way that they actually
are no longer representative of the real dataset. This would imply that the augmentations need
to at least be tuned down.

Secondly, using metadata as additional features in the network does not seem to improve
classification at all. Simply concatenating that data to the output of the global average pooling
produces nearly exactly the same results compared to when no metadata is used. This can
be observed when comparing results between S3 and S6 (MobileNetV2) or between S4 and S9
(ResNet-50). Most noteworthy is that adding FC layers does not improve the performance of
the network with or without additional metadata. Rather than increasing the accuracy, this
decreases the accuracy instead. One reason for this might be that both used architectures (Mo-
bileNetV2 and ResNet-50) use global average pooling to transform their final activation maps
into hidden units. As argued in [51], these are meant to be directly mapped to the softmax
layer. Adding additional FC layers might interfere in that philosophy, actually reducing the ef-
fectiveness of that global average pooling. As neither adding FC layers nor simple concatenation
using metadata improves classification whatsoever, metadata appears to not help at all. There
are four possible reasons for this. One reason would be that there is no correlation between the
images and the used metadata, thus no improvements can be obtained using metadata. This
is not the case however, as is proven in section 4.3 where a correlation between the images and
solar irradiation (or exposure time, which has not been used for classification) is found. A second
reason could be that rather than adding the metadata at the end, it should be added at the
input or as some operation in the activation maps. As it is not trivial to do this in Keras, this
possibility has not been covered in this research. Thirdly, it is possible that the metadata does
not influence classification because the network does not need it. If it can for example adjust
according to the image brightness, without needing to be told the corresponding solar irradi-
ation, then these metadata values are indeed unnecessary. Finally, it is possible that another
DNN is necessary to correctly combine the metadata with the flattened outputs, because new
non-linear relations have to learned. That would imply far more FC layers are necessary than
that are used now. This could be an useful possibility to explore in the future.

Thirdly, the Top-5 accuracy seems to be somewhat redundant, as over the entire range of
networks the greatest difference is only 1.08% (between S2 and S10). This can be attributed to
the fact that the high Top-1 accuracies guarantee the correct prediction to be nearly always in
the top 5. The few times the top 1 prediction is incorrect, the probability that one of the other
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images in the top 5 is correct instead is very large. Consequently, the Top-5 accuracy is not
used much in the discussion of other observations, as it would add nearly no new information.

Fourthly, these results can be compared against the results that are obtained in [58] as also
shown in table 2.1. MobileNetV2 has not been used in that research, but the results obtained
on ResNet-50 can be used for comparison still. Norouzzadeh et al. obtained a Top-1 accuracy
of 93.6% and a Top-5 accuracy of 98.4% on the same dataset. The Top-1 accuracy is about 2%
higher than that of S2 (which obtained the best results) while the Top-5 accuracy is only 0.7%
higher4. This is the case for all networks trained by [58] (except for perhaps NiN, AlexNet and
VGGNet that each only obtained about 1% better accuracies). The differences between [58]
and this research are therefore quite small. It is hard to say whether they are caused by some
operation in this research or by an undocumented operation in the training of [58]. Many of the
design choices in this research are inspired by their reported design choices. Moreover, it is also
hard to say whether their reported results are accurate and correct, as they for example do not
use a cross-validation set. That also increases the number of available training data, which could
also play a role. Moreover, as the compositions of their training and test sets are unknown, it is
impossible to make an exact comparison. Due to being unable to practically use the code they
provided along with their results, it is also impossible to say whether the differences are caused
by some difference in the dataset used (which should not be present). Nonetheless, the resulting
accuracies of these projects are very similar and very high, which is the main conclusion that
should be drawn.

Fifthly, comparing the performance of ResNet-50 against the performance of MobileNetV2, it
appears that the best results of the latter are only 2.54% lower than those of the first. Taking into
account that ResNet-50 has 23.53M parameters where MobileNetV2 only has 2.28M parameters,
the difference is remarkable. It appears that MobileNetV2 can almost equal the performance
of ResNet-50 with only a tenth of the parameters. This implies that embedded solutions could
exist for this problem, using as little parameters as possible while retaining a good performance.
It must however be noted that, as discussed below, MobileNetV2 fails to classify some of the
classes with a very small presence in the training set. The goal of the embedded solution would
have to determine whether this weakness is of relevance.

Finally, the class imbalance and image limiting should be discussed. As can be observed in
for example tables A.2, A.3, A.4 or A.5, the very small classes are not classified. In table A.3 it
can be seen that classes such as Aardwolf, Civet or Genet have a precision, recall and F1 score
of 0%. This is because the number of images (the Civet has 10 test images) is so small that
it is nearly impossible for the CNN to learn to recognize these species. It is very important to
note however that ResNet-50 appears to be much better at recognizing these small classes than
MobileNetV2. One example of this is that both S1 and S3, the two best performing networks
with the MobileNetV2 architecture, fail to recognize the Bushbuck (which has 42 test images)
at all. S2 however does manage to recogize the majority of these images, achieving a F1 score
of 59.26%. Still, there are some classes that are not recognized at all for ResNet-50 too. To
try and resolve that issue, S10 is trained with an image limit of 35,000 images per class, similar
to an method proposed by [58]. Because MobileNetV2 has far fewer parameters to train, thus
requiring less training data, this image limit is implemented on MobileNetV2. Logically, this
results in a lower accuracy (Top-1 and Top-5) and also in a lower F1 score as that score is
weighted. The classes that suffer most under the limit of 35,000 images are also the classes that
have the most weight in the calculation of the F1 score. When comparing the amount of classes
with a F1 score of 0%, no difference is observed however (both have 12 classes with 0%). One
final way to check for a difference is comparing the non-weighted average (simply the sum of
all F1 scores divided by 48) for both trainings. S3 in this case has an average of 47.76%, while

4This is again because the major classes are in the top 5 predictions most of the time. Since the 3 largest
classes make out 63% by themselves, it can be accurate to say to that 63% of the images are nearly guaranteed
to have a correct top 5.
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S10 only has 45.45%5. That would indicate that, even if some small classes have increased in
F1 score (which is the case with for example the Bat-eared fox), the decrease in F1 score for the
classes that lost many images is greater. To conclude, it appears that using an image limit of
35,000 is not a good solution for class imbalance.

4.2.3 Classification examples

Analyzing and discussing the results from the trained networks on blank and species classifica-
tion provides insight about their accuracy to correctly classify images. The problem however,
is that while an image might be correctly classified (e.g. a zebra), it is unknown how sure the
network is about its prediction (e.g. 20% vs. 90%). Therefore, classifications need to be visu-
alized with the image and corresponding predictions. The following figures are generated using
the best trained networks, ResNet-50 B2 for blanks classification (see tables 3.4 and 4.2) and
ResNet-50 S2 for species classification (see tables 3.5 and 4.5).

Figure 4.9 shows examples of blanks vs. species classifications. Remarkably, these (correct)
predictions have certainties of about 99%. Moreover, 93.52% of the test set images are predicted
correctly if the network has a confidence of at least 90% as can be seen in figure 4.7. Note that
the confidence threshold in this context signifies that only images with a confidence greater than
the threshold are counted as being classified correct. Images that are classified correctly but
have a confidence smaller than the threshold are still counted as being classified incorrectly.
Next, figures 4.10 and 4.11 show examples of species classifications. In these figures, the correct
prediction accuracy is around 99%. 85.65% of all species images in the test set are predicted
correctly if the network is more than 90% certain following the information in figure 4.8.
Of course, there are also cases where the network fails to predict the target class. Figure 4.12
shows such errors for blanks vs. species classifications. The most prevalent issues for wrong
predictions are vegetation and rocks that appear to be an animal to the network as well as
mislabeled images. However, sometimes the network simply fails without clear indications as to
why that is the case.
Figure 4.13 shows errors during species classification. Some of the problems for example are
animal species that have similar shapes, fur patterns and colors, or images that contain par-
tially visible animals. Often, these problems are combined. For example, impala, Thomson’s
gazelle and Grant’s gazelle are quite similar in shape which may confuse the network. Again,
the network sometimes simply fails without any apparent reason.

To visualize what the network is looking at (is activated by), heatmaps can be drawed over
the input image. The principle of generating such heatmaps or class activation maps (CAM)
is described in [93]. In short, the activation maps of the last convolution layer in the network
(in this case ResNet-50) are weighted by the weights connecting the global average pooling
layer with the target output class neuron in the softmax FC layer and are then summed. The
resulting CAM is then rescaled and overlayed on the input image with the color red indicating a
strong activation whilst the color blue signifies no activation. Figure 4.14 shows some examples
of heatmaps wherein it is clear that the netwerk is activated by the animal(s) present in the
images.

5These low percentages are caused by the presence of 0% classes. As this average does not take into account
the number of images per class, these classes suddenly have a lot more influence on the average.
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Figure 4.7: Top-1 accuracy in function of the confidence for blanks vs. species classification. If
the confidence needs to be higher, the top-1 accuracy will decrease.

Figure 4.8: Top-1 accuracy in function of the confidence for classification of individual species.
If the confidence needs to be higher, the top-1 accuracy will decrease.
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Figure 4.9: Blanks vs. species classifications.

77



Figure 4.10: Species classifications (part 1).
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Figure 4.11: Species classifications (part 2).
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Figure 4.12: Wrong blanks vs. species classifications.
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Figure 4.13: Wrong species classifications.

81



Figure 4.14: Heatmaps
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4.3 Regression

Experiments were conducted to see if a CNN could learn to recognize features such as solar
irradiation or camera exposure time using only an image as input data. This section gives the
results obtained and discusses their implications.

4.3.1 Solar irradiation

Where accuracy, precision, recall and F1 score are useful tools to evaluate the performance of a
classification network, they are useless when evaluating a regression network. Similarly, simply
displaying the average absolute error for the CNN will not provide much insight either, as that
error can be caused by many small (but significant) or a few larger errors. Instead, figure 4.15
gives two histograms and Cumulative Distribution Functions CDF that provide insight in the dis-
tribution of the error. Additionally, table 4.6 gives a summary of the CDF of the absolute error.

(a) Absolute error up to 200 W/m2. (b) Entire range of absolute errors.

Figure 4.15: Histogram and CDF of the absolute error of the test results of the evaluation of
the solar irradiation regression CNN. On the left a detailed view of the absolute errors up to
200 W/m2, while the left provides an overview of the entire error range. Note that the vast
majority of the errors occurs in the first 40 W/m2, while very large errors occur as well.

Table 4.6: Summary of the Cumulative Distribution Function of the absolute test errors using
the CNN regression network for predicting solar irradiation.

Percentages 10% 20% 30% 40% 50% 60% 70% 80% 90%

Error (W/m2) 0.07 5.32 10.91 17.14 24.46 33.02 44.29 61.61 95.03

In the CDF, it is clear that 50% of the test images causes an absolute prediction error of
less than 24.46 W/m2. For an average monthly maximum of over 1000 W/m2, that is an error
of about 2%. 70% of the testing samples have an absolute error of less than 44.29 W/m2, and
for 90% of the testing samples the error still is less than 95.03 W/m2. These results give the
impression that the predictions of the solar irradiation are fairly accurate, and often only result
in a small error. However, a histogram or a CDF still is very global, not very specific.

To provide more insight in the actual predictions that are performed, figure 4.16 gives four
graphs that plot the calculated solar irradiation for a specific date. In addition, they place a
red point for every test image that was captured that day. This allows for a nice observation
of behaviour of the predictions compared to the calculated values. The general trend for the
points is to neatly follow the shape of the calculated results, often with a small error. As the
calculated values have not been validated using local solar irradiation data, it is impossible to
state that these small variations are erroneous. It is equally likely that the calculated values
are slightly off and that the predicted values are closer to the actual solar irradiation. Some
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(a) (b)

(c) (d)

Figure 4.16: Comparing the calculation results against the prediction results for specific days.
The blue graph represents the calculation, while each red dot is a test image with a specific
predicted value. Four different days, spread over three years, have been chosen to give a fair
representation of the results. (a) 13-05-2011. (b) 17-11-2011. (c) 24-09-2010. (d) 17-11-2012.

days score better than others (for the example in figure 4.16, the graph of 13-05-2011 appears
to provide the cleanest results), but all graphs maintain good results to a certain degree. Heavy
outliers still exist, however, and are worth discussing.

Figure 4.17 shows six of the heavier outliers in the test set, and table 4.7 gives the exact values
for predicted and calculated solar irradiation, as well as the corresponding capture times. It
appears that in this case, all six outliers occured in the late afternoon/early evening. Apparently,
the model has more trouble predicting values in the late afternoon as opposed to values around
noon. Possibly, the steep descent of solar irradiation in the afternoon (see also figure 4.16) is a
cause for this issue. Although that may be a part of the issue, the position of the Sun6 may also
pose a problem. In figure 4.17a (outlier 1) for example, only a small part of the sky is visible as a
wildebeest has inconveniently placed itself right in front of the camera. That visible part of the
sky appears to be very bright (which the model might correlate with a high solar irradiation),
while at 17:43’o clock the solar irradiation has already significantly decreased. Similarly, in figure
4.17b the camera captures what appears the sunset, again correlating the resulting brightness
with a too high solar irradiation. Figure 4.17c appears to be a plain misprediction of the CNN, as
the image is moderately bright corresponding to a moderate solar irradiation. In the meanwhile,
the CNN calculated enough solar irradiation for noon. Outliers in the figures 4.17d and 4.17f
suffer from the same problem. While the CNN appears to somewhat correctly predict the solar
irradiation (the sky is overcast, obscuring much of the sunlight), the calculation model expected
much higher values. These are two cases where an unclear sky causes the clear-sky model to
fail, some of the noise expected from a mathematical model. Very likely, these two cases are not

6It is impossible to know the exact orientation of the camera (N,S,E,W), so it is possible that the the Sun is
shining directly into the camera. There is no way to validate this, however.
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Table 4.7: Calculated (using the clear-sky model) and predicted (using the regression CNN)
values for solar irradiation as well as the time of image capture for six outliers.

Clear-sky model (W/m2) Regression CNN (W/m2) Time (hh:mm:ss)

Outlier 1 522.59 1033.04 17:43:16

Outlier 2 234.18 661.92 18:17:40

Outlier 3 582.15 1014.37 17:37:55

Outlier 4 829.02 380.85 16:32:33

Outlier 5 630.79 191.32 17:29:23

Outlier 6 770.94 257.39 16:53:46

the only cases. Finally, figure 4.17e gives another case where the model simply fails to correctly
predict the solar irradiation, without any clear cues as to why that is the case.

4.3.2 Exposure time

Where solar irradiation has a clear representation of its various values throughout the day, with
for example a maximum at noon of around 1000 W/m2. This intuition is missing for exposure
time however, as throughout the day the exposure time can take many different values (which
will be demonstrated later on in this section). In order to get some idea of the distribution
of exposure time values, figure 4.18 gives a histogram plotting the distribution of the inverse
exposure time (also called shutter speed) for the test set. The shutter speed simply is the result
of 1 / exposure time. This inverting is necessary to train a CNN on the exposure times, as
taking the value in seconds rather than seconds-1 resulted in such small values that the network
was unable to train well. It should be noted that the first bar in figure 4.18 contains mainly
(if not only) inverted exposure times corresponding to the nighttime. Each image at nighttime,
captured using a flash, has an inverse exposure time of 122 s-1 (or a 1/122 = 0.0082 s exposure
time). Therefore, since these are also the smallest inverse exposure time values, the first bar in
the histogram contains all nighttime images with an inverse exposure time of 1/122 s-1. Con-
sequently, it appears that the daytime images are usually captured with inverse exposure time
values between 122 and 3000 s-1, but larger values exist (with the highest inverse exposure time
in the test set being 6766 s-1).

Keeping the distribution of figure 4.18, it is now a possibility to discuss the results of the
exposure time regression CNN. Figure 4.19 gives these for the test set, as the absolute error
plotted in a histogram and a CDF. Again, table 4.8 gives a summary of the resulting CDF.
From the histograms, it is clear that the vast majority of the absolute errors are values in the
range [0,100]. When comparing table 4.6 and table 4.8, it appears that the difference in error
CDF between the two parameters is initially very small, but that this value slowly increases as
the CDF increases. While these tables of course belong to different parameters with different
units, which implies that they cannot be simply compared, this gives some insight in the trends
for the shutter speed. More specifically, it appears that the results of both parameters behave
similarly. They have a large majority of absolute errors that are relatively small, as well as some
errors that are significantly larger. For shutter speed, these errors can grow very large indeed
(the largest absolute error is 5073.49 s-1). As errors of this size are limited however, and as the
majority of the errors is relatively small (the maximum values for shutter speed are much greater
than those of solar irradiation), the results of the regression CNN appear to be satisfactory.

Table 4.8: Summary of the Cumulative Distribution Function of the absolute test errors using
the CNN regression network for predicting shutter speed.

Percentages 10% 20% 30% 40% 50% 60% 70% 80% 90%

Error (s-1) 1.51 7.59 14.83 23.00 32.44 43.78 58.45 78.57 112.71
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(a) Outlier 1 (b) Outlier 2

(c) Outlier 3 (d) Outlier 4

(e) Outlier 5 (f) Outlier 6

Figure 4.17: Six pictures for which the predicted and calculated solar irradiation differed. Table
4.7 gives more insight in the exact differences.
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Figure 4.18: Distribution of the inverse exposure time or shutter speed for the test set. Note
that while most values lie in the range of [122-3000], some much larger values exist as well.

(a) Absolute error up to 600 s-1. (b) Entire range of absolute errors.

Figure 4.19: Histogram and CDF of the absolute error of the test results of the evaluation of
the exposure time regression CNN. On the left a detailed view of the absolute errors up to 600
s-1, while the left provides an overview of the entire error range. Note that the vast majority of
the errors occurs in the first 50-100 s-1, while very large errors occur as well.

To put these results into perspective, it would be useful to once again plot them for certain
dates. However, since the real (and predicted) inverse exposure time values are much more
erratic than the solar irradiation, it is hard to find a good overview plotting them. This issue is
presented in figure 4.20a for 13-05-2011. Rather than examining the real and predicted values,
it proves to be more useful to examine the absolute error values for a day (presented in figure
4.20b for the same day). Where the real and predicted values are very erratic7, the absolute
error values follow a certain trend. They are extremely small at nighttime (indicating that the
122 s-1 is learned very well), but increase at daytime (where actually different values for the
inverse exposure time are plausible). While the absolute error is greater at daytime than at
nighttime, it is still less that 50-100 s-1 in a large majority of the cases. As this day is a good
representation of the the total dataset (and the errors on that dataset), there are a few outliers
with large error values present as well. Considering that for this specific day 677 images8 are
used, these few outliers only concern about 1% of this day’s data.

For completeness’ sake, figure 4.21 gives the graphs corresponding to the other dates that
were displayed for solar irradiation. The date in 2010 cannot be shown however, as the SG565

7This is because, unlike the clear-sky model, the actual solar irradiation at daytime can be erratic too. Clouds,
shadows, position of the camera, ... all have an influence on the time of exposure while capturing images.

8The dataset sizes are smaller, as only images of the SG565 can be used.
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(a) (b)

Figure 4.20: Left: Real (blue) and predicted (red) values for shutter speed for 13-05-2011. Right:
Absolute error values for the shutter speed for 13-05-2011. Note that inverse exposure time at
nighttime is 122 rather than zero, and that the predictions very closely approximate the real
values.

(a) (b)

Figure 4.21: Left: Absolute errors for shutter speed at 17-11-2011. Right: Absolute errors for
shutter speed at 17-11-2012.

cameras were not in use at that time. As can once again be clearly seen on these graphs, the
majority of the errors happens at daytime and is smaller than 100 s-1.

Finally, figure 4.22 gives some of the heavy outliers in the absolute error graph in figure
4.20b. These all appear to be members of the same capture event. Table 4.9 gives the predicted
and real values for shutter speed, as well as the time of day. If the assumption is made that
exposure time decreases as solar irradiation (or brightness) increases (to prevent saturation of
the pixels in the camera), then shutter speed must increase with increasing brightness. In this
case, it appears that the network recognizes the bright spot in the image and correlates it with
a high shutter speed, while the actual exposure time is a lot smaller. This might be the case
because the zebra in the image casts its shadow on the camera, reducing the solar irradiation
incident on the camera.

Overall, it can be concluded that the predicted values for the exposure time (or inverse
exposure time, which can be inverted back easily) are satisfactory and accurate enough to make
actual predictions.

88



Table 4.9: Shutter speed prediction outliers.

Real Predicted Time (hh:mm:ss)

584 1390.54 15:49:33

584 1329.16 15:49:33

584 1388.19 15:49:33

(a) (b) (c)

Figure 4.22: Three images of the capture event that are very poorly predicted in the exposure
time regression CNN at 13-5-2011.

4.4 Summary

In this chapter, experimental results have been presented. First, it has been proven that the
calculated metadata (solar and lunar) are sufficiently accurate for the purposes of this research.
Next, the classification of blanks and species is discussed. The trained networks are able to
classify images with a very high accuracy and confidence, reaching state-of-the-art scores of
over 90%. Additionally, some classified images have been provided to give more insight in
the performance of the network and in its activations. Finally, the prediction of metadata using
regression CNNs is discussed. It appears that MobileNetV2 is able to predict the solar irradiation
or inverse exposure time from an image with small errors. Once again, practical examples give
insight in the strengths and weaknesses of the regression networks. The next chapter will give
methods to still improve the current results.
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Chapter 5

Future Improvements

As in any research, there are a number of future improvements that could further increase
performance. Since there are three major parts in this research, namely metadata calculation,
classification and regression, each part will be discussed separately.

5.1 Metadata calculation

For the current calculation of the solar irradiation, the lunar phase, the lunar phase angle and
the TOA lunar irradiation, three mathematical models were used. While each model is accurate
up to a certain degree, it is hard to completely evaluate their accuracies as no observational
data is available in two cases. Specifically, this is the case for the solar irradiation and the lunar
irradiation, as the lunar phase and lunar age could be accurately validated. Moreover, it would
be better still to simply use observational data instead of mathematical models. This would allow
for a number of improvements. Firstly, there would be no more situations where the given solar
irradiation would not correlate with the brightness of an image, as measured solar irradiation
includes cloudiness and other meteorological events. The only factor observational data cannot
always account for is the position of the sun as this would be dependent on the position of the
sensor. Only if the sensor has the same field of view as the camera, the image brightness will
completely correlate with the measured solar irradiation. Similarly, using measured values for
the amount of moonlight/lunar irradiation would allow for even more accuracy. Additionally,
this would take into account all wavelengths, rather than one selected wavelength λs.

5.2 Classification

As the classification task using CNNs is dependent on many different parameters, there are many
different ways to improve it. Very likely, there still are a number of good improvements that
have not been discovered yet. This section will give some adaptions to the current classification
setup that may lead to improvements.
One of the main characteristics of this and other wildlife datasets is that there are many images
that might be undesirable for training (see for example figure 3.2) due to their poor quality or
their specific situation. Removing these form the training set (like using the blacklist) can help
the network to better learn actual images. This follows the philosophy that, if the network can
better recognize animals in baseline situations (without any factors making classification diffi-
cult), it should also be able to better recognize animals in difficult situations. It is for example
hard to know that a visible trunk belongs to an elephant, if it is unknown that elephants have
trunks. It is of course important that the network learns that difficult situations exist (take for
example an image with an elephant’s trunk visible throught the leaves of a bush), but it might
perform better if its baseline training is better. One way to improve the training set would be
to manually remove poor images, but that would be very labor intensive which would defeat the
purpose of this research (improving efficiency when dealing with large wildlife image datasets).
Another, potentially better way to improve the training set would be to use the currently trained
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network to identify troublesome images. By then removing these images from the dataset and
retraining the network, the accuracy could be improved.
A good dataset is an important requirement for machine learning, another is a strong learning
architecture. While strong and commonly used networks architectures have been implemented
in this research, newer and potentially better architectures exist too. Using one of these ar-
chitectures (for example InceptionV3 [94], InceptopionV4 [95] or NASNet [54]) could help to
further improve classification.
Unlike some other datasets, class imbalance is a significant issue for the Snapshot Serengeti
dataset. While it has been somewhat examined, it has not been resolved in this project. Future
improvements should strive to better classify very small classes such as Bushbuck or Caracal.
Although image limits or class weights (as described in [58]) might slightly improve the classifica-
tion of small classes, they do not improve the global performance of the network. Consequently,
other methods should be explored. One such method could be to further divide the classification
in different phases. Instead of simply classifying all species together, they could for example
be classified in Zebra, Wildebeest, Thomsom’s gazelle or other. This other class could then be
further divided in the remaining species in one or multiple additional classification phases using
networks that are trained on those species.
In the discussion of the inclusion of metadata in the network, a number of possibilities have
been introduced that have the potential to increase the influence of metadata. One possibility
is to try and introduce metadata in the first layers of a network, which would require careful
consideration of the functioning of that network. On the other hand, it might prove useful to
train and use a DNN after concatenating the metadata with the flattened output to help the
network better understand the non-linear correlations between image data and metadata. Both
methods should be examined.
Finally, one method that is sometimes used to slightly further increase classification is creating
an ensemble by combining the classification outputs of many different networks (see for exam-
ple [58]). As this would require many different architectures that need to be trained, which
again requires a lot of time, this method has not been explored in this project.

5.3 Regression

Improving the efficiency of the regression CNNs could be done in several ways. Firstly, using
observational data for solar irradiation instead of calculated values might improve the results.
Besides that, first classifying between day and night and applying regression after that may
narrow the range of values the regression CNN needs to handle. This may in turn lead to more
accurate results. Finally, rather than limiting the experiments to regression, some metadata
parameters (such as the camera model) could be predicted using a classification model. Exper-
imenting with this metadata even more may result in more insight regarding the abilities of a
CNN.

5.4 Summary

For each of the experiments improvements can be made. One of the most prominent possible
improvements is the amelioration of the dataset by providing better samples with more infor-
mation. The other discussed improvements are more specific to their experiment. In future
research, the improvements can be examined.
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Chapter 6

Conclusion

A lot of different properties have been researched in this project. It is therefore good to conclude
by listing all the findings concerning these properties.

One major item that has been researched is the correlation between an image and specific
metadata. Furthermore, it has been proven that some metadata can indeed be found in an im-
age. Both solar irradiation as well as (inverse) exposure time can be predicted using a regression
CNN. Moreover, these predictions are accurate as the large majority of the errors is very small
(relative to the expected results). Including metadata as additional features in classification
networks to improve accuracy does not seem to work, however. While simply concatenating
these features to the output of the global average pooling layer does not change the results at
all (indicating that it has no influence), using additional FC layers at the output of the network
even proved to be detrimental to the performance.

Besides the influence of metadata, the use of different training strategies is examined. While
brightness and contrast augmentation are common in the image recognition community, they
appear to have no beneficial influence in training the Snapshot Serengeti dataset. Likewise, the
use of CLAHE in preprocessing has been examined. Although CLAHE appears to help clari-
fying images for human viewers, it does not improve image classification at all. What makes a
large difference, however, is the choice of architecture. MobileNetV2, being significantly smaller,
not only always has lower accuracies than ResNet-50, but also has a harder to classify overly
underrepresented classes. On the other hand, having only about a tenth of the parameters of
ResNet-50, MobileNetV2 still obtains very high results. It therefore appears that MobileNetV2
is suitable for reliable image recognition applications on embedded systems.

Another important item is the comparison against related work. For the classification of
blanks, the obtained results are slightly better than those obtained by [58]. When including the
blacklisted images to the test set, the accuracies lower by about 1% and are just slightly lower
than those of [58]. This indicates not only that the results are comparable to the state of art, it
also indicates the influence of dubious or even wrongly labelled images in the dataset.
For the (blacklisted) species classification results, all obtained accuracies were again a little
lower than those found in [58]. When observing the wrongly classified images, it is clear that
many of the errors occur at images that would be difficult to classify for humans too. While
the unbalanced dataset causes some species to be very hard to classify, the overall classifica-
tion accuracy still is very high. Using an image limit to alleviate this unbalance only reduces
the overall accuracy without significantly improving the classification of the underrepresented
species.

Overall, it can be concluded that the obtained classification and regression accuracies are
very high, and that the CNNs with the highest performance could be used for automation of
labelling in biodiversity research.
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Appendix A

Classification results

This appendix contains all tables with complete species classification information regarding
recall, precision and F1 score. Table A.1 gives an overview of all tables provided in this appendix.
For more information regarding the setting, table 3.5 in section 3.3 can be examined.

Table A.1: Overview of classification result tables.

Table Setting Content

A.2 S1 MobileNetV2 with brightness and contrast augmentation

A.3 S2 ResNet-50 with brightness and contrast augmentation

A.4 S3 MobileNetV2 without brightness and contrast augmentation

A.5 S4 ResNet-50 without brightness and contrast augmentation

A.6 S5 MobileNetV2 with CLAHE augmentation

A.7 S6 MobileNetV2 with metadata features

A.8 S7 MobileNetV2 with metadata features with an additional FC layer

A.9 S8 MobileNetV2 with an additional FC layer

A.10 S9 ResNet-50 with metadata features

A.11 S10 MobileNetV2 with an image limit
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Table A.2: MobileNetV2 - S1.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 100.00 01.33 02.63 75

Aardwolf 00.00 00.00 00.00 46

Baboon 71.04 61.13 65.71 602

Bat-eared fox 34.48 10.31 15.87 97

Buffalo 86.22 80.37 83.20 4626

Bushbuck 00.00 00.00 00.00 42

Caracal 00.00 00.00 00.00 25

Cheetah 72.92 58.58 64.97 478

Civet 00.00 00.00 00.00 10

Dik-dik 52.04 62.47 56.78 429

Eland 80.96 63.60 71.24 956

Elephant 86.65 83.78 85.19 3563

Grant’s gazelle 71.91 54.60 62.07 2916

Thomson’s gazelle 88.09 94.61 91.24 15927

Genet 00.00 00.00 00.00 11

Giraffe 87.37 86.88 87.12 3057

Guineafowl 83.87 90.19 86.92 2957

Hare 29.75 33.96 31.72 106

Hartebeest 83.74 84.95 84.34 4433

Hippopotamus 79.27 85.29 82.17 435

Honey badger 00.00 00.00 00.00 13

Human 91.01 89.66 90.33 3434

Spotted hyena 70.63 68.53 69.56 1344

Striped hyena 00.00 00.00 00.00 34

Impala 77.18 84.83 80.82 3105

Jackal 28.57 02.58 04.73 155

Kori bustard 69.75 43.13 53.30 262

Leopard 00.00 00.00 00.00 52

Female lion 69.52 72.47 70.97 1108

Male lion 78.47 38.44 51.60 294

Mongoose 00.00 00.00 00.00 84

Ostrich 91.82 56.37 69.86 259

Other bird 61.46 53.48 57.20 1148

Porcupine 75.00 05.08 09.52 59

Reedbuck 67.91 69.93 68.91 572

Reptiles 100.00 81.82 90.00 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 61.84 53.11 57.14 177

Serval 62.50 07.63 13.61 131

Topi 79.51 58.21 67.22 840

Vervet monkey 74.24 40.83 52.69 120

Warthog 76.10 75.41 75.75 2761

Waterbuck 85.11 34.78 49.38 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 94.38 96.45 95.40 33660

Zebra 92.03 94.77 93.38 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 87.54 88.18 87.61 111900
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Table A.3: ResNet-50 - S2.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 62.35 70.67 66.25 75

Aardwolf 00.00 00.00 00.00 46

Baboon 81.33 73.09 76.99 602

Bat-eared fox 41.12 45.36 43.14 97

Buffalo 89.82 87.70 88.75 4626

Bushbuck 61.54 57.14 59.26 42

Caracal 100.00 08.00 14.81 25

Cheetah 74.49 75.73 75.10 478

Civet 00.00 00.00 00.00 10

Dik-dik 64.09 69.46 66.67 429

Eland 84.51 75.31 79.65 956

Elephant 89.73 90.51 90.12 3563

Grant’s gazelle 72.60 60.25 65.85 2916

Thomson’s gazelle 91.77 95.54 93.62 15927

Genet 00.00 00.00 00.00 11

Giraffe 90.87 91.17 91.02 3057

Guineafowl 89.84 92.70 91.25 2957

Hare 55.80 72.64 63.11 106

Hartebeest 87.88 87.80 87.84 4433

Hippopotamus 92.77 91.49 92.13 435

Honey badger 00.00 00.00 00.00 13

Human 92.97 93.54 93.25 3434

Spotted hyena 83.86 78.87 81.29 1344

Striped hyena 00.00 00.00 00.00 34

Impala 81.13 88.34 84.58 3105

Jackal 61.17 40.65 48.84 155

Kori bustard 65.33 56.11 60.37 262

Leopard 68.75 21.15 32.35 52

Female lion 80.30 83.48 81.86 1108

Male lion 73.54 55.78 63.44 294

Mongoose 38.30 21.43 27.48 84

Ostrich 89.95 72.59 80.34 259

Other bird 75.05 61.85 67.81 1148

Porcupine 75.86 74.58 75.21 59

Reedbuck 74.95 70.10 72.45 572

Reptiles 78.57 100.00 88.00 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 75.62 68.36 71.81 177

Serval 50.54 35.88 41.96 131

Topi 76.38 74.29 75.32 840

Vervet monkey 56.38 70.00 62.45 120

Warthog 84.53 81.13 82.79 2761

Waterbuck 83.95 59.13 69.39 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 96.54 97.49 97.01 33660

Zebra 95.51 96.39 95.95 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 91.15 91.46 91.23 111900
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Table A.4: MobileNetV2 - S3.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 40.00 02.67 05.00 75

Aardwolf 00.00 00.00 00.00 46

Baboon 72.89 67.44 70.06 602

Bat-eared fox 29.63 08.25 12.90 97

Buffalo 85.27 83.25 84.25 4626

Bushbuck 00.00 00.00 00.00 42

Caracal 00.00 00.00 00.00 25

Cheetah 72.05 66.32 69.06 478

Civet 00.00 00.00 00.00 10

Dik-dik 57.50 64.34 60.73 429

Eland 83.98 67.47 74.83 956

Elephant 86.55 85.21 85.87 3563

Grant’s gazelle 68.81 55.32 61.33 2916

Thomson’s gazelle 89.68 94.44 92.00 15927

Genet 00.00 00.00 00.00 11

Giraffe 89.36 87.37 88.36 3057

Guineafowl 85.36 90.70 87.95 2957

Hare 30.56 41.51 35.20 106

Hartebeest 85.60 85.72 85.66 4433

Hippopotamus 81.55 87.36 84.35 435

Honey badger 00.00 00.00 00.00 13

Human 89.65 89.78 89.71 3434

Spotted hyena 74.88 71.65 73.23 1344

Striped hyena 00.00 00.00 00.00 34

Impala 77.27 84.73 80.83 3105

Jackal 39.13 05.81 10.11 155

Kori bustard 65.05 46.18 54.02 262

Leopard 00.00 00.00 00.00 52

Female lion 74.95 74.01 74.48 1108

Male lion 79.76 45.58 58.01 294

Mongoose 00.00 00.00 00.00 84

Ostrich 92.90 60.62 73.36 259

Other bird 62.70 55.49 58.87 1148

Porcupine 91.67 18.64 30.99 59

Reedbuck 67.07 67.31 67.19 572

Reptiles 100.00 81.82 90.00 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 71.71 61.58 66.26 177

Serval 37.78 12.98 19.32 131

Topi 82.06 61.55 70.34 840

Vervet monkey 81.97 41.67 55.25 120

Warthog 78.45 77.11 77.77 2761

Waterbuck 82.76 41.74 55.49 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 94.86 96.68 95.76 33660

Zebra 92.70 95.46 94.06 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 88.26 88.92 88.43 111900
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Table A.5: ResNet-50 - S4.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 75.38 65.33 70.00 75

Aardwolf 16.67 02.17 03.85 46

Baboon 78.95 74.75 76.79 602

Bat-eared fox 44.34 48.45 46.31 97

Buffalo 88.70 88.09 88.39 4626

Bushbuck 75.00 57.14 64.86 42

Caracal 00.00 00.00 00.00 25

Cheetah 76.79 71.97 74.30 478

Civet 00.00 00.00 00.00 10

Dik-dik 66.52 70.40 68.40 429

Eland 82.37 75.73 78.91 956

Elephant 91.37 89.11 90.22 3563

Grant’s gazelle 67.42 61.66 64.41 2916

Thomson’s gazelle 92.31 94.96 93.62 15927

Genet 00.00 00.00 00.00 11

Giraffe 89.28 90.45 89.86 3057

Guineafowl 89.78 92.39 91.07 2957

Hare 57.81 69.81 63.25 106

Hartebeest 88.12 88.38 88.25 4433

Hippopotamus 90.47 89.43 89.94 435

Honey badger 00.00 00.00 00.00 13

Human 91.63 93.04 92.33 3434

Spotted hyena 80.27 79.61 79.94 1344

Striped hyena 00.00 00.00 00.00 34

Impala 81.41 85.35 83.33 3105

Jackal 52.74 49.68 51.16 155

Kori bustard 64.03 61.83 62.91 262

Leopard 55.56 28.85 37.97 52

Female lion 79.84 80.42 80.13 1108

Male lion 73.28 57.82 64.64 294

Mongoose 42.59 27.38 33.33 84

Ostrich 77.42 74.13 75.74 259

Other bird 73.94 57.84 64.91 1148

Porcupine 75.00 66.10 70.27 59

Reedbuck 75.64 72.73 74.15 572

Reptiles 72.73 96.97 83.12 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 75.66 64.97 69.91 177

Serval 54.46 46.56 50.21 131

Topi 77.72 72.26 74.89 840

Vervet monkey 63.11 64.17 63.64 120

Warthog 84.28 82.14 83.20 2761

Waterbuck 82.76 62.61 71.29 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 96.65 97.31 96.98 33660

Zebra 95.39 96.47 95.93 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 90.93 91.24 91.05 111900
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Table A.6: MobileNetV2 - S5.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 50.00 04.00 07.41 75

Aardwolf 00.00 00.00 00.00 46

Baboon 69.32 66.45 67.85 602

Bat-eared fox 41.38 12.37 19.05 97

Buffalo 84.35 80.76 82.52 4626

Bushbuck 00.00 00.00 00.00 42

Caracal 00.00 00.00 00.00 25

Cheetah 75.41 67.36 71.16 478

Civet 00.00 00.00 00.00 10

Dik-dik 55.05 67.37 60.59 429

Eland 80.96 63.60 71.24 956

Elephant 86.24 84.09 85.15 3563

Grant’s gazelle 71.25 53.64 61.20 2916

Thomson’s gazelle 88.78 94.52 91.56 15927

Genet 00.00 00.00 00.00 11

Giraffe 88.27 86.62 87.44 3057

Guineafowl 86.48 89.55 87.99 2957

Hare 31.62 34.91 33.18 106

Hartebeest 84.24 85.02 84.63 4433

Hippopotamus 80.09 84.14 82.06 435

Honey badger 00.00 00.00 00.00 13

Human 89.44 90.24 89.84 3434

Spotted hyena 71.77 70.16 70.96 1344

Striped hyena 00.00 00.00 00.00 34

Impala 77.92 83.32 80.53 3105

Jackal 31.82 04.52 07.91 155

Kori bustard 57.35 44.66 50.21 262

Leopard 00.00 00.00 00.00 52

Female lion 72.68 70.13 71.38 1108

Male lion 72.67 37.07 49.10 294

Mongoose 00.00 00.00 00.00 84

Ostrich 88.41 55.98 68.56 259

Other bird 63.98 54.01 58.57 1148

Porcupine 100.00 10.17 18.46 59

Reedbuck 66.49 67.31 66.90 572

Reptiles 100.00 90.91 95.24 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 62.75 54.24 58.18 177

Serval 43.59 12.98 20.00 131

Topi 76.95 60.00 67.42 840

Vervet monkey 81.03 39.17 52.81 120

Warthog 79.28 74.83 76.99 2761

Waterbuck 77.94 46.09 57.92 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 93.92 96.48 95.18 33660

Zebra 92.08 94.98 93.50 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 87.54 88.26 87.71 111900
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Table A.7: MobileNetV2 - S6.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 20.00 01.33 02.50 75

Aardwolf 00.00 00.00 00.00 46

Baboon 71.23 66.61 68.84 602

Bat-eared fox 25.00 05.15 08.55 97

Buffalo 86.48 81.58 83.96 4626

Bushbuck 100.00 02.38 04.65 42

Caracal 00.00 00.00 00.00 25

Cheetah 74.42 67.57 70.83 478

Civet 00.00 00.00 00.00 10

Dik-dik 57.91 65.73 61.57 429

Eland 80.51 65.69 72.35 956

Elephant 87.42 85.24 86.32 3563

Grant’s gazelle 74.68 54.73 63.17 2916

Thomson’s gazelle 90.18 94.88 92.47 15927

Genet 00.00 00.00 00.00 11

Giraffe 88.73 87.60 88.16 3057

Guineafowl 86.97 90.02 88.47 2957

Hare 26.15 32.08 28.81 106

Hartebeest 84.35 86.17 85.25 4433

Hippopotamus 78.39 85.06 81.59 435

Honey badger 00.00 00.00 00.00 13

Human 91.15 89.11 90.12 3434

Spotted hyena 75.39 72.02 73.67 1344

Striped hyena 00.00 00.00 00.00 34

Impala 78.00 85.31 81.50 3105

Jackal 55.00 07.10 12.57 155

Kori bustard 60.42 44.27 51.10 262

Leopard 00.00 00.00 00.00 52

Female lion 72.70 74.73 73.70 1108

Male lion 74.68 40.14 52.21 294

Mongoose 00.00 00.00 00.00 84

Ostrich 92.86 60.23 73.07 259

Other bird 64.80 50.52 56.78 1148

Porcupine 92.31 20.34 33.33 59

Reedbuck 65.07 69.06 67.01 572

Reptiles 90.91 90.91 90.91 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 62.82 55.37 58.86 177

Serval 42.86 16.03 23.33 131

Topi 78.68 62.38 69.59 840

Vervet monkey 75.47 33.33 46.24 120

Warthog 77.04 77.80 77.42 2761

Waterbuck 79.10 46.09 58.24 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 94.07 97.16 95.59 33660

Zebra 92.73 95.15 93.92 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 88.26 88.92 88.38 111900
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Table A.8: MobileNetV2 - S7.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 00.00 00.00 00.00 75

Aardwolf 00.00 00.00 00.00 46

Baboon 65.65 67.61 66.61 602

Bat-eared fox 00.00 00.00 00.00 97

Buffalo 83.83 82.71 83.26 4626

Bushbuck 00.00 00.00 00.00 42

Caracal 00.00 00.00 00.00 25

Cheetah 65.12 67.57 66.32 478

Civet 00.00 00.00 00.00 10

Dik-dik 38.59 62.70 47.78 429

Eland 80.91 63.39 71.09 956

Elephant 87.12 83.13 85.08 3563

Grant’s gazelle 74.03 54.05 62.48 2916

Thomson’s gazelle 88.86 94.90 91.78 15927

Genet 00.00 00.00 00.00 11

Giraffe 90.10 86.03 88.02 3057

Guineafowl 85.63 90.06 87.79 2957

Hare 00.00 00.00 00.00 106

Hartebeest 85.93 85.38 85.65 4433

Hippopotamus 79.96 84.37 82.10 435

Honey badger 00.00 00.00 00.00 13

Human 90.01 90.51 90.26 3434

Spotted hyena 70.55 70.24 70.40 1344

Striped hyena 00.00 00.00 00.00 34

Impala 76.58 85.83 80.94 3105

Jackal 00.00 00.00 00.00 155

Kori bustard 42.01 35.11 38.25 262

Leopard 00.00 00.00 00.00 52

Female lion 72.41 75.81 74.07 1108

Male lion 76.60 36.73 49.66 294

Mongoose 00.00 00.00 00.00 84

Ostrich 86.39 56.37 68.22 259

Other bird 61.11 53.92 57.29 1148

Porcupine 00.00 00.00 00.00 59

Reedbuck 62.54 70.63 66.34 572

Reptiles 100.00 21.21 35.00 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 64.71 18.64 28.95 177

Serval 00.00 00.00 00.00 131

Topi 77.76 61.19 68.49 840

Vervet monkey 00.00 00.00 00.00 120

Warthog 76.99 75.73 76.36 2761

Waterbuck 100.00 00.87 01.72 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 94.36 96.41 95.38 33660

Zebra 92.33 94.90 93.60 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 87.30 88.26 87.57 111900
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Table A.9: MobileNetV2 - S8.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 00.00 00.00 00.00 75

Aardwolf 00.00 00.00 00.00 46

Baboon 69.98 65.45 67.64 602

Bat-eared fox 00.00 00.00 00.00 97

Buffalo 84.54 81.30 82.89 4626

Bushbuck 00.00 00.00 00.00 42

Caracal 00.00 00.00 00.00 25

Cheetah 71.46 63.39 67.18 478

Civet 00.00 00.00 00.00 10

Dik-dik 40.03 66.43 49.96 429

Eland 79.17 64.02 70.79 956

Elephant 87.12 83.89 85.47 3563

Grant’s gazelle 72.42 55.28 62.70 2916

Thomson’s gazelle 89.56 94.05 91.75 15927

Genet 00.00 00.00 00.00 11

Giraffe 88.92 86.88 87.89 3057

Guineafowl 83.58 90.56 86.93 2957

Hare 33.33 01.89 03.57 106

Hartebeest 84.72 85.54 85.13 4433

Hippopotamus 74.35 85.98 79.74 435

Honey badger 00.00 00.00 00.00 13

Human 90.21 89.90 90.05 3434

Spotted hyena 64.88 71.35 67.97 1344

Striped hyena 00.00 00.00 00.00 34

Impala 77.41 85.19 81.11 3105

Jackal 00.00 00.00 00.00 155

Kori bustard 37.35 35.50 36.40 262

Leopard 00.00 00.00 00.00 52

Female lion 66.32 74.82 70.31 1108

Male lion 78.86 32.99 46.52 294

Mongoose 00.00 00.00 00.00 84

Ostrich 89.53 59.46 71.46 259

Other bird 58.22 50.00 53.80 1148

Porcupine 00.00 00.00 00.00 59

Reedbuck 61.15 67.13 64.00 572

Reptiles 00.00 00.00 00.00 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 50.00 02.26 04.32 177

Serval 00.00 00.00 00.00 131

Topi 77.45 65.00 70.68 840

Vervet monkey 00.00 00.00 00.00 120

Warthog 78.07 75.15 76.58 2761

Waterbuck 00.00 00.00 00.00 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 94.46 96.62 95.53 33660

Zebra 92.37 94.93 93.63 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 87.08 88.14 87.44 111900
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Table A.10: ResNet-50 - S9.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 75.00 60.00 66.67 75

Aardwolf 00.00 00.00 00.00 46

Baboon 83.65 73.92 78.48 602

Bat-eared fox 42.22 39.18 40.64 97

Buffalo 87.87 88.15 88.01 4626

Bushbuck 70.00 50.00 58.33 42

Caracal 00.00 00.00 00.00 25

Cheetah 78.80 71.55 75.00 478

Civet 00.00 00.00 00.00 10

Dik-dik 62.66 68.07 65.25 429

Eland 84.66 75.63 79.89 956

Elephant 90.45 88.52 89.48 3563

Grant’s gazelle 69.80 60.63 64.89 2916

Thomson’s gazelle 92.07 95.35 93.68 15927

Genet 00.00 00.00 00.00 11

Giraffe 90.88 91.27 91.07 3057

Guineafowl 91.66 92.49 92.07 2957

Hare 58.33 72.64 64.71 106

Hartebeest 87.08 87.86 87.47 4433

Hippopotamus 90.18 90.80 90.49 435

Honey badger 00.00 00.00 00.00 13

Human 92.74 92.57 92.66 3434

Spotted hyena 81.85 78.87 80.33 1344

Striped hyena 00.00 00.00 00.00 34

Impala 81.00 85.41 83.15 3105

Jackal 48.00 46.45 47.21 155

Kori bustard 67.14 53.82 59.75 262

Leopard 73.68 26.92 39.44 52

Female lion 76.37 80.51 78.38 1108

Male lion 73.42 59.18 65.54 294

Mongoose 39.44 33.33 36.13 84

Ostrich 88.73 72.97 80.08 259

Other bird 71.24 59.76 64.99 1148

Porcupine 74.58 74.58 74.58 59

Reedbuck 69.62 72.90 71.22 572

Reptiles 97.06 100.00 98.51 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 76.77 67.23 71.69 177

Serval 53.06 39.69 45.41 131

Topi 80.97 71.43 75.90 840

Vervet monkey 66.02 56.67 60.99 120

Warthog 83.28 81.89 82.58 2761

Waterbuck 85.71 67.83 75.73 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 96.47 97.54 97.00 33660

Zebra 95.49 96.48 95.98 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 90.94 91.27 91.06 111900
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Table A.11: MobileNetV2 - S10.

Class Precision (%) Recall (%) F1 score (%) Number of images

Aardvark 20.00 01.33 02.50 75

Aardwolf 00.00 00.00 00.00 46

Baboon 63.17 62.96 63.06 602

Bat-eared fox 40.74 22.68 29.14 97

Buffalo 71.84 81.06 76.17 4626

Bushbuck 00.00 00.00 00.00 42

Caracal 00.00 00.00 00.00 25

Cheetah 70.77 63.81 67.11 478

Civet 00.00 00.00 00.00 10

Dik-dik 50.64 64.10 56.58 429

Eland 72.54 61.61 66.63 956

Elephant 76.86 83.33 79.96 3563

Grant’s gazelle 60.39 57.61 58.97 2916

Thomson’s gazelle 89.60 90.95 90.27 15927

Genet 00.00 00.00 00.00 11

Giraffe 80.51 86.10 83.21 3057

Guineafowl 80.50 89.89 84.93 2957

Hare 29.01 44.34 35.07 106

Hartebeest 77.98 85.72 81.67 4433

Hippopotamus 80.40 82.99 81.67 435

Honey badger 00.00 00.00 00.00 13

Human 84.57 87.33 85.93 3434

Spotted hyena 61.30 70.01 65.37 1344

Striped hyena 00.00 00.00 00.00 34

Impala 73.24 84.86 78.62 3105

Jackal 38.10 10.32 16.24 155

Kori bustard 56.04 38.93 45.95 262

Leopard 100.00 01.92 03.77 52

Female lion 67.08 73.01 69.92 1108

Male lion 68.21 35.03 46.29 294

Mongoose 00.00 00.00 00.00 84

Ostrich 81.97 57.92 67.87 259

Other bird 53.54 51.39 52.44 1148

Porcupine 80.00 27.12 40.51 59

Reedbuck 62.44 64.51 63.46 572

Reptiles 100.00 90.91 95.24 33

Rhinoceros 00.00 00.00 00.00 9

Rodents 00.00 00.00 00.00 19

Secretary bird 62.24 50.28 55.62 177

Serval 46.15 13.74 21.18 131

Topi 72.34 58.21 64.51 840

Vervet monkey 79.63 35.83 49.43 120

Warthog 67.04 74.68 70.65 2761

Waterbuck 86.05 32.17 46.84 115

Wildcat 00.00 00.00 00.00 12

Wildebeest 95.30 91.07 93.14 33660

Zebra 92.47 91.08 91.77 21303

Zorilla 00.00 00.00 00.00 6

Weighted average 85.37 85.35 85.17 111900
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