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Abstract

Machine learning aims to derive patterns from data in order to apply what it has
learned to previously unseen data. Examples of such tasks are speech and image re-
cognition. As its number of application grows, so does its research. In the last years,
new machine learning proposals have arisen that try to improve existing algorithms
by performing them using quantum hardware rather than classical hardware. This
combines machine learning with the field of quantum computing. The intersec-
tion of these two fields is called quantum machine learning. One machine learning
strategy that is naturally suited for this purpose is reservoir computing, in which
a part of the computational cost of solving a temporal task can be outsourced to
a nonlinear, dynamical system, such as a quantum system. This approach only
requires a simple training procedure and low-quality components, making it suitable
for existing noisy intermediate-scale quantum computers. In this thesis, we present
a quantum optical model to perform reservoir computing by making use of an ex-
isting quantum optical neural network. The construction of the system will first
be discussed, after which we perform an analysis of its performance and discuss its
possible extensions and improvements.
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Abstract—Machine learning and quantum computing are rapidly grow-
ing fields. In recent years, the common ground between these two fields has
attracted a lot of attention, possibly enabling existing machine learning al-
gorithms to be performed more efficiently than is possible on classical com-
puters. One proposal to do so is quantum reservoir computing, which ex-
ploits the quantum nature of physical systems and combines it with a simple
training strategy in order to solve temporal tasks such as speech recogni-
tion. In this thesis, we present a new quantum optical reservoir computing
model, based on an existing quantum optical neural network. We discuss
the construction of this model, show that it can solve a simple task and study
how its performance varies for different values of the system parameters.
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I. INTRODUCTION

Machine learning (ML) is taking the world by storm, show-
ing superior data processing capabilities. A promising branch of
this field is neuromorphic computing, of which neural networks
(NNs) are one of the most well-known examples. NNs consist
of several parameterized layers of so-called nodes that can be
used to process information. By optimizing its parameters, the
network can learn to solve a particular task. In the past, this has
led to state-of-the-art performance of tasks such as image recog-
nition [1]. Research into neuromorphic information processing
techniques is fueled by the desire for techniques with superior
computational power and energy efficiency to the human brain.

The search for such efficient systems leads us to unconven-
tional computing schemes that go beyond the Von Neumann ar-
chitecture [2], a very general and well-known paradigm charac-
terised by the splitting of memory and processing units. In the
brain however, all of these units work closely together, which
suggests that their co-location is a gateway to high-efficiency
techniques.

An example of such a computing scheme is reservoir comput-
ing (RC), which has its origins in the development of recurrent
neural networks (RNNs). RNNs are NNs to which recurrent
connections are added. These loops grant the system memory
that can be used to process temporal data. In contrast to the
normal training procedure of an RNN (which is similar to that
of an NN), it turns out that these systems can also engage in
useful forms of information processing without optimizing their
internal parameters. Due to their inherent memory and rich dy-
namics, a random initialisation of such a system can perform a
mapping from its input data to a higher dimensional space. After
doing so, it suffices to optimize a simple linear readout layer in
order to make the system perform certain tasks [3].

This means that we can outsource part of our time-dependent
signal processing to a system that does not require any optim-
ization and we only need to perform a simple linear training
procedure. In ML, such a mapping is called a temporal feature
expansion and the system that performs it in RC is called a reser-

voir. However, we are not limited to the group of RNNs in our
search for suitable reservoirs. On the contrary, as long as the dy-
namics of a system are rich enough for the task at hand and the
system has adequate memory, that system is a possible candid-
ate for this computing scheme [4]. One type of system that has
already proven to be especially successful at RC, are classical
photonic systems [5].

However, the range of reservoirs is not restricted to clas-
sical systems either. Instead, we can utilise the rich dynamics
of quantum physics to boost the efficiency of these computing
schemes, leading us to the field of quantum reservoir comput-
ing (QRC). Quantum systems generally possess a large number
of degrees of freedom that can be exploited for RC. However,
simulating quantum systems on classical computers rapidly be-
comes challenging. Moreover, it is widely believed [6] that cer-
tain tasks, for example the factorisation of integers [7], are in-
tractable for classical computers, while they can be solved more
efficiently on hardware that is inherently based on the laws of
quantum physics, leading to so-called quantum supremacy [8].

An example of a task that has already been used to demon-
strate quantum supremacy, is boson sampling [9]. Boson
sampling is the act of sampling indistinguishable photons, using
single-photon detectors, after they have travelled through a lin-
ear interferometer. This process is popular because its hardware
implementation requires less resources than other proposals to
demonstrate quantum supremacy.

Building on the idea of boson sampling, a quantum optical
neural network (QONN) was introduced in Ref. [10]. Here,
photons are fed through a number of parameterized interfero-
meters with Kerr nonlinearities added in between. By optimiz-
ing the phase shifters of the interferometers, this network can be
trained to perform (non-temporal) tasks.

Fig. 1: QONN layout [10]. Inputs are Fock states and the lin-
ear transforms are linear interferometers. The single-site non-
linearities are given by Kerr-type interactions, applying a con-
stant phase shift for each additional photon present. Readout is
performed by photon-number-resolving detectors at each output
mode.



In this work, we introduce a new QRC model that is based on
such a QONN. We will discuss the structure of this model and
show how its simulation is performed. Afterwards, its behaviour
will be studied.

II. CONSTRUCTION OF A QRC MODEL

A. Set-up and operating procedure

Input 
State

QONN

Reservoir
State

Feedback
State

Detected
State

Fig. 2: Layout of the quantum reservoir that is introduced in
this thesis, comprising of input modes (red) and a randomly ini-
tialised QONN (grey square), leading to a reservoir state (blue).
The detector (grey rectangle) is a combination of single-photon
detectors on each mode. It measures a certain detection state
(yellow). The feedback state (green) is looped back to the input
of the QONN.

A schematic representation of our quantum reservoir is given
in Figure 2. The QONN in this set-up is randomly initialised.
Generally, there are mA modes that lead to the detector. Re-
current connections are added to the other mB modes of the
reservoir. All modes are numbered from top (mode 1) to bottom
(mode mA+mB). The recurrent connections grant the reservoir
memory, such that it can learn to solve temporal tasks, i.e. to
prepare a desired output, depending on multiple past inputs.

In order to do so, we send photons into the system at a con-
stant rate. These photons encode input data from the train set.
There are many ways to perform such an encoding, but for now
we assume that mA > 2 and that we only want to encode clas-
sical bits, i.e. 0 and 1. In order to encode a 0-bit, we choose
to send nin photons into the first input mode. Conversely, for a
1-bit, we choose to send nin photons into the second input mode.

After the input state |ψin〉 is prepared, it is combined with a
certain feedback state |ψfb〉. The feedback state did not leave the
system in the previous iteration and contains information about
multiple previous inputs. As |ψin〉 and |ψfb〉 are defined on dif-
ferent modes (labeled withA andB respectively), the combined
state is equal to |ψin〉⊗ |ψfb〉. This combined state is fed into the
QONN where its photons interfere. Consequently, the resulting
reservoir state |ψres〉 also contains information about previous
inputs. A part of this information is retained in a new feedback
state, while another part is detected.

Although |ψres〉 generally is a superposition of Fock states,
only one of its Fock states can be detected. As is common
in quantum computing, this stochastic process can be repeated
multiple times in order to estimate the expectation values of all
detections [11]. This requires us to make multiple copies of the

reservoir in which we send the same input data. In a simulation,
these copies can be created in parallel, but in experiments, this
is done sequentially using a single reservoir.

As the resulting expectation values contain information about
multiple past inputs, the reservoir performs a temporal feature
expansion. Furthermore, these temporal features need to be
mapped onto the desired output of the task. This can be per-
formed by a linear regressor [12]. After training, a similar fea-
ture expansion is carried out for the test data in order to estimate
the performance of the system.

B. Temporal tasks

As noted in the previous section, at the moment we only
want to encode classical bits into the input state. The reason
for this is that we focus on performing a simple classical task:
the temporal XOR task. The purpose of this task is to combine
subsequent input bits according to XOR logic, as is shown in
Table I.

TABLE I: An example of the desired output for the temporal
XOR task. The input bits of iterations k−1 and k are combined,
leading to a 0-bit if both inputs are equal. Otherwise, the output
is a 1-bit.

Iteration 0 1 2 3 4 5 6 7
Input bit sequence 1 1 1 0 0 1 0 1
Output bit sequence 1 0 0 1 0 1 1 1

C. Simulation of a single reservoir

C.1 QONN

Having introduced the general structure of our model and the
task that we want to tackle, let us consider how we can simulate
the QONN of a specific reservoir in the ensemble. As we know
that the different interferometers in the N layers of the QONN
are composed of beamsplitters (BS) and phase shifters (PS), they
can be characterised by unitary matricesU(θi) (i ∈ {1, ..., N}),
that are constructed by combining individual transformation
matrices of its components:

BS =
1√
2

(
1 1

1 −1

)
(1) PS =

(
eiθ1 0

0 eiθ2

)
(2)

Note that U only operates on a basis of single-photon Fock
states. However, generally we are working with multi-photon
Fock states and we want to derive the unitary matrix W that
transforms these states. For each U , there exists a correspond-
ing W . Both matrices are connected through a homomorphism
Φ, where W = Φ[U ]. Given a certain U , the calculation of
W boils down to simulating the boson sampling process that
we introduced earlier. This calculation can be performed by the
so-called Ryser’s algorithm [13]. As mentioned before, boson
sampling, and hence the execution of Ryser’s algorithm, is a
hard problem for classical computers that can be solved natur-
ally on quantum photonic hardware.

In between the resulting U(θi), nonlinear Kerr interactions



are applied to each mode. These interactions are described by:

Σ(φ) =
∞∑

n=0

ein(n−1)φ/2|n〉〈n| (3)

where n is the number of photons in the mode that we consider
and φ quantifies the strength of the Kerr nonlinearity. Finally,
this leads to the following transformation matrix of the QONN:

S(Θ) =Φ [U (θN )]
N−1∏

i=1

Σ(φ) Φ [U (θN−i)]

=W (θN )
N−1∏

i=1

Σ(φ) W (θN−i) (4)

where we have dropped the dependence on the Kerr interaction
strength φ for ease of notation. Also note that the nonlinear
layers, which result from applying Equation (3) to all modes of
the system, are also written as Σ(φ) to simplify the notation.
The size of S is defined by the Fock basis that it operates on,
and consequently by the number of photons that are present in
the QONN. Each iteration, this photon number is given by:

nres(k) = nres(k−1)− nout(k−1) + nin (5)

where nres(k) and nout(k) respectively represent the number of
photons in the QONN and in the detected state at iteration k.
Due to the probabilistic nature of the detectors, nres can fluctu-
ate between different iterations. Also note that nres can differ
between reservoir copies in the ensemble.

As a result of these photon fluctuations, the size of the Hilbert
space on which a reservoir operation is performed, also fluctu-
ates. This behaviour is very unusual in comparison with QRC
approaches on other platforms. In some cases, this makes it dif-
ficult to transfer results and conclusions from literature.

As we currently do not consider photon loss, Equation (5)
provides a value for nres at each iteration. Hence, we can calcu-
late Φ[U(θi) ] using a Fock basis that consists of nres photons,
spread over m modes. As the QONN is kept fixed, we can store
and re-use the resulting S(Θ) for different values of nres. This
shifts the computational load at runtime from executing Ryser’s
algorithm to matrix multiplications.

C.2 Partial trace and detection

Furthermore, let us describe how we can simulate the separa-
tion of theA andB modes at the output of the QONN. Normally,
such a process is described by a partial trace of a density matrix,
which generally leads to a mixed state in the feedback modes
[14]. In this case, however, it can be shown that the process sim-
plifies because of the detection that is performed after separating
the modes. The resulting feedback state is again a pure state that
can be represented by a state vector. This state is calculated by
first simulating a measurement, where the outcome |µ〉A occurs
with probability P (µ). By summing over all terms in the reser-
voir superposition that can be written as a(µ)σ |µ〉A ⊗ |σ〉B , it
can be shown that P (µ) =

∑
σ

∣∣a(µ)σ

∣∣2 and that the resulting
feedback state is given by:

|ψ(µ)
fb 〉 =

1√
P (µ)

∑

σ

a(µ)σ |σ〉 (6)

D. Feature convergence

Knowing how we can simulate each reservoir in the ensemble,
we shift our focus to the input features of the linear regressor,
further simply called the features. These features are approxim-
ations of the expectation values of the detections, calculated at
the end of each iteration by dividing the number of times a de-
tection occurred by the ensemble size. The regressor interprets
the feature values of different iterations as different samples that
need to be mapped to the correct output.

Figure 3 shows the convergence of the feature values that
were obtained at a certain iteration as a function of the ensemble
size. In this figure, the expectation values are repeatedly estim-
ated, each time using a larger ensemble size. Eventually, in this
example, the values for an ensemble size of 600 are sent to the
regressor.
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Fig. 3: Feature values as a function of the ensemble size, at it-
eration 750 of the training procedure. At a certain ensemble
size, each colored line shows an approximation of the expecta-
tion value of a certain detection (indicated by the legend), ac-
quired using an ensemble of that size.

E. Fading memory

The resulting feature values contain information about mul-
tiple past inputs. However, the memory of a reservoir in an RC
approach should be limited to a number of iterations. This re-
quirement is called the fading memory principle. It states that
the influence of input information on the current reservoir state
should become smaller the longer ago it was injected. If so, the
reservoir asymptotically forgets its initial conditions and only
information that was acquired during the last iterations shapes
the current reservoir state.

However, as was already made clear in the introduction, the
range of systems that qualify for an RC approach is wide. In-
deed, in reality, this additional fading memory constraint proves
not to be very restrictive [4].

Let us now also investigate the fading memory of our sys-
tem by generalizing the definition of the temporal XOR task,
increasing the memory time that it requires. We do so by in-
troducing a certain delay D between its input bits. Instead of
combining the input bits of the iterations k−1 and k (as was
shown in Table I), the objective is now to combine the input bits
of iterations k−D and k.



We perform this task for different values of D and average
the resulting test bit error rate (BER) for 10 different reservoir
initialisations. Doing so, we find the following figure:

1 2 3 4 5 6 7 8 9 10
XOR delay D
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BE

R

Fig. 4: Mean test BER as a function of D. For each value of D,
the average is calculated over 10 reservoir initialisations.

This shows that the injected information is indeed forgotten
over a number of iterations. Let us denote this number by M .
For the specific model that was used for this simulation, M is
equal to 4. However, we note that tuning the fading memory is
an important practice in RC [4], as the memory should be adap-
ted to the task at hand. Therefore, the study of M in function
of the system parameters is part of the future objectives of this
thesis.

III. RESULTS AND DISCUSSION

A. Study of the system parameters

Now that our model is constructed, we further study its be-
haviour and evaluate its performance. As we do not optimize
any hyperparameters at our current research stage, we only dis-
tinguish between a train and test set, without the introduction of
a validation set. For all further simulations, the test set size is
equal to 10 000, allowing us to safely present the resulting test
BER up to an accuracy of 1% [15].

A.1 Train set size and ensemble size

Figure 5 shows simulation results for different values of the
train set size and the ensemble size. For each combination of
these sizes, 50 different reservoir initialisations are performed,
after which their resulting BER and simulation time are aver-
aged.

We would expect that both a larger train set and a larger
ensemble would enhance the performance of the system. The
reason for this is that more data is generally better for training
machine learning models [12], while a bigger ensemble results
in more accurate estimations of the expectation values.

In Figure 5a we notice that the dependency of the BER on
the ensemble size is more pronounced than the dependency on
the train set size. Note however that this observation is task-
dependent and that more data could be required to perform more
challenging tasks.

The increase in simulation time of Figure 5b results from the
fact that the total number of reservoir iterations scales linearly

with the the train set size and the ensemble size and that the test
set size is fixed to a value of 10 000.
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Fig. 5: Visualisation of the mean test BER and mean simulation
time for different train set size and ensemble size. For each com-
bination of the train set size and the ensemble size, 50 different
reservoir initialisations are performed.

A.2 Kerr interaction strength φ

Let us now investigate the influence of φ (as defined in Equa-
tion (3)). For each value of φ that we consider, we perform
100 reservoir initialisations with an ensemble size of 600. For
each initialisation, we store the maximum value of nres, i.e. the
maximum over all reservoir copies and over all training itera-
tions. The resulting values are shown in Figure 6. For each
value of φ, reservoir initialisations that lead to the same value
of max(nres) are grouped together in one dot. The area of the
dots is proportional to the number of initialisations that it rep-
resents. Figure 7 depicts the test BER for those same reservoir
initialisations, where only positive values of φ are retained. For
each BER value ε on the x-axis, the fraction of initialisations is
plotted that lead to a test BER lower than ε.

We notice that the removal of the nonlinear layers from the
QONN (φ = 0), both influences the photon number fluctuations
and the performance of the system. More specifically, at φ = 0,
max(nres) and the test BER are more initialisation-dependent.
Although the underlying reason for this is unclear at the mo-
ment, we remark that this behaviour is unwanted as we want to
initialise the QONN randomly. Moreover, note that higher val-
ues of max(nres) correspond with long simulation times, as we
need to perform Ryser’s algorithm.

What is also unclear at the moment, is whether there is a direct
link between the photon number fluctuations and the perform-
ance of the system. If such a link were to exist, it could give us
more insight in the behaviour of our system and possibly show
us ways to boost the performance. Consequently, a further study
of this topic is part of the future objectives of this thesis.

Also note that the initialisation dependence of the error is still
rather high for φ values different from zero. In classical RC
systems, after fully optimizing the system (not the case yet in
this thesis), typically 95% to 99% of all reservoir initialisations
lead to a near perfect test BER (≈ 0%) [16]. In Figure 7, the
initialisation dependence is noticeably stronger, resulting at best
(for φ = 0.94) in an ε value of 16% if we consider the best
performing 95% of all initialisations. Increasing the ensemble
size (not shown here) lowers this initialisation dependence, but
further research is needed to show whether this problem can be



completely resolved by further optimization of the system.
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Fig. 6: The maximum of nres over all reservoir copies and over
all training iterations, for different values of φ. For each value
of φ, 100 reservoir initialisations are performed and the area of
the dots is proportional to the number of initialisations that lead
to that value of max(nres).

0.0 0.2 0.4 0.6 0.8 1.0
BER ( )

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 si

m
ul

at
io

ns
wi

th
 te

st
 B

ER
 <

 

0.0
0.31
0.63
0.94
1.26
1.57

1.88
2.2
2.51
2.83
3.14
3.46

Fig. 7: Cumulative distribution function (CDF) of the fraction
of simulations (with different reservoir initialisation) below a
certain BER value. For each BER value ε on the x-axis, the
fraction of simulations is plotted that leads to a test BER lower
than ε.

B. Collapse as part of the dynamics

Until now, we have simulated a measurement at the end of
every iteration. In this section, however, we will consider a
modified version of our model where we remove all detections,
except for the last one.

As is explained in Ref. [17], a hardware implementation of
such a model can still be used to extract information from the
reservoir at all iterations. In order to do so, the QRC procedure
needs to be restarted repeatedly, each time running the system
for a longer number of iterations, say K iterations, before mak-
ing the final detection and stopping the system. Note that since
we do always perform a measurement in the end, this new pro-
cedure still requires us to create an ensemble of reservoir copies.
If we create these reservoir copies sequentially, this means that
for each of the possible values of K and for each reservoir copy

that we want to create, the first K inputs of the data set are sent
into the reservoir.

It goes without saying that this is a lengthy procedure which
limits the capacity of the system. Moreover, for the model de-
picted in Figure 2, the removal of the measurements means that
the detection modes still leave the system, but are not detected.
Consequently, the decoherence of the photons in these modes
should be prevented until the end of each experiment. Because
of these reasons, we do not want to perform such a procedure us-
ing a hardware implemented version of our model. However, as
will become clear in the remainder of this section, the removal
of all intermediate detections will lead us to a more efficient im-
plementation of our current simulation.

In such a simulation, in order to describe the separation of the
A and B modes, we need to shift from the state vector repres-
entation to the density operator formalism [14] and calculate a
partial trace. As this separation process generally is not followed
by a detection anymore, the expression for the feedback state no
longer simplifies to the pure state. Instead, we get a mixed state.

It can be proven that this mixed state describes a statistical
ensemble of all the possible ‘collapsed’ states that could oc-
cur in the approach with intermediate detections (described by
Equation (6)). In other words, by making an intermediate detec-
tion, we follow a specific branch from the probability tree that
is defined by the state in front of the detector. Without these in-
termediate measurements, all the possible branches are kept into
account until the last iteration. Finally, it turns out that both ap-
proaches, with and without intermediate detections, lead to the
same expectation values. Since we use these expectation values
as input for the linear regressor, both approaches lead to equally
performing systems.

However, a simulation without intermediate measurements
turns out to be more efficient. As we use density matrices to
describe the mixed states, we no longer have to simulate differ-
ent realisations of our system. Instead we can simulate a single
reservoir and calculate the expectation values from its reservoir
state ρres at the final iteration. Remember that the creation of
reservoir copies would however be needed in a hardware imple-
mentation of the system. Moreover, during simulations, we can
also copy our density matrices, which is forbidden in real life by
the no-cloning theorem [18]. Consequently, we can iterate over
the complete data set, without restarting the system and without
intermediate measurements, while constantly making a copy of
ρres. Afterwards, we can calculate the desired expectation val-
ues from these copies.

B.1 Photon number threshold

In contrast to a simulation with intermediate detections,
where nres(k) was given by Equation (5), in this new simulation
method, ρres no longer contains a specific number of photons.
Instead, we need to perform Ryser’s algorithm using a basis
of Fock states that contain up to nthr photons, spread over m
modes. Here, nthr is a chosen threshold value.

Although the use of such a threshold value is common when
simulating a quantum computing procedure with Fock states,
the fact that it needs to be chosen becomes more problematic in
the context of temporal training procedures. The reason for this
is that, in theory, the possibility always exist that no photons



are detected when performing intermediate detections. In an
approach without intermediate detections, this ‘branch’ is hence
also accounted for by the mixed state, leading to a density matrix
that, in theory, needs to be described using a threshold value that
rapidly increases with the number of iterations.

As Ryser’s algorithm scales exponentially with the photon
number, this would lead to unfeasible simulation times. Al-
though we expect that a finite threshold value could also lead
to accurate results, it is not obvious to choose such a value that
combines these accurate results with fast simulations. In order
to do so, further research should be carried out, for which a com-
parison with the simulation with intermediate detections would
come in handy.

IV. FUTURE OUTLOOK

Following this last discussion, it would be worthwhile to
make a more in-depth study about the photon number fluctu-
ations. As discussed in Section III-A.2, this could also lead to
new insights in the behaviour of the system and possibly lead to
new methods to shape the photon number fluctuations, enabling
us to boost the performance. In line with this study, future sim-
ulations could also be made to account for optical loss and other
sorts of decoherence. For this purpose, we could make use of
existing decoherence models [19].

A different objective is the study of how possible encodings of
the input data could lead to better performance. These encodings
are known to heavily impact the results of QML models [20].
For this purpose, a starting point could be to include an extra
optimizable QONN on the firstmA modes, in front of the current
QONN.

An issue that was not addressed up to now, is that it is diffi-
cult to generate Fock states without deterministic single-photon
sources. For this reason, Gaussian states are often used as al-
ternative input states to perform boson sampling. The resulting
‘Gaussian boson sampling’ process falls within the same com-
plexity class as regular boson sampling. As the required set-up
is however more practical, it could lead to superior hardware
implementations.

Finally, instead of only considering a simple classical tasks,
the Information Processing Capacity (IPC) [21] could serve as
a better measure to quantify the potential of our system to ex-
ploit its high-dimensional Hilbert space. Moreover, we could
also consider quantum tasks and perform a similar study using a
quantum capacity measure [22].

V. CONCLUSIONS

In this paper, we introduced a new photonic QRC method and
provided a proof-of-principle using a simple classical task. The
performance of this model appeared to improve by using a lar-
ger ensemble. A similar improvement is also expected to occur
as a function of the train set size, for more challenging tasks. A
study of the Kerr interaction strength φ additionally showed that
this parameter influences both the photon number fluctuations
and the performance of the system, increasing the initialisation-
dependence at φ = 0. Further research is required to reveal the
connections between these observations and to check whether
the overall initialisation-dependence can be lowered to the same

level as classical RC systems. Finally, we proposed a more ef-
ficient simulation method for our system and stressed some of
the technicalities that need to be taken into account in order to
implement such a simulation.
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Chapter 1

Introduction

Machine learning (ML) [1][2] is a subfield of computer science where a system is
created that learns to perform a certain task by repeatedly improving itself, making
use of relevant data instead of being programmed explicitly. These days, ML is tak-
ing the world by storm, showing superior data processing capabilities. Consequently,
there is a constant search to improve these existing methods.

In recent years, several ideas have emerged that combine ML with another
promising information-processing field: quantum computing (QC) [3][4]. QC is
a subfield of quantum information science where collective properties of quantum
states, such as superposition and entanglement, are exploited to perform a certain
computation. QC systems have been demonstrated to show great potential and it
is widely believed that these systems are even able to outperform classical systems
[5], leading to so-called quantum supremacy [6]. A typical example of a task that
is believed to be intractable for classical computers, but not for hardware that is
inherently based on the laws of quantum physics, is the factorisation of integers, for
which a well-known quantum algorithm was developed by Peter Shor [7].

This leads us to the field of quantum machine learning (QML) [8], which is
schematically represented by Figure 1.1. The purpose of QML is to boost the
efficiency of existing machine learning algorithms, both in terms of computational
power and power consumption, by exploiting the potential of quantum systems.
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Figure 1.1: Schematic positioning of quantum machine learning with respect to its
related technologic domains

A promising branch of ML that could be used for this purpose is neuromorphic
computing, of which neural networks (NNs) [9] are one of the most well-known
examples. NNs consist of several parameterized layers of so-called nodes that can
be used to process information. More specifically, by optimizing its parameters,
the network can learn to solve a particular task. In the past, this has led to state-
of-the-art applications for tasks such as image recognition [10]. The research into
neuromorphic information processing techniques is fuelled by the desire for comput-
ing systems with superior computational power and energy efficiency to the human
brain.

The search for such systems leads us to unconventional computing schemes
that go beyond the Von Neumann architecture [11]. This is a very general and
well-known paradigm characterised by the splitting of memory and processing units.
In the brain, all of these units work closely together, which suggests that their
co-location is a gateway to highly efficiency techniques.

An example of such a computing scheme is reservoir computing (RC) [12][13],
which has its origins in the development of recurrent neural networks (RNNs) [14].
As the name suggests, RNNs with recurrent connections. These loops grant the
system memory, which can be used to process temporal data. In contrast to the
normal training procedure of an RNN (which is similar to that of an NN), it turns out
that these systems can also engage in useful forms of information processing without
optimizing their parameters. Due to their inherent memory and rich dynamics, a
random initialisation of such a system can perform a mapping from its input data
to a higher dimensional space. After this mapping, it suffices to optimize a simple
linear readout layer in order to make the system perform certain tasks.

This means that we can outsource part of our time dependent signal processing
to a system that does not require any optimization and we only need to perform a
simple linear training procedure ourselves. In ML, such a mapping is called a tem-
poral feature expansion and the system that performs it in RC is called a reservoir.
An additional advantage of this computational scheme is that it does not imply
strong quality requirements on the components of the reservoir, as its non-idealities
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are also taken into account when training the readout layer.
Note that we are not limited to the class of RNNs in our search for suitable

reservoirs. On the contrary, as long as the inherent dynamics of a system are rich
enough for the task at hand and the system has adequate memory, it is a possible
candidate for this computing scheme [15]. One type of systems that has already
proven to be especially successful at reservoir computing, is the group of classical
photonic systems [16]. These systems are a source of inspiration for this thesis.

However, keeping in mind the idea of QML, there is also no reason to restrict
the range of possible reservoirs to classical systems. Instead, we can utilise the rich
dynamics of quantum physics to boost the efficiency of RC. By doing so, we are led
to a specific subset of QML systems, called quantum reservoir computing (QRC)
[17] systems. In conclusion, based on the success of classical reservoir computing,
QRC aims to exploit the quantum nature of physical systems by combining it with
this easy training strategy and these low quality requirements for the components.

In this thesis, we will introduce and simulate a new QRC model that is based on
photonic quantum computing. Before we move on to its construction, let us first
elaborate on the structure of this thesis.

1.1 Structure of the thesis

• Chapter 2 introduces a number of relevant machine learning concepts, which
we will further use to discuss RC more in-depth. Building on this, we will
discuss QRC and provide an overview of the existing literature in this field.

• Chapter 3 focuses on quantum optics. It introduces some relevant concepts
from this field that we will use to perform QRC.

• Chapter 4 introduces our new QRC model and the task that it will solve.
Afterwards, this chapter will describe how the simulation of the model is
performed.

• Chapter 5 analyses the model that was introduced in chapter 4 as a function
of its parameters and also highlights some elements of its behaviour.

• Chapter 6 sums up the possible extensions of the model and indicates the
future objectives of this thesis.

• Chapter 7 gives a summary of the most important findings.

3



Chapter 2

Machine learning concepts

2.1 Learning strategies

The field of machine learning can broadly be subdivided into three strategies: su-
pervised learning, unsupervised learning and reinforcement learning. Supervised
learning is the most common subbranch of machine learning and makes use of a
labelled data set, i.e. a data set consisting of input-output pairs of the task that we
want the machine to learn. This type of data set is not used in both other learn-
ing strategies. In unsupervised learning, the aim is instead to look for underlying
patterns in a given data set. In other words, this training strategy is said to be
self-organized. Finally, the goal of reinforcement learning is to train an intelligent
agent, for example a robot, to take actions in an environment, based on a certain
reward that is linked to the successful completion of the task. In the remainder
of this thesis, we will only focus on the first of these three strategies, supervised
learning. Let us therefore discuss it in more detail.

The intention of supervised learning is to learn a function that maps a certain
input to a certain output. This procedure is called training and it is performed by
considering a set of example input-output pairs. The main purpose of this procedure
is to be able to apply the trained function to unseen input data, thereby solving the
task at hand. This desired behaviour is called generalization. Supervised learning
consists of two subcategories, namely regression and classification.

Classification focuses on data sets where each input belongs to a specific class.
The goal is to correctly classify each of these data points. A typical example of
such a task is image classification, where the input data consists of pictures and the
task is to recognise what is shown. For example, a data set of animal pictures can
be labelled with a number of animal names. Applying a ML algorithm to this data
set, a system can be created that maps the given pictures to the correct animal
names. The system is said to learn a certain mapping function. Afterwards, when
provided with an unseen photo, the system will also use this function to determine
what animal is depicted. Note that the pictures in this example are composed of
pixel values. These are examples of the so-called (input) features that the system
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receives.
The second category, regression, focuses on predicting continuous label values.

An example of this is the prediction of house prices. In this example, the available
features are different house properties, such as its surface area and its number of
rooms. After training, the optimized system can predict the value of a house that
was not previously considered, based on its properties.

The simplest form of regression is linear regression, for which the mapping func-
tion takes the following form:

ŷ =

d∑

j=1

w′jx
′
j + b = w′ T · x′ + b = wT · x (2.1)

Here, ŷ is the predicted output and x′ contains the input features of a certain data
point, such as the house properties in the example mentioned above. By expanding
x′ with a constant value of 1, we form the vector x. This allows us to combine w′

and b into the so-called weight vector w, which contains all optimizable parameters
of the linear regressor.

In general, for a supervised ML approach, the optimization of such parameters
can be formalised by introducing a cost function (also called a loss function). The
optimization problem seeks to minimize this cost function, often by using an iterative
process such as gradient descent [18]. In this case, for linear regression, the loss
function is given by:

||y −X ·w||22 (2.2)

Here, X is the feature matrix containing the feature values for all data points in the
training set (i.e. for all so-called training samples) and y is the desired output (also
called the label) for all of these samples. Linear regression is one of the few cases
where a closed-form solution exists for this problem, which can be used alternatively
to the previously mentioned iterative processes.

In the following two sections, we will introduce two ML models: neural networks
and reservoir computing. At a later stage in this thesis, we will substitute both of
these two concepts for their quantum mechanical counterparts.
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2.2 Neural network

Hidden
layer

Input
layer

Output
layer

Figure 2.1: Schematic representation of a simple feedforward neural network, com-
prising of an input layers, a single hidden layer and an output layer. The arrows
depict connections between the nodes of these layers. All connections are directed
towards the output layer and are assigned a certain weight.

A neural network (NN) [9] is a computing system that is vaguely inspired by a
biological brain and therefore falls within the category of neuromorphic computing.
A schematic representation of such a network is shown in Figure 2.1. In general,
a neural network consists of a collection of nodes that are grouped into different
layers. The first and last of these layers are respectively referred to as the input
and output layers. All layers in between are so-called hidden layers. The nodes
of different layers are connected to each other via interconnections. All of these
connections are assigned a certain weight. For now, we only consider the case
where these connections do not form cycles and are directed towards the output
layer, leading to the concept of a feedforward neural network.

Let us first consider how such a network processes information. Starting at
the input layer and moving towards the output layer, we repeatedly consider the
connections in between two consecutive layers. Each time, the weights of these
connections are applied to the node values of the first layer and the results are
transferred to the second layer. The results of connections that lead to the same
node are summed. Before assigning the values to the nodes of the second layer,
an activation function is applied that controls the magnitude of these values. This
activation function can be of many types [19], but most often it is a rectified linear
activation function (ReLU), a logistic sigmoid function or a hyperbolic tangent
(tanh).

The weights form the set of optimizable parameters of the network. They can
be updated iteratively to get the desired values at the output layer. In order to
perform such a training procedure, once again, we define a certain cost function.

6



Furthermore, we can apply the so-called back propagation technique [20] to min-
imize this cost function. In order to do so, the gradients of the cost function are
calculated with respect to the weights of the network. These calculations are per-
formed efficiently by making use of the chain rule. Starting from the output layer
an propagating backwards through the network, the gradients are calculated layer
per layer. In order to minimize the cost function, the resulting gradients can be
used to update the weight values according to a certain gradient method. Common
examples of such methods are gradient descent [18][21] and its variants, such as
stochastic gradient descent [22].

Generalizing the concept of feedforward neural networks, we also define recur-
rent neural networks (RNNs) [14]. These networks additionally allow for cycles in
their structure. These cycles are also called recurrent connections or feedback con-
nections. Transferring information via the interconnections of the network, these
cycles ensure that input information is not immediately directed towards the output
layer. Instead, the cycles grant the system memory and enable it to learn temporal
tasks.

2.3 Reservoir computing

A ML approach that finds its origins in the study of RNNs, is reservoir computing
(RC) [12][13]. A typical problem with RNNs is that they are often hard to train
[23]. RC can help in this respect as it appears that it can be sufficient to train only
the connections leading to the final output layer of an RNN, without noticeable loss
of computational power [24].

In RC, this finding is extended to a wider range of nonlinear, dynamical sys-
tems. These systems are kept fixed and are used to map input signals into a higher
dimensional space. In other words, the intrinsic and rich dynamics of both software-
implemented and physical systems can be used to outsource a part of a computation.
By doing so, the computational power of such systems is used to reduce the effective
computational cost of the total training procedure. Before discussing examples of
such systems, let us first have a look at a general RC procedure.
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Figure 2.2: Standard layout of a reservoir computer, comprising an input layer (red),
the reservoir (green) with randomized but fixed connections, and the linear readout
layer (blue). Here, for simplicity a one-dimensional readout layer is drawn that
applies weights {w1, w2, ..., wN} to the nodes {x1, x2, ..., xN}, also called the true
nodes. This figure is drawn from Ref. [13]

Figure 2.2 shows a schematic representation of a reservoir computer. Its input
layer is used to encode the training data. The reservoir itself is treated as a black
box with fixed parameters. Only the weights of the readout layer are optimized
in order to train the system. For this purpose, the previously introduced linear
regressor can be used. Its weights {w1, w2, ..., wN} are optimized such that it maps
a subset of the reservoir nodes {x1, x2, ..., xN}, the so-called true nodes, onto the
desired output of the task yout. After the optimization process, a similar procedure
can be performed in order to validate the performance of the system.

The state of the reservoir at a certain iteration k can generally be described by
the following update equation:

x(k) = f (Wres · x(k−1) +Win · xin(k)) (2.3)

Here xin(k) is the injected input data at iteration k, which is transformed according
to the matrix Win before entering the reservoir. Wres and f respectively describe
the internal connectivity and the nonlinear dynamics of the reservoir.

Feedback connections in the reservoir enable the system to learn temporal tasks.
Each iteration, new information is fed into the system which influences the state of
the reservoir according to Equation (2.3). It is however necessary that the influence
of the information on the reservoir state becomes smaller the longer ago it was
injected. If so, the state of the system is only determined by its recent input
history. This concept is referred to as the fading memory principle. Although it is a
necessary property for a dynamical system in order to perform reservoir computing,
this constraint proves not to be restrictive [15] and it is naturally satisfied by most
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systems that contain recurrent connections. In fact, the difficulty in this respect
often lies in assuring that the memory of the reservoir is long enough for the task
at hand.

One of the key advantages of reservoir computing is that the fabrication tol-
erances for the components of the reservoir are less important, because for each
reservoir a bespoke set of weights is acquired that partly takes these non-idealities
into account. In the past, it has been shown that reservoirs with such noisy com-
ponents can still be used to learn complex, non-linear tasks [15].

Although software-implemented reservoirs, such as RNNs, are often used, the
actual range of suitable dynamical systems is extremely broad. Physical systems can
be used as long as their dynamics are sufficiently rich and complex to allow them
to be employed for information processing [15]. This includes that the system leads
to a state that is nonlinear in its inputs to achieve nontrivial information processing
[25] and that it exhibits fading memory. A good illustration of the generality of
these requirements is that ripples on a water surface, due to their nonlinear nature,
have been used as an analog physical system to perform reservoir computing [26].
Examples of physical systems that are more frequently used, are classical photonic
systems [16]. As mentioned before, we will also consider a photonic system in this
thesis.

In the past, classical RC has already proven to lead to state-of-the-art perform-
ance in tasks such as speech recognition [27], where speech is the temporal input
signal and the task is for example to recognise individual words. Other examples of
such tasks are chaotic time series prediction [28] and radar signal forecasting [29].

2.4 Quantum reservoir computing

Based on the success of classical RC, quantum reservoir computing (QRC) aims
to boost the performance of reservoir computers further by exploiting the quantum
nature of physical systems. As mentioned before, RC is characterised by an easy
training strategy and low quality requirements for the reservoir components. This is
also the case in QRC. It can be noted that quantum computing systems are currently
subject to strong hardware constraints. Although a universal, fault-tolerant and
efficient quantum computer is the long-term goal in the field of quantum computing,
this will potentially take decades to achieve. One of the key limitations in making
these systems is that the information encoded in a state of the quantum system
easily and uncontrollably becomes entangled with its environment, a concept that
is referred to as decoherence [30]. This stresses the importance of error correction
schemes in the construction of a long-term quantum computer. At the moment
however, noisy intermediate-scale quantum (NISQ) [31] computers already exist
that use hundreds of qubits, often without error correction, to perform imperfect
operations. In this context, QML techniques like QRC can be seen as a alternative
way to exploit the computational power of quantum systems, making use of the
currently available resources to perform classically challenging tasks and possibly
removing the need for error correction in the process.

In QRC, one of the main goals is to improve upon the efficiency of existing
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classical schemes, both in terms of computational power and power consumption.
However, QRC also aims to achieve other goals. Adding to the set of classical
tasks that was mentioned in the previous section, QRC enables us to train quantum
tasks, i.e. to exploit the quantum information in either or both the input and
the output states. An interesting example of such a task would be to determine
whether a quantum channel is Markovian or not. Similar to the concept of a Markov
chain [32], which describes a sequence events in which the probability of each
event depends only on the state attained in the previous event, Markovian quantum
channels are not subject to memory effects. In contrast, non-Markovian quantum
channels are affected by such memory effects, which results from interaction with
their environment. These effects may be exploited to increase the capacity of a
quantum channel [33]. Another quantum task would be to determine whether noise
from different subsystems of a quantum system (e.g. different subsets of qudits) is
correlated or uncorrelated. This is important in the context of error correction [34].

2.4.1 QRC platforms

The number of platforms that have peen proposed for QRC has increased signific-
antly in recent years, owing both to the wide range of suitable RC reservoirs (as
explained in Section 2.3) and to the widespread developments in the field of QC.
An important characteristic that all of these platforms have in common is that they
show an exponential growth in Hilbert space dimensions when increasing the num-
ber of quantum elements. This provides them with a large state space which plays
a decisive role in the performance of QRC systems [35].

Before moving on to our own photonic set-up, let us summarize the most im-
portant of these QRC platforms. At the moment, spin-based QRC approaches
such as nuclear magnetic resonance (NMR) systems [35][36] and trapped ions [37]
are studied the most, both regarding simulations and physical experiments. NMR
quantum computing is particularly interesting as it relies on an ensemble of identical
molecules of which the nuclear spin degrees of freedom can be employed to perform
calculations. For this reason, it naturally possesses interesting measurement char-
acteristics. More specifically, because a measurement of a particular observable is
taken over the entire ensemble, it has little impact on individual spins. This detec-
tion can be seen as a type of monitoring without disturbance [38], which contrasts
with the strong projective measurements, i.e. probabilistic measurements which
disturb the state of the system that they measure, that are common on most other
quantum computing platforms.

On the one hand, in the context of quantum computing, this property of NMR
computing is often seen as problematic. Strong projective measurements are for
example often used to perform qubit initialisation and error correction. On the
other hand, in the context of QRC, this detection property also seems to be very
useful. The reason for this can be found in the repetitive output extraction that
is often performed for temporal tasks. Indeed, due to the stochastic nature of
strong projective measurements, we are generally required to prepare several copies
of the system or to perform multiple measurements in order to extract information
about the observables. Typically, this information is a set of expectation values. As
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on the NMR platform such an ensemble is naturally present, these system copies
do not need to be created. Moreover, these noninvasive measurements can also
reduce other unwanted back-actions of the detector that result from its imperfect
realisation rather than from its stochastic behaviour.

Another interesting QRC approach is introduced in Ref. [39], performing QRC
using superconducting qubits on an IBM quantum processor [40]. Further, Ref. [39]
also gives an analytical derivation of a universal approximation property, meaning
that it defines a class of systems that can approximate a class of functions with
arbitrary precision.

Finally, we also mention that photonic systems are promising candidates to
perform QRC. This is due to the fact that photonics has already shown to be
especially successful at classical reservoir computing [16], as well as the fact that
this platform is seen as a path towards scalable quantum computers [41]. One such
photonic QRC approach is proposed in [42], making use of Gaussian states to encode
continuous variables and also leading to a universal approximation property for the
class of reservoirs. Another photonic model, based on the continuous monitoring of
a single Kerr nonlinear oscillator was introduced in Ref. [43].

In this thesis, we will also make use of photonics to define a new QRC system.
However, before we can introduce its configuration, we first have to introduce the
quantum optical concepts that it relies upon.

11



Chapter 3

Quantum optical concepts

In this chapter, we introduce the quantum states that we will use to describe
quantum information in this thesis: Fock states. After elaborating on how these
states can be generated and detected, we will show how they can be used to perform
computational tasks that are hard for classical computers. Eventually, we discuss
a QML approach that was previously introduced in literature, a quantum optical
neural network (QONN), which will be at the heart of our own QRC model.

3.1 Fock states

Whereas bits are the known units of information in classical computing, in quantum
information science we make use of qudits. Unlike classical bits, which always have
a value of either 0 or 1, qudits can be in a superposition between the possible states
of a d-level system. In the case of a two-level system, we often use the more widely
known term qubits.

In this thesis, qudits will be further desribed by Fock states, which are elements
of a Fock space. Fock states consist of a well-defined number of identical particles.
In photonics, these particles are single photons that can be present in a number
of optical modes. If the system under consideration for example contains 2 non-
interacting photons in 3 optical modes, the set of Fock states that form a Fock
basis for this system is given by:

{|2, 0, 0〉 , |0, 2, 0〉 , |0, 0, 2〉 , |1, 1, 0〉 , |0, 1, 1〉 , |1, 0, 1〉}
In general, when dealing with n photons and m optical modes, these Fock

states can be written as |n1, n2, ..., nm〉, where
∑m
i=1 ni = n. It further follows

from combinatorics that the dimension of the Fock basis equals:
(
n+m− 1

m

)

Although this thesis will only simulate these Fock states, rather than performing
experiments, in the next two sections we will briefly introduce how they can be
generated and detected.
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3.2 Single-photon sources

Generating a photonic Fock state requires the use of reliable single-photon sources
[44][45]. An ideal single-photon source would be one that only emits indistinguish-
able, single photons at an arbitrary time and at an arbitrarily fast repetition rate.
In reality, several technologies exist to implement these sources, but they all exhibit
deviations from this ideal behaviour. Based on whether or not these sources can
emit single photons at arbitrary times, also called generation ’on demand’, we can
divide them into two groups: deterministic photon sources and probabilistic photon
sources.

Deterministic sources ideally produce single photons whenever they are triggered.
They can be implemented for example using color centers, quantum dots, 2D ma-
terials, single molecules, atoms or ions. These all function as two-level systems that
can be excited with a laser pulse. As the lifetime of the excited state of such a
system is finite, a single photon can be generated with a short pulse. Although
this generation on demand is very desirable, deterministic sources are not the most
widely used sources at the moment and research is still being done to find easily
implementable models.

The second group of sources, probabilistic sources, are not able to generate single
photons on demand. Instead, they utilise lasers to perform photon pair creation with
a certain probability, either via parametric down-conversion (PDC) in bulk crystals
and waveguides or via four-wave mixing (FWM) in optical fibers.

Currently, the single photon generation technique that is most widely used, is
PDC. Let us therefore discuss this process in more detail. In PDC, a nonlinear crystal
is used to convert one photon of higher energy, coming from a pump laser, into a pair
of photons of lower energy, in accordance with the law of conservation of energy and
the law of conservation of momentum. The initial photon is called the pump photon,
while the resulting photons are called the signal photon and the idler photon. By
detecting the idler photon, we can deduce whether we successfully created a single
photon and if so, at what moment this process happened. This process is better
known as heralding. Additionally, from the phase matching condition we can derive
the relative polarization of the signal and the idler, which enables us to identify the
state of the signal photon. Although PDC is most often used to generate a single
photon, there are also extensions that allow, for example, the generation of two and
three photons in the same mode [46].

3.3 Single-photon detectors

Knowing how Fock states can be generated, let us consider how they can be de-
tected. For this purpose, we need to make use of single-photon detectors [44][47].
Similar to the discussion on single-photon sources, let us first describe what the
ideal characteristics of such a detector would be. Whenever a photon is incident,
we want to detect it with a probability of 100% (detection efficiency), without vari-
ance in the delay between the optical input and the electrical output (jitter time).
Moreover, we do not want any dark counts, i.e. electrical output without optical
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input. After a detection, we also want to be able to detect a new photon arbitrarily
fast (without so-called dead time). Again multiple techniques exist to manufacture
such detectors, but in reality they all suffer from non-idealities. The most common
examples of such techniques are: single-photon avalanche photodiodes (SPADs),
photomultiplier tubes (PMTs), superconducting nanowire single-photon detectors
(SNSPDs) and up-conversion single-photon detectors. Note that a lot of variations
and even hybrids exist that are based on these methods. One characteristic that the
mentioned techniques have in common, however, is that they cannot reliably detect
exactly how many photons are present. They are therefore not photon-number-
resolving and if they are triggered, we only know, with a certain confidence, that at
least one photon must have been present.

3.3.1 Number-resolving detectors

In some applications, as is also the case in this thesis, it is additionally required
to detect the actual number of photons that are present. Once again, different
techniques exist to tackle this problem of which we list the most common ones:
superconducting tunnel junction (STJ)-based detectors, Quantum-dot field-effect
transistor (QDFET)-based detectors, superconducting transition edge sensors, vis-
ible light detectors and variants of the aforementioned SNSPDs.

Apart from intrinsically number-resolving detectors, we can also combine a set
of detectors that are not photon-number-resolving in order to approximately detect
the number of photons that is present. This concept is called a threshold detector
[48]. It is constructed by connecting the mode that we want to measure to a
cascade or tree of fibre splitters, the ends of which are each connected to non-
number-resolving detectors. As the size of the tree grows, so does the probability
of detecting all photons that were initially bunched into one mode.
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3.4 Linear interferometer

Figure 3.1: Schematic representation of an interferometer according to the config-
urations of Clements et al. This figure is drawn from Ref. [49]

In between the generation of Fock states and their detection, these states can
be manipulated. This can for example be done using a linear interferometer. This
component is a combination of beamsplitters and phase shifters that are combined in
a certain configuration and act on a number m of optical modes. The configuration
that will be used in this report was proposed by Clements et al. [49] and is depicted
in Figure 3.1. Note that it only uses beamsplitters with equal splitting ratio, also
called 50/50 beamsplitters.

This figure also shows that the beamsplitters and phase shifters are combined
in elementary components that act on neighbouring modes. By applying a phase
shift between these modes and leading them both to a beamsplitter, interference
of the light is made possible. The combination of two such phase shifters and
beamsplitters (shown at the bottom of the figure) is better known as a Mach-
Zehnder interferometer.

In the scheme of Clements et al, the linear interferometer is characterized by a
unitary transformation U(θ), which is parameterized by m2 phase shift parameters
θj ∈ (0, 2π]. The matrix itself has a shape of m×m and is constructed by combining
the individual transformation matrices of the beamsplitters and the phase shifters,
which are given by:

BS =
1√
2

(
1 1
1 −1

)
(3.1)

PS =

(
eiθ1 0
0 eiθ2

)
(3.2)
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The linear interferometer that corresponds with U induces a transformation W
on its multi-photon input states. In other words, U operates on a single-photon
Fock space, while W operates on a larger, multi-photon Fock space. As explained
in Section 3.1, the number of basis states of this multi-photon Fock space is given

by
(
n+m− 1

m

)
, which scales exponentially in n and m. As will be discussed further

in the next section, U and W are connected through a homomorphism Φ.

3.5 Boson sampling

Figure 3.2: Schematic representation of the boson sampling procedure. Indistin-
guishable photons enter a linear interferometer and are guided to single-photon
detectors. For simplicity, the figure only shows a single photon per input mode
(yellow-filled circles) and the detectors can be assumed to be number-resolving.
This figure is drawn from Ref. [50].

Having introduced the linear interferometer, let us consider how this component can
be used to perform boson sampling [51], which is a well-known proposal to demon-
strate quantum supremacy. Boson sampling is the act of sampling indistinguishable
photons using photon-number-resolving detectors after they have travelled through
a linear interferometer. We note that in reality, however, this procedure is often
carried out with detectors that cannot resolve the photon number. This is pos-
sible because of the bosonic birthday paradox [52], which states that the probability
of encountering photons in the same mode is low when they are scattered over
m >> n2 modes, where n represents the number of photons that are present and
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m is the number of optical modes.
Although this quantum computing operation is non-universal, meaning that it

cannot be used to express any quantum algorithm, it is strongly believed to be
computationally hard for classical computers. This statement can be understood
from the form of the probability distribution that is sampled by the single-photon
detectors. This probability distribution is proportional to the permanent of complex
matrices that are directly derived from matrix U [53]. At first glance, a permanent
strongly resembles a determinant. It is formed by similar polynomials in the entries
of the matrix under consideration, where the only difference is that no additional
signs are added to the polynomial of the permanent. The calculation of a permanent
is however substantially more difficult than the calculation of a determinant.

In more mathematical terms, it is said that the calculation of determinants falls
within the P-hard complexity class, while the calculation of permanents falls within
the #P-hard complexity class, which is in turn strictly harder than the better-known
NP-complexity class. Here, P is the set of problems that are solvable in polynomial
time by a classical computer, while NP is the class of problems for which a solution
can be verified in polynomial time by a classical computer.

This discussion can therefore be related to the P versus NP problem [5], which is
a major unsolved problem in computer science. In short, this problem is concerned
with the question as to whether the P and NP complexity classes coincide or not. If
it turned out that P 6= NP, which is widely believed but not proven, it would mean
that there are problems in NP that are harder to compute for a classical computer
than they are to verify, leading to a possible advantage of quantum computers. As
a result, the discussion above indicates that the calculation of permanents is at the
source of the hardness of the boson sampling problem.

When simulating a boson sampling procedure on a classical computer, this com-
putational hurdle emerges when transforming U of the linear interferometer to W
which acts on the multi-photon input states. As noted earlier, U can be easily
constructed by combining the individual matrices of the beamsplitters and phase
shifters. We know that there exists a homomorphism Φ that transforms U to the
multi-particle unitary W , but its evaluation depends on calculations of the per-
manents. The asymptotically fastest known algorithm that exactly computes the
permanent of an m × m matrix is Ryser’s algorithm [54]. It has a complexity of
O(2m−1m). This algorithm will also be used in this thesis.

It has to be noted that a physical boson sampler is significantly more straight-
forward to build than any universal quantum computer proposed so far, making it a
feasible way to demonstrate quantum supremacy. Therefore, we can conclude that
while being considered intractable for classical computers, boson sampling can nat-
urally be solved on a photonic quantum substrate, while requiring a relatively low
amount of resources. An interesting illustration of these statements, is the recent
demonstration of quantum supremacy using boson sampling, for which 50 photons
were guided in 100 optical modes [55]. This shows that quantum supremacy can
already be attained by near-term quantum computers, since it does not require the
performed task to be useful and it neither requires the quantum computer to perform
high-quality quantum error correction, both of which are long-term objectives.
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3.6 Quantum optical neural network

Now that we have introduced some important concepts of both machine learning
and quantum computing, let us look at a certain class of quantum machine learning
systems: quantum neural networks (QNN) [56][57]. These networks are a type of
variational quantum algorithms [58], which employ a classical optimizer to train
a parameterized quantum circuit. QNNs consist of gates whose parameters can
be optimized to perform a desired transformation on the data that is sent in the
network. Often, these networks are capable of performing a broad range of tasks
[59], both classical and quantum mechanical. They can be used to experimentally
discover algorithms that are faster or require smaller networks than previously used
classical or quantum algorithms. Another advantage is that they often can be
implemented using noisy intermediate scale quantum (NISQ) technology [60], for
which there is an ongoing search for suitable algorithms.

A wide variety of QNNs exist and they can be defined on different platforms.
One such example that can be implemented on a photonic platform is the quantum
optical neural network (QONN) [61], which is depicted in Figure 3.3.

Figure 3.3: QONN layout. Inputs are Fock states and the linear transforms are
parameterized linear interferometers. The single-site nonlinearities are given by χ(3)

functions: a Kerr-type interaction applying a constant phase for each additional
photon present. Readout is performed by single-photon detectors which measure
the photon number at each output mode. This figure is drawn from Ref. [61].

The QONN can be subdivided into three parts. Firstly, single-photon sources
are used to encode the training data. If the training data is not defined on a Fock
basis, as it could be classical data for example, it has to be encoded into a Fock
basis following a well-defined procedure. Secondly, the resulting Fock states are fed
to a succession of layers. One such layer consists of a linear interferometer and
a combination of single-site nonlinearities Σ. These nonlinearities are single-mode
Kerr interactions in the monochromatic approximation, applying a phase that is
quadratic in the number of photons that is present [62], as shown in the following
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equation:

Σ(φ) =

∞∑

n=0

ein(n−1)φ/2|n〉〈n| (3.3)

The strength of these nonlinearities is defined by the interaction strength φ, but is
typically fixed to π. The resulting transformation that is performed by a QONN
consisting of N layers, is given by:

S(Θ) =Φ [U (θN )]

N−1∏

i=1

Σ(φ) Φ [U (θN−i)]

=W (θN )

N−1∏

i=1

Σ(φ) W (θN−i) (3.4)

Here, S is parameterized by Θ, the Nm2 phase parameters of the linear interfero-
meters. Note that further we will not write φ (the Kerr interaction strength) in the
argument of S to simplify its notation. Also note that the nonlinear layers, which
result from applying Equation (3.3) to all modes of the system, are also written as
Σ(φ) to simplify the notation. Further, recall that Φ is the homomorphism between
U and W . The boson sampling result W (θN ) is placed outside of the product to
account for the fact that nonlinearities are only added in between interferometers.

Finally, the transformed Fock states are detected by single-photon detectors.
The QONN can be trained by defining a cost function and optimizing over Θ. In
Ref. [61], QONNs are trained to perform a range of quantum information processing
tasks, including newly developed protocols for quantum optical state compression,
reinforcement learning, black-box quantum simulation, and one-way quantum re-
peaters. Consequently, this thesis will try to make use of the demonstrated compu-
tational power of such a QONN by including it in a new QRC approach.

Also in Ref. [61], a Python library was developed that allows to calculate the
matrix S of such a QONN configuration. Its key functionality, namely the execu-
tion of Ryser’s algorithm, was implemented in Cython (a compiled rather than an
interpreted version of Python, designed to give C-like performance with code that is
written mostly in Python) to increase the efficiency of the simulation. This Python
library served as a useful starting point for the simulations performed in this thesis.
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Chapter 4

Construction of a QRC model

In this chapter we introduce a QML approach that combines a quantum optical
reservoir with a classical optimizer. It can be used to solve both classical and
quantum tasks. In the first section of this chapter, we will sketch the configuration
and the operating procedure of this system. From this discussion, it will follow
that we need to combine multiple copies of the same reservoir into an ensemble in
order to extract reproducible results. In Section 4.2 we will discuss the task that
will be tackled. In the remainder of the chapter, we will elaborate on the different
parts of the system and show how they are simulated. In Sections 4.3, 4.4 and 4.5,
we deepen our understanding of the technicalities that build up the simulation of
a single quantum reservoir in the ensemble. Afterwards, in Section 4.6 we discuss
how the features are extracted from an ensemble of such reservoirs and how these
features take shape for ensembles of different size. In Sections 4.7 and 4.8 we
propose two different improvements of the current system, which will lead us to the
final model that will be analysed in Chapter 5.
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4.1 Configuration and operating procedure

Input 
State

QONN

Reservoir
State

Feedback
State

Detected
State

Figure 4.1: Layout of the quantum reservoir that is introduced in this thesis, com-
prising of input modes (red) and a randomly initialised QONN (grey square), leading
to a reservoir state (blue). The detector (grey rectangle) leads to a certain detec-
ted state (yellow). The feedback state (green) is looped back to the input of the
QONN.

Figure 4.1 schematically represents the quantum optical reservoir that we will con-
sider in this thesis. The grey square in this configuration depicts the QONN that
was introduced in Section 3.6. The phase parameters Θ of this QONN are initial-
ised randomly. Further, the train data (and later the test data) is encoded in the
input modes, leading to an input state. The QONN performs a transformation S
on this input state, as defined by Equation (3.4). This leads to a so-called reservoir
state. Similar to the concept of true nodes that was introduced in Section 2.3, we
do not measure the complete reservoir state. Instead, only a subset of the optical
modes are guided to the detector, while the other modes are redirected towards the
input of the QONN, forming recurrent connections. These two subsets of modes
are respectively named the detection modes and the feedback modes. From now
on, we will number the modes in Figure 4.1 from top (mode 1) to bottom (mode
mA+mB), where mA is the number of detection modes (also equal to the number
of input modes) and mB is the number of feedback modes.

The introduction of recurrent connections enables the system to learn temporal
tasks. That is, it can learn to prepare the desired output, depending on multiple
past inputs. In order to do so, we send nin photons into the system at a constant
rate. These photons encode inputs from the data set. There are many ways to
perform such an encoding, but for now we assume that we want to be able to
encode a discrete set of classical inputs and that the size of this set is smaller than
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the number of input modes of the QONN. These assumptions hold for instance
when the input data consists of classical bits and when the QONN has at least
two input modes. The classical inputs can be encoded by associating each of its
possible values with a different input mode. Knowing the value that we want to
encode, we can send all of the nin photons into the corresponding mode. Note that,
by spreading the photons over the modes, this scheme can be extended to encode
a larger set of possible data values with equal numbers of modes and photons.
Moreover, it is possible to encode continuous data by preparing superpositions of
Fock states, where the data is encoded in either or both the magnitude and the
phase of the complex coefficients.

After preparing the input state, it is combined with the feedback state that res-
ults from the previous iteration. The resulting state is fed through the QONN. Here,
the photons repeatedly interact via the network of Mach-Zehnder interferometers
and the non-linear layers of Kerr interactions. As the feedback state is a result of
multiple previous iterations, the reservoir state that we obtain also contains inform-
ation about previous inputs. A part of this information is retained in the feedback
state, while another part of the information is read.

The above leads to an important consideration. The state in front of the de-
tector generally is a superposition of Fock states. Due to the stochastic nature
of quantum measurements, only one of these Fock states can be detected. Apart
from information loss, this results in different measurement outcomes for different
simulations of the same reservoir. As a result, it is common for quantum (reser-
voir) computers to combine the measurement information of multiple copies of the
same system in order to estimate the expectation values of the different possible
detections [17]. These copies can either be created in parallel or by performing se-
quential measurements using the same, unaltered system. The sequential approach
is often preferred for hardware implementations as it requires less resources. In a
simulation, however, the parallel approach, which is depicted in Figure 4.2 for our
quantum reservoir, can also be carried out. Although the simulations of different
reservoirs are not currently performed in parallel, this schematic representation of
an ensemble of reservoir copies helps to understand the system.
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Figure 4.2: A schematic representation of an ensemble of reservoir copies. All
parallel reservoir operations were initialised equally, but they can lead to different
detected states as a result of the probabilistic measurement procedure.

Until now, the system can be interpreted as a temporal feature expansion that
leverages the highly dimensional Hilbert space of the quantum network. Further-
more, we want to map the obtained features onto the desired output of the task.
This is done by using a classical optimizer, more specifically a linear regressor. As is
the case in classical reservoir computing, it is only required to optimize the weights
of a linear readout layer. However, in this quantum approach, the construction of
the readout layer is remarkably different. Where in Figure 2.2 weights were dir-
ectly applied to the measured values of the true nodes, we now first combine the
measurement results of multiple identical reservoirs in order to approximate the
ensemble statistics (i.e. the expectation values). Afterwards, these statistics are
fed into a regressor. During training, the weights of the regressor are optimized
and subsequently stored. Afterwards, a similar procedure is carried out in order to
validate the performance of the system, using the stored values of the weights.

4.2 Temporal tasks

Having introduced our QRC model, we also discuss the task that we want to perform.
As was explained in the previous section, the optimization is currently carried out by
a classical linear regressor, rather than by a quantum component. As a result, this
model can only be used to perform tasks of which the desired output is classical.

Although the system can still be used to perform both classical and quantum
tasks, for now we will focus on a well-known simple classical task: the temporal
XOR task. The most basic form of this task is depicted in Table 4.1. It shows that
all pairs of subsequent input bits are combined according to XOR logic.
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Table 4.1: An example of the desired output for the temporal XOR task. The input
bits of iteration k − 1 and k are combined, leading to a 0-bit if both inputs are
equal. Otherwise, the output is a 1-bit.

Iteration 0 1 2 3 4 5 6 7

Input bit sequence 1 1 1 0 0 1 0 1

Output bit sequence 1 0 0 1 0 1 1 1

As explained earlier, nin photons are fed into the system at each iteration,
depending on the value that we want to encode. As this task is defined using
classical bits, we only need to use two of the input modes. From now on, we choose
to send the nin photons in the first mode if we want to encode a 0-bit. Conversely,
we send the nin photons in the second mode if we want to encode a 1-bit.

Note that the input bit sequence is a sequence of random bits. In the simula-
tions of our system, we can therefore easily generate a data set with a random bit
generator and calculate the desired output sequence. Additionally, as the required
output for the task is a classical bit string as well, the bit error rate (BER), i.e. the
fraction of all bits that were wrongly predicted, is an appropriate quality measure
for the predicted output of our model.

4.3 Photon number fluctuations

In Sections 4.3, 4.4 and 4.5, we focus on describing the simulation of a single
quantum reservoir in the ensemble. In the first of these three sections we discuss how
the number of photons in such a reservoir can fluctuate between different iterations
and between different reservoirs. These considerations will make it possible to reduce
the number of times we perform Ryser’s algorithm to implement the homomorphism
Φ that was introduced in Sections 3.4 and 3.5.

Let us first describe how the Fock basis (introduced in Section 3.1) can take
shape, depending an the number of photons that are present in our system. As
explained in Sections 3.4 and 3.5, the interferometers in the QONN are characterised
by unitary matrices U(θi), where i ∈ {1, ..., N}. These matrices act on a basis of
single-photon Fock states. Using Ryser’s algorithm, we are able to transform these
unitary matrices U to the unitary matrices W that work on a basis of multi-photon
Fock states. A multi-photon Fock basis can be built knowing the specific number
of photons (n) and number of modes (m) that are present in the system. If for
example n = 2 and m = 3, the basis on which the matrix W operates, is given by:

basis(n=2,m=3) =
{
|200〉 , |110〉 , |101〉 , |020〉 , |011〉 , |002〉

}
(4.1)

However, if the photon number is uncertain, such that the superposition in front
of the QONN contains Fock terms with different n, we could also combine multiple
Fock bases. Assume for example that we want to account for all possible n values
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up to a certain threshold value nthr. We call the resulting set of bases a ‘lossy basis’,
which can generally be written as:

lossy basis(nthr,m) =
{

basis(nthr,m),basis(nthr − 1,m), ...,basis(1,m)
}

(4.2)

When using this lossy basis, Ryser’s algorithm returns a block-diagonal multi
particle matrix that combines the boson sampling results W that follow from the
individual bases. Note that this increases the number of times the algorithm should
be performed and consequently the number of permanents that need to be calcu-
lated.

As will be explained in the remainder of this section, in our current simulation we
do not have to use a lossy basis. However, we note that a lossy basis was required
in an alternative reservoir configuration that is described in Appendix A. Although
this alternative model turns out to be disadvantageous, its discussion strengthens
the design choices of the configuration shown in Figure 4.1.

To see why we can use a ‘regular’ basis (such as the one in Equation (4.1)) in
our current model, assume that the system does not contain any photons at the
start of the first iteration and that we send nin photons to the input modes at each
iteration. Looking back to Figure 4.1, we see that the photons that build up the
reservoir state can either be detected or can be directed to the feedback modes of
the system. Hence, after the first measurement a certain number of photons leaves
the system. Due to the probabilistic nature of this measurement, this number can
differ between parallel reservoirs of the ensemble. However, what is important in
this discussion, is that the number of photons that is present in each QONN is
unambiguously known. For every reservoir in the ensemble, this photon number
can be recursively calculated using the following formula:

nres(k) = nres(k−1)− nout(k−1) + nin (4.3)

Here nres(k) and nout(k) respectively represent the number of photons in the
QONN and in the detected state at iteration k. We see that, due to the probabilistic
sampling of the detectors, the number of photons can also fluctuate within one
reservoir of the ensemble, between different iterations.

The average value of the photon number can however easily be estimated. As-
sume for example that nin = 1 and that the number of detection modes is equal
to the number of feedback modes. Also assume that the randomly initialised phase
parameters of the QONN are such that the photons are not preferentially redirected
to the detector or to the feedback modes. Under these assumptions and after some
transient period (that will be described in Section 4.7), the average photon number
is given by:

1 +
1

2
+

1

4
+

1

8
+

1

16
+ ... = 2 (4.4)

Here, the first term corresponds to the nin photons that were injected at the last
iteration. The second term corresponds to the average number of photons that
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were injected at the penultimate iteration and that remained in the system and so
on. In general, we have a geometric series of which the average value is given by:

nin

∞∑

k=0

rk =
nin

1− r (4.5)

Here, r is the average splitting ratio of the photons, which we assume to be close
to 1/2 for mA = mB .

Figure 4.3a shows the number of photons in one reservoir of an ensemble of
size 600, during the first training iterations. We emphasise that these are iterations
of the reservoir operating procedure in which we use data from the train set. The
actual optimisation is only carried out by the linear regressor after all the data from
the train set has been processed by the reservoir. In this simulation, we use values
of nin = 1 and mA = mB = 2, such that we expect the average photon number to
be described by Equation (4.4). The orange, dashed line shows the averaged value
of nres, calculated over the total ensemble and over all training iterations. As can
be seen, there is a good correspondence with the result from the geometric series.
Figure 4.3b shows the distribution of nres, also calculated over the total ensemble
and training set. The distribution during testing is similar and is left out here.
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Figure 4.3: Simulated number of photons in the reservoir state (nres) during training
for an ensemble consisting of 600 reservoir copies. Other parameters: mA = mB =
2, N = 6 (as defined in Equation (3.4)), train set size = 1000, nin = 1, φ = π (as
defined in Equation (3.3))

As we know how many photons are in each reservoir at all iterations, we can
boson sample the single-photon matrices U(θi) using specific values of nres (re-
cursively determined) and m (defined by the architecture of the system). What
makes this observation all the more useful, is that the phase parameters Θ of the
QONN are identical throughout the ensemble and that they are kept fixed during
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the simulation. This enables us to store and re-use the boson sampling results S(Θ)
of the QONN (as defined in Equation (3.4)), for different values of nres. Doing so
avoids repeated calculations of the same permanents. After each detection, Equa-
tion (4.3) gives a new value for nres that can be used during the next iteration. If
the boson sampling result for that value of nres is already stored, it can be loaded
from memory. If not, it is calculated explicitly and stored afterwards. This program-
ming method is called ‘memoization’ [63]. This addition to the operating procedure
shifts the computational load at runtime from calculations of permanents to matrix
multiplications. This results in a clear advantage over the simulation of a regular
QONN training procedure, where the previous boson sampling results are practically
useless once the phase parameters are updated. This does however not imply that
boson sampling results which require a lot of permanents to be evaluated, cannot
be problematic anymore. These matrices still increasingly add to the computational
load of the system as their size is given by:

(
n+m− 1

m

)
×
(
n+m− 1

m

)

Note that, as a result of the photon number fluctuations, the Hilbert space on
which the reservoir operation is performed has different dimensions between different
iterations and between different reservoirs of the ensemble. This behaviour is very
unusual when comparing this system with QRC approaches on other platforms and in
some cases makes it difficult to transfer results and conclusions that were postulated
there.

4.4 Combination of input and feedback

In this section we still focus on the description of a single reservoir, but now we
describe how the input state (|ψin〉) and the feedback state (|ψfb〉) are combined at
the beginning of each iteration. The input state is present in the first mA modes of
the system and consists of nin photons, while the feedback state is present in the
remaining m − mA = mB modes and consists of nfb photons. These modes are
respectively indicated by the red and green boxes in Figure 4.1. As these subsets
of modes do not overlap, the combined state has the following form: |ψcomb〉 =
|ψin〉 ⊗ |ψfb〉. Here, ⊗ is the tensor product between the two Fock spaces on which
|ψin〉 and |ψfb〉 were defined, namely basis(nin,mA) and basis(nfb,mB).

Consider for example the case where mA = mB = 2, nin = 2 and nfb = 1.
Generally, the input and feedback state can be described by the following superpos-
itions:

|ψ0〉 = a1 |20〉A + a2 |11〉A + a3 |02〉A (4.6)

|ψfb〉 = a4 |10〉B + a5 |01〉B (4.7)

Here, we have introduced the labels A and B to denote the first mA modes and
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the last mB respectively. This leads to the following combined state:

|ψcomb〉 =
(
a1 |20〉A + a2 |11〉A + a3 |02〉A

)
⊗
(
a4 |10〉B + a5 |01〉B

)

= a1a4 |2010〉+ a1a5 |2001〉+ a2a4 |1110〉
+ a2a5 |1101〉+ a3a4 |0210〉+ a3a5 |0201〉 (4.8)

Note that this procedure can further be simplified if we choose to follow the
encoding scheme where all nin photons are sent into the same input mode. Re-
shifting the focus to the temporal XOR task, we put a1 = 1 and a2 = a3 = 0 in the
previous example if we want to encode a classical 0-bit. Conversely, we put a3 = 1
and a1 = a2 = 0 if we want to encode a classical 1-bit.

4.5 Separation of the modes and detection

The remaining segment of the quantum reservoir that we have not yet thoroughly
discussed, is the separation of the QONN output modes into the A and B modes and
the subsequent detection. By performing a detection, wavefunction collapse occurs
in the A modes of the system, which influences the remaining state in the B modes.
To understand this procedure, let us first consider the following example. Assume
that the reservoir state consists of two photons and that there are 4 reservoir modes.
The first two of these modes will be detected, while the last two modes become
the feedback modes. As we take nres = 2 and m = 4, the dimension of the Fock
basis before separating the A and B modes is equal to

(
5

4

)
= 10. Consequently, the

reservoir superposition can generally be written as:

|ψres〉 = a1 |2000〉+ a2 |1100〉+ a3 |1010〉+ a4 |1001〉+ a5 |0200〉+ a6 |0110〉
+ a7 |0101〉+ a8 |0020〉+ a9 |0011〉+ a10 |0002〉

= |00〉A ⊗
(
a8 |20〉B + a9 |11〉B + a10 |02〉B

)

+ |10〉A ⊗
(
a3 |10〉B + a4 |01〉B

)
+ |01〉A ⊗

(
a6 |10〉B + a7 |01〉B

)

+ a1 |20〉A ⊗ |00〉B + a2 |11〉A ⊗ |00〉B + a5 |02〉A ⊗ |00〉B
(4.9)

Here we have separated the detection modes (A) from the feedback modes (B)
and grouped terms that have corresponding numbers of photons in the detection
modes. As the feedback superpositions in between brackets still consist of ortho-
gonal terms, the probability to detect |00〉A is equal to |a8|2 + |a9|2 + |a10|2. In
general, the probability to sample a certain detection can thus easily be calculated
by searching for all terms in the reservoir superposition that contain those spe-
cific detection values and summing over the corresponding norm squared complex
coefficients.

Afterwards, the superposition in between brackets can be re-normalized to form
the feedback state for the next iteration. By doing so, the new norm squared
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complex coefficients add up to one. In the example above, after the detection of
|00〉, the remaining feedback state becomes:

|ψfb〉 =
1√

|a8|2 + |a9|2 + |a10|2
(
a8 |20〉B + a9 |11〉B + a10 |02〉B

)
(4.10)

4.6 Input features of the linear regressor

Having discussed the simulation of a single reservoir, we combine multiple copies
of the same reservoir into an ensemble. As explained in Section 4.1, the ensemble
can be used to approximate the expectation values of the possible outcomes at
each detection. These values serve as input features for the linear regressor. In
Section 4.6.1 we discuss this process and explain how the stochastic nature of
the photon fluctuations can lead to a different number of input features (further
simply called features) during training and testing. As is clear from Section 2.1,
this prevents the regressor from making a prediction of the desired output of the
test data. Hence, we describe how this problem can be resolved. Afterwards, in
Section 4.6.2 we show that the obtained feature values converge as the size of the
ensemble is increased and we study the fading memory of our system.

4.6.1 Feature extraction

Each iteration, all reservoirs in the ensemble lead to a specific detection in the form
of a Fock state that consists of nout photons, spread over mA modes. While mA

is clearly the same for all detections, nout is not. In order to store a feature value
for all possible detections and for all possible iterations, we store a feature matrix.
The first axis of this matrix covers all iterations, while the second axis covers all
basis states in lossy basis(nmax,mA), following the definition of the lossy basis in
Section 4.3. Here, nmax is the maximum number of photons that is detected at
once during the training procedure. Each iteration, we record the number of times
the different states in the lossy basis are observed. Those numbers are divided by
the ensemble size and stored in the feature matrix at their corresponding positions.

After constructing the feature matrix, we feed it to a linear regressor where the
different iterations are interpreted as different samples. Doing so, a weight matrix is
optimized that is used to transform the features of a certain iteration to the desired
output of the task at that iteration. After training, the test data is sent through
the reservoir and a new feature matrix is constructed. Using the optimized weight
matrix from the training procedure, we can evaluate the performance of the model.

As this last feature matrix can differ in size from the feature matrix that was
constructed during training, this leads us to a problem. Due to the probabilistic
nature of the photon number fluctuations, it is possible that a Fock state is detected
during testing that contains more photons than any of the detections did during
training. In that case, nmax is higher during testing than it was during training.
Consequently, each sample that is presented to the regressor has a different number
of features at the testing stage than it had during training, which is not possible.
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A first possible solution to this problem is to add a number of extra photons
nextra to the nmax of the training procedure, before constructing the feature matrix.
Note that the value of nextra must not depend on nmax of the testing procedure.
As, in that case, the processing of the training set would depend on the test data,
this would be a form of data leakage. Data leakage means that the model uses
information from outside the training set to perform the training, which can turn
the further estimation of the performance invalid. Alternatively, we could choose
an arbitrary constant, for example nextra = nin, but it has to be noted that this
approach also is not ideal. It is always possible that photon number fluctuations
lead to a test detection having more photons than nmax +nextra. These simulations
should then be discarded, losing all progress. For this reason, it is hard to predict a
good value for nextra and it is even impossible to find a value for which we are sure
that no simulation will ever be excluded.

A second solution to this problem, that will be used in the remainder of the thesis,
can be constructed by putting nextra back to zero. This approach relies on the fact
that the train set must be representative for the actual data. If the number of train
detections is large enough, the occurrence of test detections with an unseen number
of photons should be limited. This can be confirmed using simulations. Figure 4.4
shows the fraction of all test detections that contain a number of photons that was
not previously recorded during training. The figure shows this fraction for different
values of the train set size and the ensemble size. As the total number of train
detections scales linearly with both the train set size and the ensemble size, we see
that the train set is more representative for the actual photon number fluctuations if
we increase both sizes. Hence, we see that the fraction of unexpected test detections
lowers accordingly. Moreover, we see that less than 0.005% of all test detections
could not be captured in lossy basis(nmax,mA). As such a small fraction of the
test detections should not influence the final feature values, we further choose to
ignore these detections in the feature extraction process. In order to calculate the
fractional occurrence of a certain detection at a given iteration, we still monitor
its number of appearances and divide that number by the ensemble size, but now
we adjust the denominator by subtracting the number of ignored detections at that
iteration.
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Figure 4.4: Fraction of the test detections that contain a number of photons that
was not previously recorded during training. The results are shown as a function of
the train set size and the ensemble size. For each combination of the train set size
and the ensemble size, 10 separate reservoir intialisations were performed and the
results were averaged over these initialisations. Other parameters: mA = mB = 2,
N = 6, nin = 1, φ = π, test set size = 10 000

Note that these observations are constricted to a specific part of the parameter
space and that we do not state a priori that the number of ignored detections will
always be negligible for nextra = 0. The simulation of the system does however
indicate the frequency of this behaviour and also still allows nextra to be different
from zero, enabling the user to tune the rate of detection omissions to a reasonable
extent such that it does not influence the results. In the simulations that will be
discussed in the remainder of this thesis, nextra = 0 however proved to be a good
value.

4.6.2 Convergence and fading memory

Let us consider the values that follow from this feature extraction process as a
function of the ensemble size. Figure 4.5 shows these values at an arbitrarily chosen
iteration of the training process (iteration 750). In this figure, the estimation of
the expectation values is repeated, each time using a larger ensemble of reservoir
copies. In this example, the process is repeated up to an ensemble size of 600, after
which the feature values are sent to the regressor.
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Figure 4.5: Feature values as a function of the ensemble size, at iteration 750 of the
training procedure. Each line depicts the estimated expectation value of a certain
detection. This figure is made from a single simulation with an ensemble size of 600,
where we apply the feature extraction process of Section 4.6.1 incrementally to the
first number of reservoir copies. At the end of this procedure (right on the figure),
we find the feature values that serve as input for the regressor. Other parameters:
mA = mB = 2, N = 6, nin = 1, train set size = 1000, φ = π

Knowing that the feature values converge as a function of the ensemble size,
let us describe what information these values actually contain. For this purpose,
we have to shift our attention back to the fading memory principle. As explained
in Section 2.3, this principle also is a key concept in classical reservoir computing
and it means that the influence of input information on the reservoir state becomes
smaller the longer ago it was injected. This implies that the reservoir asymptotically
forgets its initial conditions and that only the information that was acquired during
the last iterations shapes the current reservoir state.

Moreover, this principle is a requirement for a nonlinear, dynamical system to be
used in a reservoir computing approach. As was already made clear in Section 2.3,
the range of systems that qualify for such an approach is however wide. Indeed,
in reality, this fading memory constraint proves not to be restrictive [15] and is
naturally satisfied by most systems that contain recurrent connections. In fact, the
difficulty often lies in assuring that such systems have long enough memory times.

Furthermore, let us investigate the fading memory of our system. Looking back
to the definition of the temporal XOR task, we see that, until now, the system only
needed to combine subsequent bits in order to achieve its goal. This was shown
in Table 4.1. This task can however be re-defined such that it may also require
longer memory times. We define the delayed temporal XOR task as the temporal
XOR task between the input bit of the current iteration and the input bit of D
iterations ago, where D the so-called delay. The first D bits of the output sequence
are arbitrarily chosen to be 1. As an example, the delayed XOR task with D = 2 is

32



shown in Table 4.2.

Table 4.2: An example of the desired output for the delayed temporal XOR task,
with a delay of 2. The input bits of iteration k − 2 and k are combined, leading to
a 0-bit if both inputs are equal. Otherwise, the output is a 1-bit.

Iteration 0 1 2 3 4 5 6 7

Input bit sequence 1 1 1 0 0 1 0 1

Output bit sequence 1 1 0 1 1 1 0 0

Figure 4.6 shows the mean test BER for different values of the XOR delay. These
averaged values are calculated over 10 different simulations that use a different
reservoir initialisation. At low values of the delay, we see that the resulting BER
increases with the delay. When the delay exceeds 3 iterations, the system always
scores equally well as random guesses of the output bit values. This indeed shows
that the injected information is forgotten over a number of iterations. Let us denote
this number by M . For the specific configuration of this simulation, M seems to
be equal to 4. However, we note that tuning the fading memory is known to be
an important practice in RC [15], as it should be adapted to the task at hand.
Therefore, the study of the fading memory as a function of the system parameters
is also part of the future objectives of this thesis.
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Figure 4.6: Mean test BER as a function of the delay between the input bits
of the trained temporal XOR task. For each value of D, 10 separate reservoir
initialisations were performed. Other parameters: mA = mB = 2, N = 6, nin = 1,
ensemble size = 600, train set size = 1000, test set size = 10 000, φ = π, α =
10−4 (introduced in Section 4.8)
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4.7 Boot-up cycle

Before studying how our QRC model is influenced by its parameters, we make two
different improvements to the system. The first of these improvements will be
discussed in this section and aims to remove transient phenomena at the start of
the operating procedure. These phenomena are also common in classical RC and
are unwanted as they distract the regressor from learning the task at hand. As will
become clear, this problem can simply be resolved by introducing a boot-up cycle.

During a boot-up cycle, random input data is fed into the system that is en-
coded using the same number of photons (nin) that is used in the regular operating
procedure. The reservoir simulation runs as usual, but the resulting detections are
disregarded. Afterwards, the actual train and test data is fed into the system and
the detections are stored.

Figure 4.7 shows the photon number fluctuations in the system during the first
training steps, where the bootup-cycle is indicated by negative iteration numbers.
In the simulations that will be discussed in the remainder of this thesis, a boot-up
cycle of 10 iterations proved to be sufficient to exclude the transient phenomenon.
Figure 4.7a shows the mean nres, taken over an ensemble of 600 reservoirs. Equa-
tion (4.5) gives an approximation of the average value of nres. As nin was taken to
be 1 here and mA = mB = 2, this approximation is equal to 2. In Figure 4.7a we
observe that the average value of nres fluctuates around this predicted value after
completing the boot-up cycle. This same figure also shows the standard deviation of
nres using vertical bars. As could be expected, the standard deviation is zero at the
first iteration as all reservoirs have nres = nin at that point. During the subsequent
iterations, the spread on nres rises. This is made more clear by Figure 4.7b, where
the standard deviation of nres is plotted separately. We observe that the standard
deviation rises during the boot-up cycle, after which it fluctuates around a constant
value.
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Figure 4.7: Visualisation of nres in an ensemble of 600 reservoir copies during first
training steps. (a) shows the averaged value of nres over the ensemble (dots) and
the associated standard deviation (bars). (b) shows the standard deviation of nres
separately. Other parameters: mA = mB = 2, N = 6, nin = 1, φ = π
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Let us now illustrate why the transient behaviour would limit the system if the
boot-up cycle was not added. Figure 4.8 shows the convergence of the features
as a function of the ensemble size at three different iterations. At iteration -10
we see, in accordance with Figure 4.7a, that the number of photons that can be
detected is restricted to 1. At iteration 0, we see that the number of different
states that were detected is considerably larger. In the subsequent iterations, as
can be seen for example at iteration 500, the range of different detections remains
approximately the same. We conclude that, during the boot-up cycle, the system
results in deviating feature values with respect to later iterations and that these
values need to be removed.
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(c) Iteration 500

Figure 4.8: Feature values as a function of the ensemble size, at different iterations
of the training procedure. Other parameters: mA = mB = 2, N = 6, nin = 1,
train set size = 1000, φ = π

4.8 Regularization

The second improvement that we make to the system aims to remove its sensitivity
to small feature changes. In this section, we describe how such changes can be
induced and how they can be countered by rounding the feature values before
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sending them to the linear regressor. Afterwards, a more general and common
solution to these types of problems is introduced: regularization.

As explained earlier, one of the advantages of reservoir computing is that it
only requires a simple linear regression algorithm to optimize the parameters of the
readout function. During development, this readout function however showed to be
sensitive to small changes in the input features of the regressor. These changes could
for example be induced during the feature extraction procedure, when excluding
test detections that have more than nmax + nextra photons. As was explained in
Section 4.6.1, the fraction of test detections that are excluded should be small,
such that they can be ignored. Note that choosing a higher value for nextra will
only change the feature values if states with nmax + nextra photons actually will
be detected. If not, only zeros are added to the feature matrix with respect to a
simulation with a lower value of nextra.

As the fraction of exclusions is assumed to be small, this behaviour should
only have a small influence on the feature matrix as well. This statement could
be confirmed by directly comparing feature values of simulations with and without
exclusion of detections, using different values nextra. Note that these simulations
were carried out with equally seeded random generators such that both simulations,
apart from having equal QONN phase parameters, also have equal sampling events
at the detector. As a result, the observed feature changes were solely due to the
exclusion of test detections.

Using a linear regressor, these small feature changes did however result in no-
ticeable differences in the train and test errors. Further analysis showed that even
smaller feature changes could also influence the performance of the system. A first
possible solution to this problem is to round the features to a certain number of
decimals before sending them to the regressor.

Figure 4.9 shows the change in train and test BER that is induced by adding noise
to the feature matrices, both after the feature extraction of the training procedure
and the testing procedure. The noise is uniformly distributed over [0, 10−10). 50
different reservoir initialisations are performed and for each of those initialisations,
4 optimization processes were performed, either adding noise or not and either
rounding the features to 5 decimals or not. The boxplots show the BER differences
for the different initialisations. Note that the whiskers of the boxplots stretch to
the highest and lowest calculated differences, so no outliers are shown. Also note
that the difference in BER is an actual difference, rather than a relative difference.

We observe that by rounding the features, the train and test BER are not
influenced by adding noise. This behaviour is expected as in both cases (with and
without noise) we end up with the same feature values. However, if we do not
round the feature values, the train and test BER are influenced. This behaviour
should not occur, as there is no valuable information encoded in the small feature
changes.
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Figure 4.9: The change in train and test BER that is induced by adding noise
to the feature values. The boxplots show the BER differences for 50 different
reservoir initialisations. The whiskers of the boxplots stretch to the highest and
lowest calculated differences, so no outliers are shown. The noise is uniformly
distributed over [0, 10−10). The first two boxplots were obtained by rounding all
feature values to 5 decimals before sending them to the regressor. The last two
boxplots were obtained without rounding the feature values. Other parameters:
mA = mB = 2, N = 6, nin = 1, ensemble size = 600, train set size = 100,
test set size = 10 000, φ = π

This shows that the rounding approach works as expected, but as the number
of remaining decimal places is chosen arbitrarily, it needs to be noted that this is
not a generally applicable solution. The rounding procedure did however serve as a
valuable reference point when comparing it with the next approach: regularization.

Regularization is the act of adding extra penalty terms to the cost function of an
optimization problem in order to prevent that the resulting model is tuned too closely
to its given training data set. In other words, regularization prevents overfitting [64],
such that the model is better at generalizing to previously unseen data. A type of
regularization that is often used for linear regressors, is ridge regression. Starting
from Equation (2.2), the cost function is altered as follows:

||y −X ·w||22 + α ||w||22 (4.11)

Here, α is a new optimizable parameter, also called the regularization parameter.
During training, the extra term stimulates the regressor to reduce the size of the
weights. The reason for this is that very large weights may indicate overfitting be-
haviour, as those weights draw excessive attention to a select number of features.
In Section 5.1.2 the influence of α on the performance of the system will be ana-
lysed. Anticipating the results of that section, we mention that for low values of α,
regularization yields similar results as the rounding method.
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Chapter 5

Results and discussion

In this chapter we will make use of the model that was constructed in Chapter 4.
First, in Section 5.1, we will look at the influence of different parameters of the
system with the purpose of better understanding its behaviour. Afterwards, in Sec-
tion 5.2, a discussion will ensue on the role of the repeated detections that are
performed during operation of the system. This discussion will highlight differ-
ent characteristics of our current model and will enable us to further improve the
simulation of this model.

5.1 Study of the system parameters

Before discussing the different parameters of the system, we need to note that
we currently do not optimize hyperparameters. Hyperparameters are parameters
of the system that are used to control the training process, rather than being
derived during training. As machine learning approaches often do optimize these
parameters, it is common practice to subdivide the available data set not only in
a train and test set, but also in a validation set. This validation set is used to
validate the performance of the system for different hyperparameter values and to
determine an optimal set of those values. However, since the hyperparameters are
derived using the validation data, we need to use a third, unseen data set, the test
set, to make an unbiased evaluation of a final model.

At the moment, however, we do not optimize any hyperparameters of our current
model and only distinguish between a train and test set. The reason for this is that
we do not focus on finding the optimal behaviour of our system, but we rather want
to show that the current model can be trained to solve a simple task. Further, we
want to get an understanding of the properties of this model and of where they
originate from.

Also note that we only perform the temporal XOR task with D = 1 in the
remainder of this section. Further analysis is needed to verify whether the results
in this section can be generalized to more challenging tasks.

The simulations that are discussed below were acquired using a test set size of
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10 000. This enables us to safely present the resulting test BER up to an accuracy
of 1%. This follows from the rule of thumb that we need to use at least 10/R
bits to present a certain resolution R [65]. Note that the size of the train set, as
opposed to the test set, will be changed in the analysis below.

All calculations were performed on the high performance computing infrastruc-
ture of the UGent, enabling the parallelization of simulations with different reservoir
initialisations. Note that due to the ensemble approach in principle also the sim-
ulations of the reservoir copies could be parallelized. This would however only
drastically speed up the process if the total number of reservoir initialisations would
be low. At this moment, the parallelization of the reservoir copies itself is not
implemented yet.

5.1.1 Train set size and ensemble size

Figure 5.1 shows simulation results for different values of the train set size and
the ensemble size. For every combination of these two sizes, 50 simulations are
performed, each time using a different reservoir initialisation. Figures 5.1a and 5.1b
respectively show the mean test BER and the lowest test BER, calculated over the
different initialisations. Figure 5.1c shows the fraction of reservoir initialisations
that resulted in a test BER lower than an arbitrary value of 2%. Remember that
a BER of 0% corresponds with a perfectly trained system, while a BER of 50%
means that the system scores equally well as random guesses of the output. Finally,
Figure 5.1d shows the average simulation time, also calculated over the different
initialisations.

We could expect that both a larger train set size and a larger ensemble size
would enhance the performance of the system. The reason for this is that more
data is generally better for training machine learning models [66], while a bigger
ensemble succeeds in finding more accurate estimations of the expectation values.
In Figures 5.1a, 5.1b and 5.1c, the expected relation with respect to the ensemble
size can definitely be observed, but the dependency of the test BER on the train
set size is less pronounced. However, it has to be noted that these observations are
task-dependent and that more data could be required to perform more challenging
tasks.

The increase in simulation time of Figure 5.1d results from the fact that the
total number of reservoir iterations scales linearly with the the train set size and the
ensemble size. As the test set size is fixed to a value of 10 000, the simulation time
of the reservoir operation during testing is approximately equal for all simulations.
Also note that the execution of Ryser’s algorithm requires approximately the same
time for all simulations as we use the memoization technique that was described in
Section 4.3.

We conclude that for the current model and task, a train set size larger than 1000
does not improve the performance by much. For train set sizes that are noticeably
smaller than the test set size of 10 000, say from 100 up to 1000, we observe in
Figure 5.1d that the simulation time is approximately the same. A larger ensemble
size seems to have more influence on the performance of the system, but this also
raises the simulation time. In a hardware implementation, more reservoir copies
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(for example by performing the same experiment multiple times) will also come at
a cost, leading us to a trade-off when choosing the size of the ensemble.
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Figure 5.1: Test BER and simulation time for different train set size and ensemble
size. For each combination of the train set size and the ensemble size, 50 separate
reservoir initialisations were performed. Other parameters: mA = mB = 2, N = 6,
nin = 1, α = 10−4, φ = π, test set size = 10 000

5.1.2 Regularization parameter α

In this section, the influence of the regularization parameter α on the performance
of the system will be analysed. For each of the values of the train set size and the
ensemble size in Section 5.1.1, 10 reservoir initialisations are performed. The results
for a few of these initialisations are shown in Figure 5.2, in order to discuss the main
trends that we observe. The orange and red lines respectively show the train and
test BER of the system, where we used a ridge regressor for different values of α.
These results are compared with a system that does not perform any regularization
procedure, but instead rounds the input features to 5 decimals before sending them
to a linear regressor. The train and test BER of this last regressor are respectively
depicted in green and blue.

Let us first consider Figure 5.2a. This is a result of a reservoir initialisation that
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is used to process a train set of size 10 000. The ensemble size is 2100. We see
that the train and test error approximately coincide, both for the ridge regressor as
well as for the linear regressor that uses rounded features. For the ridge regressor,
we see a rise in error as α exceeds 10−2. Although for high values of test set size
and ensemble size, this rise can be small and right-shifted (i.e. only occur at high
values of α), it will always be present. This can be understood from Equation (4.11).
When α is chosen too large, the regularization term in this cost function overpowers
the importance of the actual targets during training.

If we keep the training set at 10 000, but lower the ensemble size, we know from
Figure 5.1a that the average test BER, calulated over different reservoir initialisa-
tions, rises. Consequently, we see in Figure 5.2b that both the train and test BER
are higher when using an ensemble size of 100. Remember that this figure is the
result of a single reservoir initialisation, but on average the same conclusions can
be drawn for other initialisations. Also note that this figure is an example of where
the rise in error at high α values is right-shifted.

Lowering the train set size to 3162 (≈ 103.5) and 1000, regardless of the en-
semble size, we still see that the train and test errors coincide, both for the ridge
regressor as for the approach with rounded features. An example for a train set size
of 1000 and an ensemble size of 1100 is shown in Figure 5.2c. In some cases, the
rise in error at high α becomes left-shifted and can reach higher error values.

Lowering the train set size further to 316 and 100, the same trends are still
observed, but more cases arise where the train and test errors are substantially
different. Two such examples are shown in Figure 5.2d and Figure 5.2e. Since the
gap between train and test error is a measure for how much the model overfits, we
see that the smaller train set causes more overfitting. Moreover, in some of these
cases (of which two are shown in Figure 5.2d and Figure 5.2e), the ridge regressor
shows to improve on the approach with rounded features for a certain range of α
values.

In general, we can conclude that high α values (higher than 10−2) should be
avoided such that the regularization term in Equation (4.11) does not overpower
the training term. If the train set is relatively large, a small α value (smaller than
10−2) suffices to score equally well as the approach with rounded features. In that
case, a secure optimization of the α parameter does not add much value to the
system. At relatively low train set sizes, without making conclusions about optimal
α values, we however need to note that there is more room for improvement. In this
part of the parameter space, the model would benefit from a secure optimization
process where data is split in a train, validation and test set, as was explained in
the introduction of Section 5.1.

Note that regularization is a more general and commonly used method than
rounding the features. For unexplored parts of the parameter space and for other
tasks, regularisation may turn out to be more important than it appears to be here.
In the simulations that will be discussed in the remainder of this thesis, we use ridge
regularisation with α = 10−4, which for a train set size of 1000 gives similar results
as the rounding method.
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Figure 5.2: BER as a function of α, for different values of the train set size and
the ensemble size. The train BER and the test BER of the ridge regressor are
respectively colored orange and red. The train BER and the test BER of the linear
regressor with rounded features are respectively colored green and blue. Other
parameters: mA = mB = 2, N = 6, nin = 1, φ = π, test set size = 10 000
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5.1.3 Kerr interaction strength φ
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Figure 5.3: The test BER (a) and simulation time (b) of 100 different reservoir
initialisations as a function of φ. The whiskers of the boxplots in (a) stretch to the
highest and lowest value that were observed at each value of φ, so no outliers are
shown. In (b) the dots depict simulation times of different reservoir initialisations,
while the orange line depict the average value over different initialisations that have
the same value of φ. Other parameters: mA = mB = 2, N = 6, nin = 1,
ensemble size = 600, train set size = 1000, test set size = 10 000, α = 10−4

In this section, we perform simulations for different values of φ, which is the Kerr
interaction strength as was defined in Equation (3.3). To be more specific, for
each value of φ that we consider, we perform 100 reservoir initialisations with an
ensemble size of 600. Figure 5.3a shows the test BER as a function of φ. Note
that the whiskers of the boxplots stretch to the highest and lowest value that were
observed at each value of φ, so no outliers are shown. The grey dots depict the
separate values, while the blue line depicts the average value over those different
reservoir initialisations. Figure 5.3b shows the simulation time of the different reser-
voir initialisations as grey dots, while their average value over 100 initialisations is
depicted by the orange line. In both figures, we see that the behaviour of the system
is different at φ = 0. As is clear from Equation (3.3), φ = 0 corresponds with the
situation where there are no single-site nonlinearities in the QONN.

Note that most of the dots in Figure 5.3b coincide. This figure is alternatively
plotted using a cumulative distribution function in Figure B.3a of Appendix B.
However, for now, we do not focus on the actual distribution of the different values
at the same value of φ. Instead, we want to stress the significantly higher spread
of values for different initialisations at φ = 0. Without nonlinearities in the QONN,
the initialisation-dependence of both the test BER as the simulation time seems to
be stronger.

Moreover, the removal of the nonlinearities also appears to influence the fluctu-
ations of the photon number of the reservoir state (nres), as is depicted in Figure 5.4.
In Figure 5.4a and Figure 5.4b we respectively see the average value of nres and
the size of its fluctuations (quantified by the standard deviation of nres), calcu-
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lated over the complete training procedure. Again, boxplots are used to show how
mean(nres) and std(nres) vary for different reservoir initialisations and we see that
the behaviour at φ = 0 stands out. We notice that mean(nres) is remarkably less
initialisation-dependent at φ = 0, while the corresponding values of std(φ = 0) are
more initialisation-dependent. In Figure 5.4c we see the maximum value of nres
that occurred during training. As these values are integers, different reservoir ini-
tialisations are grouped into a single dot if they coincide on the figure. The area
of the dots is proportional to the number of reservoir initialisations that they rep-
resent. Again, we see an increased initialisation-dependence at φ = 0. max(nres)
is interesting, as high values for nres lead to more time-consuming boson sampling
procedures and matrix multiplications. This therefore explains the outlier values
with long simulation times in Figure 5.3b.

We conclude that the single-site nonlinearities in the QONN influence the photon
number fluctuations and the initialisation dependence of the test BER and the
simulation time. Although the underlying reason for this is unclear at the moment,
we remark that this behaviour is unwanted as we want to initialise the QONN
randomly.

What is also unclear at the moment, is whether there is a direct link between the
photon number fluctuations and the performance of the system. If such a link were
to exist, it could give us more insight in the behaviour of our system and possibly
show us ways to boost the performance. Consequently, it is required to perform a
more thorough analysis of photon number distribution as a function of the different
system parameters.
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Figure 5.4: The mean (a), standard deviation (b) and maximum (c) of the number
of photons in the reservoir state, calculated over all reservoir copies and over all
training iterations. The results for 100 different reservoir initialisations are plotted
as a function of φ. The whiskers of the boxplots in (a) and (b) stretch to the highest
and lowest value that were observed at each value of φ, so no outliers are shown.
In (c) the results of different reservoir initialisations are grouped in a single dot if
they lead to the same value for max(nres). The area of the dots is proportional
to the number of reservoir initialisations that they represent. Other parameters:
mA = mB = 2, N = 6, nin = 1, ensemble size = 600, train set size = 1000,
test set size = 10 000, α = 10−4

Let us now also take a more careful look at the distribution of the test BER for
different reservoir initialisations. In Figure 5.3a it seems like the overall initialisation-
dependence, regardless of the value of φ, is rather high. In order to study this
better, we look at Figure 5.5a, where a cumulative distribution function is given as
an alternative, more accurate representation of the boxplots in Figure 5.3a, using
the same ensemble of 600 reservoir copies. As the results are similar for positive
and negative φ values, only positive ones are depicted. For each BER value ε on
the x-axis, the fraction of reservoir initialisations is plotted that leads to a test BER
lower than ε.

In classical RC systems, after fully optimizing the system (not the case yet
in this thesis), typically 95% to 99% of all initialisations lead to a near perfect
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test BER (≈ 0%) [67]. In Figure 5.5a, the initialisation dependence however is
noticeably stronger. At best (for φ = 0.94), ε only lies at 16% if we consider the
best performing 95% of all initialisations.

Figure 5.5b shows the same cumulative distribution function, where all para-
meters are unchanged, except for the ensemble size, which is put at 2100. For this
larger ensemble, we observe similar behaviour as in Figure 5.3 and Figure 5.4. We
see, in accordance with Figure 5.1c, that the initialisation-dependency weakens by
increasing the ensemble size. For example, here we find that at best (again for
φ = 0.94) 95% of all reservoirs result in a test BER that is lower than 6%.

Note again that the system is not fully optimized at this point and that fur-
ther analysis will need to performed in order to derive whether the initialisation-
dependence can be reduced to equal standards as in classical systems or whether
this dependency is an an intrinsic feature of this system.
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(a) ensemble size: 600
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(b) ensemble size: 2100

Figure 5.5: Cumulative distribution function (CDF) of the fraction of simulations
(with different reservoir initialisation) below a certain BER value. For each BER
value ε on the x-axis, the fraction of simulations is plotted that leads to a test BER
lower than ε. Other parameters: mA = mB = 2, N = 6, nin = 1, train set size =
1000, test set size = 10 000, α = 10−4
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5.1.4 Number of QONN layers N

1 2 3 4 5 6 7 8 9 10
N

0.0

0.2

0.4

0.6

0.8

1.0

BE
R

(a)

1 2 3 4 5 6 7 8 9 10
N

0

2

4

6

8

10

sim
ul

at
io

n 
tim

e 
[h

ou
r]

(b)

1 2 3 4 5 6 7 8 9 10
N

0.0

0.2

0.4

0.6

0.8

1.0

BE
R

0

(c)

Figure 5.6: The test BER (a,c) and simulation time (b) of 100 different reservoir
initialisations as a function of N . For (a) and (b), φ = π. The whiskers of the
boxplots in (a) stretch to the highest and lowest value that were observed at each
value of N , so no outliers are shown. In (b) the dots depict simulation times of
different reservoir initialisations, while the orange line depict the average value over
different initialisations that have the same value of N . In (c) the mean test BER of
(a) is compared with the mean test BER of simulations that are performed similar
to (a), but where φ is put to zero. Other parameters: mA = mB = 2, nin = 1,
ensemble size = 600, train set size = 1000, test set size = 10 000, α = 10−4

Let us again put φ equal to π and see how the system behaves for a different numbers
of layers in the QONN (N). Figure 5.6 shows the test BER and the simulation time
as a function of N , for 100 different reservoir initialisations. Similar to Figure 5.3b,
for each value of N the test BERs of different initialisations are presented in a box-
plot, while the simulation time for different initialisations is given by grey dots. The
orange line again shows the average simulation time. An alternative representation
of the simulation time, using a CDF, is shown in Figure B.3b of Appendix B. Note
that the range of values on the y-axis of Figure 5.6b is made smaller than was the
case in Figure 5.3b in order to differentiate more easily between different outliers.

Figure 5.6c shows the mean of the boxplots in Figure 5.6a and compares them
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with the mean test BER of a similar set of simulations where the only difference is
that φ = 0

We see that the initialisation-dependence of the results is stronger at N =
1. This can be associated with the discussion in Section 5.1.3, as the QONN
configuration is defined by Equation (3.4), where each layer is composed of a linear
interferometer and a nonlinear Kerr layer. As single-site nonlinearities are only
added in between interferometers, the number of times we perform a single-site
nonlinearity on all of the modes is equal to N − 1. Consequently, for N = 1 there
are no nonlinearities and the situation is similar to the one at φ = 0 in Figure 5.3b.
Consequently, the results in Figure 5.6c coincide at N = 1.

The photon number fluctuations that correspond with Figure 5.6 are depicted
in Figure 5.7, following the same conventions as Figure 5.4. Again, we see that
the removal of the nonlinearities from the QONN leads to stronger initialisation-
dependence of the test BER and the simulation time, while having a weaker initialisation-
dependence in mean(nres) and a stronger initialisation-dependence in std(nres) and
max(nres).

Additionally, note that for φ = 0 in Figure 5.6c the mean test BER also is higher
at N = 1. As was explained in [61], a possible explanation for this would be that a
QONN can perform more complex transformations if it possesses more layers. We
conclude that the increase in mean test BER at N = 1 for φ = π in Figure 5.6c
is due to two superimposed effects and that N should be chosen large enough to
avoid them both. Knowing this, we further expect that more difficult tasks would
require increasingly large values of N .
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Figure 5.7: The mean (a), standard deviation (b) and maximum (c) of the number
of photons in the reservoir state, calculated over all reservoir copies and over all
training iterations. The results for 100 different reservoir initialisations are plotted as
a function of N . The whiskers of the boxplots in (a) and (b) stretch to the highest
and lowest value that were observed at each value of N , so no outliers are shown.
In (c) the results of different reservoir initialisations are grouped in a single dot if
they lead to the same value for max(nres). The area of the dots is proportional to
the number of reservoir initialisations that they represent. mA = mB = 2, nin = 1,
ensemble size = 600, train set size = 1000, test set size = 10 000, α = 10−4

5.2 Collapse as part of system dynamics

As is clear from the previous sections, wavefunction collapse is an important part of
the reservoir dynamics. However, these repetitive and probabilistic measurements
form a particularly unconventional mechanism in the context of classical reservoir
computing. Here in our quantum case, the measurements mainly have two con-
sequences. The first one, as was explained in Section 4.3, is that nres is exactly
known at each iteration, allowing us to simplify the boson sampling procedure. The
second one, stemming from the probabilistic nature of these detections, is that ex-
act duplicates of a reservoir give rise to different results when the same input data
is fed into them, which led us to an ensemble approach.

Until now, we have simulated such a measurement at the end of every iteration.
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In this section, however, we will consider a modified version of our model where
we remove all detections, except from the last one. We call these detections the
intermediate detections. At first glance, it seems that by doing so there is no longer
a way to extract information at each iteration. However, the opposite is true. In
the remainder of this section, we first discuss a procedure that does manage to
do this and that was previously introduced in Ref. [39]. Although it will soon
become clear that this procedure does not contribute to the efficiency of a hardware
implementation of our system, its discussion will show us a number of characteristics
that are typical for the platform that we use. Moreover, after a mathematical
comparison of the procedure with and without intermediate detections, we will be
able to deduce how we can improve our current simulation and how a hardware
implementation without intermediate detections can serve as a useful research tool.

5.2.1 Procedure without intermediate detections

Assume that we remove all intermediate detections from the procedure and only
detect at the very end. A way to still extract information from the system at all
iterations is to repeatedly restart the simulations, and letting the system each time
run for a longer number of iterations before making the final detection and stopping
the system. In other words, we perform as many reservoir initialisations as there were
iterations in the previous procedure and we always postpone the measurement until
the end of the experiment. Note that, as we eventually still perform a measurement,
we still need to prepare an ensemble of reservoir copies.

In Ref. [39], this procedure was performed using superconducting qubits on an
IBM quantum processor [40]. It goes without saying that it is a lengthy procedure
which limits the capacity of the system. In the paper, this approach was however
followed because of hardware restrictions. More specifically, the IBM quantum
processor did (at that time [68]) not allow for ‘qubit reset’, which is the action of re-
using a qubit after it is measured. Instead, all measurements on this processor were
supposed to be performed at the end of each experiment. In reservoir computing,
qubit reset can for instance be desired in order to re-use qubits that were detected at
a certain iteration to encode input data of the subsequent iteration. By doing so, all
qubits of the system are utilised during every iteration. Similar to the IBM quantum
processor, some other NISQ devices also do not support qubit reset, limiting the
number of measurements that can be performed and therefore also limiting the
optimal use of the resources when performing QRC.

Although the proposed procedure is lengthy, Ref. [39] also proposes an import-
ant improvement to simplify it, based on the so-called ’convergence property’. In
essence, this convergence property is nothing more than the fading memory prin-
ciple, meaning that the initial conditions of the reservoir are forgotten over M
iterations. However, as we do not detect intermediately here, reservoirs with dif-
ferent initial conditions now lead to approximately equal reservoir states after M
iterations, assuming that the same input data is fed into them during that period
of time. As a result, the operating procedure does not always need to be restarted
from iteration 1. Instead, it can be restarted M iterations before the iteration at
which the measurement is performed, making use of an arbitrary initial reservoir
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state.
Furthermore, Ref. [39] emphasises that intermediate detections, which could

not be used as qubit reset could not be performed, would greatly reduce the total
number of reservoir operations and therefore boost the efficiency. Consequently,
also in this thesis a hardware implementation without intermediate detections will
not boost the performance of our system. However, by removing the intermediate
detections, it will turn out that its simulation can be made more efficient.

5.2.2 Comparison of both procedures: with and without inter-
mediate detections

Density operators and the partial trace

Let us return our attention to our current set-up. Before we can give a mathematical
description of this system, both with and without intermediate detections, we are
required to introduce two concepts: the density matrix and the partial trace. In
order to introduce these concepts in a simple way and to introduce some notations
that we will use in the remainder of this section, we first briefly look back to the
detection procedure that was presented in Section 4.5. In that section, we assumed
the following expression for the reservoir state:

|ψres〉 =a1 |2000〉+ a2 |1100〉+ a3 |1010〉+ a4 |1001〉+ a5 |0200〉
+ a6 |0110〉+ a7 |0101〉+ a8 |0020〉+ a9 |0011〉+ a10 |0002〉 (5.1)

Assume that this state is the reservoir state in the first iteration of the process.
Following the example in Section 4.5, we detect µ = |00〉A with a probability of:

P (µ) = |a8|2 + |a9|2 + |a10|2 (5.2)

which leads to the following feedback state:

|ψ(00)
fb 〉 =

1√
|a8|2 + |a9|2 + |a10|2

(
a8 |20〉B + a9 |11〉B + a10 |02〉B

)
(5.3)

Here, we have introduced the notation |ψ(µ)
fb 〉 = |ψ(n1n2)

fb 〉 = |ψ(n1n2)
fb 〉

B
to describe

the remaining feedback state after detecting µ = |n1n2〉A. Note that we drop the

subscript B for simplicity and that all Fock terms in |ψ(µ)
fb 〉 contain an equal number

of photons, as was discussed in Section 4.3.

It also has to be noted that this process could equivalently be described using
density matrices. A density matrix is a generalized representation of a quantum state
that is often used in quantum computing. While state vectors can only describe
so-called ‘pure states’, density matrices can also describe ‘mixed states’. Mixed
states can arise when the preparation of the system is not fully known, leading to
a so-called statistical ensemble of possible preparations. As a result, the density
operator of a pure state can be written as an outer product of a single state vector
ρ = |ψ〉 〈ψ|, while a mixed state is described by a weighted average of such outer
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products ρ =
∑
j pj |ψj〉 〈ψj |. Here, ψj is prepared with a probability pj , as defined

by the statistical ensemble. As will become even more clear in the mathematical
description of the next section, this ‘statistical ensemble of possible preparations’ is
closely related to the ensemble of reservoir copies that we introduced in Section 4.1
in order to account for the different possible measurement outcomes at the detector.

While the density operator is an alternative mathematical representation that
can be used to account for multiple preparations of the same system, it generally
also requires us to simulate the detection procedure. As we already know from
Section 4.5, if we perform intermediate detections, we can continue to use the state
vector representation if we want to. This shows that we are working with pure
states, as the state vector only gives rise to a single outer product in the density
operator.

Let us consider how the description of the detection procedure is performed in
the density operator formalism [3][69]. As was the case in Section 4.5, we first
measure a certain state µ and then calculate the remaining feedback state. It turns
out this is described by the following equation:

P (µ) = tr
[
ρresO

]
= tr

[
ρres |µ〉 〈µ|

]
(5.4)

Here, ρres = |ψres〉 〈ψres| if we consider the pure state from Equation (5.1) and
O = |µ〉 〈µ| is a so-called measurement operator. tr[ρ] = trAB [ρ] =

∑
i ρii is

called the trace of ρ and sums all its diagonal elements. Note that the subscript
AB can be added to stress the fact that the trace is performed on all A and B
modes here. The remaining feedback state turns out to be given by:

ρfb =
OρresO

tr[ρresO]
(5.5)

Finally, in order to introduce the last concept of the density operator formalism
that we will need, briefly assume that we do not perform intermediate detections
anymore, but that the A modes still leave the system. In order to calculate the
remaining feedback state, we need to calculate a partial trace. This is a generalized
form of the trace that was introduced earlier and it allows us to describe density
matrices of bipartite systems, i.e. systems that operate on a Hilbert space that is
formed by taking a tensor product of two smaller Hilbert spaces. In this particular
case, the smaller Hilbert spaces are defined on the A and B modes. In order to
consider the state on the B modes, we need to trace over the A modes of the
system:

ρfb = trA
[
ρAB

]
=
∑

µ
A〈µ |ρAB |µ〉A (5.6)

Here, ρAB = ρres. Note that A〈µ| · · · |µ〉A only operates on the A modes, such
that we get a feedback density matrix in the B modes, rather than a number
(as was the case in Equation (5.4)). Furthermore, µ runs over all possible Fock
states in the A modes. If we know for example that nres = 2 and mA = 2, then
µ ∈ {|00〉 , |10〉 , |01〉 , |20〉 , |11〉 , |02〉}.
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Mathematical comparison

Let us generalise the results from Section 4.5 starting from a general pure reservoir
state instead of the specific state of Equation (5.1) and subsequently shift to the
density operator formalism. This will facilitate the comparison with the approach
without intermediate detections further in this section. Although the description
below is partly based on Section 4.5, afterwards the same results will be derived
generally and independently in Appendix C.

In the first iteration we will always have a pure reservoir state. Generally we can
describe this state by:

|ψres(k = 1)〉 =
∑

κ

|κ〉A ⊗
(∑

σ

a(κ)σ |σ〉B
)

(5.7)

Here, κ is a basis state of the Fock basis on the A modes, while σ is a basis state
of the Fock basis on the B modes. Note that the complex coefficients are labelled
with the basis states they are associated with, rather than with arbitrary integers.
Also note that we will no longer write the iteration number as an argument in the
following equations. This notation will however be repeated at the start of the
second iteration.

Assume that we detect a certain µ on the A modes. Similar to Equation (5.2),
the probability of this event is given by:

P (µ) =
∑

σ

∣∣a(µ)σ

∣∣2 (5.8)

Similar to Equation (5.3), this leads to the following feedback state:

|ψ(µ)
fb 〉 =

1√∑
σ

∣∣a(µ)σ

∣∣2
∑

σ

a(µ)σ |σ〉B (5.9)

Combination with the input state of the second iteration and transformation of the
QONN (described by Equation (3.4)) leads to:

|ψres(k = 2)〉 = S
(
|ψin〉 ⊗ |ψ(µ)

fb 〉
)
S† (5.10)

As we performed an intermediate detection, this state is again pure and can hence
alternatively be described by the following density matrix:

ρ(µ)res (k = 2) = S
(
|ψin〉 〈ψin| ⊗ |ψ(µ)

fb 〉 〈ψ
(µ)
fb |
)
S† = S

(
ρin ⊗ ρ(µ)fb

)
S† (5.11)

Note that, after detecting a certain µ, we know how many photons are present

in ρin ⊗ ρ(µ)fb and we can calculate the matrix S using a certain basis(nres,m).
According to Equation (5.4), we find the following expectation values:

〈O〉(µ) = trAB

[
ρ(µ)res O

]
(5.12)

where O = |µ′〉A A〈µ′|.
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Note that, although Equation (5.8) and Equation (5.12) both describe the prob-
ability of a certain detection (of µ and µ′ respectively), we adapt a different notation
in both equations to stress the fact that we are interested in the expectation values
of the second iteration. The idea is to compare these expectation values with their
corresponding expression in the procedure without intermediate detections.

The process described above is summarized in Figure 5.8 using a probability
tree. With a probability of P (µ), we are led to the outcome |µ〉A at the end of the
first iteration. Knowing this detection has taken place, we are led to the detection
|µ′〉A at the end of the second iteration with a probability of 〈O〉(µ). In this figure,
only five possible measurement outcomes are drawn at each iteration. Note that in
general, this will not be the case, as the number of possible outcomes depends on
the values of nres and mA. Keeping into account all possible states µ that can be
detected at the intermediate measurement, we find the (unconditional) expectation
values of µ′:

〈O〉 =
∑

µ

P (µ) 〈O〉(µ) (5.13)

〈O〉(µ)

P (µ)

First detection
outcome µ

Second detection
outcome µ′

Figure 5.8: Schematic representation of the procedure with initermediate detections.
The outcome |µ〉A is obtained with probability P (µ). Given a certain |µ〉A, the
probability of detecting |µ′〉A at the end of the second iteration is 〈O〉(µ).

In order to complete this comparison, we remove all intermediate detections,
following a similar procedure as the one introduced in Ref. [39]. More specifically,
we assume that the detection modes still leave the system, but are only detected at
the final iteration, keeping in mind that we need to reset the system afterwards.

Again, we start from a general pure reservoir state state. As we need to perform
a partial trace to describe the separation of the A and B modes, we first write the
reservoir state as a density operator:

ρres(k = 1) = |ψres〉 〈ψres| (5.14)

According to Equation (5.6), the feedback density matrix is given by:

ρfb = trA
[
ρres
]

=
∑

µ
A〈µ |ρres|µ〉A

=
∑

µ

(∑

σ

∑

τ

a(µ)σ a(µ)τ

∗ |σ〉B B〈τ |
)

=
∑

µ

P (µ) |ψ(µ)
fb 〉 〈ψ

(µ)
fb | (5.15)
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where we used the expression of Equation (5.7) for |ψres〉. Note that τ also is a

basis state of the Fock basis on the B modes. P (µ) and |ψ(µ)
fb 〉 are respectively the

same as in Equation (5.8) and Equation (5.9). However, note that ρfb is not a pure
state anymore, but rather behaves like a statistical ensemble of ‘collapsed states’.

Combination with ρin = |ψin〉 〈ψin| of the second iteration and transformation
by the QONN leads to:

ρres(k = 2) = S (ρin ⊗ ρfb)S† =
∑

µ

P (µ)S
(
ρin ⊗ ρ(µ)fb

)
S† (5.16)

Note that this expression again contains the boson sampling result of the QONN.
For ease of notation, this matrix is simply still denoted by S. In reality, this matrix
however differs between terms as it operates on a different number of photons,
leading to Hilbert spaces of different size. Also note that removing the intermediate
detections requires us to use the density operator formalism in order to perform the
partial trace. With intermediate detections, the use of these density matrices was
also possible, but not required.

Finally, by applying Equation (5.4), we find that the resulting expectation values
can be written as a function of 〈O〉(µ), as defined in Equation (5.12):

〈O〉 = trAB
[
ρresO

]
=
∑

µ

P (µ) trAB

[
ρ(µ)res O

]
=
∑

µ

P (µ) 〈O〉(µ) (5.17)

where O = |µ′〉A A〈µ′| and ρ
(µ)
res is the same as in Equation (5.11). Comparing

Equation (5.13) and Equation (5.17), we conclude that the final expectation values
are identical in both procedures, regardless of whether we perform intermediate
detections.

However, as we have already noted, the remaining feedback state is now mixed
rather than pure. Hence, if we want to prove that the expectation values are identical
for procedures longer than two iterations, we have to repeat this mathematical
description, starting from a general mixed state at a general iteration k. As this
proof is similar to the one above, it is provided in Appendix C.

Interpretation

The acquired result can be interpreted as follows: when performing an intermediate
measurement, in effect we follow a specific branch from the probability tree that is
defined by the complex coefficients of the state in front of the detector. Without
these intermediate measurements, all these possible branches are kept into account
until the last iteration, by means of a mixed state which is connected to a statistical
ensemble. As both approaches lead to the same expectation values and as these
expectation values are the input of the regressor, both approaches also lead to the
equally performing systems.

Note that this result was not expected to be true in advance. For example, Ref.
[42] also uses intermediate detections and although it does not go into detail about
its consequences, it mentions that detections can also be a source of computational
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power. Moreover, they can be a source of nonlinearity, as is also the case in Ref.
[70]. The fact that detectors can induce nonlinearity is for example also applicable
to classical photonic systems, where complex amplitudes are converted into real-
valued power levels by squaring the magnitude of the complex representation of
the coherent light signal [71]. Nonlinearity is important, because it has already
proven to be beneficial to tackle different computational tasks in classical reservoir
computing [72]. The controlled erasure of information can even be used to tune
the fading memory, a technique that was also implemented in Ref. [39].

From the earlier mathematical comparison we see that the removal of the in-
termediate detections does in fact not remove any nonlinearity in this model. As
nonlinearity is connected with the removal of information, as is for example the case
when you intentionally remove information to create nonlinearity [39], the reason
why our system is unaltered can be attributed to the fact that the A modes still
leave the system. In other words, as we eventually describe all possible preparations
of the system, both in the approach with and without intermediate detections, we
lose as much information when performing a partial trace as when performing a
detection.

Note that other quantum computing approaches often have stationary quantum
states instead of states that move in space. In that case no information leaves the
system without intermediate detections. Consequently, it can be assumed that the
fact that we lose as much information with as without intermediate detections is a
characteristic of this QRC approach.

5.2.3 Consequences for the simulation

A more efficient simulation of the ensemble

As follows from the discussion above, the removal of the intermediate detections
has two major implications for the simulations.

On the one hand, we notice that the value of nres no longer is exactly known in
each of the reservoir copies, since we no longer extract a certain number of photons
at the end of each iteration. As a result, we are required to use the lossy basis that
was introduced in Section 4.3.

On the other hand, we are not able to describe the system with state vectors
anymore, but instead we use density matrices. As was discussed in the previous
section, the reason for this can be found in the mixed states that emerge at the first
partial trace. These mixed states, which appear to behave like a statistical ensemble
of collapsed states, can only be described by density operators. By doing so, we can
account for the different possible preparations of the system by only using a single
density matrix. This contrasts with the approach with intermediate detections, as
there, the detector ensured that the reservoir state remained pure. Note however
that, although we no longer need to describe different reservoir copies during the
simulation, these copies do still need to be prepared in reality as we perform a
measurement at the final iteration.

Also remember that in reality, if we do not perform intermediate detections, we
need to restart the system after performing the final measurement, preventing us
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from extracting information in further iterations. Luckily, we are able to circumvent
this problem during the simulation. Although, in reality, we are bound to the no-
cloning theorem [73] which states that it is impossible to create an independent
and identical copy of an arbitrary unknown quantum state, in our simulation we
can make such copies. This leads us to an alternative simulation method for which
we iterate over the complete data set, without restarting the system and without
intermediate measurements, while constantly making a copy of the reservoir density
matrix. Afterwards, we can calculate the expectation values at each iteration from
these copies.

Photon number threshold

As mentioned before, this new simulation method utilises the lossy basis that was
introduced in Section 4.3. As a result, we need to choose a value for nthr. Even
though the use of such a threshold is common in photonic quantum computing, we
notice here that its arbitrary nature becomes more problematic in the context of
temporal training procedures, such as QRC.

As we do not perform intermediate detections, at first sight, we need to account
for all possible measurement outcomes at the detector, no matter how small their
probability. Each iteration, the possibility exists that no photons leave the system,
in theory leading to a value of nthr that rises with the number of iterations. As
both the computational cost of boson sampling and the dimensions of the boson
sampling results scale exponentially in n, this would lead to unfeasible computing
times.

However, if we do introduce a finite threshold value, we need to exclude events
artificially from the density matrix that contain more photons than nthr, after which
we need to re-normalize the resulting density matrix. As compared to the approach
with intermediate detections, it is however more difficult to estimate which values
of nres are realistic. Although the reservoir state dictates the probability of a cer-
tain preparation, these probabilities are only calculated as we progress through the
simulation. In general, as we are working with an approximation of the real density
matrix, it is harder to know when the threshold starts to influence the results of
our simulation. We expect the approximation to become worse for lower thresholds,
while higher thresholds can result in long simulation times.

Consequently, when implementing the new simulation method, it would be ne-
cessary to have a thorough understanding of the photon number fluctuations. For
this purpose, the currently existing simulation (with intermediate detections) can be
used to simulate realistic values for nres, using the same parameter values in both
simulations. Ultimately, the threshold can be set at nmax, the maximum number of
photons during training with intermediate detections.

As our system utilises a quantum state that moves in space, these photon number
fluctuations and the arbitrary choice of the threshold value seem to be typical for
the platform that we use. For that reason, it is part of our future objectives to study
these mechanisms more.
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5.2.4 Consequences for a hardware implementation

To conclude this chapter, let us leave the simulations behind and reconsider a
hardware implementation without intermediate detections. As is clear by now, such
an implementation would require us to reset the system a number of times. Although
this restriction is relaxed by the convergence property (as explained in Section 5.2.1),
it still limits the efficiency of the system.

However, the implementation without intermediate detections can be useful for
another reason. As was discussed in Section 2.4.1, strong projective measurements
can, in addition to their expected probabilistic behaviour, also induce back-action
due to non-idealities in the implementation of the detector. At the moment, it is
however unclear to what extent these non-idealities would influence the performance
of the system. As the set-up with and without intermediate detections ideally would
lead to the same expectation values, a comparison of their hardware implementations
could serve as a useful tool to study this effect.

A hardware implementation without intermediate detections would however not
be easy to implement. Note that photons leaving the system still remain entangled
with the reservoir. If these emitted photons are unwillingly manipulated of measured,
the state of the reservoir can be altered. Ideally, the decoherence of these photons
would therefore be prevented until the end of the experiment, but no further research
has been done here to determine if and how this can be done. This shows that, as
opposed to quantum platforms with stationary reservoir states, on this platform a
hardware implementation without intermediate detections is less obvious.
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Chapter 6

Future outlook

In this chapter, we take a look at the future objectives of this thesis. We will
present some extensions that could increase the efficiency of the current model
and also discuss some elements of the the system that would benefit from a more
in-depth analysis.

6.1 Photon fluctuations

As is clear by now, the photon number fluctuations, which are typical for the platform
that we use, greatly impact the simulation time of our model. Moreover, as appears
to be the case in Section 5.1.3 and Section 5.1.4, they also seem to influence the
performance of our system. However, whether this actually is the case and how this
link is established is unsure at the moment.

Therefore, it would be interesting to study these fluctuations for different para-
meters of our system. Doing so could give more insight in the behaviour of the
system and possibly lead to new methods to shape these fluctuations and boost the
performance.

Also in Section 5.2.3 we emphasised the relevance of such a study, as the al-
ternative simulation with density matrices requires us to choose a realistic value
for nthr. Even though the currently existing simulation could be used to estimate
such a threshold value, it would be beneficial to perform such an estimation without
performing an additional simulation.

6.2 Optical loss and decoherence

An important factor in real photonic systems is that they can suffer from optical
losses. In order to estimate the influence of these losses on the performance, it
could be simulated that photons leave the system with a certain probability.

At first glance, it might be expected that this will limit the performance of the
system severely. However, as is known to be the case for photonic quantum neural
networks (QNNs) [74], it can be expected that our system can compensate for this
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effect. In fact, deliberately adding loss to a QRC system has also proven to enable
for tuning of the system’s memory, similar to the effect of resetting qubits in a
qubit-based system [39]. Moreover, it could prevent overfitting [75]. These remarks
emphasise the relevance of including photon loss in our simulations.

Note that photon loss is a form of ‘amplitude damping’, which in turn is a type of
‘decoherence’. As explained earlier, decoherence is the loss of quantum coherence,
meaning that information encoded in the state of the system uncontrollably becomes
entangled with its environment. The most important counterpart of amplitude
damping, is ‘dephasing’, where no photons are lost, but the environment adjusts
the relative phases of the system’s state. Similar to photon loss, dephasing also
removes information from the system and it can therefore be expected to have a
similar influence on the performance.

How we will implement these phenomena depends on the simulation method.
In the current simulation method, using reservoir copies, a simple first step would
be to introduce loss events explicitly, removing a number of photons from a certain
reservoir with a certain probability. For this purpose, we would need to put forward
a scheme that changes the superposition in that reservoir to a new superposition
that only contains Fock states with the new photon number. By doing so, we ensure
that in each reservoir we still know the exact value of nres and we do not need to
use a lossy basis. Additionally, the scheme could also change the relative phases of
the Fock terms, simulating the dephasing process. How such a scheme should be
constructed to provide a realistic description of both processes, would in this case
become an important additional research question.

However, if we would use the alternative simulation method of Section 5.2.3
instead, we would need to model these phenomena in another way. As here, we
are working with density matrices that cannot be written as a single superposition
of Fock states, we would need to put forward a more advanced operation scheme.
Although creating such a scheme may seem like a burden, luckily, we can also make
use of existing decoherence models [30] that have already proven to give an accurate
description of these phenomena.

Note that these existing decoherence models are more common in quantum
optics and should be considered the correct standard. Although, in the light of
Section 5.2, we expect that the previously proposed ‘loss events’ also give realistic
results, without introducing uncertainty of n, further research must be carried out
to show whether this actually is the case.

6.3 Input encoding

As was explained in Section 2.4.1, an important property of all QRC platforms is
that they show an exponential growth in Hilbert space dimensions when increasing
the number of quantum elements, which plays a decisive role in their performance
[35]. The main objective of QRC is to boost the efficiency of a computation by
exploiting this large number of degrees of freedom (DOF) that is present even for
small networks. The degree to which it is possible to exploit such DOFs however is
not only determined by the size of the Hilbert space.

60



An important example of this are input encodings, which are known to play a
decisive role in QML [76]. Although in this thesis, we have not focused strongly
on maximally optimizing the system (remember, for example, that we did not fit
any hyperparameters), this is a future goal. By doing so, a study of the possible
input encodings will also become necessary. A first starting point for this could
be to introduce an additional QONN in front of the current QONN, operating on
the A modes and hence transforming the input states before guiding them to the
reservoir. Furthermore, the parameters of this new QONN can be optimized.

6.4 Gaussian boson sampling

One of the main issues of boson sampling with Fock states is that it can be difficult
to generate these states. This results from the fact that most set-ups use spon-
taneous parametric down-conversion to generate single photons. As was introduced
in Section 3.2, these single-photon sources utilise heralded photon pairs that are
generated with a certain probability. As a result, we do not receive a single photon
whenever we trigger the source, but we do know when the single photon is gen-
erated. This contrasts sharply with the class of deterministic photon sources that
can generate photons ‘on-demand’. However, these deterministic sources are more
difficult and costly to make.

As a result, when using probabilistic single-photon sources, we have to wait until
all photon sources emit a photon simultaneously in order to generate a certain Fock
state. The average time to generate such a Fock state hence scales exponentially
with the number of photons it contains.

However, boson sampling can also be performed without Fock states. Instead,
we can use Gaussian states, more specifically single mode squeezed states, which
can be generated simultaneously and on-demand. These states are used as input for
a boson sampling set-up, using a linear interferometer and single-photon detectors.
This procedure is called Gaussian boson sampling. It was first introduced in Ref.
[77].

In contrast to regular boson sampling, in this case the probability of a certain
output pattern of photons is connected to the hafnian function, which is a gen-
eralization of the permanent function that we introduced before. The calculation
of such hafnians also falls within the P# complexity class, showing that Gaussian
boson sampling produces problems that are ‘equally hard’ as boson sampling with
Fock states.

As a result, Gaussian boson sampling can be seen as a more practical version of
boson sampling with Fock states, that is implemented with a very similar set-up.
For this reason, it would be interesting to study how the introduction of Gaussian
states would influence the results that were acquired in this thesis.
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6.5 Capacity measures

Up to now, we only considered a simple classical task in order to study the system.
This does not suffice to quantify the potential of the system to exploit its Hilbert
space. Such an analysis would require the use of a so-called capacity measure.
Capacity measures enable us to study what kind of linear and nonlinear memory
functions a given system can approximate (often called the ‘expressive power’ of
a system). The most common example of such a measure, is the Information
Processing Capacity (IPC) [78].

Recently, in Ref. [79], a capacity analysis of various parameterized quantum
circuits was published, also showing how the capacity scales with the number of
qudits that are used. This analysis could be used to compare a future capacity
study of our own system.

Finally, we note that since capacity measures such as the IPC are defined in the
context of classical tasks, they cannot be used to quantify the ability of a system
to perform quantum tasks. However, it would also be interesting to study the
capacity of our own system to solve such tasks. Fortunately, although research into
quantum alternatives of capacity measures is still very limited, [80] recently provided
a capacity measure that can be used both in the context of classical and quantum
tasks. Although in this paper its use for quantum tasks is discussed, it is however
not yet applied in this manner.
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Chapter 7

Conclusions

In this thesis, we introduced an new photonic QRC method and provided a proof-of-
principle using a simple classical task. It was discussed how the different elements
of the system can be simulated, after which the performance of the system was
tested.

The performance appeared to improve by using a larger ensemble. A similar
improvement is also expected to occur as a function of the train set size, for more
challenging tasks. A study of the Kerr interaction strength φ of the nonlinearities
in the reservoir additionally showed that this parameter influences both the photon
number fluctuations and the performance of the system, increasing the initialisation-
dependence if we remove the nonlinearities. Further research is required to reveal
the mutual links between these observations and to check whether the over-all
initialisation-dependence can be lowered to the same level as classical RC systems.

Afterwards, we showed that an alternative operating procedure without inter-
mediate detections leads to the same expectation values at the detector and hence
leads to an equally performing system. This enabled us to propose a more efficient
simulation method for our system and to stress some of the technicalities that need
to be taken into account to implement such a simulation.

Finally, we stress that our model is not fully optimised at the moment and that it
would benefit from different extensions, of which a few were discussed in Chapter 6.
As is discussed in Ref. [17], it is premature to make quantitative comparisons of
QRC models with their much more advanced classical counterparts, but the study
of our model did highlight some paths that can be researched with the aim of
constructing a worthy competitor for such classical systems.
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A An alternative reservoir set-up
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Figure A.1: Layout of an alternative realization of the quantum reservoir in Fig-
ure 4.1. The new elements in this set-up are the 2x1 multi-mode interferometers
(MMI), the empty modes (orange) in which no photons are sent and the beams-
plitters (BS).

Figure A.1 shows an alternative realization of a quantum reservoir. This set-up
was constructed in parallel with the set-up of Figure 4.1, but later appeared to be
disadvantageous for several reasons. In this section, these reasons are explained after
discussing the layout of this reservoir. Rather than simply addressing a previously
excluded step of the research process, this appendix serves to strengthen the choices
in the final reservoir configuration of Figure 4.1.

As is the case in Figure 4.1, the input state is transformed by a randomly
initialised QONN. The output modes of the QONN however are not immediately
separated. Instead, they are combined with an equal number of ‘empty modes’.
As the name suggests, no photons are sent into these newly added modes. The
empty modes interact with the output modes of the QONN via beamsplitters. Each
of these beamsplitters acts on two neighbouring modes. In order to add recurrent
connections, the upper output modes of the beamsplitters are redirected to the
input modes, while the lower output modes are led to the single-photon detectors.

A first problem that we encounter in this set-up is the addition of the beam-
splitters. Apart from calculating the transformation matrix S(Θ) of the QONN,
we also have to boson sample the layer of beamsplitters, using twice the number
of modes. In more mathematical terms, this model requires us to calculate Φ [B],
where B is a 2m× 2m matrix, given by:

B =




BS 0 · · · 0
0 BS · · · 0
...

...
. . .

...
0 0 · · · BS


 (A.1)
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Here, BS follows the definition of Equation (3.1), while 0 is a zero matrix. As
mentioned before, the computational load of the boson sampling algorithm scales
strongly with n and m. As a result, the empty modes strongly limit the size of this
model.

A second problem that is induced by this set-up appears when combining the
input state with the feedback state. Practically, this can be implemented by making
use of 2x1 multi-mode interferometers (MMIs), of which a schematic representation
is shown in Figure A.2. This component essentially is a broad optical waveguide with
a number of guided eigenmodes that propagate independently from one another and
at different velocities. When such an MMI is excited by an incident wave, the field
profile is decomposed into these eigenmodes, resulting in an interference pattern that
changes along the length of the MMI. By making an MMI with specific dimensions,
it can combine the optical power of its input modes into its output modes. However,
2x1 MMIs are known to induce optical losses in classical applications, which is a
result of the lower number of output modes with respect to the input modes. As
a result, the component will induce decoherence in quantum applications. In other
words, nature will end up adding another output channel to the device, i.e. a
radiative mode, allowing photons to escape in order to preserve unitarity. Due to
this behaviour, the MMIs will perform poorly when processing quantum information.

Guided 
eigenmodes

Figure A.2: 2x1 multi-mode interferometer

Building on this second problem, we note that the inherent decoherence of the
MMIs also induces uncertainty on the photon number in the QONN (nres). As long
as the radiative modes of the MMIs are not measured, nres is not exactly known
and we are obliged to resort to the lossy basis for the simulations, as was explained
in Section 4.3.
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B Additional figures for the study of system para-
meters
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Figure B.3: The simulation time of 100 different reservoir initialisations for different
values of φ (a) and N (b), depicted by a cumulative distribution function. For each
simulation time τ on the x-axis, the fraction of simulations (with different reservoir
initialisation) is plotted that lead to a simulation time lower than τ . For (a), N = 6,
while for (b) φ = π. Other parameters: mA = mB = 2, train set size = 1000,
ensemble size = 600, α = 10−4.

C Derivation of the expectation values, starting from
a general mixed state

In Section 5.2.2, a mathematical comparison was given of the simulation of the sys-
tem (using a classical optimizer), with and without intermediate detections. Both
derivations however started from a pure reservoir state. In the approach with in-
termediate detections, the resulting reservoir state in the second iteration still is a
pure state as a result of the strong projection. In the case that we do not perform
intermediate detections, we however end up with a mixed state after performing the
partial trace. In order to make conclusions about the expectation values in both
approaches, we generalise this example starting from a general mixed state:

ρres(k) =
∑

κ,σ

∑

ν,τ

a(κ)(ν)στ

(
|κ〉A ⊗ |σ〉B

)(
A〈ν| ⊗ B〈τ |

)
(C.1)

Here, κ and ν are basis states of the Fock basis on the A modes, while σ and τ are
basis states of the Fock basis on the B modes.

First assume that we do perform an intermediate measurement. According to
Equation (5.4), the probability of a certain outcome µ is given by:

P (µ) = trAB
[
|µ〉A A〈µ|ρres

]
=
∑

σ

a(µ)(µ)σσ (C.2)
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According to Equation (5.5), this results in the following feedback density matrix:

ρ
(µ)
fb =

1
∑
σ a

(µ)(µ)
σσ

∑

σ,τ

a(µ)(µ)στ |σ〉B B〈τ | (C.3)

Combination with the input state and transformation by the QONN leads to:

ρ(µ)res (k + 1) = S
(
ρin ⊗ ρ(µ)fb

)
S† (C.4)

Applying Equation (5.5) once again, this results in the following expectation values:

〈O〉(µ) = trAB

[
ρ(µ)res O

]
(C.5)

Starting from the same general mixed state of Equation (C.1), we go through
the parallel calculations in the case that we do not measure intermediately. By
doing so, we get the following feedback density matrix:

ρfb = trA (ρres) =
∑

µ

(∑

σ,τ

a(µ)(µ)στ |σ〉B B〈τ |
)

=
∑

µ

P (µ) ρ
(µ)
fb (C.6)

Here, P (µ) and ρ
(µ)
fb are respectively given by Equation (C.2) and Equation (C.3).

We see that ρfb again behaves like an ensemble of collapsed states. The only

difference we have by not starting with a pure state, is that ρ
(µ)
fb no longer is a pure

state either. Combination with the input state and transformation by the QONN
leads to:

ρres(k + 1) =S (ρin ⊗ ρfb)S†

=
∑

µ

P (µ) S
(
ρin ⊗ ρ(µ)fb

)
S† =

∑

µ

P (µ) ρ(µ)res (C.7)

Here, we also recognize ρ
(µ)
res from Equation (C.4). Finally, this leads to expectation

values that we can write as a function of the 〈O〉(µ) from Equation (C.5):

〈O〉 = trAB
[
ρresO

]
=
∑

µ

P (µ) trAB

[
ρ(µ)res O

]
=
∑

µ

P (µ) 〈O〉(µ) (C.8)

where O = |µ′〉A A〈µ′|.
This generally shows that we find the same expectation values, with and without

intermediate detections.
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[46] M. Cooper, L. J. Wright, C. Söller, and B. J. Smith, “Experimental generation
of multi-photon fock states,” Opt. Express, vol. 21, no. 5, pp. 5309–5317,
Mar 2013. [Online]. Available: http://www.opticsexpress.org/abstract.cfm?
URI=oe-21-5-5309

[47] R. H. Hadfield, “Single-photon detectors for optical quantum information ap-
plications,” Nature photonics, vol. 3, no. 12, pp. 696–705, 2009.

[48] J. Carolan, J. D. Meinecke, P. J. Shadbolt, N. J. Russell, N. Ismail, K. Wörhoff,
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