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Preface

“I bet that one day you will revolutionise the global ammonia business”, stated one
of my friends three years ago. Such blatant bets — a favourite pastime of engineering
students musing about their future in the bicycle shed after a long day of classes —
are one of such memories that can pop up unasked in your mind when brainstorming
about a possible research topic. Previous year, I had got the chance to be part of the
iGEM team of the KU Leuven, who backed this idea far into our project selection
process. Unluckily, the COVID crisis erupted and the team was forced to break
up. I wish all members good luck and the ones who reengage this year a lot of success.

This brings me seamlessly to my promotors, Prof. dr. Kristel Bernaerts and Prof. dr.
Steffen Waldherr. I already thanked them last year for their promises to back our
project idea and for accepting this topic as my thesis subject, but I also want to show
now my gratitude for the support they gave me this year. The final result has sub-
stantially improved because of their feedback during the regular meetings and their
proofreading. Next, I would like to thank Kenneth Simoens, who mainly helped me
during the experimental part of this thesis and was keen to share his great technical
and practical know-how when I ran into doubts. I also want to thank my asses-
sors Prof. dr. Ilse Smets and Prof. dr. Karoline Faust for critically reading my thesis.

Furthermore, I would like to acknowledge Stephen and Ruben for the casual conver-
sations in the lab. You sometimes were the only ones of my fellow students I saw
face-to-face in weeks this year. I was more at home than expected, whereby I would
like to thank my family for the warm welcome and the moral support. Lastly, I am
grateful for that pleasant group of friends that slowly was formed back at the Kulak
five years ago. We definitely deserve a full reunion instead of our online chatserver.

Lucas De Vrieze
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Abstract

Protein deamination is a relatively new bioprocessing concept which recovers fixed
nitrogen from protein side streams. It aims to alleviate our reliance on the energy-
intensive Haber-Bosch process and to reduce environmental problems caused by
nitrogen losses. It relies on the microbial secretion of ammonia when processing
nitrogenous substrates. Bacillus subtilis is deemed an attractive organism in this
context because of its powerful pallet of proteases. A systematic screening of its
metabolism using genome-scale metabolic modelling and flux balance analysis pro-
vides directions on which genetic modifications can improve its ammonia secretion
rate in a protein medium.

First, after selecting a model from literature, the sensitivity of the secretion flux
to the medium composition is assessed using dynamic flux balance analysis. It is
found that only a couple of amino acids have a large impact on the final ammo-
nium concentration, with special attention to glutamate, arginine and alanine. As
a side effect, plant-based proteins have the greatest potential for high ammonia yields.

Then, for the case of LB medium, two metabolic optimisation algorithms, sequential
scanning and OptGene, determine the best genetic deletions and/or amplifications
in the carbohydrate and the amino acid subsystems for a couple of closely related
optimisation objectives. It is observed that yield increases mainly come at the
expense of the growth rate, but that acting on the arginine degradation pathway
results in the best flux increases. To reduce the practical disadvantages of low growth
rates, the idea of inducible knockouts using metabolic toggle switches is proposed.

Finally, some batch bioreactor runs provide data with which the model is adjusted
for better qualitative predictions. A couple of metabolic shifts result in a smooth,
gradually flattening growth curve. The main metabolic products are ammonium,
isobutyrate, isovalerate and acetate, which is remetabolised. Hence, the implemented
model alterations are scaling the exchange flux constraints according to the observed
growth rate, enabling the reuptake of acetate, introducing a dissolved oxygen balance
and adding new pathways to facilitate the secretion of isobutyrate and isovalerate.
Due to an insufficient number of offline samples within each growth phase, a further
quantitative refinement would entail a high uncertainty and is therefore omitted.

iv
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Chapter 1

Introduction

Ammonia is a commodity chemical that is indispensable for our modern life with a
global production amounting up to 146 million tons in 2015 [1]. It is predominantly
used to produce fertilisers and consequently sustains the global food production,
but also fulfils needs in the nitrogen and inorganics industry to manufacture e.g.
explosives and nitrogenous chemicals like nitric acid, acrylonitrile and hydrazine [2].
Next to that, newly emerging applications comprise functions as a refrigerant (R717)
[2], as a nitrogen source for the bioconversion industry or as a novel fuel or energy
carrier to compete with hydrogen gas [3].

Nowadays, the Haber-Bosch process covers most of the industrial production by
fixating nitrogen from air, but it requires much energy to break the triple bond of
nitrogen gas. Our reliance on ammonia is such that the process is responsible for an
annual global energy consumption of 2.5 -10% TJ, 1 % of the global COy emissions
and 3-5 % of the global natural gas demand [4]. Moreover, significant parts of the
applied fertilisers are lost by run-off or volatilisation, resulting in NOx emissions and
eutrophication [5]. To continue achieving adequately high agricultural yields and to
keep on benefiting of its chemical versatility without a high environmental impact,
ammonia production has to be rechallenged as a whole.

There is definitely a need to reduce the energy intensity of the ammonia production
and to restrict losses by recovering fixated nitrogen from other sources, including
waste streams. Much research is nowadays carried out in different fields to formulate
a solution to this issue. One of these approaches is situated within the field of
bioprocessing: microbial deamination. This is a relatively new concept which
relies on the excretion of excess amino groups by microbes when metabolising nitroge-
nous substrates such as amino acids and proteins [1]. As the concept is rather new,
research has focused on proof-of-concept genetic modification experiments lacking
a wider view. This thesis, however, attempts to systematically screen an entire
microbial metabolism for genetic modifications improving the ammonia yield, by
applying genome-scale metabolic network modelling.
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Chapter 2 provides more information on microbial deamination, describes the other
most important ammonia production techniques and introduces basic and some
more advanced computational metabolic modelling concepts. Using the data and
the procedures clarified in Chapter 3, Chapter 4 assesses, remediates and selects
some metabolic models reported in literature and explores the capabilities and the
sensitivities of the chosen wild-type model regarding the composition of the bioreactor
medium. Chapter 5 conducts a systematic network optimisation based on this model
and reports the most promising genetic modifications. Chapter 6 reviews possible
issues and improvements of this model and introduces some in vitro experiments of
which the data are used to align its predictions qualitatively.



Chapter 2

Literature study

2.1 Ammonia production processes

In this thesis, the secreted ammonia is produced microbially by deaminating amino
acids and proteins. This section defines the concepts of this process and provides an
overview of the major production alternatives, both conventional and novel ones.

2.1.1 Microbial protein deamination

Microbes produce proteins from a variety of substrates. Thereby they often inter-
convert amino acids or extract their carbon backbones by trans- or deamination.
Both reaction types involve handling an amino group, which is excreted as NHy ™ if
it is in excess. The processing of these amino groups can be intensified by providing
solely amino acids or proteins as substrates [1]. An overview of the typical microbial
deamination products is provided in Figure 2.1.

If the substrate compositions and the metabolic driving forces are managed well,
this metabolism can be turned into an ammonia production process. However,
thermodynamics and biological evolution constrain the rate at which free ammonia
can be synthesised. Trans- and deamination reactions often are highly reversible
reactions, which are biologically favoured towards amino acid anabolism instead
of the desired catabolism. As a consequence, excreted free ammonia tends to be
reassimilated quickly. Moreover, Darwinian evolution forces organisms to grow and
reproduce as fast as possible, which spurs free ammonia assimilation [5, 6].

Anyhow, producing ammonia by deamination has some interesting properties. First,
the production of ammonia from proteins is connected to biofuel production. The
trans- and deamination pathways yield, next to the amino group, a-keto acids such
as 2-oxoglutarate, oxaloacetate and pyruvate, which normally are routed to the
TCA cycle to serve as carbon source. As mentioned, much trans- and deamination
pathways obey to a thermodynamical equilibrium, but driving deaminations using
heterologous pathways and/or throttling ammonia assimilation could force it to keep
producing ammonia and a-keto acids. A heterologous Ehrlich pathway, for example,
converts the latter into biofuels like ethanol, isobutanol and 3-methylbutanol, and
drives the equilibria towards catabolism [5, 6, 7).

3
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Figure 2.1: Overview of the typical microbial deamination products and their
positions in the central carbon metabolism of E. coli. Figure taken from [1].

Another consequence regards the environmental impact of ammonia usage and its
role in recycling nitrogen compounds. Ammonia is nowadays mainly used to produce
fertilisers, which are indispensable to achieve high agricultural yields. However,
producing ammonia is highly energy and capital intensive due to the Haber-Bosch
process (see Section 2.1.2). Moreover, a considerable share of the applied fertilisers is
lost by run-off and volatilisation, causing eutrophication and nitrogen oxide emissions
respectively. Much energy and resources are thus invested in something that is only
partly used and of which the losses cause environmental problems. As ammonia
will remain an important commodity because of its newly emerging applications,
it is necessary to reduce the energy intensity of fresh ammonia production and to
recycle fixated nitrogen [5]. Possible solutions include curative ones like run-off water
collection basins or canals connected to a treatment plant, and preventive ones like
microbial protein production from waste nitrogen (sewers, waste proteins, waste
biomass) to use as direct or animal feed [8]. Microbial deamination of waste proteins
could be considered such a preventive measure.

Microbial protein deamination is a fairly new concept and has so far only been
applied in E. coli [1, 6, 9] and B. subtilis [7], both because of their well-characterised
metabolisms. However, the Gram-positive B. subtilis has an advantage over the
Gram-negative F. coli: it is able to digest polypeptides using its own naturally
secreted proteases. This avoids a more expensive protein hydrolysis pretreatment,
simplifying industrial upscaling [7]. Moreover, the wild-type is able to grow with
eight individual amino acids as the sole carbon source [10], while E. coli wild-types
can only do this for four amino acids [6], indicating that B. subtilis has a richer
amino acid metabolism.

4
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2.1.2 Other ammonia production processes

Ammonia production processes mainly exist in two kinds depending on the source
of the nitrogen. Firstly, there are the nitrogen fixation processes which convert
gaseous No from air into the more tangible ammonia. However, these processes
require relatively large amounts of energy to break the triple bond of No. On the
other hand, nitrogen recovery processes utilise feeds with already fixated nitrogen,
avoiding breaking triple bonds. However, these feeds mostly are impure waste
streams, hampering easy processing and consistent product quality.

Haber-Bosch The established ammonia production process combines Ng from air
with Hg, according to the chemical equilibrium reaction below.

Ny + 3Hy = 2 NH;

A trade-off between the thermodynamics (conversion) and the kinetics (reaction
rate) has resulted in operating the reactor at high pressure (150-300 bar) and high
temperature (>400 °C), applying large recycle streams and Fe- or Ru-based catalysts.
The process itself stayed somewhat the same over the years, because most advances
in energy economics and sustainability are done at the upstream Hy generation
facilities [11].

Traditionally, Hs is generated by steam reforming natural gas to syngas or by gasifying
coal. Current research includes producing Hy by electrolysing water with wind or
solar power [11]. The use of these renewable power sources imposes to develop
small-scale ammonia plants for local markets, as this energy is not available anywhere
at any time in any quantity [12]. Other recent research covers the gasification of
lignocellulosic waste biomass into biosyngas. New approaches in this field include
gasifying nitrogen-rich biomass, like waste proteins, resulting in additional NHg next
to the biosyngas. Such applications could serve as a stand-alone ammonia production
facility as well when equipped with the appropriate purification apparatus [4].

Electrochemical catalysis [13] Instead of driving an equilibrium reaction under
harsh — and thus expensive — conditions, electrochemical ammonia production utilises
electrical power at milder temperatures. It creates voltage gradients between an
anode and a cathode over a ceramic or metallic electrolyte, being a liquid, a molten
salt, a composite membrane or a solid. The nitrogen gas is sourced from air, while
any compound from which hydrogen atoms can be extracted electrochemically (Ha,
H0, CHy, ethanol, ...), can supply the hydrogen either in a separate reaction unit
or in situ.

However, current production rates are too low to be competitive. Next to conversion-
rate trade-offs similar as for the Haber-Bosch process, electrochemical ammonia
synthesis is plagued by low transport rates in the electrolytes and a high reaction
competition by H"-ions recombining into Hs.
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Nitrogenase biocatalysis [14] Nature itself also has suitable machinery to syn-
thesise ammonia from nitrogen gas, the so-called nitrogenase enzyme. It produces
NHj in the absence of oxygen by converting nitrogen gas and protons into ammonia
and hydrogen gas, as in the chemical reaction below.

Ny +8H" + 16 ATP +8e  —— 2NH;3 + Hy + 16 ADP + 16 P;

So-called diazotrophic bacteria employ nitrogenases at ambient temperatures and
pressures. These are free living species such as the Azotobacter, which are commonly
found in soil. Others, like the Rhizobium, thrive in symbiotic relations with the root
cells of legumes and are known as root nodule bacteria.

There are two approaches to apply nitrogenase catalysis for ammonia production:
in vitro and in vivo. The in vitro way is to isolate the enzyme. Problems with this
approach are the high costs of protein purification and the instability of the enzyme.
This can be resolved by immobilisation and/or encapsulation, but the costs would
then even rise further.

The in vivo way employs the microorganism itself. By meaningful metabolic en-
gineering, the expression and activity of the microbial nitrogen fixing complexes
could be ameliorated. This approach, however, is thwarted by the fact that this
metabolism is not fully understood yet.

However, in both cases the production rate is limited due to nitrogenase itself, which
is a rather bulky enzyme (molar mass: 230000 g/mol) with only two active sites.
Using biotechnological techniques such as directed evolution and protein engineering,
the number of active sites could be increased.

Slude digestate stripping [15] This process originates from the waste water
treatment sector and, more specifically, from anaerobic digestion processes. In view
of the economic performance of such units, the focus of these units is on the primary
digestion product, high-value biogas, which can be further refined into methane.
However, the liquid remnants of the waste stream, the digestate, contain a high
amount of ammonium. The most efficient method nowadays to obtain this ammonia
is by stripping the digestate with air to release ammonia gas, which is neutralised in
an acid scrubber and crystallised to an ammonium salt.

However, the use of acids implies corrosion risks and increases the material costs.
The counterions originating from the scrubbing acid, often have little value as well if
the ammonium salt is not the desired product (fertilisers). These salts can even be
dangerously reactive, cfr. ammonium nitrates.
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2.2 Metabolic modelling tools

Modelling in general has some clear advantages over hands-on experimental tryouts.
Instead of wasting time and resources in large experiment series, an engineer tries
to extract a mathematical model of a certain process or phenomenon from some
well-chosen experimental setups. This model immediately serves as a framework to
predict the response of the system to a new situation, and as a consequence, allows
to optimise it with respect to some desired criteria.

Modelling bioprocesses has evolved over the years and is rising in complexity more
and more to capture all aspects of nature’s own production unit: the cell. Coming
from simple kinetic models only valid for a specific range of conditions, bioprocess
modelling has reached the genomics scale and all reactions that a cell is capable to
carry out. In the future, this rise in complexity probably will continue and models
will include other omics scales as well.

These biological models serve different purposes in all development stages of a produc-
tion process. In the experimental stage for example, they are used for characterising
and optimising the behaviour of the micro-organism, by changing conditions such as
temperature, pH, substrate feed profile, oxygen transfer, reactor operation mode etc.
At larger scales, these models enable process monitoring and control by adjusting the
appropriate heat and material streams. They also facilitate process troubleshooting
by predicting the consequences of possible corrective actions.

This section will explain the basic concepts of genome-scale metabolic network
modelling and some network optimisation strategies. A novel way of implementing
proteomic data will be discussed as well, next to modelling genetic modifications.

2.2.1 Metabolic network models

A cell maintains several chemical reactions constituting its metabolism. The classical
way of writing these down, is in a chemical reaction equation, indicating which
reagentia are converted to which products in which ratios. However, a metabolism
can consist of hundreds of reactions. That is why these reactions are ordered in a
mathematical graph, as for example in Figure 2.2. Metabolites are drawn as the nodes
of the network, while reactions are the arrows. Biological evolution has selected a
couple of patterns, as can be seen in their frequent appearance in metabolic networks.
These patterns are the subsystems which are responsible for specific metabolic
functions, e.g. respiration, breakdown of sugars, synthesis of biomass etc.

As the synthesis of macromolecules like DNA, a protein or the cell wall, is not always
completely understood, such reactions often are included in a lumped form, i.e. a
black-box reaction [16].
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Figure 2.2: Example network map of the metabolic model for the central carbon
and y-polyglutamic acid (YPGA) subsystems of B. subtilis. Figure taken from [17].

A metabolic network can also be mathematically represented by a stoichiometric
matrix S of size m x r, in which m is the number of metabolites in the network and
r the number of reactions [16]. By writing a mass balance for each metabolite in
the network, one obtains a linear differential system which can be written in matrix
form using S. The mass balance for a metabolite z; is as following in equation (2.1),
with v;; the flux of metabolite ¢ in reaction j and S;; the stoichiometric coefficient of
that metabolite in that reaction. It is assumed, however, that there are no external
feeds or effluents and consequently, this is the mass balance for batch systems [16].

U1

dz; 4 )

ditz = ;Sijvij = (Szl Sz Sw> . (2.1)
Ur
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Assembling the mass balances for all m metabolites gives the general matrix form in
equation (2.2)

St Sz ... Si v
de | Sa1 Sz .. Sar | |v2| _ S v (2.2)
Smi Sm2 ... Smr Ur

Note that most metabolites are involved in only a few reactions and that consequently
most elements of S are 0, rendering S a sparse matrix.

By including exchange pseudoreactions and an extracellular counterpart for the
metabolites that the cell can exchange with its environment, an extended form of S
is obtained. The part that only takes the internal metabolites and reactions into ac-
count, is now denoted as S;,;. This extended matrix has some clearly distinguishable
compartments, as depicted in Figure 2.3 [16].

intemal external
fluxes fluxes
S . intracellular metabolites
S int ‘
0 ‘ extracellular metabolites

Figure 2.3: Compartments in an extended stoichiometric matrix

2.2.2 Model analysis tools
Metabolic Flux Analysis (MFA)

MFA is one of the oldest and simplest analysis methods and only relies on the
metabolic network by solving the system in equation (2.2) in a slightly different form
[18]. The difference is the additional term accounting for the biomass growth p [1/h],
which has a diluting effect, as stated in equation (2.3).

%:S-v—um (2.3)
x is the vector of metabolite concentrations in mmol/gpw, S the stoichiomet-
ric matrix as defined earlier, and v a vector containing the metabolite fluxes in
mmol/(gpwh). The dilution term is often small and omitted. The fluxes v depend
on the concentration of the involved metabolites via their reaction kinetics and, as a
result, equation (2.2) is a first order system of m coupled differential equations in z.

To reduce calculation efforts — especially in case of large metabolic models —, a
simple approximation is called in: the pseudo-steady state approximation. It assumes

that the dynamics of the metabolism are much faster than those of the control
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2. LITERATURE STUDY

mechanisms of the cell (gene expression level adjustments etc.). As a consequence,
the differential term is neglected, resulting in equation (2.4).

0=S-v (2.4)

This is a linear algebraic system with m equations for r variables. Usually, there are
more reactions than metabolites (r > m) and the system is thus underdetermined
with  — m degrees of freedom, coupled to a solution space of dimension r — m. The
remaining degrees of freedom are reduced by a number of experimental flux mea-
surements a. This turns the system either determined and thus solvable (a = r — m)
or overdetermined (a > r —m). In the latter case, the solution is obtained by min-
imising the sum of squared errors between the model and the experimental values [19].

Alternative constrains can be imposed via 3C-MFA, which utilises '*C-labelled
substrates to incorporate marked C-atoms in the intracellular metabolites. Via mass
spectometry measurements, a ratio of the corresponding reaction fluxes is determined
and included as an additional equation in the MFA equation system [20)].

The advantage of MFA is its simplicity, as it only relies on linear algebra to solve
the system. However, the larger the network, the more measurements are required
to make the system at least determined.

Flux Balance Analysis (FBA)

Contrary to MFA, FBA is able to solve underdetermined systems. The two enabling
key features of FBA are the flux constraints and the objective function.

FBA treats the same system as MFA (equation (2.4)), exploiting the pseudo-steady
state approximation too. However, the solution space is now restricted by fluz
constraints, which are written in a general form in equation (2.5) [21].

Vmin <V < Umax (25)

Non-limiting reactions are constrained by an arbitrary high (or low for v;min)
boundary, e.g. 1000 mmol/(gpwh). Thermodynamically irreversible reactions have a
lower boundary at zero, while directly measurable fluxes like the exchange reactions
are constrained by experimental values if available. Constraining upper and lower
bounds of a flux to zero mimics a genetic knock-out, while setting a positive lower
bound forces flux through black-box reactions, such as the biomass formation reaction
or the ‘ATP maintenance reaction’. This last reaction is often added to a model to
include non-growth related energy consumption [21].

On the other hand, the objective function Z eliminates the degrees of freedom that
were not covered by the systems equations. It relates some criteria set by the modeller
to the fluxes within the solution subspace via a vector of weights c, as stated in
equation (2.6). The final solution is then acquired by maximising the objective
function. A graphical summary of the FBA procedure is shown in Figure 2.4.

Z =c"v (2.6)

10



2.2. Metabolic modelling tools

V3 V3 V3

Constraints Optimization
1)Sv=0 maximize Z
2) aj< vi< b;

ﬁ

vy Vy

| -
—oe =0

Allowable
solution space

Unconstrained

solution space Optimal solution

Vo Vo Vo

Figure 2.4: Graphical summary of the FBA method. Starting from an
underdetermined solution space with three dimensions (left), the solution space is
reduced by imposing the system equations and the flux constraints (center). Finally,
an LP solver determines the optimal solution with respect to a certain objective
function (right). Figure taken from [21].

There are many biologically meaningful objective functions. In favourable circum-
stances, for example, most organisms tend to maximise their biomass formation
due to their evolutionarily induced striving for survival. To implement this in an
FBA model, c is an all-but-one vector of zeros with a single 1 on the position of the
biomass formation flux in v. Other objective functions include maximisation of ATP
generation, minimisation of carbon usage, maximisation of oxygen usage etc.

As the system equations, its constraints and the objective function are all lin-
ear, the resulting problem is a so-called linear programming problem (LP), as defined
in equation (2.7). Such problems are frequently encountered in many fields including
economics, industrial operational research and mathematics [22].

max Z = clv

st. S-v=0 (2.7)

VUmin < U < Umaa

The advantages of FBA are clear: no kinetic parameters required, quick computations
and versatile model tweaking. However, its advantages have a downside too. As
kinetic parameters are not included in the system equations, it is impossible to
directly relate metabolite fluxes v to metabolite concentrations x. Consequently,
FBA cannot predict concentrations, but only fluxes. Moreover, they have been
computed while assuming pseudo-steady state. Thus, they are only valid during
exponential growth phases with a constant growth rate. Other relevant biological
phenomena such as gene regulation and the size and activity of the enzyme pool, are
not taken into account either.

11
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A last point of attention is the relation between model redundancy and the LP
solver. The larger the metabolic network, the more chance that two distinct flux
distributions perform equally according to the objective function. A usual LP solver
algorithm returns the first optimal value it encounters, starting from an initial guess.
To tackle this issue, one should apply a Mixed Integer Linear Programming (MILP)
algorithm, which searches all optimal values [21, 23].

Parsimonious Flux Balance Analysis (pFBA)

Over the years, it was often observed that the fastest growing micro-organisms
express few enzymes that are not used for their metabolism. Except for some stand-
by enzymes mediating sudden environmental changes, a micro-organism appears to
minimise the total amount of enzymes, resulting in less maintenance efforts to keep
the enzyme abundances at appropriate levels.

The consequence of this phenomenon is that micro-organisms tend to obey to another
minimalist flux solution than predicted by FBA. A way to implement this feature, is
to minimise the sum of all fluxes v obtained from the preceding FBA problem while
fixing the objective function Z at its optimum Z,,;. To account for negative fluxes,
either the absolute value or the squared value is taken for the calculations. This is
translated in the mathematical problem in equation (2.8) [24].

max Z = ¢l v

st. Sv=0
Vmin <V < Umae
Then

min Zv? or Z\UZ| (2.8)

s.t. Z = Zopt
Sv=0

Umin <wv< VUmax

It is clear that the computational work increases in comparison with FBA. Also,
when using squared values, a quadratic programming solver (QP) is required.

Regulatory Flux Balance Analysis (rFBA)

As mentioned earlier, FBA does not include any regulatory information. However,
biological evolution has equipped cells with multi-level regulatory mechanisms to be
able to tweak certain fluxes or subsystems depending on the experienced conditions.
FBA tends to metabolise everything suitable instead of only substrates that are
allowed by these regulation mechanisms. This artefact is attributable to the FBA
optimisation procedure. For example, when maximising biomass formation, FBA
will utilise all metabolic pathways that result in an increase of the objective value.

12



2.2. Metabolic modelling tools

Regulatory interactions can be included in a qualitative way by using Boolean
logic [25]. By the pseudo-steady state approximation, it is assumed that the network
behaves equally over time, including the regulatory network. This determines which
reactions of the model should be throttled, which is implemented by multiplying the
existing flux constraints with a Boolean expression. If for example, a reaction v; can
only take place if the necessary enzyme F; is present and if its inhibitor I; is absent,
its flux constraint would be stated as in equation (2.9).

Vimin - (Ei and not(I;)) < v; < v mage - (E; and not(I;)) (2.9)

The state of the regulatory network of the situation at hand is determined separately
by building a static probabilistic network which is validated using omics techniques,
after which it is implemented by constraining the appropriate reactions [26]. Finally,
an ordinary FBA is performed for the throttled metabolic model [25].

The impact of these regulations is not always recognisable in the simulation results,
as visualised in Figure 2.5.

@) (c)

Flux,
Flux,

res Fluxg res Fluxg

(b)

Flux,

‘QV Flux;

Figure 2.5: Graphical representation of the impact of regulatory con-
straints on the solution subspace. A hypothetical solution subspace with op-
timal solution is shown in figure a). In figure b), the optimal solution still fulfils
the new regulatory constraint. In case it does not, like in figure c), a new optimal
solution will be obtained. Figure taken from [25].
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Dynamic Flux Balance Analysis (dFBA)

As mentioned in Section 2.2.2, FBA cannot directly predict metabolite concentra-
tions. dFBA circumvents this issue by integrating FBA flux distributions in the
mass balance equations of the extracellular metabolites. The results are metabolite
concentration and biomass time profiles, from which shifts in the metabolism due to
the availability of metabolites can be captured.

The governing mass balance equations of FBA problems are valid for the biomass
itself taking abstraction of the bioreactor environment and are, hence, normalised by
the biomass (mind the units of equation (2.3)). To obtain the extracellular metabolite
concentrations ¢ [mmol/L], the exchange fluxes [mmol/(gpwh)] thus have to be
multiplied with the biomass X [gpw /L], resulting in equation (2.10) [27].

dc
— =SvX 2.10
o (2.10)
Extracellular metabolites ¢; are produced or consumed until depleted. The latter
case must be implemented in such a way that negative concentrations are impossible.
Besides, most organisms consume a substrate less if it is scarce. There are some
methods to implement such additional constraints for all K extracellular metabo-
lites. A common one are Michaelis-Menten uptake kinetics, which is written down
mathematically in equation (2.11).
Umax,iCi

v; <

for all =1, ..., K 2.11
B KM,Z'—FCZ' ( )

K ; represents the concentration of ¢; at which its uptake rate v; is half its maximal
rate vmaq,. For concentrations much lower than Ky, ¢; can be neglected in the
denominator and hence, the uptake flux scales approximately linearly with ¢;. For
much higher concentrations, the constraint approximately reduces to vmaz.i-

The disadvantage of this method is that it introduces two (or one in case of extreme c¢;)
parameters per considered exchange flux, which counteracts the parameterless flexibil-
ity of FBA. Moreover, these parameters must be measured experimentally, introducing
some uncertainty errors. Besides, they are not always independently measurable,
as exchange fluxes might be metabolically coupled, especially in case of multiple
substrates.

A simple way to avoid this, was proposed by Varma and Palsson [28]. Here, the
uptake rate constraint is defined as the flux v; that can be consumed by the present
biomass X within one simulation time unit At, i.e. the rate v; at which the current
metabolite concentration ¢; is completely depleted right at the end of a time period
At. This can be mathematically derived from an elementary mass balance as pre-
sented in equation (2.12).

X Acmaz,i:Ci < C;
Vi - > VU5
’ XA

de; ~ Acmaz )i

dt At

max

>

(2.12)
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This type of constraint is not as invasive as Michaelis-Menten constraints, but only
intervenes when the concentrations are that low that they might turn negative within
the simulation time period at hand. The disadvantage is that it is a generic constraint,
neglecting the often specialised uptake behaviour of cells.

Another important aspect is the way of coupling FBA to the time-dependant mass
balances. There are two main approaches: the static one and the dynamic one.

Static optimisation approach dFBA (sdFBA, SOA dFBA) discretises the time
derivative and solves an FBA problem (or a derived procedure like pFBA) for each
time point. The results are either numerically integrated by the forward Euler
method or analytically by solving the differential equation for the time step at hand.
In the first case, the governing equations are discretised in equation (2.13), with At
the discretisation time period so that t;11 = t; + At [27].

ctis1) = c(t;) + Sv(t;) X (t;) At (2.13)

In the second case, an expression for X (¢) can be easily obtained by integrating the
biomass balance (2.14) by separation of variables, assuming a constant p over the
discretisation interval [¢;,t;41], i.e. the pseudo-steady state approximation. Note that
equation (2.14) is a specific case of equation (2.10) selecting the biomass formation
reaction of Sv (Sv|x = p).

E = /.LX <~ X(t) = X(]@Mt - X(tz+1) = X(t,')e“At (214)
By introducing this expression into equation (2.10) and integrating it over time,
the following iteration formula is obtained [28]. And indeed, when rewriting the
exponential term as a first order Maclaurin series, equation (2.15) reduces to (2.13).
The dynamicFBA COBRA toolbox function utilises this analytical approach of sdFBA.

. S’U(ti)
pu(ti)

sdFBA is a sequential, trajectory-dependant procedure. First, an FBA optimisation
gives the initial flux distribution v(¢;). The exchange flux constraints are obtained
from expressions like equations (2.11) and (2.12), and depend on the provided initial
concentration of the extracellular metabolites c(t;). The resulting flux distribution
is then inserted in equation (2.13) or (2.15) to obtain the metabolite concentrations
of the next time point ¢(¢;+1). The flux constraints are updated based on these
new metabolite concentrations and a new FBA optimisation is conducted to get the
concentrations of a third time point, as graphically depicted in Figure 2.6. This loop
continues until a given time period has passed [27, 28]. To speed up the computations,
the time step At may vary if nothing indicates a near metabolic shift [29].

c(tizr) = c(ty) X(t;) (1 —etah) (2.15)
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This combination of integrating an ODE system and FBA is a rather intuitive and
computationally economical method, as the underlying problems are a sequence
of linear FBA problems. It is flexible as well: the use of adaptable uptake flux
constraints still allows to implement other (internal) constraints and/or features into
the problem without affecting the solving procedure. However, it comes at a cost. If
the time period is chosen too wide, the numerical solutions can be inaccurate because
possible metabolic shifts are captured too late. As the modelled microbes often grow
exponentially, so would do an inaccuracy, implying that these systems are stiff [30].

ico, X0

Extracellular
concentrations at tj

=i+l

Extracellular
concentration at tj+1

Umazx,iCi
v; <
Update uptake KM,i + ¢
Sv :
c(tiyl) = c(ti) _ —X(ti) (1 _ ey,At) flux boundaries (
:LL Vmax cl
l Vi S XA
Integrate mass
balances

Solve by applying
FBA with
constraints v

max Z = clv

st. S-v=0

Vmin < U < Umagz

Figure 2.6: Graphical summary of the static approach dFBA procedure. User
inputs are depicted with red arrows. Figure inspired on [27].
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Dynamic optimisation approach dFBA (ddFBA, DOA dFBA) optimises the
flux distributions over the entire time period at once. The general problem, as stated
in equation (2.16), is a rather complex non-linear optimisation problem (NLP).

M
max ﬁ}end\l/(z, v, X)‘t:tf + 7j)ins Z <
7=0

/ttf L(z,v, X(£))5(t — tj)dt>

0

st. — = SvX (2.16)

tr—1t
Celt), v(t)) < 0, e(t) = 0, ¥t € [to, t/]

The objective function contains two terms: one around the terminal objective func-
tion ¥ and one around the instantaneous objective function L. The terminal one
optimises ¥ at the final time point ¢;, while the instantaneous one optimises L for
one particular time point ¢;. wWepq and Ws,s are the weights that are assigned to
each part respectively. § is the Dirac-delta function and M the number of time
intervals in which the considered time horizon between ¢y and 7 is divided. C'is
an unspecified function that sets additional constraints on ¢ and v if required, such
as uptake kinetics. Optimising equation (2.16) happens by parametrising it at the
roots of orthogonal polynomials (e.g. Legendre polynomials) within a finite elements
framework [27].

Mahadevan et al. propose two optimisation functions, a terminal one and a in-
stantaneous one. The latter maximises the scaled sum of biomass concentrations at
the Ny roots of the polynomials. This scaling is necessary to treat the increasing
biomass concentrations equally over time. p* is the experimentally measured growth
rate that scales the biomass concentrations by an exponential profile [27].

N, .
~ X(i)
max Z Yoo (2.17)
=1
The second one is a terminal one and is very intuitive: maximising the final biomass.

max X (ty) (2.18)

Although dynamic approach dFBA accounts for the entire considered time period at
once for better accuracy, it is computationally more demanding due to the necessarily
fine time discretisation and its non-linear nature. Therefore, its uses were limited to
small metabolic models, until Gomez et al. developed a new simulation framework
able to handle large models in a fast and reliable way [30].
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2.2.3 Integration of omics data

So far, modelling metabolism involved only the basic metabolic network structure.
The sole exception was rFBA, in which a Boolean layer was added to the model.
However, the other levels of the complex cell machinery should not be neglected
too easily as these can influence all layers below. This multi-level system and its
interconnectivity are illustrated in Figure 2.7.

This subsection presents a fairly novel approach integrating experimental proteomic
data into the model. Attempts to integrate omics data are not limited to the one
described below, but are far more numerous, illustrating the vastness of the rapidly
developing scenery of omics analysis [26, 31, 32, 33, 34].

o External Signal
. Signal

Transcription
Factor

WY Gene
@ RNA
@ Enzyme

. Metabolite

Nucleus

Figure 2.7: Graphical representation of the different regulatory and signalling
networks connected to the metabolism of a micro-organism. Mind that FBA only
takes the black metabolite network into account. Figure taken from [35].

GECKO

Up till now, it was assumed that the substrate uptake fluxes are the sole limiting
factor of metabolic production. This may be a too strict assumption, because cellular
reactions are facilitated by an appropriate but not unlimited number of enzymes.
As enzymes are biological catalysts and consequently do not appear in any stoichio-
metric matrix, they are not included in any traditional metabolic network model.
Simulation results thus may be violating the maximal capacity of a particular enzyme.

18
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A straightforward way to include these enzyme capacities is by incorporating them in
the stoichiometric matrix, an approach called GECKO [36]. It has been successfully
implemented and validated in S. cerevisiae and B. subtilis [17, 36]. Massaiu et al.,
for example, applied the GECKO concept to improve TCA flux predictions by the
basic B. subtilis iYO844 model for growth on glucose [17]. The flux prediction error
for the wild-type dropped by 43 % and for a couple of knockouts in the TCA cycle,
the average prediction error decreased by 36 % [17].

In this thesis, this method is slightly adapted to allow reversible reactions as well
using the concept of enzyme usage, a hypothetical entity that reflects the amount of
enzyme employed for a certain reaction by its absolute value and the sense of the
reaction flux by its sign. A positive enzyme usage means that a reversible reaction
with flux v; is carried out in the forward direction by an amount of active enzyme
ej, while a negative one implies that the amount of active enzyme (|e;| in this case)
is facilitating reaction j in the reverse direction.

More specifically, the stoichiometric matrix is extended with enzyme usage balances.
Inspired by a simple kinetic definition, the reaction rate v; increases linearly with
the amount of active enzyme e; by a kinetic factor .y j, also known as the turnover
number. When enough substrate available, the entire enzyme pool [E]; is busy,
resulting in a maximal rate in either one of the reaction senses.

— keat,j + [Elj < vj = keat,j - €j < Keatj + [E]; (2.19)

Equation (2.19) can be rewritten as following.

= ;< [B); (2.20)

Rewriting the middle part of (2.20) as a mass balance in terms of enzyme usage e;
like in equation (2.4), the following is obtained.

+e;=0 (2.21)

kcat,j
As every row in a stoichiometric matrix represents the mass balance of a metabolite,
a row is added for ‘metabolite’ e;. The only non-zero numbers appear in column j
(-k‘;ﬁ’ ;) and at the end (1). Mind that this new all-but-one zeros column is added
at the end because a new system variable is introduced (enzyme usage e;). Every
column requires an upper and a lower constraint. For e;, this is rather simple: it can
be used as much as its capacity allows as defined in equation (2.20). This means that
[E]; is the upper boundary, while -[E]; is the lower one. For irreversible reactions, the
lower boundary equals 0. For clarity, the architecture of these GECKO constraints
is depicted in Figure 2.8.

Both parameters (enzyme pool size [E] and turnover number k.q;) are respectively
derived from proteomics and kinetic flux measurements. The former means measuring
the amount of present proteins/enzymes via e.g. mass spectrometry [37]. The
latter are performed in vitro in such a way that the enzyme can employ its full
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Figure 2.8: Schematic representation of the GECKO model enhancement.
The stoichiometric matrix is extended with enzyme usage e; balances with boundaries
at the enzyme pool size [E];. Figure adapted from [36].

capacity. However, the in vitro conditions are not completely comparable with the
intracellular conditions that the enzyme normally experiences. Therefore, more and
more assessments happen in vivo, but in that case it is not always guaranteed that
the enzyme is performing optimal because of the cellular regulations [38].

Via equation (2.22), an apparent turnover number k,p, is obtained. Assuming that
the enzyme is optimally functional (n = 1), kg is estimated from the measured flux
rate v and the applied amount of enzyme [E] [38].

v

’U:[E]-k}app:[E].kcat.n — kcat:m

(2.22)
To avoid duplicate measurements, a couple of biochemical kinetics databases have
been set up [39, 40]. Databases for proteome data are gaining popularity as well.
These are mostly organism- and substrate-specific [41]. Ultimately, these databases
can prelude a new omics level, the kinetome [42].

2.2.4 Implementing genetic edits in silico

Metabolic models so far were only representing natural wild-type networks. Never-
theless, modelling genetically perturbed networks is very interesting because it could
predict the response to a genetic modification.

Complete genetic knockouts are the most popular one by far because these are
the simplest to implement: it is only a matter of fixing all affected flux constraints
at zero.

Implementing a genetic upregulation is not that straightforward because it is difficult
to predict how much a flux would change after increasing the gene activity. Factors
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beyond the scope of FBA such as the regulatory network or the enzymatic capacities
of the adjacent reactions, could limit a flux change as well [43]. As a result, changes
in gene activity are usually modelled in one of the following two ways. The first
one is the closest to reality and only relaxes the affected flux constraints to reflect
the envisaged increase of enzyme capacity. This allows the optimisation solver to
rearrange the flux distribution, which does not necessarily result in a linear upscaling
[44]. However, non-arbitrary flux constraints often are not available for each reaction.
The second way is thus to force the upregulated flux to increase by setting both
upper and lower flux constraints at the wild-type value multiplied with a desired
amplification factor [45].

Both approaches have already been applied. Bro et al. modelled gene upregulations
by removing existing wild-type flux constraints or by multiplying them with a speci-
fied upregulation factor [44]. On the other hand, Wang et al. forced the upregulated
flux itself to be two-fold the wild-type flux as determined by pFBA [45].

The next issue is how to determine the mutant flux distribution from these al-
tered constraints. At first sight, one would simply adjust the constraints of the
reactions affected by the genetic edit and redo FBA analysis as normally. This is,
however, only valid to some extent. One of the underlying premises of FBA is that an
organism always strives to optimise a certain objective function, because long-term
biological evolution has shaped it in that way. For genetically modified organisms,
this long-term evolutionary pressure is absent, which makes it suboptimal in that
view. When time passes, evolution will favour the mutations that make the biological
system approach optimality. Only then, FBA is applicable again [46].

As biological evolution might be (too) slow to wait, new modelling methods have
been developed to coop with this suboptimal state. All of them try to preserve the
flexibility of FBA optimisation problems by switching objective functions and/or
flux constraints. The most important one is MOMA.

MOMA (Minimisation Of Metabolic Adjustment)

The MOMA method assumes that a genetically perturbed metabolism will try to get
as close as possible to the wild-type optimum. This is not necessarily the optimal
solution of the new system, as illustrated in Figure 2.9.

The mathematical translation of this assumption is a new objective function, which
minimises the Euclidian distance between the wild-type optimum and the perturbed
solution subspace. The Euclidian distance D is defined in equation (2.23). The new
optimisation problem is quadratic (QP) and is written down in equation (2.24), with
w the wild-type solution and v the MOMA flux [46]. vgejeteq is the vector of knockout
fluxes, which takes a dimension equal to the number of deleted reactions.

(2.23)
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Vprod B

m

Figure 2.9: Graphical comparison of the MOMA method with the FBA
optimisation method. The wild-type solution subspace is bounded by the wild-
type constraints in black. The model is optimised for biomass growth, yielding point
A. A knockout results in the perturbed solution subspace in blue. Optimising for
biomass again gives point B, while MOMA returns point C. Figure inspired on [46].

,
min Z(% —w;)?
i

st. Sv=0 (2.24)
Vmin < U < Unagz

Vdeleted = 0

The differences between individual MOMA and FBA fluxes are often relatively
small, but not absent, which neglects the efforts of a cell to reshape its regulatory
network to support such a large number of small changes. A small number of large
changes would be more realistic [47].

Because of its absolute nature, larger fluxes are also weighted more heavily, causing
an optimisation bias. Its impact can be reduced by employing relative flux changes
[48], or by calculating the Taxicab distance in equation (2.25), which considers the
absolute values of the differences instead of the squared ones. In this last case, the
problem has become linear and is consequently called linear MOMA or IMOMA [49].

Drp(v,w) = Z |vi — w] (2.25)
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dynamic MOMA

dMOMA is an alteration of the dFBA method of Section 2.2.2. While dFBA models
the time evolution of biologically optimal systems by subsequent FBA calculations,
dynamic MOMA does the same for suboptimal systems. For each time point, a
dFBA-iteration is executed including a MOMA step which minimises the Euclidian
distance between the mutant system space and the newly acquired dFBA fluxes. The
MOMA fluxes are then integrated in the mass balances to get the new metabolite
concentrations for the next iteration. This procedure thus adds an additional step to
the dFBA procedure of Figure 2.6, as graphically depicted in Figure 2.10 [45].
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max
v <
X At
Sv
c(t; =c(t;) — ==X (t;) (1 — etAt
( H—l) ( z) L ( 1) ( ) max 7 — cTw
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Figure 2.10: Graphical summary of the dynamic MOMA procedure. User inputs
are depicted with red arrows.
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2.2.5 Network optimisation algorithms

As illustrated in the previous subsection, there are tools to model genetic edits, but
these do not determine which ones result in the best performance with respect to
some product or process criteria. It is possible to assess all combinations, but this is
not a systematic approach without redundant computational work.

In this subsection, some network optimisation algorithms are introduced. The
full scope of such algorithms is not limited to these. On the contrary, a plethora of
procedures exist, all with their own nuances and working principles [31, 50].

These algorithms usually return a high-potential candidate list of genes or reactions
to implement in vivo. The majority returns knockouts, the most applied genetic
modification, but other ones return partial knockdowns and/or overexpressions too.
However, modelling overexpressions may be not that straightforward as knockouts,
as discussed in Section 2.2.4.

Sequential scanning

A simple but naive method is ranking all possible knockout combinations, calculated
by brute force. Computational work can be limited by considering only relevant
subsystems or easily applicable deletions such as genes with a low number of isozymes.
Alper et al. have elaborated an iterative procedure which reduces brute force compu-
tational efforts to a minimum: sequential scanning [51].

To select the first knockout, each deletion candidate is scored for a specified target,
e.g. a production rate. Filters such as a growth rate threshold can then be applied,
after which the best knockout is selected and fixed in the model. Additional ones
are determined by another scanning loop. The number of knockouts increases until
a specified maximum is met or when the scores do not improve anymore. The
procedure is depicted in Figure 2.11.

Although a sequential approach drastically reduces the brute force computational
efforts, it assumes that metabolic networks behave as convex non-linear optimisation
problems. Typically, these problems can be solved by the steepest descent method,
which is emulated here by selecting the knockout with the highest yield increase.
This non-linear behaviour, however, has not been proven and, consequently, it is not
guaranteed that this method returns global optima [51].

For example, a single knockout within a parallel pathway (e.g. isozymes) is such a
problematic situation. Knocking out all branches of that parallel pathway potentially
results in better yields, but this possibility has already been ruled out due to the
bad performance of the single incomplete deletion. Also the use of MOMA inheres
caveats as discussed in Section 2.2.4.

This procedure is easily extendable to other genetic edits such as knockdowns and
upregulations. It is also easy to enlarge its searching space by making it select more
than one genotype when incrementing the number of edits. Both extensions require
more computational efforts though.
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Relative in silico Lycopene
Production Yields

gdhA gpmA/ aceE fdhF talB
gpmB

gpmA/ aceE fdhF talB
gpmB

fdhF talB

Knockout Background

Wild Type AgdhA AgdhA DaceE

Figure 2.11: Graphical example of the sequential scanning procedure.
The best genotype of the first scanning loop (green) was permanently implemented.
The second scanning loop (red) resulted in another yield increase, although the best
genotype was neglected as it violated the growth rate threshold. Finally, this double-
knockout model was improved further by a third scanning loop (blue). Concept
graph taken from a lycopene case study by Alper et al. [51].

OptKnock

Biological evolution thrives organisms to keep increasing their growth rate. If the pro-
duction of the desired product is coupled to the biomass formation, it is guaranteed
that its production will be optimised. Therefore, a knockout selection procedure that
shapes the metabolic network accounting for these two objectives (growth rate and
product yield) simultaneously, would be a valuable asset. This kind of optimisation
problems are called bi-level optimisation problems. By applying linear programming
duality theory, the problem can be transformed to a MILP problem, reducing the
computational efforts [52].

OptKnock is the oldest procedure of this kind and employs this bi-level structure via
a nested problem architecture. The inner problem is a classical FBA optimisation, in
which additional constraints such as a minimal growth rate or a fixed substrate up-
take, can be implemented. Also MOMA has already been applied as inner objective,
but this requires other solvers and associated problem setups (cfr. biMOMA [53]
& MOMAKnock [54]), making OptKnock rather inflexible to other evaluation criteria.

In more detail, the OptKnock optimisation problem can be mathematically stated as
in equation (2.26), with fi,in a minimal desired growth rate, K the maximal number
of knockouts allowed, M the knockout candidate indices and y; a binary variable
indicating if flux v; is not knocked out in the inner problem.
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max Uprod
Yi

s.t. max u

vj
st. S-v=0
B = fnin (2.26)
vy < vy <Oy
y; € {0,1}
-y <K
JEM

Due to high network redundancies, it is possible that multiple flux distributions score
equally with respect to the cellular objective, but not to the production objective.
The inner problem returns the first optimum it encounters, possibly the one with the
lower production flux. Therefore, Shlomi et al. introduced a new layer between the
two existing ones, which selects the smallest possible target flux. This more robust
method, RobustKnock, thus maximises the minimal possible production rate [55].

OptGene

OptGene introduces concepts of evolutionary computing and enhances the target
production by biologically inspired trial-and-error knockouts. In this case, the outer
problem of OptKnock is replaced by a ‘genetic algorithm’.

First, a population of wild-type genotypes is set up. Then, the fitness score of
each individual of the current generation is evaluated for a certain objective by
a method such as FBA or MOMA. Then, genetic cross-overs between individuals
are performed based on their fitness scores and knockout mutations are introduced
randomly, after which the fitness scores are reevaluated. This loop continues until a
specified termination criterion is met. Possible criteria include a maximal computa-
tion time, a maximal number of generations or a minimal target yield. The fitness
scores of the last loop determine the best performing genotype [56].

The OptGene method has three major advantages. First, fitness scoring shows
high flexibility to implement any evaluation function, which contrasts with the
rather rigid OptKnock algorithm. Not only plain FBA or MOMA can be used, but
also derived functions such as product yields with additional filtering for a minimal
growth rate. Second, it reduces computational efforts without narrowing its searching
window because it does not evaluate all possible knockout combinations, neither in
an exhaustive nor in a sequential way. Third, a genetic algorithm is able to optimise
non-convex non-linear objective functions as its optimisation path is not fixed, but
rather stochastic due to the random mutations. If run long enough, it will always
approach the optimal state, although it can take some time to get away of a local
optimum [56].
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Chapter 3

Materials and methods

This chapter describes how the computational and experimental work in this thesis
was performed. In a first part, the applied computational procedures are listed in
more detail, while the experimental protocols are included in a second part.

3.1 Computational procedures

For B. subtilis, two GSMNs are readily available: iBsul103 and iYO844 [10, 57].
Both were sourced from the BioModels repository [58].

All FBA calculations and derived procedures were implemented in MATLAB®
R2020a/R2019b installed on a Linux Mint 18.1 Serena/Windows 10 dual-boot
system. All code utilised functions of the COBRA toolbox v3 [59] and/or the IBM
Cplex 12.10 solver package and/or self-developed functions.

Simulation setup of the model assessments

To ensure a proper functioning of the GSMN, the lower boundary of all exchange
reactions was initially set at zero, after which the appropriate uptakes were reopened
depending on the composition of the simulated medium. This was done by setting
the lower flux constraint at experimental exchange rates determined in a couple of
studies [17, 33]. The constraints of sulphate, phosphate, ammonium and oxygen
exchanges were set at arbitrarily values in analogy with these studies. The simulated
media are minimal pyruvate (PYR) and glucose (GLC) medium and complex casein
hydrolysate (CAS) medium. An overview of the minimum constraints is provided in
Table 3.1.

The wild-type metabolism was simulated using pFBA and validated by comparing its
ability to reproduce experimental observations. These empirical data were sourced
from the study by Goelzer et al. in the form of measured exchange fluxes and derived
estimated TCA flux maps [33]. To ease the comparison, similar flux maps were drawn
for the simulated TCA flux values using the Escher flux visualisation web-applet [60].
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Table 3.1: Applied metabolite uptake rate constraints for the model as-
sessments. All values are implemented as lower flux constraints. These values
[mmol/(gpwh)] were sourced from experimental data of studies as referred in the
table.

Pyruvate Glucose Casein hydrolysate
02 -100 [17] Oz -100 [17] Os  -100[17) HIS -0.11 [33
NH4 ™ -5 [17) | NHyt -5 [17) | NHyt -5[17]  ILE -0.32 [33
S04~ -5 [17] | SO42~ -5 [17] | SO42~ -5[17] LEU -0.32 [33
Di -5 [17] Di -5 [17] Di -5 (177 LYS -0.04 [33
PYR -12.17[33] | GLC -7.71[17] | ALA  -4.47[33] MET -0.07 [33
ARG -0.86 [33] PHE -0.11

[
[17] [
[17] [
[17] [
[33] [
[33] [

ASN  -26.81 [33] PRO -0.26 [33

[33] [
[33] [
[33] [
[33] [
[33] [

ASP  -0.12 [33] SER -1.15([33
CYS -0.13[33] THR -0.60 [33
GLU  -247[33] TRP 0.00 [33
GLN 0.00 33] TYR -0.11 33
GLY 0.00 [33] VAL -0.31 [33

Integration of GECKO constraints

Constructing GECKO constraints for the glycolysis and TCA cycle requires appro-
priate kinetic and proteomic data, as described in Section 2.2.3. The stoichiometric
matrix of both GSMNs was extended as depicted in Figure 2.8 by editing the model
reactions using the COBRA functions. The enzyme usage variable was introduced
in the affected reactions as a pseudo-metabolite Acounter like below, which keeps
the existing regular flux constraints intact. Additionally, a newly added exchange
reaction functions as sink for A ounter and obeys to the newly added enzyme usage
constraint.

aA + bB + ... + k_  Acounter = ¢C + dD + ...

cat

The kinetic data were manually retrieved from the BRENDA database in the form
of turnover numbers k. [39], while the protein concentrations [E] were collected
from a LC/MS study by Goelzer et al. [33]. As these proteomic data depend on the
environmental conditions that the cell experiences, GECKO constraints have to be
constructed for each considered medium (GLC and CAS).

The k.q:-data can be obtained in two ways from the kinetic databases: either directly,
or indirectly via the specific activity SA and the molar mass MW of one enzyme
subunit. SA is defined as the number of micromoles of substrate converted per
milligram enzyme subunit per minute. By introducing the molar mass of the enzyme,
this specific activity can be converted into a turnover number via formula (3.1) as
formulated by Massaiu et al. [17].

keat [R71] = SA Ln’g‘m;llm] N []- MW [kDa] - 60 [Hin] 1 [mgk/]‘)‘:l(’l] (3.1)
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It is, however, assumed that the enzyme is pure and that the number of subunits N
equals the number of active catalytic sites. If data for B. subtilis were unavailable,
those for E. coli were used instead.

The proteomic data [E] are available in the form of numbers of enzyme molecules
per cell n. The upper boundary of the 95%-confidence interval was taken to avoid
overconstraining. If no enzyme was detected, the minimal value in the data set was
used (6.8 - 1078 mmol/gpw ). To convert these data into cellular concentrations [E|
with units of mmol/gpw, the following formula (3.2) was applied. Thereby it was
assumed that per optical density unit at 600 nm (ODggg) 6.3 - 108 cells per mL are
present and that there is 0.48 gpyw /L per ODgoo for GLC medium and 0.47 gpy /L
per ODggp for CAS medium, in analogy with the study by Goelzer et al. [33].

" mmol]  n [mles./cell] x 6.3 -10° [cells/(mL-ODggo)] x 10 [mL/L]
"~ N4 [mles./mol] x 0.48 [gpw /(L-ODggo] x 10~3 [mol/mmol]

(3.2)

gpw

Table 3.2 reports all data required to construct GECKO constraints for both media.

Table 3.2: Kinetic and proteomic data for constructing the GECKO con-
straints in iBsul103 and iYO844. Reaction names are labelled as in iYO844.
Proteomic data depend on the available substrates and are measured for both media,
as reported by the indicated references [17, 33]. Kinetic data data are taken from
the same studies or sourced from the BRENDA database [39].

Reaction GLC medium Reaction CAS medium
kcat [E] kcat [E]
mmol —1 mmol mmol —1 mmol
gowh S ‘gpw gpwh S ‘9pw
pgi 126 [17] 1.56x107° [17] acont 3[39] 7.44x1075 [33
tpi 150 [17] 1.28x107° [17] sucoas 2343 [39] 1.37x107* [33
gapd 70 [17] 5.77x107° [17) gapd 70 [17] 2.68x107° [33
pgk 329 [17] 3.61x107° [17] pgm 766 [17] 6.12x107° [33
pgm 766 [17) 8.86x1076 [17] eno 130 [17] 3.04x107° [33
eno 130 [17] 3.81x107° [17] gbpdh 174 [17] 1.10x107° [33
gbpdh 174 [17]  8.06x1076 [17] cs 49 [17]  6.28x107° [33
cs 49 [17]  2.52x107° [17] icdhy 82 [17] 2.35x107* [33
icdhy 82 [17] 1.10x107% [17] fum 283 [17] 3.02x107° [33
fum 283 [17]  7.30x1076 [17] mdh 177 [17]  1.78x107* [33
mdh 177 [17]  1.10x107% [17] ptar 652 [17] 2.27x107° [33
ptar 652 [17] 8.49x107° [17] 1dh 6417 [17] 6.80x1078 [33
1dh 6417 [17]  6.80x1078 [17] pgedr 15 [17]  3.76x107° [33
pgedr 15 [17]  1.90x107° [17] oxadc 59 [17] 6.80x1078 [33
oxadc 59 [17] 6.80x1078 [17] micit] 19 [17] 6.80x107% [33
micit] 19 [17] 6.80x1078 [17] oxgdc 0.2 [17] 6.80x10~% [33
oxgdc 0.2 [17] 6.80x107% [17]
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Verification of knockout-GECKO combos

The simultaneous implementation of GECKO and knockouts was validated by
comparing simulation data with experimental 3C flux data for a glucose medium
from a study by Fischer and Sauer [61]. A representative sample was taken from
this data set, including glycolysis and TCA flux deletions on one hand, and random
other ones on the other hand. The MOMA method determined the knockout flux
distributions using a pFBA wild-type reference. To ensure proper validation, the
wild-type lower constraint of the GLC uptake was replaced by the one measured for
that particular knockout. Assuming that enzyme levels are directly proportional to
fluxes, the GECKO constraints [E] were scaled linearly.

Effect of the medium composition

The total AA composition of three commercially available protein isolates from
different sources and two laboratory media from mixed sources (LB and casein
hydrolysate) was set as the initial metabolite concentrations for an sdFBA. The BD
Bionutrients”™ Technical Manual reports the compositions of the laboratory media
[62], while the commercial protein isolate compositions are available in a study by
Gorissen et al. [63]. Concerning the latter, Gorissen et al. distinguish plant-based
protein isolates from animal-based ones by the share of AA that are essential for
human consumption (Thr, Met, Phe, His, Lys, Val, Ile, Leu). Plant-based isolates
contain relatively few of these, in contrast with animal-based ones. Eventually, three
media (15 g/L in total) were defined. For plant-based medium, the concentration of
each of these essential AA was set at the smallest value in the data set of Gorissen
et al., while the largest one was assigned to animal-based medium. Also, an average
medium was defined using the average values. The share of non-essential AA was
set at these averages too or, in case no data was available, its share in LB medium.
Table 3.3 reports the eventual composition of these five media.

The dynamicFBA function of the COBRA Toolbox was modified to carry out sdFBA
cycli with pFBA instead of plain FBA. This function integrates the metabolite
mass balances using the general analytical solution for a static integration time step
(equation (2.15)) and applies Varma-Palsson exchange flux constraints (equation
(2.12)). Mineral and off-gas exchange constraints were set constant over time and
the initial biomass was 0.1 gpy /L. The integration time step was 1.5 min., while
the simulated time interval lasted up to 40 h or until the optimisation problem
became trivial or infeasible due to the absence of nutrients. The lower exchange flux
boundaries are those applied earlier (see Table 3.1). Only products with a maximal
concentration larger than 10 uM were plotted versus time.

Dividing these molar concentrations c¢; by the total initial molar concentration
of substrates ¢ gives the relative molar concentrations z;, as stated in Equation
(3.3). The z; for the twenty AA substrates is reported Table 3.3 as well.

-~ - (3.3)

mol ¢; [mM] Ci
Zi 20 .
cs mM] 2256

molg
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Table 3.3: Absolute and relative molar amino acid composition of the five protein
media for the analysis of the effect of the media composition. Absolute composition data
were obtained from a study by Gorissen et al. [63] or from the BD Bionutrients™ Technical Manual
[62]. Dividing these by the total molar amount of substrates gives the relative compositions.

) . Medium type

Amino acid Casein

conc. [mmol/L] | Plant-based | Animal-based Average LB hudrolusat
ydrolysate

Abs. - [mM] Abs.  Rel.| Abs.  Rel. | Abs. Rel.| Abs. Rel. | Abs. Rel.

Rel.  [mol%]
Alanine 5.06  9.09 5.06 5.78 5.06 7.28 6.73  8.35 4.55  4.45
Arginine 3.06 5.49 3.06 3.49 3.06 4.39 3.60 4.46 4.37  4.27
Asparagine 0.83  1.50 0.83 0.95 0.83  1.20 0.83 1.03 1.82  1.78
Aspartate 594 10.67 5.94 6.78 594 8.54 594  7.37 6.81  6.67
Cysteine 0.19 0.34 0.19 0.21 0.19 0.27 0.17 0.21 1.50 1.47
Glutamate 12.96 23.27 | 12.96 14.79 | 12.96 18.63 | 13.55 16.81 17.25 16.88
Glutamine 0.14 0.25 0.14 0.16 0.14 0.20 0.14 0.17 0.10 0.10
Glycine 4.34 7.80 4.34 4.96 4.34  6.25 4.26 5.29 3.40 3.32
Histidine 0.68 1.22 2.71 3.09 1.41 2.02 1.64 2.04 2.13 2.08
Isoleucine 1.14 2.05 4.34 4.96 2.50 3.60 5.34  6.62 4.46 4.36
Leucine 297 534 | 11.48 9.22 6.41 10.06 7.28  9.03 8.92 8.73
Lysine 1.02  1.83 7.24 8.26 3.70  5.32 577 7.16 6.83  6.68
Methionine 0.00 0.00 2.21 2.52 1.12 1.61 1.68 2.08 2.71 2.66
Phenylalanine 1.63 294 3.81 4.35 2.82  4.06 393 4.88 3.63 3.55
Proline 5.28 9.48 5.28 6.02 5.28 7.59 6.60 8.19 9.64 9.44
Serine 4.50  8.09 4.50 5.14 450  6.48 2.85 3.54 599 5.87
Threonine 1.64 2.94 6.80 7.76 3.24  4.66 2.18 2.71 2.77 2.71
Tryptophan 0.51 0.92 0.51 0.59 0.51 0.74 0.51 0.64 5.29 5.18
Tyrosine 2.12 3.80 2.12 2.42 2.12 3.04 1.05 1.30 2.98 2.92
Valine 1.67 2.99 5.01 6.29 3.43 4.93 6.53 8.11 7.05 6.89
Total contents 55.68 100 | 87.61 100 | 69.56 100 | 80.58 100 | 102.20 100

The bacterial dry weight was converted to C-moles via the molar mass of the ele-
mental composition of B. subtilis biomass. Dauner et al. estimated this molar mass
by directly measuring its elemental composition and by calculating it from measured
concentrations of its constituents in cell lysate [64]. The average of their estimates
was taken here as the molar mass of the biomass (24.415 gpy /C-molpw ).

Assessing the impact of each amino acid on the total ammonium productivity
separately was done by doubling the initial concentration of each amino acid in
LB medium and feeding it to the sdFBA procedure one by one. This returns new
ammonium time profiles which were compared to the original LB case. For the ones
with a significant impact, a complete metabolite time profile was drawn to assess the
impact on metabolites different from ammonium.
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Knockout optimisation algorithms

The OptGene and sequential scanning algorithms were applied to select genetic
modifications. The OptGene algorithm only assesses deletions. An implementation
of OptGene and an example overhead runner script were available in the COBRA
Toolbox. The runner script was rewritten for this particular case, while the algorithm
itself was adapted to optimise for a custom target by altering the embedded fitness
evaluation function. The target at hand was maximising the knockout ammonia-
biomass yield [g i /gpw] as calculated via MOMA with an additional growth rate
threshold of 25 % of the wild-type growth rate. The eventual OptGene procedure
utilised a dual termination criterion: 4 h of computation time or 500 generations.
Only knockouts in the carbohydrate and the amino acid metabolisms were considered.
The procedure was rerun for each increase in number of knockouts.

The sequential scanning algorithm is not included in the COBRA Toolbox and
was consequently built from scratch. It can assess both deletions and upregulations
via MOMA using the approach of Wang et al. [45] and uses the same metabolic
model, optimisation target and gene candidate set as OptGene. It was set to pre-
serve the best 10 % of genotypes each time it incremented the number of deletions,
unless otherwise specified. The code of the sequential scanning algorithm and some
explanatory comments are available in Appendix C.

Finally, the feasibility of the genetic modifications suggested using both algorithms,
was verified by consulting viability data in BsubCyc, a part of the BioCyc database
dedicated to B. subtilis [65].

3.2 Experimental procedures

Strains and media compositions

The strain used for all in vivo experiments is the Bacillus subtilis 168 (ATCC 23857),
which was stored in a glycerol solution at -80 °C.

The medium employed for the preculture and the reactor cultivation is the complex
Luria-Bertani (LB) medium, consisting of 10 g/L tryptone (Sigma-Aldrich), 5 g/L
yeast extract (Oxoid™ (Thermo Fisher Scientific)) and 10 g/L NaCl (Acros™ (Thermo
Fischer Scientific)). The medium was prepared with distilled water.

Bioreactor setup and cultivation conditions

The BioF1o® 320 bioreactor (Eppendorf) with a total volume of 5 L was used for
all experiments. The reactor is equipped with a pH sensor, an online OD sensor, a
temperature probe, a DO sensor, two plate impellers, two peristaltic dosing pumps
and baffles. Air is supplied through a sparger and a 0.2 ym PTFE air filter (Sartorius
Midisart® 2000) and withdrawn through a water-cooled condenser and a similar
PTFE air filter.
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DASware® control software processes all the data of the sensors and controls the
reactor conditions. The pH is kept constant at 7 £ 0.05 by dosing 2 M HySO4 or
4 M KOH. Temperature is controlled at 37 °C, while the impeller rotation speed is
set at 500 RPM. The inlet air flow rate is set at approximately 1 vvm referenced to
the amount of medium present (initially 3 L). 0.5 mL of anti-foaming solution was
added at the start of the experiment and when foam started to accumulate.

Analytical measurements

Biomass The biomass concentration was represented in three ways, namely via
online optical density, offline optical density and dry weights. The OD was measured
relative to dH2O and is expressed in A.U., while dry weight measurements (DW) are
absolute and expressed in gpw .

Dry weights were measured offline by centrifuging 10 mL of reactor broth, re-
suspending the pellet and filtering it using a 0.2 pum cellulose ester filter, which was
dried at 105 °C overnight and weighed. The initial filter weight was subtracted to
obtain the bacterial dry weight. By dividing the DW by the sample volume, one gets
an estimation of the biomass concentration in gpy /L.

Optical density measurements rely on the absorption of monochromatic light
by the sample as dictated by the Lambert-Beer absorbance law (equation (3.4)). By
measuring with which intensity I light with an initial intensity Iy transmits through
the sample, the concentration of suspended (bio)mass C, is obtained.

I
OD = log <;> = eLC, (3.4)

The attenuation coefficient € heavily depends on the absorbance characteristics of the
cuvette, the medium and the biomass, and thus on the applied wave length. Also, the
Lambert-Beer law strictly is only valid for simple suspensions while light scattering
prevents light from being detected. Therefore, the correlation is considered valid up
to OD values around 0.6. More concentrated samples are diluted after which the
dilution factor is multiplied with the obtained OD value.

Both offline and online OD data were calibrated. For the offline data, this was
achieved by subtracting the OD value of sterile medium. The initial online OD
values contain some natural noise and were therefore calibrated by subtracting the
minimal OD value of the experimental run. The online OD probe emitted another
wave length than the offline OD sensor (880 nm vs. 600 nm resp.), which results in
OD values different from their offline counterparts. Also, the online samples were
not diluted and thus online OD values higher than 0.6 had a questionable validity.

Organics The concentrations of organic molecules such as acetic acid, were anal-
ysed by high pressure liquid chromatography (HPLC) (Agilent Technologies 1200
series). About 2 mL sample from the bioreactor was filter-sterilised using a 0.2 pm
polyethersulfone filter, from which an aliquot was automatically taken and separated
by an Aminex® HPX-87H column (Bio-Rad) using 5 mM HySO, aqueous eluent at
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a rate of 0.6 mL/min and a temperature of 40 °C. The compounds were detected
with UV absorbance at 210 nm (DAD) and refractive index detectors (RID).

Amino acids The amino acids of samples were derivatised (and hydrolysed if
necessary) using the EZ:faast® kit (Phenomenex) according to the manufacturer’s
protocols and subsequently analysed by a Perkin Elmer® Autosystem XL gas chro-
matograph equipped with a FID. Samples were diluted (20x) to avoid oversaturating
the sorbent beads used for sample preparation.

Ammonium Ammonium concentrations were determined using LCK 304 cuvette
tests (Hach). Samples were centrifuged at 3200 rcf for 15 minutes and the supernatans
was filter-sterilised. 5 mL of the sample were introduced into the reaction cuvette
after being diluted into the suitable concentration range of the test (400x). This
is, however, a large and thus error-sensitive dilution and therefore each sample was
analysed twice after which the average was taken. After 15 minutes of reaction, the
mixture had turned yellow-green of which the intensity was determined by a UV-VIS
spectrophotometer and translated to a concentration value.

Dissolved oxygen DO levels are defined as in Equation (3.5) and were measured
online by the installed DO sensor. It was assumed that the value that the sensor
returned for a sterile and fully aerated reactor medium in steady state, corresponded
to 100 % DO. It was also assumed that the solubility of oxygen in LB medium is
equal to its solubility in water. The oxygen saturation concentration Cop, sqt Was
thus assumed 6.7 mg/L, which is the Co, sq: in water at 37 °C and 1 atm.

Co,
COz,sat

DO[%)] = -100 (3.5)

Off-gas A BlueVary gas analyser determined the oxygen, carbon dioxide and water
composition of the off-gas as well as its pressure and its temperature. The off-gas
data were collected and processed by the BlueVis software and expressed in terms of
standard gas conditions (sL and derived units).

Inoculum preparation

The B. subtilis 168 is placed on a Petri dish filled with LB agar (LB + 15 g/L agar)
and grown in an incubator (Panasonic) at 37 °C.

To produce the preculture, a sterile erlenmeyer was filled with 50 to 150 mL of
liquid LB medium and inoculated with a B. subtilis colony from the Petri dish. The
preculture was put in a shake flask at 200 RPM and at 37 °C to grow for about 24 h.
Then, the ODggy was measured. This determined which volume V would be taken of
the preculture to prepare the inoculum. By applying a dilution rule using Equation
(3.4) as in Equation (3.6) with a reference case (Vyef, ODgoo ref), the suspended mass
of the inoculum was kept roughly constant.

ODgpo,ref
el

D
Vief = OGLGOO-V — V=V

ODgoo,ref
/" ODgoo

Msusp = Csusp"/ref = (36)
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The reference case was here 30 mL of a preculture with an ODggg value of 0.22.
After centrifuging at 3220 rcf for 15 minutes at 20 °C, the supernatans was decanted
as much as possible and the pellet was resuspended in the remaining LB medium to
inject it into the bioreactor.

Experimental data processing

Biomass growth rate Equation (2.14) provides an expression for the biomass
over time in a pseudo-steady state system. Assuming that p remains constant within
a growth phase, one can simply take the natural logarithm as following.

In(X) =1In(Xo)+ put (3.7)

X represents the amount of biomass at the start of a growth phase, while t rep-
resents the time point within the phase. In case of exponential growth, plotting
the natural logarithm of experimental data representing the biomass would return
a linear segment for each growth phase. A linear regression using the MATLAB
command polyfit determined its slope, which indicated the growth rate p of the
phase at hand. Additionally, the 95 %-confidence intervals were calculated using the
command polyparci [66].

The online OD was chosen to represent the biomass because of its numerous data
points. Equation (3.8) illustrates that this data representation has no influence on
the regression of u. The only necessary condition is that the online OD and the DW
are linearly correlated (X = o« - OD) with an intercept in zero, which was verified
using polyfit . If the 95 % - confidence interval of the intercept as calculated by
polyparci contained zero, the correlation was accepted.

In(a-OD)=1In(a-0ODgy) + ut <= In(OD) =1n(0ODy) + ut (3.8)

Lag time The lag time of the experimental runs was determined by comparing
graphs of the process variables. This visual procedure always started by plotting the
online OD on a logarithmic scale. Linear segments were identified manually after
which the precise ends of each phase were identified by searching for clear changes in
the other process variables, such as a change of slope in the DO curve.

Net proton balance The net proton balance represents the cumulative molar
amount of free protons (H) added to or removed from the broth by supplying a
strong acid (H2SO4) or a strong base (KOH) in view of pH control. It provides
an indicative number for the amount of acids and ammonia produced or consumed
during the experimental run.

The proton balance is directly calculated from the added volumes of 2 M HySOy
and 4 M KOH at a specific time point as registered by the DASware® controller.
Assuming that strong acids and bases dissociate completely, the protons of HoSOy
count positive on the balance, while the hydroxyl ion of KOH counts negative as it
recombines with a H™-ion into HO.
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3. MATERIALS AND METHODS

Oxygen transfer rate The oxygen transfer rate (OTR) represents the rate at
which oxygen gas is supplied to the fermentation broth and can be defined using
mass balances.

The mass balance for the gaseous side can be stated via the ideal gas law, with F; and
F, the in- and outlet gas flow rate [m?/h], z0,; and 70, , the in- and outlet oxygen
gas concentration [mol%]|, P; and P, the in- and outlet gas pressure [Pal, T; and T,
the in- and outlet gas temperature [K|, R the ideal gas constant (8.31 J/(K-mol)),
Mo, the molar weight of oxygen gas (32 g/mol) and Vy, the reactor content [m?].

i o Esz,iPi . Fosz,OPo M02
OTR {Lh} - < T T, RV, (39)

As only F; was measured, F, was calculated using F; by mass-balancing the nitrogen
gas, which was assumed to be constant. Next to that, F; was expressed in terms
of standard conditions (sL/h) and, consequently, F, had to be converted via the
ideal gas law to standard conditions, resulting in the equation below. The standard
conditions P,y and T..f are 1 bar and 273.15 K respectively.

L — 20,0 — ©C0s,i — THy0,i  PrefTo

F, =F;
1-— LOs,0 — LCO2,0 — TH20,0 TrefPo

(3.10)
By introducing equation (3.10) into equation (3.9), the final formula was obtained.

(3.11)

1 =20, — X044 — THy0, \ Moy FiPrey
OTR = (%()271‘ — X040 ’ ’ .

1-— TOs,0 — LCO2,0 — TH0,0 RVLTref

The inlet gas feed was assumed to be air with the following composition: 20.95 mol% O,
0.042 mol% COgq, 1 mol% Hy0O, and further only Ny [67]. The outlet gas composition
was measured by the BlueVary off-gas sensor.

Oxygen transfer coefficient The mass balance can also be set up for the liquid
side, with kra [h™!] the oxygen transfer coefficient, Cp, [g/L] the bulk dissolved
oxygen concentration as measured by the online DO sensor, and Cf)‘;t [g/L] the
dissolved oxygen saturation concentration (6.7 mg/L), which is assumed to be
present at the water-gas interface.

OTR || = k1a (€5} - Coy) (3.12)
By equalising equations (3.12) and (3.11), a linear correlation between the OTR
and the oxygen saturation difference Cf)‘;t — Cp, (OSD) arises, linked by the oxygen
transfer coefficient kpa. Eventually, an estimate of the oxygen transfer coefficient
was obtained via a linear regression of the experimental OTR as determined by
the gas-side balance (3.11), and the OSD data using polyfit. Again, confidence
intervals were calculated using polyparci .
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3.3. Integration of experimental data into the model

3.3 Integration of experimental data into the model

The generated experimental data were integrated in the metabolic model or the
computational procedures to refine its performances with respect to the observations.

Dissolved oxygen balance

In contrast with the other external metabolites (equation (2.10)), the dissolved oxygen
mass balance (equation (3.13)) involves a transport term as well, complicating an
analytical integration. From equation (3.7), X (¢) is already known, while kra is the
observed oxygen transfer coefficient. ;1 and gp, are the biomass growth rate and the
oxygen uptake rate as determined by the underlying FBA problem (qo, = (Sv)|o,)-
1 is considered positive and go, negative.

dCo,
dt

= qo,() X (t) + kra (C3F — Co, (1)) (3.13)

Integrating this linear first order differential equation using integration factors gives
the following result. A more detailed calculation is provided in Appendix B.

Coy (t) = Copoe™ 4! + C1 (1 — 7M1t 4 Nqiz‘;?a (et —eheat) - (3.19)
By the pseudo-steady state approximation, the oxygen balance of equation (3.13)
is considered valid within a time period t; — t; + At = t;+1. Hence, equation
(3.14) is introduced in the dFBA procedure as the forward iteration formula for the
extracellular oxygen concentration. The next step in the dFBA cycle is reevaluating
the FBA problem for the new metabolite concentrations of ¢;,11, changing X,
and/or qo,.

) _ N\, —kralt sat __—kpaAt q0, (tZ)X(tl) | ouAt _ —kpaAt
Co,(tis1) = Co,(ti)e + O (1 e ) S T <e e )
(3.15)

The initial dissolved oxygen concentration Cp,(0) was set at the oxygen saturation
concentration CgY.
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Chapter 4

Model selection and analysis

Any design procedure obviously requires a metabolic network model to optimise. To
select a suitable one, its performance must be assessed in depth and validated with
experimental data, especially with regard to the wild-type. Metabolic models can be
found in databases like BiGG [68] and BioModels [58] or in individual research articles.

Querying these databases and literature learned that there are two major mod-
els for B. subtilis. Model iYO844 is the first ever GSMN model for B. subtilis,
including 844 genes, 988 metabolites and 1020 reactions of which 65 % are irre-
versible. It was reconstructed using the annotated genome sequence of Danchin et al.
from 1997 [69], then available biochemical knowledge, large-scale gene essentiality
datasets from literature and newly generated high-throughput phenotyping data
[10]. It has an overall gene essentiality accuracy of 89.0 % when validated against
a new database of gene essentiality data, gene interval knockout data and Biolog
phenotyping data [57].

However, iYO844 is based on an outdated annotated genome and relies solely
on biochemistry databases for its directionality and reversibility information, possibly
resulting in overconstrained networks. iBsull03 attempts to tackle this issue by using
updated genome annotations and by estimating reaction free energies to determine
the reaction directionality and reversibility, resulting in a more relaxed network. It
contains 1103 genes, 1145 metabolites and 1143 reactions of which 45 % is irreversible.
The overall gene essentiality accuracy increased to 93.2 % when validated against
the same dataset [57].

This chapter evaluates both models at the accuracy of predicted wild-type flux
distributions as well as knockout flux patterns. Model remediations are introduced
when necessary. Finally, the capabilities of the wild-type metabolism are explored
by studying the impact of the medium composition on the ammonia productivity
over time using sdFBA.
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4. MODEL SELECTION AND ANALYSIS

4.1 Model selection

4.1.1 Assessment of the basic models

A first assessment includes setting up both models for a couple of media for which
experimental exchange rate and/or growth rate data are available in literature. These
empirical substrate uptake rates are set as the maximal uptake rates in the model,
and via pFBA calculations the models are checked for being able to reproduce the
experimental production rates.

More specifically, the behaviour for three media (pyruvate - PYR, glucose - GLC
and casein hydrolysate - CAS) is simulated and compared to some reference growth
rates and production rates taken from studies by Massaiu et al. and by Goelzer et al.
[17, 33]. Also the simulated TCA cycle fluxes were compared with estimated TCA
flux maps from this last study by visualising them in a similar flux map, as shown in
Figure 4.1. Table 3.1 reported the applied flux constraints.

It immediately sticks out that iBsul103 behaves different from iYO844. The pre-
dicted growth rates differ substantially in two cases out of three, and either the
TCA cycle nor the glycolysis are activated in accordance with the experimental
data. In one case of three, it even predicts to produce formate as the main secretion
product instead of the observed acetate. Taking a closer look at all secretion rates
(not shown), iBsull03 also excretes moderate amounts of succinate and adenine,
rendering its behaviour even odder. Closing the exchange sinks of these metabolites
does not solve the problem: it produces then other unexpected compounds.

On the other hand, iYO844 does not perform that excellent either, when com-
paring the flux patterns in Figure 4.1. For example, the acetate exchange rates
should be higher, especially in the CAS case, in which the simulated rate is absent
but the observed one is the largest of the three cases (34.75 mmol/gpyh)). In the
glucose case, for example, 4.94 mmol/(gpwh) acetate was observed while only 1.20
mmol/(gpwh) was predicted. The growth rate also is too high in the CAS case.

As a consequence, these findings impose to find model enhancements to rectify
the behaviour of iBsul103 and/or to ameliorate that of iYO844. One way to achieve
this is by integrating experimental data of the desired growth conditions to constrain
the solution space into the right direction.
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Figure 4.1: Experimental and simulated flux maps of the central carbon

metabolism for a selection of growth media. The upper row of figures displays exper-
imental flux maps from Goelzer et al., which were estimated by measuring the substrate
uptake rates and the product secretion rates [33]. The arrow thickness is proportional to
the flux value. The lower two rows depict simulated TCA flux values obtained from pFBA
calculations for both GSMNs, which were visualised by Escher flux mapping [60] using a
logarithmic colour scale from green (0) to red (30 mmol/(gpwh)).



4. MODEL SELECTION AND ANALYSIS

4.1.2 Assessment of the enhanced models

In analogy with [17], GECKO is applied to enhance both models because of its easily
implementable but effective concept, as discussed in Section 2.2.3. This, however,
requires quite some kinetic and proteomic data. For the GLC case, these data were
retrieved from a proof-of-concept study by Massaiu et al. [17], while the data for the
CAS case were calculated similarly using data from other studies [33] and BRENDA.
The PYR case was omitted here as the Cplex solvers returned infeasibility errors
after introducing GECKO constraints, which illustrates that the currently available
kinetic and proteomic data are not always accurate enough for model feasibility. The
data utilised for the eventual GECKO constraints are available in Table 3.2.

Again, some Escher flux maps in Figure 4.2 visualise the results, from which two
conclusions are drawn. First, GECKO has visibly enhanced the iYO844 model:
while it previously had difficulties to reproduce the experimental flux values, it now
exhibits good similarity. The acetate secretion flux, for example, has increased for
both GLC and CAS media to acceptable values without divergent growth rates. More
specifically, the experimental glucose case contains molar acetate secretion fluxes of
about half the size of the glucose uptake rates, similarly as in the simulation data
(4.37 mmol/(gpwh) AC vs. -7.71 mmol/(gpwh) GLC). Moreover, the AC secretion
rate (21.56 mmol/(gpwh)) in the CAS case is of the same order of magnitude as the
ASN rate (-26.81 mmol/(gpwh)).

On the other hand, iBsul103 has not been rectified by GECKO constraints, as its
unexpected behaviour has even slightly deteriorated. While previously, parts of
the glycolysis were still active, it now is almost completely inactive, just as parts
of the pentose phospate pathway. The growth rate is too high in the CAS case as well.

The question then arises as to what causes this divergence and how it can be
avoided or corrected. Possible reasons are that the directionality of the model is
over- or underconstrained, resulting in flux pathways that are inherently feasible but
very rarely active in practice. As mentioned at the beginning of this chapter, the
iBsul1103 model distinguishes itself from iY 0844 because of its relaxed directionality
based on the reaction thermodynamics [57]. This seems interesting on its own, but
loosening constraints does not imply that the cell is able to support fluxes in all
thermodynamically possible senses because of its biological background. Regulatory
processes for example, which are not included in these metabolic models, might
prohibit this. Moreover, the necessary cofactors are not always present in the required
quantities nor the enzymatic capacities are.

Because of its divergent behaviour, it might be useful to reevaluate the model.
However, for the sake of time, the iBsul103 model is abandoned in this thesis, as
the i'YO844 model reflects reality better and consequently has a higher potential for
further applications.
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Figure 4.2: Experimental and simulated flux maps of the central carbon
metabolism for a selection of growth media after GECKO enhancement.
In the upper row of figures, adapted from Goelzer et al. [33], the arrow thickness is
proportional to the flux value. The lower two rows of figures are simulated pFBA
flux values obtained using both GECKO-enhanced models. Figures are made with
Escher flux mapping [60], using a logarithmic colour scale from green (0) to red
(30 mmol/(gpwh)).



4. MODEL SELECTION AND ANALYSIS

4.1.3 Verifying genetically perturbed model behaviour

GECKO-enhanced Y0844 has so far been proved a suitable model, but one aspect
still must be verified. Combining genetic perturbations and GECKO appears quite
straightforward as enzymatic capacities do not change in the short term. This combo
has already been applied successfully as illustrated earlier in Section 2.2.3. An
additional check, however, does not harm.

Via MOMA, some single deletions were simulated and compared to experimental flux
data of Fischer and Sauer [61]. To have a quantitative parameter, the normalised
root mean square error (NRMSE) of each reaction flux was calculated. The NRMSE
is defined in Equation (4.1) with v an simulated flux, vey, an experimental flux and
N the number of measurements.

Ei(’Ui - Ui,ezp)Q ) N
N Zivz’,emp

NRMSE = \/ (4.1)

From Table 4.1 it is clear that the match is good. Nevertheless, two remarks can be
made, of which the first one concerns the systematic overprediction of the growth rate.
This is attributable to the hypothesis that microbes tend to maintain unnecessary
enzymes to be able to mediate sudden environmental changes, which causes a subop-
timal level of enzyme maintenance that reduces metabolic yields. This hypothesis
has found support in the study from which these experimental reference data were
sourced [61].

Secondly, it is remarkable that extracellular fluxes (u, glucose and acetate exchange)
deviate less than intracellular fluxes (pgi, g6pdh and cs). This can be explained
by the fact that the exchange fluxes are located at the periphery of the metabolic
network, where there are almost no competing reactions. Every pathway secreting
acetate, for example, contains the acetate exchange flux. On the other hand, the
intracellular reactions face a higher level of connectivity and freedom and often are
only one of the possible pathways to convert a metabolite into another.

Nevertheless, the general trends of the experimental measurements are predicted
quite well and especially the similarities of the exchange fluxes and the growth rates
are encouraging. Combining MOMA and GECKO thus appears to be compatible,
passing the last checkpoint for GECKO-1YO844, hereafter called iYO844-Gk.
1YO844-Gk will now be used to explore and optimise the metabolism of ammonia
secretion.
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4.1.

Model selection

Table 4.1:

Validation of combining knockouts and GECKO in model

iYO844 for a selection of deletions. MOMA knockout simulations of glucose

growth were compared with experimental exchange and *C-flux data from a study

by Fischer and Sauer [61].

Strain u EX-GLC | EX-AC | pgi | g6pdh cs

Unit bl SRR | owh | aowh | aowh | owh
wild-type 0.624 -8.625 4.373 | 5.832 | 2.635 | 4.441
wild-type (exp.) 0.490 -8.007 4.083 | 5.247 | 2.655 | 2.886
AacoABCL 0.320 -4.742 2.279 | 2132 | 2529 | 2.224
AacoABCL (exp.) | 0.280 -4.320 1.426 | 3.035 | 1.200 | 1.489
AcitH 0.501 -7.079 3.153 | 3.186 | 3.767 | 3.313
AcitH (exp.) 0.440 -6.430 2.702 | 4.364 | 1.965 | 2.330
Afbp 0.507 -7.163 3.185 | 3.224 | 3.812 | 3.352
Afbp (exp.) 0.410 -6.510 3.319 | 4.565 | 1.841 | 2.028
AgalE 0.518 -7.307 3.239 | 3.280 | 3.888 | 3.419
AgalE (exp.) 0.430 -6.640 3.185 | 4.339 | 2.194 | 1.969
AgapB 0.401 -5.791 2.669 | 2.605 | 3.085 | 2.713
AgapB (exp.) 0.370 -5.270 2.056 | 3.337 | 1.835 | 2.299
AgleP 0.492 -6.968 3112 | 3.136 | 3.708 | 3.261
AgleP (exp.) 0.410 -6.330 1.898 | 4.429 | 1.796 | 2.281
AhutM 0.465 -6.610 2.977 | 2974 | 3.519 | 3.095
AhutM (exp.) 0.400 6.010 2.523 | 3.923 | 1.982 | 2.152
AkatX 0.505 -7.130 3173 | 3.209 | 3.794 | 3.337
AkatX (exp.) 0.420 -6.480 2.722 | 4.180 | 2199 | 2.833
Amdh 0.287 -5.421 2.513 | 2483 | 2.789 | 2.042
Amdh (exp.) 0.300 -4.760 5000 | 3.001 | 1.672 | 0.408
AodhA 0.372 -6.491 6.683 | 2.697 | 3.700 | 0.364
AodhA (exp.) 0.330 -6.320 6.069 | 4.553 | 1.675 | 0.511
ApckA 0.616 -8.568 3.714 | 3.858 | 4.555 | 4.006
ApckA (exp.) 0.490 -7.780 3.733 | 4.730 | 2.943 | 2.886
Apps 0.624 -8.633 4.414 | 5.968 | 2.508 | 4.459
Apps (exp.) 0.530 -8.660 4157 | 5.669 | 2.887 | 2.653
AsdhC 0.398 -6.886 7.058 | 2.863 | 3.923 | 0.389
AsdhC (exp.) 0.410 -6.700 6.632 | 5.078 | 1.520 | 0.580
Azwf 0.308 -8.345 3.697 | 6.200 | 0.000 | 3.895
Azwf (exp.) 0.340 -7.560 6.347 | 6.903 | 0.558 | 1.354
NRMSE [%] | 18.94 8.90 | 28.96 | 25.37 | 80.42 | 65.85
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4. MODEL SELECTION AND ANALYSIS

4.2 Effect of the medium composition

Optimising metabolic networks often relies on assuming a specific substrate mix-
ture, which can be subject to optimisation as well. Because complex media often
consist of multiple nutrients in different quantities, it is necessary to check the
sensitivity of the ammonia productivity to the nutrient concentrations. This is
especially imperative for this case, as there are 20 amino acids (AAs) that can vary
in concentration due the natural origin or former pretreatments of the protein sources.

A first step comprises determining which protein source would be preferable. There-
fore, a couple of media are defined of which the AA compositions relate to the source
of commercially available protein isolates. Those include a plant-based medium, an
animal-based medium and an ‘average’ medium which reflects mixed sources [63].
Two popular laboratory polypeptide media, LB medium and casein hydrolysate
medium are defined as well [62]. Compositions of these media were obtained as
described in Section 3.1 and are available in Table 3.3. For each of these media, an
sdFBA analysis of iYO844-Gk is executed to record a metabolite time profile for
each metabolite of interest.

However, in Table 3.3, it is noticeable that the total initial amount of substrates
differs quite extensively, which creates a non-negligible bias. Therefore, a relative
concentration profile was also set up for each compound. This relative concentration
is defined as the molar amount of the metabolite of interest divided by the initial
total molar amount of substrates. The biomass in gpy was converted to C-molpyy
via the average of the estimated molar masses of the elemental biomass composition
by Dauner et al. (24.415 gpw /C-molpy ) [64].

The results of this analysis are depicted in Figures 4.5, 4.6 and 4.7. All simu-
lations have three similar major exponential growth phases. The first one is short
(0.5 h) and is characterised by the consumption of all amino acids, until asparagine
(ASN) is depleted. In the second phase, the other amino acids are taken up till some
major substrates like glutamate (GLU), arginine (ARG) and serine (SER) are used
up quasi-simultaneously at 6-8 h. In the third phase the remaining A As are converted
until valine (VAL) is depleted, after which no non-zero growth rates are predicted
anymore and the simulation is consequently stopped. Growth rate reductions within
a major growth phase can be attributed to the depletion of a minor substrate.

In all situations a similar biomass concentration is obtained, while producing the
same compounds at similar rates. However, in all cases, there is a propionate effluent
(ppa), which was not mentioned in earlier studies [6, 7, 33]. New experimental
observations must clarify this issue. Next, the biomass productivity of the CAS
medium is slightly higher due to the more elevated amounts of GLU, SER and
ARG, which are preferred substrates as reflected in the uptake rates of Table 3.1.
Moreover, the larger initial amount of ASN allows to produce more biomass early as
well, resulting in somewhat higher consumption rates and a lower batch time, which
is nicely displayed in, for example, the isoleucine (ILE) curve of Figure 4.6.
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4.2. Effect of the medium composition

The final ammonium concentration amounts to approximately 50 mM, or 0.9 g/L,
but is expected to be positively influenced by the amount of highly aminated AAs
like ARG, ASN and histidine (HIS). For the sake of completeness, an overview of
the structural formulas of all AAs is provided in Figure 4.3, from which the nitrogen
content of each AA can be consulted. And indeed, media with a higher share of
these AAs yield higher ammonium concentrations. CAS medium, for example, which
has a noticeable higher content of highly aminated AAs, has a substantially higher
ammonium productivity.

Interestingly, other conclusions can be made from the relative concentration profiles.
While CAS medium, for example, has the highest ammonium titer in absolute terms,
plant-based medium has the highest one in relative terms, because the amount of
initial substrate is larger for CAS. Secondly, the plant-based medium appears here to
be the best AA blend for ammonia production. This implies that plant-based protein
sources are more interesting for microbial protein deamination. However, according
to the composition data of Gorissen et al. [63], plant-based protein isolates have the
lowest average protein content, despite its superior AA composition. The key is thus
to find a plant source with a high protein content and a favourable AA composition.

The follow-up question is what the impact of each AA on the ammonium secretion
rate is. Therefore, a sensitivity analysis is set up in which the absolute content
of one AA in LB medium is doubled one by one separately. Additionally, these
alterations could influence the production rates of other metabolites, which hence
must be checked.

Figure 4.8 displays the ammonium time profiles of these media alterations. Interest-
ingly, not only the highly aminated AA (ARG, ASN, HIS) have a positive impact on
the ammonium productivity, but also alanine (ALA), glutamate (GLU), serine (SER)
and threonine (THR). Apart from the amino-rich AA, these four AA with only one
amino group — hereafter called preferential AA — are consumed at the highest rates
in Table 3.3 and are thus fully converted, unlike their non-preferential counterparts.
These uptake rates could also explain why the influence of ALA, ARG and GLU is
large, while that of HIS, SER and THR is rather small. Anyhow, because of their
high consumption rates, preferential AA generate an additional ammonia flux despite
having only one amino group, while the expected contribution of the amino-rich
AA comes from their multiple deaminations. As an illustration, Figure 4.4 shows
the total share of the mentioned amino-rich and preferential AA, which correlates
with the slope of the relative ammonium profile of Figure 4.7. The medium with the
highest share of these AA thus generates the fastest relative increase in ammonium.
Figure 4.10 shows that the other metabolites are largely unaffected. Only in the case
of ALA, the acetate productivity has almost doubled.

To conclude, changes in ammonium productivity of the wild-type metabolism are
attributable to changes in the medium composition but the major growth phases
remain unaffected. Increasing ammonium productivity is feasible by increasing the
share of the preferential and/or the highly aminated amino acids.
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Figure 4.3: Overview of the structural formulas of all AAs. Figure taken from [70].
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Figure 4.4: Total medium share of the amino-rich (ARG, ASN, HIS) and
the preferential AA (ALA, GLU, SER, THR) in LB medium. Note that a
higher share of these AA results in more ammonia per initial amount of substrates.
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Figure 4.5: Effect of the medium composition on the biomass time profile.
These logarithmic biomass concentration time profiles were obtained by executing
sdFBA analyses of iYO844-Gk for five different media compositions. The relative
values were converted from the absolute ones using the average of biomass molar

masses estimates by Dauner et al. (24.415 gpw/C-molpy) [64].
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Figure 4.6: Effect of the medium composition on the metabolite time profiles. These metabolite concentration time profiles were
obtained by executing sdFBA analyses of iYO844-Gk for five different media compositions. The figures include all 20 substrates and other relevant
products. Product labels are as in the iYO844 model.
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Figure 4.7: Effect of the medium composition on the metabolite time profiles with respect to the initial molar
amount of substrates. These metabolite concentration time profiles were obtained by executing sdFBA analyses of iYO844-Gk for
five different media compositions and converted to relative molar amounts via the appropriate molar masses. The figures include all
20 substrates and other relevant products. Product labels are as in the iYO844 model.
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Figure 4.8: Effect of doubling the content of one specific AA on the ammonium time profile. These ammonium profiles
are obtained by sdFBA analyses for media compositions in which the content of the AA mentioned above each graph was doubled (in
red) with respect to the original LB media composition in Table 3.3 (in blue).
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Figure 4.9: Effect of doubling the content of one specific AA on the biomass time profile. These biomass profiles
are obtained by sdFBA analyses for media compositions in which the content of the AA mentioned above each graph was
doubled (in red) with respect to the original LB media composition in Table 3.3 (in blue).
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Figure 4.10: Effect of doubling the content of one specific AA on the product metabolite time profiles. These
metabolite time profiles are obtained by sdFBA analyses for media compositions in which the content of one AA was doubled
with respect to the original LB case with a composition as in Table 3.3. Only AA with a major positive impact on the ammonia
productivity were taken into account and compared with the original LB case (ALA, ARG, GLU).



4.3. Conclusion

4.3 Conclusion

This chapter evaluated two GSMN models at their ability to reproduce flux values
reported in literature for a couple of defined media by comparing TCA flux maps.
The basic models, i.e. the form in which they can be found in databases, did not
produce satisfactory similarities. While iYO844 showed qualitative agreements for
the activated pathways and the produced metabolites, the quantitative flux values
were not in line. The predictions by model iBsul103 were unacceptable, for both the
utilised pathways and the secreted metabolites. This underperformance might be
attributable to the relaxed underlying metabolic network, because model iBsul103
relies predominantly on the inherent reaction thermodynamics, neglecting any other
biological aspect that might prohibit a reaction to take on a certain flux.

The GECKO model enhancement concept was applied as an attempt to ameliorate
the prediction power of both models using empirical proteomic data. Model Y0844,
hereafter called iYO844-Gk, did give satisfactory results, while model iBsul103
remained off-target and consequently was abandoned.

In order to validate its predictive power for genetic modifications, a couple of sin-
gle deletions were simulated using model iYO844-Gk via the MOMA method and
compared to experimental '3C-flux measurements. The model showed a good corre-
spondence with NRMSE values ranging as low as 9 %. Consequently, iYO844-Gk
was selected as the basis for further analyses.

A sensitivity analysis of the medium composition was carried out in two steps.
In order to capture the evolution over time as well, sdFBA modelling was applied.
First, three media were defined with AA compositions characteristic for a certain
commercially available protein source, supplemented with two popular complex labo-
ratory protein media. This analysis learned that amino-rich AA positively impact
ammonia release and that, despite their lower protein content, plants provide the best
mix of AA for ammonia secretion. Next, a more thorough sensitivity analysis was
conducted by doubling the content of all AAs one by one. It appeared that not only
amino-rich AAs (ARG, ASN, HIS) favour ammonia secretion, but also the ones that
are preferentially consumed (GLU, ALA, SER, THR). The ammonia productivity
thus depends on both the number of amino groups of the AAs and the rate at which
the AAs are catabolised.
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Chapter 5

In silico network optimisation

In the previous chapter, the GSMN model iYO844 with a GECKO enhancement
for the central carbon subsystem has been shown to perform well for both natural
and perturbed genetic environments. In this chapter, two different optimisation
algorithms are used to suggest some genetic modifications in the carbohydrate and
the amino acid subsystems to optimise the metabolic network for ammonia secretion.
By using two algorithms with a distinct working principle, the final set of suggestions
is expected to be more diverse.

5.1 Optimisation using knockouts only

A first step is to consider knockouts only for practical reasons: it is the simplest and
most used genetic modification method and consequently is more easy to apply be-
cause of the numerous available protocols. Predicting metabolic knockout responses
in silico is straightforward as well because knocked out fluxes are absent, no matter
what the regulatory or capacity preconditions are [43].

The applied optimisation algorithms are sequential scanning and OptGene, about
which more information is available in Sections 2.2.5 and 3.1. Both offer a high flexi-
bility to adjust the optimisation objective, as this only involves modifying a fitness
scoring or selection function. Both are altered to optimise the ammonium-biomass
yield via MOMA with a growth rate threshold, which was arbitrarily set at 25 % of
the wild-type rate. More settings were described in Section 3.1.

To maximise nitrogen recovery, the bioconversion is likely to be executed in a
dynamical environment such as a batch operation. The choice of the growth phase to
optimise is thus crucial, as each phase has a specific metabolism with a certain uptake
flux distribution. From Figure 4.6, it is observed that most ammonia (about 70 %)
is produced during the second major growth phase, the phase in which only ASN
is depleted (0.5 h - 7 h). Given that the sdFBA procedure automatically updates
the uptake flux constraints of the GSMN model according to the availability of the
substrates, the model state of the second growth phase is the starting point of both
algorithms. Consequently, the growth rate threshold is 0.1196 h~!.

It is, however, possible that a knockout that optimises one growth phase, could
render previous ones infeasible. This is the case if, for example, the knockout is
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a reaction that is not essential for the growth phase at hand, but actually is for
an earlier one, making the optimised growth phase unreachable in time for batch
operations. The feasibility of the selected knockouts is therefore checked a posteriori
via a AMOMA simulation (cfr. Section 2.2.4).

With an in vivo implementation in mind, it is interesting as well to have a look at
the genomic properties of the knockout candidates in databases like SubtiWiki and
BsubCyc [41, 65]. Isozymes, for example, complicate the deletion process as they are
translated from different genes, but catalyse the same reaction [71]. Consequently,
each of these genes must be deleted for a complete knockout. It would thus be
convenient to remove isozymes from the selection for now. Another tricky situation
are genes within a multi-gene operon. Although there is no problem in theory, if such
a knockout fails in such a way that the reading frame is shifted, the entire operon is
disrupted (a.k.a. a frameshift or polar mutation [71]). If it is not clear whether a
frameshift has occurred, the observed phenotype may be falsely attributed to the
envisaged deletion. Attention is thus required when implementing such genes in vivo.

Taking a look at the summarised results in Table 5.1, yields are substantially higher
than the wild-type yield, while the productivity is only slightly higher. The growth
rates, however, have reduced to values slightly higher than the growth rate threshold
(0.1196 h~!). No isozymes were found.

Comparing the number of deletions, it is remarkable that from two deletions onwards
additional knockouts result in only very minor yield increases. It is questionable if
such small differences would be noticeable in in vivo implementations because of
natural noise or model errors. Consequently, in light of minimal efforts and simple
designs, the less deletions to achieve approximately the same, the better. By this
reasoning, knocking out ywlF and pycA would be the preference. As mentioned
before, a AMOMA check was executed and showed no feasibility issues for this
genotype. The rerouting of fluxes visibly results in less biomass formation and, hence,
a slower bioconversion with only a minor increase in ammonia productivity. Some
new excretion products such as acetoacetate and 6-phosphate-gluconate, are formed
as well, as depicted in Figure 5.3.

The optimal knockout combinations are mainly situated in the same metabolic
subsystems, the pentose phosphate pathway and the anaplerotic reactions, because
these have a large influence on the growth rate. These subsystems each have their
metabolic function in this particular situation, which is illustrated for the wild-type
in Figure 5.1. The anaplerotic reactions serve as bypass between the TCA cycle and
the glycolysis, as citrate synthese (CS) and pyruvate dehydrogenase (PDH) both
are unidirectional and consequently block direct access to the glycolysis. Moreover,
these pathways enable reaching acetate kinase, the main acetate production flux.
The pentose phosphate pathway on the other hand is located at the other end of the
glycolysis, and provides ribose for a.o. DNA- and RNA-synthesis.

Intervening in these two pathways affects the entire carbon household and indi-
rectly the adjacent amino acid metabolism, using only a small number of knockouts.
Figure 5.2, for example, illustrates the impact of deleting ywlF and pycA on the
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central carbon fluxes in comparison with the wild-type in Figure 5.1. Adjusting the
amino acid metabolism directly would require a higher number of deletions because
it comprises many reactions that are specialised in converting only one or a few of
the twenty amino acids. Nevertheless, some of them have potential if they intervene
in the metabolism of a preferential amino acid.

The main conclusion of this analysis is that yield increases mainly come at the
expense of growth rates. Although a low growth rate does not imply that it is
impossible to achieve those yields, it is rather impractical. (Fed-)Batch systems face
a prolonged batch time because of the modest conversion rates due to a lower biomass
level. Moreover, continuous operation is limited by the wash-out phenomenon, mean-
ing that the biomass does not replicate fast enough to compensate for the rate at
which it is withdrawn via the bioreactor effluent. A retention system such as a
membrane bioreactor would eliminate this constraint, but this would increase the
required capital investments. On the other hand, to overcome this issue, I would
like to propose the idea of inducible knockouts using metabolic toggle switches [72],
which could disable the deletions when the biomass level is critically low. The idea
is that this would allow the biomass to recover in a wild-type growth mode until it
would have reached again a sufficiently high level. At that point, the knockouts could
retrigger the high-yield production mode without excessive biomass formation. This
activatable production mode could also limit the lengthening of batch conversion
times, while still maintaining relatively low levels of biomass, which could cut the
costs of handling the waste biomass. This could be done by switching from growth
mode to production mode at a certain time point during the batch, which could be
subjected to a temporal optimisation [73].

As an illustration, Figure 5.3 depicts not only the dMOMA profiles that were
used as a feasibility check, but also the wild-type sdFBA case and three knockout
induction scenarios. The inductions were modelled by replacing the sdFBA loop
with a dAMOMA loop starting from the specified induction time point.

Depending on a cost analysis between lengthening conversion times and handling
more waste biomass, the induction time point can be shifted along the time interval
of the second major growth phase'. An induction at 4 h, for example, is a mid-range
solution, in which the batch conversion time lengthens 45 % yielding 38 % less biomass.

Another strategy is altering the optimisation target of the algorithms to find better
genotypes. These alterations include increasing the growth rate threshold — e.g. 75 %
of the wild-type — or optimising the ammonia secretion flux instead of the yield, as
the latter is strongly inflated by low growth rates.

In Table 5.2, both alternate objectives are applied for the case of two deletions using
both sequential scanning and OptGene. Firstly, optimising the flux has made an
interesting genotype appear just outside the top 5: AytsJApckA. It is the only
genotype in the top 250 (!) with a predicted growth rate higher than half the
wild-type rate. On top of that, its predicted ammonium secretion flux is still 8 %
higher, which is only 2 % lower than the highest value in this analysis.

Tt would not make sense to trigger the optimised metabolism outside its growth phase.
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Secondly, increasing the growth rate threshold returns no interesting genotypes, as
it concerns growth rate reductions of about 20 % and ammonium flux increases of
only about 2 %. These deletion patterns seem quite ambiguous. The ammonium
secretion rates have not increased enough to classify it as a substantial productivity
improvement nor the growth rates have decreased in such a way that inducible
knockouts could be beneficial.

The general conclusion is that an optimisation with only genetic deletions is not very
powerful. It quickly reduces to choosing between high ammonium fluxes and a low
growth rate, possibly with the additional complexity of inducible knockouts to cope
with that; or moderate growth rates with only a moderate increase in ammonium
productivity. Therefore, the candidate set should be enlarged with another type of
genetic modification to profit from more combinatorial freedom.

Table 5.1: Summary of the best yields obtained by each optimisation
algorithm for an increasing number of deletions. Gene and subsystem data
from the i'YO844 model or SubtiWiki.

Number of | Deleted Affected I Flux Yield
knockouts genes metabolic subsystems (h™Y) (mo’ll) (M)
9gpw 9gpw
wild-type | 0478 [ 10130 |  0.381
Sequential scanning
1 deletion lysA Lysine & threonine 0.123 10.171 1.489
2 deletions | YW | Pentose phosphate pathway | o100 |13 g9y | 1650
pycA Anaplerotic reactions
ywlF Pentose phosphate pathway
3 deletions pycA Anaplerotic reactions 0.120 11.024 1.654
metK Methionine & cysteine
lysA Lysine & threonine
/ deletions | 8"A | Pentose phosphate pathway | 1o |1y 374 | 45
serC Serine biosynthesis
ytsd Anaplerotic reactions
OptGene
1 deletion lysA Lysine & threonine 0.123 10.171 1.489

ywjH Pentose phosphate pathway
gndA Pentose phosphate pathway
ywlF Pentose phosphate pathway

2 deletions 0.123 11.002 1.610

3 deletions pckA Anaplerotic reactions 0.120 11.002 1.652
pps Glycolysis/Gluconeogenesis?
alsD Acetoin metabolism

4 deletions gndA | Pentose phosphate pathway | (55| 1) 547 1.661
serC Serine biosynthesis
ytsJ Anaplerotic reactions
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Figure 5.1: Visualisation of the central carbon fluxes for the second major
growth phase of wild-type LB growth. Mind that the amino acid metabolism
is connected to the central carbon metabolism via many entry points, as shown in
Figure 2.1. Figure made with Escher flux mapping [60], including logarithmic colour
scale (green to red; 0.1 to 10). Reactions were labelled similarly as in the iYO844
model and numbers are in units of mmol/(gpwh).
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Figure 5.2: Visualisation of the central carbon fluxes for the second major
growth phase of AywlFApycA LB growth. Using only two deletions, the central
carbon household is largely rearranged. Mind that the amino acid metabolism is con-
nected to the central carbon metabolism via many entry points, as shown in Figure 2.1.
Consequently, these adjacent fluxes are impacted as well. Figure made with Escher flux
mapping [60], including logarithmic colour scale (green to red; 0.1 to 10). Reactions were
labelled similarly as in the iYO844 model and numbers are in units of mmol/(gpwh).
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Figure 5.3: Metabolite and biomass time profiles for LB growth and a varying induction time point for the ywlF' and pycA deletions.
In comparison with the wild-type, some new excretion products are observed: acetoacetate (acac), 6-phopshate-gluconate (6pgc), urea and xanthine (xan).
ting 18 the time point in h at which ywlF and pycA knockouts are induced, which is modelled by switching from sdFBA loops to AMOMA loops from t;,,4
onwards. t;,q = 0 thus reflects a permanent knockout and t;,q = co the wild-type. Observe that delaying the knockout induction increases the biomass
formation and decreases the batch time, while the final ammonium concentration remains approximately constant.
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Table 5.2: Summary of the best five genotypes with two deletions accord-
ing to the indicated altered objectives as obtained by both algorithms.
Gene and subsystem data from SubtiWiki or the iYO844 model. An S in the col-
umn Algorithm means that the genotype was discovered by the sequential scanning
algorithm, while an O denotes OptGene.

Deleted Affected 7 Flux Yield Algo-
genes metabolic subsystems (h™1) <m0}ll) (M) rithm
9dDW 9gpw
wild-type | 0478 [ 10130 |  0.381 |

Growth rate threshold = 75 % of wild-type

ff?cic Argiang f igyr giaﬁon 0.364 | 10755 |  0.532 S
b[1)1((331<CAD Anap'ITerCo?icC };Zitions 0.359 10.378 0.521 S
ng\d Alan?foﬁznzezlt;;;;ag;ﬁatlon 0.367 | 10257 | 0504 | S, 0
g(;{{AA Anaplef(fgzaﬁ;ctions 0.375 10.400 0.500 S
piE& Anaplefoct?za:;ctions 0.375 10.400 0.500 S

Target = ammonium secretion flux

serC Serine biosynthesis

gndA Pentose phosphate pathway 0-156 11176 1.292 50
ywlF Pentose phosphate p.athway 0.123 11.038 1616 g
pckA Anaplerotic reactions

ywlF Pentose phosphate p.athway 0.120 11.024 1.650 g
pycA Anaplerotic reactions

ywjH Pentose phosphate pathway

gndA Pentose phosphate pathway 0-123 11.002 1.611 S
lysA Lysine & threonine

gndA Pentose phosphate pathway 0-123 10.993 1.609 5
ytsJ Anaplerotic reactions

pckA Anaplerotic reactions 0.253 10.968 0.781 S
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5.2 Optimisation using knockouts and upregulations

Next to knockouts, another type of genetic modification are upregulations, a forced
overexpression of a gene. As already described in Section 2.2.4, modelling these is
not that straightforward. Because iYO844-Gk does not contain any intracellular flux
constraint (except for the GECKO constraints), the forced flux approach of Wang
et al. [45] is the sole remaining possibility. Hence, upregulations are modelled by
fixing both the lower and upper flux constraint of the affected reactions at 1.5 times
the wild-type reaction flux as determined by pFBA. This small amplification factor
was chosen to limit influences beyond the scope of metabolic network modelling that
could thwart flux increases, such as the regulatory network or enzymatic capacities.

The OptGene algorithm only supports knockouts and hence is not suited for this
analysis. In contrast, the sequential scanning algorithm could be modified to combine
both knockouts and upregulations. More details about this final version can be found
in Appendix C. Consequently, the genetic modifications suggested in this section, are
formulated by the scanning algorithm. The further setup of this analysis, including
aspects such as the model state, the optimisation objective and the growth rate
threshold, is identical to the original case of previous section.

Table 5.3 presents the genotype ranking as obtained by the sequential scanning
algorithm using both knockouts and upregulations. Accepting gene amplifications
as one of two potential genetic edits has not resulted in many more further yield
increases neither revealed a genotype with an acceptable growth rate. Only the couple
(PdhD, UreABC) has a higher yield than the already known best double-knockout
couple (AywlF, ApycA), which comes second in this ranking. Nevertheless, (PdhD,
UreABC) exhibits a quite substantial flux increase caused by the overexpression of
urease, which cleaves urea into two ammonia and one COs molecules. The urea
is released from ARG to form ornithine, which is converted to GLU [41, 74]. The
overexpression of urease thus creates an additional driving force to cleave urea into
ammonia (and CO3). In Section 4.2, it appeared that the ammonium productivity is
highly sensitive to the ARG share of the medium. Intensifying one of its degrada-
tion reactions indicates again that the arginine metabolism would be an interesting
subsystem to exploit.

An attempt to discover more two-edit genotypes by applying the alternative optimi-
sation objectives of Section 5.1 was fruitless as a mixture of genotypes from Table
5.2 and Table 5.3 emerged (data not shown).

Introducing three genetic edits? exploits the arginine metabolism further as the
best genotypes involve more reactions from this subsystem, as summarised in Table
5.3. Although the growth rates are close to the threshold of 25 %, the secretion
rates are high in comparison with what was encountered so far, which confirms the
potential of this subsystem. However, the issue of low growth rates remains.

2To limit computational work, loop selection was set tighter, i.e. only the top 1 % of genotypes
was transferred to the next loop instead of 10 % when incrementing the number of genetic edits.
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Table 5.3: Summary of the five genotypes with the highest ammonium-
biomass yield as obtained by the sequential scanning algorithm for one, two
and three genetic edits. Edits can be both deletions and amplifications. Applying
alternate optimisation criteria for two edits resulted in a mix of combinations from this
table and Table 5.2. Urease and the adjacent arginine metabolism show a high potential,
although the issue of low growth rates remains. Gene and subsystem data from SubtiWiki
or the iYO844 model.

Number | Genetic Affected p Flux Yield
: : : -1 l INHyt+
of edits edits metabolic subsystems | (h™") (gTZTVOh) (ﬁ)
wild-type | 0478 | 10.130 |  0.381
PdhD Central carbon 0.120 10.697 1.608
AlysA Lysine & threonine 0.123 10.171 1.489
1 AaspB Aspartate biosynthesis 0.156 10.267 1.182
AgndA | Pentose phosphate pathway | 0.176 10.849 1.113
SdhABC Central carbon 0.199 10.590 0.959
PdhD Central carbon
UreABC Arginine degradation 0-123 11.787 1.725
AywlF | Pentose phosphate p‘athway 0.120 11.024 1.650
ApycA Anaplerotic reactions
AywlF | Pentose phosphate pathway
9 PdhABC Central carbon 0-123 11.052 1.624
AywlF | Pentose phosphate pathway
ApckA Anaplerotic reactions 0.123 11.038 1.616
AgndA | Pentose phosphate pathway
AlysA Lysine & threonine 0123 10.993 1.609
ApycA Anaplerotic reactions
PdhD Central carbon 0.120 11.774 1.764
UreABC Arginine degradation
PckA Anaplerotic reactions
PdhD Central carbon 0.121 11.838 1.760
UreABC Arginine degradation
RocF Arginine degradation
3 PdhD Central carbon 0.124 12.119 1.755
UreABC Arginine degradation
RocA Arginine degradation
PdhD Central carbon 0.122 11.794 1.746
UreABC Arginine degradation
RocD Arginine degradation
PdhD Central carbon 0.122 11.794 1.743
UreABC Arginine degradation
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5.3 Conclusion

This chapter employed two optimisation algorithms with a distinct working principle
and a high flexibility towards altering the optimisation objective, which allowed to
set a custom target. The applied objective was to determine the genotype with the
highest ammonia-biomass yield as predicted by the MOMA method, using deletions
only and taking an arbitrary growth rate threshold of 25 % of the wild-type into
account. Furthermore, the state of the uptake flux constraints during the second
major growth phase was selected as the starting point of the algorithms to maximise
the impact of the optimisation.

The results of this analysis learned that the best genotypes act on the pentose
phosphate pathway and/or the anaplerotic reactions in order to have a large impact
with few deletions. More than two deletions, however, do not result in substantial
improvements. Yield increases mainly come at the cost of lower growth rates, while
the ammonia secretion flux has improved only slightly. This, however, implies that
the same ammonia productivity can be achieved using less biomass, which could cut
the costs of waste biomass handling. However, a lower biomass level also entails a
slower bioconversion and, hence, prolonged conversion times for batch operations
and more difficulties with wash-out for continuous operations.

A metabolic toggle switch was proposed to limit the impact of these drawbacks,
while still achieving low biomass levels. It would allow to toggle between a wild-type
high-growth mode and a mutant high-yield production mode with a low growth
rate, while still maintaining the same ammonia secretion rate. A trade-off between
lower conversion rates and more waste biomass would be possible instead of a dilemma.

Another strategy was altering the optimisation objective of both algorithms in
order to sieve out better genotypes, e.g. by increasing the growth rate threshold
or by optimising for the flux instead of the yield. These adjustments uncovered a
remarkable deletion pattern, AytsJApckA, which has a predicted increase in ammo-
nium excretion of 8 % and a growth rate of more than half the wild-type rate, which
is remarkably higher than the other encountered genotypes.

However, optimising this GSMN with only deletions quickly leads to the dilemma
between a high production flux with a low growth rate, and a moderate production
flux and growth rate.

Therefore, genetic upregulations were included in the edit candidate set to widen
the searching space. The objective alterations were also applied for this case. These
analyses learned that urease, which is part of the arginine degradation pathway, is
an important ammonia generator and intensifies its release when amplified.
Incrementing the number of edits to three confirmed the potential of the arginine
subsystem, as the best genotypes with three edits involved an additional reaction
from this subsystem and were predicted to secrete ammonium at a high rate. The
growth rates, however, were again low because this genotype was discovered using a
25 % growth rate threshold.
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Chapter 6

In vitro strain analysis

In the previous chapter, a couple of algorithms were applied to suggest some sets
of genotypes with a high potential for ammonia secretion using a GSMN, model
enhancements and media compositions sourced from literature. In this chapter,
some exploratory in vitro runs with a wild-type B. subtilis strain are conducted.
Rather than determining parameters, the focus of this in vitro strain analysis is on
qualitatively assessing the behaviour of the model.

Nevertheless, these observations could allow to add or modify some model aspects.
There are a couple of interesting refinements possible for which empirical data must
be gathered. Firstly, oxygen was previously assumed to be abundantly present due
to perfect aeration and mixing. In reality, aeration rates are limited causing the
dissolved oxygen level of an operating bioreactor to drop to concentrations that are
possibly throttling the desired aerobic metabolism. Therefore, the oxygen balance of
the bioreactor system must be taken into account and linked to the sdFBA procedure
to enable the model to react on oxygen scarcity. More specifically, this can be done
by directly integrating an oxygen mass balance with a transport term. This term,
however, requires an empirical oxygen transfer coefficient.

Secondly, the model now assumes that the organism secretes sufficient proteases so
that all amino acids are readily degradable in a negligible time period. Measuring
the concentrations of the free amino acids in the reactor broth could allow to assess
whether the polypeptide hydrolysis is rate-determining.

Thirdly, it is possible that one would observe metabolic products that were not
predicted by the model or reported in literature, or vice versa. Shutting the appro-
priate exchange sinks and/or introducing new metabolic reactions would then be the
method to update the model.

This chapter first presents and discusses the obtained experimental data. From

these, some modifications of the model are then proposed, after which they are
implemented and qualitatively assessed for their impact.
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6.1 General data overview and discussion

In total, three experimental runs using LB medium were executed, of which the tech-
nical practicalities are described in Chapter 3. The first run was rather exploratory
and did not yield that much offline data as it was not known which offline sampling
frequency would be adequate. The online sensors, however, were always active and
did generate useful data. The next two runs utilised a two-hour offline sampling
scheme by day. In order to sample the entire time horizon with these runs, the
bioreactor was inoculated alternately in the morning and in the evening.

Figures 6.1, 6.2 and 6.3 display time profiles of relevant process variables for all three
experimental runs such as metabolite concentrations, dry weights, online and offline
OD data, the calculated OTR profile, the DO measurements, and the net proton
balance. All data starting from the inoculation of the reactor is depicted, while the
end of the lag phase is indicated with a dashed vertical line. The event with which
this time point corresponds, is included in Table 6.1. More details about the data
processing and the definition of the process variables can be consulted in Section 3.2.

All runs start with a smooth start-up to a first exponential phase that lasts about
5 h. In this phase, the biomass growth rate is the highest and the main metabolic
product is acetic acid, which is corroborated by the decrease of the proton balance.
Meanwhile, a similar molar amount of ammonia is secreted. Because this amount
of basic ammonia is only slightly out of balance with the amount of acetic acid,
changes in pH and consequently the net proton balance remain limited. The ammonia
productivity in this growth phase, however, is relatively low: only about 25 % of the
total ammonium is secreted in this period.

Small amounts of saccharides such as fructose, glucose and sucrose, and organic acids
like formate, lactate and succinate have been detected in the initial medium (data
not shown). Because their concentration amounts at most to some tens of mg/L,
their influence is considered negligible.

At the end of the first phase, the DO quickly rises, the OTR drops and the online
OD stagnates for about 2 h, indicating a metabolic shift. The fact that B. subtilis
continues to grow in a polypeptide medium, confirms that it is able to secrete an
adequate amount of proteases. After the stagnation, the oxygen consumption quickly
rises again, reaches a maximum 10 h later and stays there for another 5 h. There is,
however, a relatively small dip around 30 h of run time that recurs every run.
Meanwhile, the logarithmic online OD curve has passed through multiple linear
segments with step-wise slowly decreasing slopes. The hypothesis is that this reflects
a depletion of a single amino acid, similarly as in the simulations of Chapter 4. Note
that it is not always clear when a linear segment starts or ends. The depletion of an
amino acid would cause a gradual change in metabolism to one with only a slightly
lower growth rate, which results in a flattening growth curve with smooth slope
changes in which the ends of linear segments can be difficult to distinguish.
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The metabolite data of run 3 indicate that acetic acid is taken up again. Combined
with the continued secretion of ammonia, this results in a sharp increase of the
net proton balance because of the increased addition of HySO4 for pH control. Re-
markably, the organism produces starting from the second growth phase isobutyrate
and isovalerate as major products next to acetate. These compounds were, to my
knowledge, never explicitly mentioned before in literature, either because they were
effectively absent or because they were not the focus of the analysis. They can be
produced from VAL and LEU degradation respectively, according to the KEGG
pathway database [74]. Lastly, about 45 % of the total ammonium is secreted during
this period.

The last part of the runs is characterised by a sharp decrease of the OTR and
similar increase of the DO at around 35 h, which coincides with the depletion of
acetate. Also note that the DW and the OD have started to decline, which indicates
that the organism has reached its stationary phase. Nevertheless, it is still active as
the OTR is not zero and the isobutyrate, isovalerate and ammonium concentrations
continue to increase. The remaining 30 % of the final ammonium concentration (of
run 3) is produced during this stationary phase. The net ammonium productivity
now amounts to about 40 mM.

However, the question rises what the organism is consuming as the acetate has just
been depleted. One possible explanation could be that endogenous maintenance is
occurring and that the biomass is digesting itself. The famous sporulation process
of B. subtilis could actually contribute to this. Unfavourable conditions such as
nutrient scarcity trigger the cell to divide into a mother cell and an endospore, which
eventually results in the spore that can survive a long time. When the endospore is
ready, the mother cell releases the endospore by lysing itself [75]. The remnants of the
mother cell could be a nutrient source for the remaining active biomass. Endogenous
maintenance and sporulation thus allow to regain some of the nitrogen which would
otherwise be lost to waste biomass.

Run 3, however, deviated from the previous ones, as illustrated in Figure 6.4.
The DO did not stagnate completely after the first growth phase and the DO has a
lower minimal value, namely 63 % instead of 75 %. Additionally, the OD rose faster.
The profiles appear somewhat squeezed in time in comparison with the other two.
For example, while the OTR drop because of the depletion of acetate occurs around
35 h in the first two runs, it already happens at 30 h in the third run. As a result,
the alternating inoculation strategy to sample the entire time horizon of a reactor
run has not fully succeeded and some gaps remain.

A possible cause of this divergence is that the biomass of the inoculum was not that
constant as expected from the method described in Section 3.2. A higher amount
of active biomass implies that more oxygen will be consumed, which reflects in a
lower DO. Another factor is the variation in composition that is inherent to complex
protein media, and consequently more preferential AA could have been present.
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Figure 6.1: Overview figure of experimental LB run 1. The figures display the online
and offline OD, the biomass, the OTR and the DO, the net proton balance and the metabolite
time profiles for wild-type B. subtilis 168 in LB medium. The end of the lag phase is marked
with a dashed line.
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Figure 6.2: Overview figure of experimental LB run 2. The figures display the online
and offline OD, the biomass, the OTR and the DO, the net proton balance and the metabolite
time profiles for wild-type B. subtilis 168 in LB medium. The end of the lag phase is marked
with a dashed line.
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Figure 6.3: Overview figure of experimental LB run 3. The figures display the online
and offline OD, the biomass, the OTR and the DO, the net proton balance and the metabolite
time profiles for wild-type B. subtilis 168 in LB medium. The end of the lag phase is marked
with a dashed line.

The initial dry weight is here obtained differently than in the other runs. Instead of determining
the suspended mass of a volume of preculture that was equal to the volume used for preparing
the inoculum, a sample was taken from the freshly inoculated bioreactor. Due to the low
biomass concentration in a freshly inoculated bioreactor, this measurement is not considered
reliable.
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Figure 6.4: Comparative illustration of the deviating behaviour of reactor
run 3. For all three reactor runs, the DO profiles and the online OD data are depicted.
The graphs were shifted in time so that the end of the lag phase was set at the origin.
Note that the run 1 and run 2 are very comparable, while run 3 appears squeezed in
the time dimension and reaches more extreme values.
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Figure 6.5 depicts the measured free amino acid concentrations of samples from all
three runs to get an image of the evolution over the entire time window. It appears
that proteolysis occurred during the lag phase as the free amino acid concentrations
had increased, while during the first exponential phase, the concentrations gradually
decreased due to consumption. Around 10 h, a metabolic shift occurred, which
was accompanied by a new increase of free AA. However, the ALA, PRO and PHE
concentrations did not increase anymore, which could indicate other proteases were
into play, targeting different AA sequences. Eventually, almost all AA were quasi-
depleted when the stationary phase set in at approximately 25 h.

However, another thing to notice is which amino acids were consistently detected.
According to the BD Bionutrients® technical manual [62], hereafter called the ref-
erence, every amino acid in LB medium should be partially present in a free form,
which contrasts with these observations. Therefore, an initial bioreactor sample was
hydrolysed prior to the AA analysis to verify the total AA content of the admin-
istered LB medium. Figure 6.6 displays the results for both the hydrolysed and
non-hydrolysed initial sample next to their reference values. Remarkably, some AA
remained undetected, especially glutamate, the one that should be most abundant in
the hydrolysed sample. Also, according to the EZ:faast documentation, hydrolysing
has its limitations. It would completely destroy CYS and TRP, convert ASN and
GLN to ASP and GLU resp., and reduce the SER, THR, TYR and MET contents.
Nevertheless, the remaining detected concentrations were in line with the reference,
although some values were remarkably low (PRO, ASP). This hints that there might
be a detection issue.

Hence, a closer look was taken at the chromatograms. By comparing these of
the standards with those of the samples, it appears that some AA, including GLU,
indeed were present, but their detector responses were so low that the software of the
chromatography apparatus did not recognise them. Only AA with a high detector
response for the standard solutions were detected properly throughout all samples,
as illustrated in Figure 6.7. Those with lower ones were not reported at all or only
for the early samples. Consequently, it is presumed that the sample dilution factor
that was applied to avoid oversaturation of the sorbent beads (20x), was too high to
assure that the detection limit was met. This could also explain why some values
were abnormally low. Measurements close to the detection limit are not considered
accurate, although some variation due to the complexity of the medium might also
play a role. Due to time limitations, the analysis could not be repeated using a lower
dilution factor.
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Figure 6.5: Evolution of the free amino acid concentrations over time as
composed from samples from all runs. Only AA which were detected in all
duplicate measurements of at least one sample, are included. Errorbars correspond
with one standard deviation. The run in which the sample was taken, is indicated at
the top of the graph. Mind that the lag time observed in each run was subtracted
from the time data. Additionally, the time frame of run 3 was artificially stretched
by 20 %, which results in a shift of 4 h. This allowed to fit the amino acid data
of run 3 into the time window of the other two runs. This value was obtained by
comparing the time widths of the DO valley of run 2 and run 3 (25.38 h vs. 21.07 h
resp.), defined as that part of the DO curve between the end of the stagnation after
the first growth phase and the last minor increase of the DO at the late end of the
valley.
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Figure 6.6: Empirical free amino acid concentrations for the initial sample
of a bioreactor run, next to the reference values of the BD Bionutrients®
technical manual [62]. A majority of the AA were fairly in line with the reference
values, while others were absent or remarkably low, possibly due to the hydrolysis
in case of the hydrolysed sample. From Figure 6.7, it is hypothesised that the
dilution factor (20x) could have been too high as well, which resulted in inaccurate

measurements on the verge of detection.
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Figure 6.7: Raw detector responses for the 100 M standard and the
initial non-hydrolysed sample. The detector responses are expressed in terms
of area under the graph of the detector signal. The green line indicates the lowest
response at which an AA still was detected in all replicates of all samples, in this
case PRO. Signal strengths around and below this value faced difficulties to be
recognised consistently and are considered inaccurate. These observations could
be caused by a too high sample dilution (20x), which was applied to avoid sorbent
oversaturation. Some dilute standard solutions (50 pM GLN, GLU, and SER) also
appear to have detection/accuracy difficulties, which reflects in their calibration
curves with R?-values below 0.8. Note that these deviations coincide with a detector
response being lower than the value indicated in green.
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6.2 Parameter determination

6.2.1 Growth rates and phases

First of all, it is imperative to verify the linear correlation between the dry weight
data and the (calibrated) online OD data, because this is a necessary condition to
represent the biomass with the online OD in the growth rate regression, as discussed
in Section 3.2. Figure 6.8 proves that the DW and the online OD are linearly
correlated with an intercept at zero.

Figure 6.9 displays the characterisation of the growth phases. As already men-
tioned in previous Section 6.1, the growth curves are very smooth with gradual
changes in slope during the metabolic shifts, which complicates setting the time
trajectory to determine the growth rate. Therefore, an inspection of plots of several
process variables was conducted to detect events which flag a metabolic shift at the
beginning or the end of a growth phase. Table 6.1 summarises which events were
selected to demarcate these trajectories. A thing to notice here is that these events
occur in each run, which confirms that it concerns relevant metabolic phenomena.
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Figure 6.8: Verification of the linear correlation between the dry weight
and the (calibrated) online OD. This correlation is a necessary condition for
the online OD to represent the biomass in the growth rate regression as discussed in
Section 3.2. Because the fitted line has a slope of 0.65 (confidence interval: [0.6145;
0.6855]) and an intercept of -2.95-10~% (confidence interval: [-0.0264; 0.0258]) with
R? = 0.978, it is accepted that the correlation is linear with the intercept at zero.
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Figure 6.9: Fitted growth rates for each reactor run separately. Note that
it is possible that there are more growth phases for OD data higher than 0.6, but
these were not fitted because the Lambert-Beer law is not considered valid anymore.
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Table 6.1: Summary of the process events which demarcate the ends of
the trajectories utilised to fit growth rates. Note that the start points of the
first phase of each run equal its lag time.

Run ‘ Phase ‘ Time point [h] ‘ Event
11.50 Change in slope of the DO curve
Phase 1 .
16.03 Stagnation of the net proton balance
Phase 2 18.88 Net proton balance starts to increase.
21.31 OffCO4 curve starts to deviate from its
Run 1 . . .
exponential trajectory, as perceived by tak-
ing the logarithm of the data.
23.16 Bottom of a local off CO9 peak
Phase 3
27.55 Top of a local off CO4y peak
Phase 1 14.25 Change.m slope of the DO curve
19.06 Stagnation of the proton balance
22.05 Net proton balance starts to increase.
Run 2 | Phase 2 23.63 Disturbance in In(OD) coinciding with the
addition of antifoam
25.56 Bottom of a local off CO5 peak
Phase 3
29.65 Top of a local off COs peak
Phase 1 11.57 Net proton balance starts to decrease.
13.17 Stagnation of the net proton balance
17.88 Net proton balance starts to increase.
19.91 OffCO4 curve starts to deviate from its

Run 3 | Phase 2 exponential trajectory, as perceived by tak-

ing the logarithm of the data.
21.57 Bottom of a local off COy peak
24.57 Top of a local off COy peak

Phase 3

The high number of growth phases has a downside in view of sampling as well. Each
phase is characterised by a metabolism with a specific distribution of the available
resources over its flux network. To reliably measure these, a fairly high number
of measurements is required to limit the width of the confidence intervals. This
can be achieved either by a high sampling frequency or by a number of experiment
replicates. The alternating offline sampling strategy applied here does provide a view
as wide as possible on the entire time horizon of the experiment, but a drawback
is that only few data points are within the same growth phase. Characterising the
metabolism quantitatively from these data, for example via metabolic yields, entails
a high uncertainty and is therefore omitted.

6.2.2 Oxygen transfer coefficient k;a

The oxygen transfer coefficient kya is determined for each run as described in Section
3.2. First the OTR was calculated from the off-gas composition data, and then
plotted against the difference between the oxygen saturation concentration and the
measured DO. Consistent values are obtained which range from about 138 to 158 h—!,
as depicted in Figure 6.10.
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6.3 Aligning the model with the observations

Comparing the simulated profiles of Chapter 4, for example Figures 4.5 and 4.6, and
their experimental counterparts, there are a couple of differences.

Firstly, the empirical biomass growth rates are remarkably lower and there are
intermittent lag phases which indicate a metabolic shift. In the simulations, it was
assumed that all AA were made readily available by an adequate amount of proteases.
In fact, there are several types of proteases and peptidases required to completely
breakdown a protein into readily degradable amino acids or dipeptides. B. subtilis
is capable of producing a powerful pallet, but does not employ it fully at once.
Consequently, it adapts its metabolism continuously to what is available, resulting
in lower growth rates and metabolic shifts. A proper rescaling of flux constraints
could be a first step towards a better model.

Secondly, it was observed that acetate was remetabolised in the later stages of the
experimental run, which imposes a relaxation of the acetate exchange flux constraint.
Thirdly, an estimate of the oxygen transfer coefficient is available from the previous
section. With this, the dissolved oxygen balance can be set up from which a simulated
DO profile can be derived and compared with the experimental one.

Fourthly, the experimental strain secreted isobutyric and isovaleric acid, and not
the predicted propionic acid. According to SubtiWiki [41] and the KEGG pathway
database [74], isobutyric acid and isovaleric acid originate from the degradation of
the branched chain amino acids LEU, ILE and VAL. However, both acids are not
included in the iYO844-Gk metabolic model, so an extension of the model urges.

6.3.1 Model alterations

The following paragraphs explain how the metabolic model was modified for each
aspect mentioned above in order to align it with the experimental observations.

Growth rate Firstly, from the experimental runs it appeared that the biomass at
the onset of the exponential phase amounted to approximately 0.05 gpy /L instead
of the 0.1 gpw /L assumed during the simulations. Consequently, this simulation
parameter was modified. Secondly, it was not clear whether the simulated ASN-
mediated high growth rate phase (with g = 1.20 h™!) should be present in the
experiments. Due to the low ASN content of LB medium, it was unlikely that
proteases would have set ASN completely free already in the beginning of a run.
Consequently, it is assumed that ASN consumption occurs steadily during the run,
but that a separate phase is absent. As a result, the next predicted phase (with
p = 0.47 h=1) would correspond with the first observed growth phase. To align the
simulated growth rates with the observed ones, the uptake flux constraints and the
GECKO constraints of the central carbon fluxes were scaled by multiplying them
with the ratio of the average growth rate of this first observed phase (0.315 h=1)!
and the predicted one (0.47 h=1).

!Only the first two runs were taken into account.

84



6.3. Aligning the model with the observations

Acetate reuptake The lower flux constraint of the acetate exchange reaction was
arbitrarily changed from 0 to -10 mmol/(gpwh) to facilitate the observed acetate
reuptake. A check a posteriori learned that this constraint is not rate-determining.

Dissolved oxygen balance A dissolved oxygen balance was introduced and
integrated analytically as described in Section 3.3 using the average of the three
estimated oxygen transfer coefficients from previous section (kpa = 149.3 h™1).
The obtained dissolved oxygen concentrations were converted to DO percentages
according to Formula (3.5).

Branched chain amino acid degradation Both isobutyric acid and isovaleric
acid are branched chain fatty acids (BCFA) and are not included in the iYO844-Gk
metabolic model. However, SubtiWiki and KEGG state they are products of the
branched chain amino acid (BCAA) catabolism, as illustrated in Figure 6.11 [41, 74].
Propionate on the other hand is the end product of an alternative catabolic pathway
for VAL and ILE only, according to KEGG. This also explains why ILE and VAL
are taken up more than LEU in the simulations of Chapter 4.

The CoA-bounded form of both BCFA, however, is part of the model and is a
metabolite of the long fatty acid synthesis pathways. Consequently, reactions 1 in
Figure 6.11 are present in the model, but the other ones of the BCFA pathway
(reactions 3) not. Neither KEGG or SubtiWiki elucidates exactly what happens next
with the BCFA-CoA: they both only state that they are converted to an unspecified
BCFA. Nevertheless, SubtiWiki mentions some enzymes that facilitate these reactions
(Ptb, Buk). Both enzymes are known from the butyrate pathway. They exchange the
CoA of butyrate-CoA for a phosphate group and, respectively, divert the phosphate
to an ADP-molecule, similarly as the acetyl-CoA-acetate pathway (Pta, AckA). The
question is whether these could also act on closely resembling molecules such as
BCFA-CoA. In order to check that, both enzymes were queried in the BRENDA
database [39], but no entries for B. subtilis were found. Nevertheless, the available
entries confirm that both enzymes show a strong activity for BCFA-CoA substrates,
albeit for other microorganisms (Listeria monocytogenes for Ptb and Clostridium
acetobutylicum for Btk).

To conclude, it is opportune to add these reactions to the metabolic model. BCFA
secretion is enabled by adding proton-symport exchange reactions, in analogy with
butyrate, propionate and acetate secretion. Furthermore, because propionate was not
observed, its exchange flux is shut. For clarity, an overview of the added reactions is
provided in Table 6.2.
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Figure 6.11: BCAA degradation pathways and the reactions of interest.
Adapted pathway overview figure taken from the KEGG database [74]. Reactions 1
are already included in model iYO844-Gk as part of the long fatty acid synthesis
pathways, while reactions 2 are the existing branch that currently produces propionate.
Reactions 3 are missing in the model and thus added here. More information about
these reactions is provided in Table 6.2.
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Reaction Name Reaction formula
code
PIVT Phosphate isovaleryl Isovaleryl-CoA + p; =
transferase CoA + Isovaleryl phosphate
PIBT Phosphate isobutyryl Isobutyryl-CoA + p; =
transferase CoA -+ Isobutyryl phosphate
POMBT Phosphate 2-methylbutyryl 2-Methylbutyryl-CoA + p; =
transferase CoA + 2-Methylbutyryl phosphate
. ADP + Isovaleryl phosphate =
IVKr Isovalerate kinase ATP + Isovalerate
. ADP + Isobutyryl phosphate =
IBKr Isobutyrate kinase ATP + Tsobutyrate
o ADP + 2-Methylbutyrate phosphate =
2MBKr 2-Methylbutyrate kinase ATP + 2-Methylbutyrate

Table 6.2: Overview of the reactions that were added to the the metabolic
network of model iYO844-Gk. The following six reactions correspond with
reactions 3 of Figure 6.11. They are the missing link between the BCAA degradation
pathways and the observed isovalerate and isobutyrate secretion. The pathway for
2-methylbutyrate from ILE is added for the sake of completeness. The transferases
and the kinases are facilitated by the Ptb and the Buk enzyme respectively. BCFA
secretion was enabled by adding proton-symport exchange reactions, in analogy with
butyrate, propionate and acetate secretion.

6.3.2 Qualitative validation of the altered model

After executing the model alterations discussed above, an sdFBA procedure yielded
the metabolite time profiles in Figures 6.12 and 6.13. At first sight, the profiles
seemed more in line with the experimental observations. There was a secretion of
isobutyrate (IB) and isovalerate (IV), while acetate was retaken up, and the simulated
dissolved oxygen balance provided an additional point of comparison. The following
paragraphs qualitatively validate these several aspects one by one.

Firstly, the acetate profile was fairly well reproduced. It was predicted to be
exponential, but this lasted up to 13.4 h instead of the observed 10 h. The predicted
peak height was close to its empirical counterpart. Although the peak acetate con-
centration was not directly registered due to the unsuccessful sampling strategy, one
could still extrapolate from run 2 and 3 that the peak would be just below 15 mM.
The acetate depletion occurred at 26 h virtually and at around 19 h empirically.

Secondly, the ammonium profile was overestimated. However, both followed an
exponential trajectory, which levelled off due to a metabolic shift around 13.4 h
virtually and 20 h empirically. This turning point is, for example, perceivable in the
combined ammonium profiles of run 2 and 3, although the number of data points is
not such that a measuring error can be excluded. It is remarkable that 13.4 h in the
simulation corresponded with the start of the acetate reuptake, while at 20 h in the
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experiments the acetate was already depleted. Furthermore, the final ammonium
concentration was slightly overpredicted. Run 2 resulted in a net increase of 42 mM
and run 3 39 mM, which was both lower than the predicted value of 57 mM. Defining
the predicted value as a theoretical 100 % conversion within the capabilities of the
microbial metabolic system, the empirical values average to a conversion of 71 %.

Thirdly, it was interesting that the metabolic model now was capable to funnel
its BCAA degradation towards BCFA secretion. Nevertheless, the profiles did not
agree well with the observed ones. The prediction was that 9.7 mM of IV would
be produced via a steadily increasing trajectory that would accelerate at 13.4 h of
simulation time, but the empirical trajectory already did so at 8 h of growth time
and slowed down around 15 h to end at 6 mM. Furthermore, the IB yield was too
low (only 1 mM), while there was an unexpected 4.7 mM of 2-methylbutyrate (2MB).
The 2MB pathway was added for the sake of completeness as ILE degradation lacked
a BCFA secretion pathway similar to LEU and VAL (see Figure 6.11).

A further analysis of which fluxes were active, learned that from 13.4 h on, the
simulated metabolism was transferring VAL via a reversed VAL-aminotransferase
and the normal LEU biosynthesis pathway into the degradation pathway of LEU. As
a result, the VAL did not yield IB, but IV, which explains the elevated level of the
latter and the shortage of the former. The reason why this pathway was employed
instead of the normal VAL degradation pathway, can be attributed to the coincid-
ing depletion of GLU. A reversed VAL-aminotransferase is a GLU source because
it yields GLU next an a-keto acid, which basically is VAL stripped of its amino
group. This acid is then routed to the LEU biosynthesis pathway. A visualisation
of these pathways is provided in Figure 6.14. To conclude, integrating more experi-
mental data is required to prevent such artefacts. Proteomic abundance data, for
example, could exclude the LEU biosynthesis pathway via a GECKO implementation.

Fourthly, the predicted growth curve showed qualitative agreement with the observed
ones, except for the first simulated phase. As already mentioned, this was the one
with the ASN-mediated high growth. The next predicted phase had a growth rate
of 0.296 h—!, which corresponded quite well with the observed ones (0.346 h=! and
0.283 h=1)2. However, it was predicted to last about 8 h, while there was already
a metabolic shift at approximately 5 h of empirical run time. Nonetheless, both
exhibited then a slowdown when nutrient contents were dwindling. Finally, both
reached a stationary phase between 20 h and 25 h of run time. The simulation still
predicted a quasi-zero growth rate of 0.006 h—!, while the experimental OD and DW
were already decreasing, which can be considered an artefact of the biomass optimi-
sation objective. Eventually, empirical DW values peaked around 1.16 gpy /L, while
1.658 gpw /L was predicted at the start of the stationary phase. The experimental
biomass concentration was 70 % of the simulated one, which nicely aligns with the
conversion based on ammonium concentrations.

Lastly, the DO profiles agreed to some extent. For example, it kept track of the
initial exponential trajectory, but already stalled around 7 h at a DO value about

2 Again, run 3 was not taken into account because of its deviating behaviour.
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79 % due to the depletion of ALA. The experimental curve, however, decreased
further to 75 % at around 15 h, and lagged behind due to metabolic shifts. At 13.4 h
of simulation time, GLU was depleted and the acetate reuptake started. This caused
the DO to jump back to a plateau at 85 %, where it stayed until the depletion at
26 h. The empirical reuptake on the other hand, was not directly perceived in run 1
and run 2. However, in analogy with run 3 in which the acetate reuptake coincided
with a plateau in the DO valley from around 12 h till 17 h, the reuptake phase in
the other two runs was expected from approximately 16 h to only 21 h.

The DO profile appears thus highly dependent on the active metabolism, which
reflects in, for example, the depletion of ALA. The simulation immediately consumed
it completely to optimise the growth rate, while in real applications ALA possibly
was only gradually released and consumed. Whereas the simulation thus optimised
its metabolism for the case in which the hydrolysis was not rate-determining, the
experimental strain could have had to cope with the AA mix that was available at
a certain moment. As a result, changes in the DO curve could have other causes
than the depletion of an AA. A more thorough refinement with quantitative data is
required.
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Figure 6.12: Simulated and empirical metabolite time profiles for the
iYO844-Gk model after aligning it with the experimental observations.
Experimental data are depicted when available. The lag times were subtracted.
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Figure 6.14: Pathway map of the conversion of VAL into LEU. When GLU
is present, VAL is catabolised by the normal degradation reactions 1 to IB (see
Figure 6.11). When GLU is depleted, the VAL aminotransferase reaction 2 — also
— flips sense and yields GLU, next

to an a-keto acid, which is routed via the LEU biosynthesis pathway 3 to LEU. LEU

part of the degradation metabolism (reactions 1)

on its term is broken down by reactions 1 to IV. Adapted map from KEGG [74].
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6.4 Conclusion

In this chapter, a B. subtilis 168 strain was analysed in vitro in view of refining
the metabolic model iYO844-Gk for better genotype selection by optimisation algo-
rithms. Three experimental runs using complex LB protein medium provided data
for several process and metabolic parameters. These data showed that lag times
ranged from 11 h to 14 h, while there were several growth phases due to a couple of
metabolic shifts. This was also reflected in a continuous slowdown of the exponential
growth trajectories, rendering the growth curve smooth and gradually flattening.
Acetate, isovalerate, isobutyrate and ammonium were the main metabolic products.
While acetate mainly was a product of the early phases, isovalerate and isobutyrate
were those of the later phases, in which the acetate also was remetabolised. The
depletion of acetate coincided with the onset of the stationary and the death phase
with accompanying decreasing DW and OD. The AA analysis did not succeed well,
possibly due to detection issues. Ammonium was produced throughout the entire
process, albeit at different rates.

The third experimental run was somewhat different than the other two ones. It
appeared to consume more oxygen, which reflected in a lower DO and a higher
OTR. The DW was also higher and the profiles seemed slightly squeezed in the time
dimension, as if the substrates were converted at a higher pace.

The smooth growth curve did not make it easy to determine growth rates due
to difficulties setting the ends of the data segment to be linearly regressed. The
growth curve was expressed in terms of online OD because of its numerous data
points, and this because the offline sampling strategy did not collect sufficient data.
Nevertheless, the necessary condition that the online OD and the DW should be
linear for this data representation, was fulfilled. The estimated growth rates were
lower than the predicted ones, but this can be attributed to an incomplete protein
hydrolysis. Furthermore, the off-gas analysis yielded consistent estimates of the
oxygen transfer coefficient of the bioreactor system.

Next, the model was altered to align its predictions qualitatively with the obtained
experimental data. The exchange flux and the GECKO constraints were scaled by a
ratio of predicted and empirical growth rates, the acetate reuptake was enabled, a
dissolved oxygen balance was introduced and new pathways were added to facilitate
isobutyrate and isovalerate secretion. Concerning the latter, it was remarkable that
these pathways were not present in the metabolic model, despite being fairly well
documented in pathway databases.

Finally, the model was qualitatively assessed because all envisaged model alterations
had been implemented successfully. It had some good agreements with the empirical
data, but it was clear that it had not been refined quantitatively. Furthermore, a
remarkable artefact appeared in the newly added BCFA secretion pathways. At the
moment of glutamate depletion, valine aminotransferase flipped sense and turned
into a glutamate generator. The result was an underestimation of IB and an excess
of IV. Integrating more experimental data in the model could elucidate this.
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Chapter 7

General conclusion and further
research

7.1 General conclusion

This thesis applied the promising concept of protein deamination for the micro-
organism Bacillus subtilis. By systematically screening its metabolism in silico using
genome-scale metabolic network (GSMN) modelling, genetic modifications were
sought to improve its ammonia secretion rate when processing nitrogenous substrates
such as proteins. Flux balance analysis (FBA) and associated procedures allow to
assess such large-scale networks with only few information using constraint-based
optimisation. Such a metabolic screening comprises different steps.

First, in Chapter 4, a GSMN model was selected and validated. In a dedicated
database, two models were found: iYO844 and iBsull03. Both were set up to
simulate growth in three different media, but predicted distinct flux distributions in
all three cases. Predictions by iYO844 qualitatively aligned with empirical fluxes,
but there still was room for improvement, while those of iBsul103 were unaccept-
able. Both models were enhanced by the GECKO technique using experimental
proteomic data for the media at hand to tighten the solution space of the underlying
optimisation problem. iBsul103 was still off-target, which could be attributed to its
loose flux constraint policy, while Y0844 showed a quantitatively good agreement.
Furthermore, validating the combined powers of GECKO and MOMA did not uncover
compatibility issues. Consequently, iYO844 with GECKO enhancement (iY0844-Gk)
was selected for the further modelling work of this thesis.

Second, dynamic FBA provided a view on the sensitivity of the ammonia secretion
flux to the composition of the growth medium. This also gave an idea of which and
how much of a product to expect in which time window for a certain medium. Here,
LB medium was applied, which is a widely known recipe for bacteria cultivation
in laboratories. 57 mM of ammonia would be produced, while the other predicted
main metabolic products were acetate and propionate. The ammonia productivity
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appeared sensitive to the share of only a few amino acids, with special attention
to alanine, arginine and glutamate. Not only the deamination of amino acids with
multiple amino groups, but also the degradation of preferential ones with only one
amino group were found major ammonia sources. As a side effect, plant-based
media would generally have more potential for a high ammonia yield because of their
characteristic amino acid composition.

Third, the metabolic network optimisation was executed in Chapter 5. The flexibility
of the selected optimisation algorithms allowed to set a custom (initial) target: opti-
mising the ammonia-biomass yield with genetic deletions as obtained via MOMA with
a growth rate threshold of 25 % of the wild-type. This analysis learned that the best
deletion patterns are situated within the anaplerotic reactions and/or the pentose
phosphate pathway. Yield improvements mainly came at the expense of growth rates,
while the ammonia secretion fluxes increased only slightly. This implies that the same
ammonia yields can be achieved with less biomass, reducing the costs of treating
waste biomass. However, a low biomass growth rate is a drawback for large-scale
bioprocessing operations. Therefore, inducible knockouts were proposed to reduce its
impact, because these could allow to toggle between a wild-type high-growth mode
and a mutant high-yield production mode while still achieving the same ammonia
secretion rate. As such, a trade-off between lower conversion rates and more waste
biomass could be possible instead of a dilemma.

Another strategy is to alter the optimisation objective of the algorithms to discover
other genotypes. In total, three objective alterations were examined. The first two
were increasing the growth rate threshold to 75 % or optimising the secretion rate
instead of the yield. These adjustments uncovered AytsJApckA, a genotype with an
increase of 8 % in secretion flux and more than half the wild-type growth rate, a
remarkably high value. The third edit was to include genetic amplifications. This
uncovered that the arginine degradation subsystem has a great impact on the ammo-
nium release flux, which aligns with the earlier sensitivity analysis. By amplifying
reactions from this metabolism, the ammonia release flux could be intensified to
substantially higher levels, but the growth rate was again low.

In Chapter 6, some possible modelling issues and ameliorations requiring empirical
data were formulated and some new in wvitro experiments were conducted. In to-
tal, three batch bioreactor runs using LB medium were executed. Several growth
phases were observed due to a couple of metabolic shifts, which resulted in a smooth
and gradually flattening growth curve. The main metabolic products were acetate,
isobutyrate, isovalerate and ammonium. While acetate mainly was a product of the
first growth phases, the later phases were characterised by the reuptake of acetate
and the secretion of isobutyrate and isovalerate. The latter ones were not predicted
because they were not included in the iYO844-Gk model. The stationary phase
started when acetate was depleted. Ammonium was produced throughout the entire
run, including the stationary phase, but at varying rates. Both the ammonium and
biomass concentration at the onset of the stationary phase were about 70 % of the
simulated values.
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The estimated growth rates were lower than predicted, but this could be attributed
to an incomplete protein hydrolysis. As a result, the assumption that the proteolysis
is not rate-determining, did not hold. Off-gas analysis yielded consistent estimates
of the oxygen transfer coefficient. Due to the high number of growth phases, the
offline sampling scheme did not generate sufficient samples for each phase. As a
result, more quantitative parameters were not determined because it would entail
high uncertainties.

Instead, the model was adjusted to qualitatively align its predictions with the ob-
servations. The exchange flux constraints were relaxed and scaled according to
the observed growth rate and acetate reuptake, a dissolved oxygen balance was
introduced using the estimated oxygen transfer coefficient, and new pathways were
added to facilitate isobutyrate and isovalerate secretion. Afterwards, it showed some
qualitative agreements with the observations, but it was clear that a more profound
quantitative refinement is necessary. More experimental data is required as well to
exclude an encountered modelling artefact.

7.2 Further research

An obvious next research step would be to validate the genotypes encountered in this
thesis in vivo with one of the various genetic tools available. From the simulations,
it is expected that most growth rates will be low, but inducible knockouts were
proposed to reduce the associated drawbacks. After a successful validation, another
step could thus be to design and to optimise a metabolic toggle switch framework.

The GECKO concept has been proven a useful technique, because it improved
the prediction power of model iYO844 for a couple of simulated growth media. In
this thesis, the technique was applied for the central carbon subsystem, because
these reactions were fairly well documented. For this application, however, it would
make sense to implement it in the amino acid subsystem as well. However, reliable
kinetic information for each reaction in an organism is scarce and also appropriate
enzyme abundance data are not plentiful. New data is needed.

In the course of this thesis, genetic amplifications were modelled as well as deletions,
but genetic modifications are not limited to those two types. It is also possible to
reduce the expression of a gene — a knockdown — which results in a lower enzyme
abundance and, hence, a lower flux [31]. Another possibility is to add heterologous
pathways, which enlarges the searching space vastly. Some research has already been
executed in this area, which resulted in a.o. the optimisation algorithm OptStrain [76].

In all three experimental runs, a high number of growth phases was observed, which
could not be thoroughly examined due to the low number of manual offline samples
in each phase. A more intensive sampling strategy is required to quantitatively grasp
the metabolism of each phase. A higher manual sampling frequency, however, is only
achievable to some extent, because each sample requires some processing time.
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7. GENERAL CONCLUSION AND FURTHER RESEARCH

As a result, no uptake fluxes or metabolic yields could be reliably estimated for these
experimental runs, with which the uptake constraints of the model could have been
refined for this specific strain. Speaking of that, the current uptake constraints might
even be not valid for LB medium because it seemed that the proteolysis had an
impact on the conversion rate, although B. subtilis disposes of a powerful pallet of
proteases. The metabolic model does not contain a protein hydrolysis subsystem,
which complicates further modelling. Another option is to hydrolyse the proteins
beforehand to clarify whether the impact of this bottleneck is large or not. If not,
perhaps it could be taken into account using a simple correction factor for the
exchange constraints of the free amino acids, similarly as was done in the qualitative
model alignment.

The production of isovalerate and isobutyrate from LB medium was unexpected
because it was not explicitly mentioned in literature. Also the fact that both metabo-
lites were not included in a GSMN model, raises the question whether branched
chain fatty acid secretion in LB medium is common or rather exceptional. Although
the pathways are known in databases and the metabolic model is able to predict
their secretion after adding these pathways, a confirmation using another B. subtilis
strain could eliminate further doubts.

LB medium often was the basis in this thesis, but Chapter 4 also assessed via
simulations which kind of protein source would have the highest potential for a high
ammonia yield. A comparative in vitro study of how B. subtilis copes with different
media, with or without genetic modifications, and which one(s) show the highest
yields, would be an interesting case. In this context, one could also examine how the
presence of saccharides would influence the process, because protein sources seldom
are purely proteins.
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Appendix A

List of gene and reaction

[ ] [ ]
abbreviations
ackA ACKr acetate kinase
alsD ACLDC acetolactate decarboxylase
citB ACONT aconitase
ald ALAD L-alanine dehydrogenase
rocF ARGN arginase
aspB ASPTA1 aspartate transaminase
buk BUTKr butyrate kinase
CitAZ CS citrate synthase
lysA DAPDC diaminopimelate decarboxylase
eno ENO enolase
fbaAB FBA fructose-biphosphate aldolase
fbp FBP fructose-biphosphatase
citG FUM fumarase
zwi G6PDH glucose-6-phosphate dehydrogenase
gapA GAPD_NAD | glyceraldehyde-3-phosphate dehydrogenase (NAD direction)
gapB GAPD_NADP | glyceraldehyde-3-phosphate dehydrogenase (NADP direction)
glcK HEX1 hexokinase (D-glucose-ATP)
rocA HP5CD 3-hydroxy-1-pyrroline-5-carboxylate dehydrogenase
icd ICDHy isocitrate dehydrogenase (NADP)
1dh LDH L-lactate dehydrogenase
mdh MDH malate dehydrogenase
ytsJ ME2 malic enzyme (NADP)
metK METAT methionine adenosyltransferase
yqiQ MICITL methylisocitrate lyase
rocD ORNTA ornithine transaminase
oxdC OXADC oxalate decarboxylase



A. LIST OF GENE AND REACTION ABBREVIATIONS

menD OXGDC 2-oxoglutarate decarboxylase

ptb PBUTT phosphate butyryltransferase
pycA PC pyruvate carboxylase

pdhABCD | PDH pyruvate dehydrogenase

pikA PFK phosphofructokinase

serA PGCDr phosphoglycerate dehydrogenase
gndA PGDHr phosphogluconate dehydrogenase
pgk PGK phosphoglycerate kinase

pgi PGI glucose-6-phosphate isomerase
pel PGL 6-phosphogluconolactonase

pgm PGM phosphoglycerate mutase

pckA PPCK phosphoenolpyruvate carboxykinase
pps PPS phospoenolpyruvate synthase
ycgM PRO1x proline oxidase (NAD)

serC PSERTr 3-phosphoserine aminotransferase
pta PTAr phosphotransacetylase

pyk PYK pyruvate kinase

rpe RPE ribulose-5-phosphate 3-epimerase
ywlF RPI ribose-5-phosphate isomerase
gabD SSALy succinate-semialdehyde dehydrogenase (NADP)
sdhABC SUCD1 succinate dehydrogenase

sucCD SUCOAS succinyl-coA synthetase

ywjH TAL transaldolase

tkt TKT transketolase

tpiA TPI triose-phosphate isomerase
ureABC UREA2 urease

For more information about each gene and reaction, the reader is kindly referred to the
supplementary information included with model iYO844 [10].
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Figure A.1: Visualisation of the central carbon metabolic network of i'YO844, including reaction

labels as provided in the model and the entire scope of this thesis.






Appendix B

Analytical solution of the
oxygen balance

The dissolved oxygen balance is stated as following (see also equation (3.13)).

dC,
702 = g0, Xoe" + kra(CE* — Co,) (B.1)
Rewriting this as
dCO2 sat ut
It + kraCo, = kLa002 + go,Xoe (B.2)
gives a linear first order differential equation with variable coefficients of the form
y' +p(t)y = q(t) (B.3)

Such equations are solved by multiplying both sides of the equation with an integration
factor x(t), defined as following [77].

x(t) = e PO — gkrat (B.4)

By applying the chain rule and separating the variables, this results in

/d <C’026k”t> = / <kLaCf)a;ekLat + qOQXge(’”kLa)t) dt (B.5)

Integrating gives
sat
CO ekLat + Dl _ kLaCOQ (ek:LCLt o 1) + qOQXO (e(“‘i’k[,a)t _ 1) _|__ D2 (BG)
2 kra w+kra
Isolating Co,(t) and setting a new integration constant returns
_ 90 X0 [t kpat —kpat
Cou(t) = €t (1= ehuet) 4 IO (ot _ o=huat) 4 pehe B.7
0,(1) = €1 (1= e7hver) 4 MO0 (ent — ehunt) 4 D (B.7)
Introducing the initial condition Cp,(0) = Co,0

4o, XO

Co,0=0C%1-1
02,0 02( )+,Uz+kLa

(1-1)+D-1=D (B.8)



B. ANALYTICAL SOLUTION OF THE OXYGEN BALANCE

gives the final solution

Xo
C t)=C —krat Csat (1 . 7kLat> 490, ( ut kaat) B.9
02( ) 02706 + 02 e + ,u+ kL(Z € € ( )
If there is no oxygen transport (kra = 0), this equation reduces back to the analytic
solution of the batch mass balance in equation (2.15) (with go, equal to (Sv)|o,).

If the oxygen transport is unlimited (kra = 00), it reduces to C’g‘;t.
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Appendix C

Sequential scanning algorithm

Listing C.1: Master function of the sequential scanning algorithm

%% Sequential scanner for both gene deletions and
upregulations, adaptable for number of affected genes,
loop selection percentile, upregulation factor &
growth rate threshold

b

% INPUTS:

b model COBRA model structure

% genesel cell array containing the candidate
genes with names as in model.genes

% n number of affected genes

% prodRxn char containing the reaction to be
optimised with name as in model.rxns

% MM molar mass of the product produced by
prodRxn, used to calculate the product-biomass yield

yA upRegFactor gene upregulation factor for use as
in Wang et al. (Biochem Eng J doi: 10.1016/j.bej
.2017.03.017)

A selPerc selected percentile of the phenotype
ranking when increasing the number of deletions

% muThreshold growth rate threshold

% optimVar optimisation variable, choice between

product 'yield' and 'flux'

b

% OUTPUTS:

% resPerlLevel cell array containing the phenotype

ranking for each number of deletions extended with the
flux distribution,
% the growth rate, the product flux and
the product yield resp. The 6th column is for ranking
purposes.

VII




C. SEQUENTIAL SCANNING ALGORITHM

b

% Author: Lucas De Vrieze (14 Apr 2021)

/A

function[resPerLevel]=sequentialScanner (model, genesel ,n,

VIII

prodRxn ,MM,upRegFactor ,selPerc ,muThreshold ,optimVar)

Initialisation

i=1;

resPerLevel=cell(n,1);
solWT=optimizeCbModel (model, 'max', 'one'); % pFBA WT
if strcmpi(optimVar, 'yield')

else

optimCol=5;
elseif strcmpi(optimVar, 'flux')
optimCol=4;
error ('Optimisation variable not understood!')

end

while j<=n

fprintf (append ('Entering loop ',num2str(j),'...\n
')

% Full first-level scan for the first gene
if j==
[res ,model_c]=sequentialScannerWorker (model,
genesel ,prodRxn ,MM,upRegFactor ,solWT,
muThreshold ,optimCol) ;
resPerlLevel{j}=res;
cutoff=ceil (size(model_c ,1)*selPerc);
topModels=model_c (1:cutoff);

% New scan for selected percentile of previous
loop
else
resThisLevel=cell (0,5);
model_c_ThisLevel=cell (0,1);
for m=1:length(topModels)

% Determine genes already affected in
previous loops and remove them from
the candidate list

genelndices=contains (topModels{m}. genes, '
_')& contains (topModels{m}.genes, 'E_"')

genesUsed=model.genes (geneIndices);




[",genesAlreadyUsed , " ]=intersect (genesel,
genesUsed) ;

geneselUnused=genesel;

geneselUnused (genesAlreadyUsed) =[];

% Some string handling for a proper gene
representation in the results cell
array

geneIndicesDels=contains (topModels{m}.
genes , ' _d');

geneNamesDels=append (model . geneNames (
geneIndicesDels),'-"');

geneIndicesUps=xor (genelndices,
geneIndicesDels) ;
geneNamesUps=append (model.geneNames (
geneIndicesUps),'+');
geneNames=[geneNamesDels; geneNamesUps];
geneNames=strjoin(geneNames,' & ');

% Calling the scanner worker and storing
its results

fprintf (append('Starting scan for gene ',
num2str(m),':\t',geneNames,"'...\n'));

[res,model_c]l=sequentialScannerWorker (
topModels{m}, geneselUnused , prodRxn ,MM,
upRegFactor ,solWT ,muThreshold ,optimCol
) ;

res(:,1)=cellfun(@(x) strjoin({x,
geneNames},' & '),res(:,1),"
UniformOutput',false);

% Store all results of this loop together
resThisLevel=[resThisLevel;res];
model_c_ThisLevel=[model_c_ThisLevel;
model_c];
end

% Deduplicate phenotype combinations (e.g.
genelA+ & geneB-' and 'geneB- & genelA+')

allCombinations=cellfun(@(x) strjoin(sort(
strsplit(x,' & ')),"'"'"),resThisLevel (:,1),"'
UniformOutput',false);

[",uniqInd, ]=unique(allCombinations) ;

resThislLevel=resThisLevel (uniqInd,:);

model_c_ThisLevel=model_c_ThisLevel (uniqInd) ;

IX




C. SEQUENTIAL SCANNING ALGORITHM

end

end

end

% Rank the results of this loop
[resThisLevel ,ind]=sortrows (resThisLevel , 6,
descend ') ;
model_c_ThisLevel=model_c_ThisLevel (ind);
resPerLevel{j}=resThisLevel;

% Determine selected percentile for the next
loop
cutoff=ceil (size(model_c_ThisLevel ,1)*selPerc

)
topModels=model_c_ThisLevel (1:cutoff);

3=+
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Listing C.2: Worker function of the sequential scanning algorithm

%% Worker algorithm for the sequential scanner. Executes

b
A

b
/A

the actual scanning loop by looping over all gene
candidates for a provided model.

INPUTS :

model COBRA model structure

genesel cell array containing the candidate
genes with names as in model.genes

n number of affected genes

prodRxn char containing the reaction to be

optimised with name as in model.rxns

MM molar mass of the product produced by

prodRxn, used to calculate the product-biomass yield
upRegFactor gene upregulation factor for use as
in Wang et al. (Biochem Eng J doi: 10.1016/j.bej
.2017.03.017)

solWT wild-type solution structure
muThreshold growth rate threshold
optimCol column number within res to which the

optimisation variable is assigned (4 for flux, 5 for
yield)

OUTPUTS :

res cell array containing the phenotype
ranking for this number of deletions, extended with
the flux distribution,

the growth rate, the product flux and

the product yield resp. The 6th column is for ranking

purposes.
model_c cell array containing the model
structure of each phenotype encountered in this scan

Author: Lucas De Vrieze (14 Apr 2021)

function[res,model_c]=sequentialScannerWorker (model,

genesel ,prodRxn ,MM,upRegFactor ,solWT ,muThreshold,
optimCol)

prodRxn=find (strcmp (model.rxns,prodRxn));
muWT=s0lWT.f;

% Initialising the loop
res=cell(length(genesel) *2,6) ;

XI




C. SEQUENTIAL SCANNING ALGORITHM

jump=length (genesel) ;

model_c=cell(length(genesel)*2,1);

fprintf (append ('\tCurrent gene:\t\t',repmat ('
(cellfun('length',genesel)))));

name="'";

',1,max

% The loop itself, scanning all candidate genes

for g=1:length(genesel)
nu=genesel{g};

% String handling for verbose feedback
fprintf (repmat ('\b',1,length(name)+1));

name=model.geneNames{contains (model.genes ,nu)};

fprintf (append (name, '-'));
t=GetGeneNameFromSysGeneName (model ,{nul});

% Assess a deletion and collect results.
res{g,1}=append (t{1},'-");
model_del=deleteModelGenes (model ,nu) ;
model_c{glt=model_del;

s01=MOMA (model ,model_del, 'max',false, 'one'

SolWT) ;

if isempty(sol.x) % An 'infeasible' solver

feedback is penalised.
res{g,6}=-Inf;
else
res{g,2}=sol.x; J Flux distribution
res{g,3}=sol.f; 7 Growth rate

,true,

res{g,4}=sol.x(prodRxn); 7 Product flux
res{g,5}=sol.x(prodRxn)/sol.f/1000*MM;7% Yield
if sol.f<muWT*muThreshold 7 A growth rate

below the threshold is penalised.
res{g,6}=0;
else
res{g,6}=res{g,optimCol};
end
end

% Assess an upregulation and collect results.

Remove GECKO constraint if encountered.
res{g+jump,1}=append (t{1}, " '+');
fprintf ('\b+');
model_up=upregulateModelGenes (model ,nu,
upRegFactor ,solWT) ;

[“,geneInfo]=findRxnsFromGenes (model ,t,true) ;

XII




end

formsplit=strsplit (geneInfo{2});
GECKO=find (contains (formsplit,'_ab'));
if “isempty (GECKO)
model_up=removeMetabolites (model_up,formsplit
(GECKO) ,true);
end
model_c{g+jump}t=model_up;
sol_up=MOMA (model ,model_up, 'max',false, 'one',true
,S01WT) ;
if isempty(sol_up.x)
res{g+jump ,6}=-Inf;
else
res{g+jump ,2}=sol_up.x;
res{g+jump ,3}=sol_up.f;
res{g+jump ,4}=so0l_up.x(prodRxn) ;
res{g+jump ,5}=sol_up.x(prodRxn)/sol_up.f
/1000%MM;
if sol_up.f<muWT*muThreshold
res{g+jump ,6}=0;
else
res{g+jump ,6}=res{g+jump,optimCol};
end
end
end

% Rank results
[res,ind]=sortrows (res,6, 'descend ') ;
model_c=model_c (ind) ;

fprintf ('\n"')

XIIT
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