
HASSELT UNIVERSITY

MASTER THESIS SUBMITTED TO ACHIEVE THE MASTER’S DEGREE
IN CS, OPTION HUMAN-COMPUTER INTERACTION AT HASSELT

UNIVERSITY

SubwayAPPS: Localisation on

underground public transportation

systems by using mobile air pressure

sensors

Author:

Kris VAN ERUM

Promotor:

Prof. dr. Johannes SCHÖNING

2015-2016

Page 2 of 88

Abstract

The smartphone, with its capabilities, is the de facto standard localization tool. It relies on

technologies like cellullar based localization, WiFi-positioning and GPS. These technologies

provide decent positioning information in daily life. However, they still have certain limi-

tations, namely in urban canyons, inside buildings and underground. Various researchers

have recently addressed the problem of current positioning technologies to provide sufficient

position information on underground public transportation networks. Either solutions make

use of additional and often very expensive infrastructure that is installed into the stations

and tunnels, or they rely on the build-in sensors of current smartphones to determine the

location of their users underground. Last year, Stockx et al. [28] developed SubwayPS, an

underground locating system that makes use of the accelerometer in smartphones, has been

developed.

In this thesis we present a novel smartphone-based approach named SubwayAPPS that uses

the build-in barometer to precisely determine the position of a user in an underground public

transportation system by detecting relative air pressure changes. We first compare the depth

characteristic of five major underground networks across the globe and show that our novel

approach is feasible across those cities. Second, we show with two user tests in Brussels as

well as in London, that our approach can outperform other techniques, e.g. techniques that

rely on the build-in accelerometers or gyroscopes, under realistic conditions, as we are able

to detect about 88% of the stations.

Page 2 of 88

Dutch summary

In grote steden is er een constante stroom van personen die niet vertrouwd zijn met de stad.

Londen, bijvoorbeeld, ontving in 2014 28.8 miljoen toeristen. Dit is meer dan drie keer het

bevolkingsaantal van Londen. Daarnaast waren er in Londen, in 2013, 50 180 migranten.

Gelijkaardig aan Londen zijn er steeds meer en meer megasteden die met eenzelfde probleem

kampen.

In de meeste gevallen vertrouwen deze personen op hun smartphone om te kunnen navi-

geren binnen deze, voor hun, onbekende stad. De meeste moderne smartphones beschikken

over een GPS ontvanger. Dankzij deze ontvanger kunnen gebruikers hun locatie opvragen

overal ter wereld en onder iedere weersomstandigheid. Deze technologie kan verder uitge-

breid worden door, naast de gegevens verkregen van de satellieten, gebruik te maken van

externe gegevensbronnen. Dit noemt men A-GPS.

Daarnaast bevatten deze smartphones ondersteuning voor de WiFi technologie. In ste-

delijke omgevingen zijn er zeer veel WiFi toegangspunten beschikbaar. Er zijn databases

beschikbaar die een locatie hebben opgeslagen voor deze WiFi toegangspunten. Door een

dergelijke database te combineren met de beschikbare toegangspunten in de omgeving, kan

een smartphone zijn locatie bepalen dankzij de WiFi technologie.

Tot slot kan een smartphone gebruik maken van het standaard mobiele netwerk om zijn

locatie te bepalen. Dit netwerk heeft nagenoeg wereldwijde dekking en is opgedeeld in

verschillende cellen. Een mobiele telefoon verbindt met een specifieke cel om toegang te

krijgen tot het netwerk. Ook hier bestaat er een database met cellen en de locatie van hun

basisstation. Op deze manier kan de locatie van een telefoon bepaald worden aan de hand

van het mobiele netwerk.

3

Deze drie technologieën volstaan echter niet voor ondergrondse locatiebepaling. De

signalen uitgezonden door GPS satellieten kunnen niet doorheen de grond verplaatsen.

Hetzelfde geldt voor de WiFi signalen. Er zijn onvoldoende WiFi toegangspunten beschikbaar

in de metro. Ook de signalen van het mobiele netwerk zijn niet beschikbaar ondergronds.

Bijgevolg kunnen personen niet vertrouwen op hun smartphone om hun locatie te bepalen

terwijl ze gebruik maken van de metro. Dit is problematisch in grote steden. In Londen bij-

voorbeeld, verliep 34% van al het openbaar vervoer in 2013 ondergronds. Onze verwachting

is dat dit percentage in de toekomst verder gaat stijgen, onder meer door de toenemende

verkeersdrukte en om ruimte te besparen.

Om dit probleem op te lossen is er reeds veel onderzoek uitgevoerd. Zo werd geprobeerd

de accelerometer, magnetometer en gyroscoop sensors te gebruiken om locatiebepaling in

de metro uit te voeren. In deze thesis gebruiken we hiervoor een luchtdruksensor in een

smartphone. SubwayAPPS (Subway Air Pressure Positioning System) is een nieuwe methode

die enkel gebruik maakt van een luchtdruksensor om de aankomst van een metrotrein in een

station te bepalen.

Het algoritme maakt enkel gebruik van luchtdruk metingen. Druk wordt gedefiniëerd als

een hoeveelheid kracht per oppervlak (p = F
A), met als eenheid pascal (Pa). De luchtdruk

kan gemeten worden met behulp van een barometer en is afhankelijk van onder andere het

weer. Een (lokale) verandering van luchtdruk verspreid zich altijd gelijkmatig over de hele

omgeving.

Voor de werking van het algoritme wordt gebruik gemaakt van twee eigenschappen van

luchtdruk: de veranderende luchtdruk bij verschillende hoogtes en het piston effect.

Omdat lucht niet gewichtloos is, drukken de bovenste luchtlagen op de onderste luchtlagen.

De gemeten luchtdruk is bijgevolg afhankelijk van de hoogte waarop gemeten wordt. In

bovenste luchtlagen zal deze lager zijn dan in de onderste lagen. Dit verschil in luchtdruk

tussen 2 hoogtes kan omgezet worden naar een verschil in meter door de hypsometrische

formule: h = ((P0
P)−0.19 −1) ·−44330).

Wanneer een voertuig zich voortbeweegt, duwt het de lucht die zich voor het voertuig

bevindt opzij. Deze weggeduwde lucht wordt gelijkmatig verdeeld rond het voertuig. Wanneer

het voertuig zich echter in een smalle tunnel voortbeweegt, kan de lucht niet gelijkmatig

Page 4 of 88

verdeeld worden. De lucht zal vooral voor het voertuig uit geduwd worden. Dit creëert een

hogere druk voor het voertuig en een lagere druk in en achter het voertuig. Dit noemt men

het piston effect. De impact van dit effect is afhankelijk van de snelheid van het voertuig,

de breedte van de tunnel en de mogelijkheid voor de gevangen lucht om te ontsnappen

(bijvoorbeeld via ventilatieschachten).

De SubwayAPPS methode steunt op de hoogteverschillen tussen aangrenzende metrosta-

tions. Bijgevolg is het belangrijk dat er voldoende hoogteverschillen zijn tussen de opeen-

volgende metrostations. Hiervoor werd een studie uitgevoerd die de dieptestructuur van

metrolijnen analyseert in Londen, Moskou, Tokyo, Wenen en Brussel.

Uit deze studie blijkt dat het gemiddelde hoogteverschil tussen twee aangrenzende stations

meer dan 2 meter is. Dit terwijl de fabrikanten van de luchtdruksensors een precisie beloven

van 1 meter. De kans dat het hoogteverschil tussen twee stations groter is dan 1 meter, be-

draagt 82.11%. Indien we kijken naar het hoogteverschil bij een trip van twee stations, heeft

88% van deze trips een hoogteverschil groter dan 1 meter. Voor een trip van vier stations

verhoogt deze kans verder naar 92%.

Zoals reeds vermeld, maakt het SubwayAPPS algoritme gebruik van de hoogteverschillen

tussen aangrenzende metrostations en het piston effect.

Het piston effect zorgt ervoor dat de gemeten luchtdruk terwijl het voertuig beweegt onstabiel

is. De veranderende snelheid van de trein, breedte van de tunnel en de aanwezigheid van

ventilatieschachten beïnvloeden de werking van het piston effect constant. Wanneer de trein

zich in stilstand in het station bevindt, is de gemeten luchtdruk stabiel.

De stabiliteit van de luchtdruk wordt bepaald door de variantie van de luchtdruk te bereke-

nen binnen een bepaald tijdsinterval. Indien deze variatie groter is dan een drempelwaarde,

beslist het algoritme dat de luchtdruk onstabiel is. Indien de variantie beneden deze drem-

pelwaarde is, wordt de luchtdruk als stabiel ervaren.

Wanneer de luchtdruk van een onstabiele naar een stabiele toestand gaat, wordt gecontro-

leerd indien het gemeten hoogteverschil ten opzichte van het vorige station overeenkomt

met het werkelijke hoogteverschil tussen het vorige station en het huidige station. Indien

deze controle slaagt, beslist het algoritme dat de trein is aangekomen in het station. Wanneer

de luchtdruk hierna onstabiel wordt, weet het algoritme dat het voertuig onderweg is naar

het volgende station.

Page 5 of 88

Het SubwayAPPS algoritme werd geïmplementeerd in de MetroNavigator+ applicatie op

het Android platform. De originele MetroNavigator applicatie werd ontwikkeld door Thomas

Stockx. Deze applicatie laat gebruikers toe de huidige status van hun metro reis te volgen. De

gebruiker kan het aantal resterende stations bekijken, volgende station bekijken, alsook de

reistijd tot het volgende station en de reistijd tot zijn bestemming.

De SubwayAPPS methode werd getest in de metronetwerken van Brussel en Londen. Voor

de test in Brussel, werden de 4 lijnen van de metro volledig doorlopen. In totaal zijn er 20

testen gebeurd in Brussel. 88% van de stations werd correct gedetecteerd door het algoritme.

In Londen werden 20 ritten getest door het algoritme. Deze ritten hadden een gemiddelde

duur van 9 minuten en werden willekeurig gekozen binnen zones 1 en 2 van het Londense

metronetwerk. Het SubwayAPPS algoritme kon 62.50% van de bezochte stations correct

detecteren. Dit is een beduidend slechter resultaat in vergelijking met de test in Brussel. Dit

heeft twee mogelijke oorzaken. De diepte informatie van de stations in Londen is afkomstig

uit een document vrijgegeven door TfL (de uitbater van het Londense metronetwerk) en

dateert van 2011. De diepte informatie voor de stations in Brussel is afkomstig van zelf

uitgevoerde metingen met een luchtdruksensor in een smartphone. Bijgevolg is de diepte

informatie over de stations in Brussel accurater en stemt deze meer overeen met de hoogte-

verschillen die gemeten worden tijdens de uitvoering van het algoritme.

Een tweede mogelijke oorzaak is de grootte en drukte van de stations. De stations in Londen

zijn over het algemeen groter en drukker dan deze in Brussel. Vaak verbinden ze meerdere

lijnen met elkaar. Bijgevolg is de kans groter dat er, terwijl de gebruiker stil staat in een station,

er op een ander platform een trein vertrekt of aankomt. Dit zorgt ervoor dat de gemeten

luchtdruk niet stabiel genoeg kan worden voor het SubwayAPPS algoritme.

Een dergelijk probleem kan ook voor komen in een groot station in Brussel. Daarnaast kun-

nen abrupte weersveranderingen resulteren in een luchtdrukverandering die overeenkomt

met een hoogteverschil van 2 meter. Om dit te beperken, meten we enkel de hoogteverschil-

len tussen twee opeenvolgende stations. Verder kan dit opgelost worden door de actuele

weersinformatie te raadplegen.

Tijdens spitsuren kan de metrotrein overbevolkt zijn. Een gebruiker kan dan niet tijdens de

volledige rit zitten. Wanneer de gebruiker wisselt tussen zitten en recht staan, verandert de

hoogte van de smartphone. Om dit probleem te verhelpen kan een externe luchtdruksensor

gemonteerd worden die zich altijd op dezelfde hoogte bevindt, zoals op de schoen van de

gebruiker.

Page 6 of 88

Tot slot kan de dienstverlening van het metronetwerk wijzigen. Een voorbeeld hiervan is de

sluiting van een station door werken. Indien de trein dit station passeert, kan het algoritme

geen stop detecteren. Dit is nefast voor de verdere werking van het algoritme, aangezien het

verwachtte hoogteverschil niet wordt aangepast voor het volgende station. Dit kan verholpen

worden door service informatie te integreren in het algoritme. Dankzij deze informatie kan

het gesloten station overgeslagen worden.

In deze thesis werd het SubwayAPPS algoritme geïntroduceerd. Dit algoritme laat gebrui-

kers toe hun locatie te bepalen tijdens een metrorit door enkel gebruik te maken van een

luchtdruksensor in een smartphone. Er is geen externe infrastructuur vereist. Uit onze

testen blijkt dat de accuraatheid van het SubwayAPPS algoritme 10% hoger ligt dan reeds

bestaande methodes. Daarnaast werd er een analyse uitgevoerd van de dieptestructuur van

metronetwerken en de accuraatheid van luchtdruksensoren in smartphones.

Page 7 of 88

Page 8 of 88

Contents

1 Introduction and Motivation 19

1.1 Problem . 21

1.2 Goals . 22

1.3 Structure of the Thesis . 22

2 Related Work 25

2.1 Localization techniques and methods . 25

2.1.1 Example: GPS . 27

2.1.2 Example: WiFi positioning . 28

2.1.3 Conclusion . 29

2.2 Underground localization techniques and methods 29

2.2.1 SubwayPS . 29

2.2.2 Co-operative Transit Tracking . 30

2.2.3 StationSense . 31

2.2.4 Air Pressure Template Matching . 31

2.2.5 Comparison . 32

2.3 Sensing Air Pressure with a Mobile Device . 33

2.3.1 Commonly Used Sensors and Devices . 34

2.4 Air Flow in Underground Transportation Networks 35

3 Depth Structure of Underground Transportation Networks 37

3.1 Relative height of subway networks . 38

3.1.1 London . 38

3.1.2 Moscow . 40

3.1.3 Tokyo . 42

3.1.4 Vienna . 44

3.1.5 Brussels . 46

9

CONTENTS

3.2 Comparison . 48

3.3 Technical evaluation . 51

4 Concept 53

4.1 Overground Transportation . 53

4.2 Underground Transportation . 55

4.2.1 Train Arrival Detection . 56

4.3 SubwayAPPS . 56

5 Implementation 61

5.1 Implementation on Android . 61

5.2 MetroNavigator+ . 64

6 Evaluation 67

6.1 Technical Evaluation . 67

6.2 Parameter Determination . 70

6.3 Empirical Evaluation . 72

6.3.1 Results . 72

7 Discussion and Conclusion 75

7.1 Limitations . 76

7.2 Future work . 77

7.2.1 Piston effect . 77

7.2.2 Pattern Matching with Neural Networks 77

7.2.3 Train Arrival Detection in Station . 78

7.2.4 Crowdsourcing Data . 78

7.2.5 Sensor Fusion . 78

Appendices 79

A Air Pressure Log Application 80

B Station Detection Algorithm Code 83

Page 10 of 88

List of Figures

1.1 Locations of cellular base stations in Hasselt. Red base stations are operational,

yellow are approved building applications and green are submitted building

applications [3] . 20

1.2 Distribution of public transport journeys in London in 2015 [9] 21

2.1 a) Example of trilateration in 2 dimensions. The location can be determined

by calculating the intersection of the circles that are defined by the distance

from reference points (1, 2 and 3), b) Scene analysis: Features (red dots) are

observed from different vantage points. The position of the vantage points can

be calculated [27] . 26

2.2 Visualization of the Wigle database of known WiFi access points in Hasselt . . . 28

2.3 Example of the SubwayPS algorithm. The total acceleration during stationary

periods (indicated by A and B) is lower than during periods when the train is

riding [28] . 30

2.4 Example of the algorithm by Thiagarajan et al. [29] Each interval between two

stations corresponds to a peak and trough . 31

2.5 Sketch comparing the piston effect with a vehicle that moves in open air (top)

and a vehicle that moves in a tunnel (below) . 36

3.1 Average height difference for a trip of length n in London, per line 39

3.2 Average slope between stations in London, per line 39

3.3 Average slope for a trip of length n in London, per line 40

3.4 Average height difference for a trip of length n in Moscow, per line 41

3.5 Average slope between stations in Moscow, per line 41

3.6 Average slope for a trip of length n in Moscow, per line 42

3.7 Average height difference for a trip of length n in Tokyo, per line 43

3.8 Average slope between stations in Tokyo, per line 43

11

LIST OF FIGURES

3.9 Average slope for a trip of length n in Tokyo, per line 44

3.10 Average height difference for a trip of length n in Vienna, per line 45

3.11 Average slope between stations in Vienna, per line 45

3.12 Average slope for a trip of length n in Vienna, per line 46

3.13 Average height difference for a trip of length n in Brussels, per line 47

3.14 Average slope between stations in Brussels, per line 47

3.15 Average slope for a trip of length n in Brussels, per line 48

3.16 Average height difference between subway stations of all lines 48

3.17 Average height difference for a trip of length n, per city 49

3.18 Average slope for a trip of length n . 50

3.19 Average height difference and slope for trips . 50

3.20 a) Chart showing the probability (y-axis) that the height difference between two

stations is above a threshold (x-axis), b) Accuracy of pattern matching algorithm

(red) [32] compared to our approach SubwayAPPS (black). Please note, that

in this case we assume that the pattern matching approach [32] works with a

100% accuracy. The blue dotted line shows the accuracy achieved by [32] 51

4.1 Measured elevation with an air pressure sensor (black), compared to real eleva-

tion according to the Google Maps Elevation API (red) 54

4.2 Example of air pressure during a subway trip in Brussels 55

4.3 Example of air pressure at a subway station . 56

4.4 Example of the SubwayAPPS algorithm. The top chart shows the variance of the

air pressure in the time window. When the variance is below the threshold (blue

dotted line), the air pressure is stable. The chart in the middle shows the relative

height difference measured between stations. The blue dotted line shows the

expected height difference ± tolerance. When the air pressure is stable and

the height difference is as expected, the algorithm concludes that the train has

arrived at a station (bottom chart). 59

5.1 Graphical representation of the station detection algorithm using air pressure . 64

5.2 Screenshots of the MetroNavigator application 65

6.1 Unfiltered results of the height accuracy test . 68

6.2 Filtered results of the height accuracy test . 69

6.3 Boxplot of the error of the height accuracy tests 69

6.4 Example of the station detection algorithm using only stability of air pressure . 71

Page 12 of 88

LIST OF FIGURES

A.1 The pressure logger application on Android (left) and iOS (right) 81

Page 13 of 88

LIST OF FIGURES

Page 14 of 88

List of Tables

2.1 Comparison of localization techniques using the taxonomy of Hightower and

Borriello . 32

2.2 Frequently used units of pressure . 33

2.3 Comparison of common smartphone barometer sensors 35

6.1 Results for different values for time window size (vertical) and threshold (hori-

zontal) . 71

6.2 Accuracy results of the evaluation . 73

15

LIST OF TABLES

Page 16 of 88

Listings

5.1 Code for retrieving information about the built-in air pressure sensor 62

5.2 Code for updating the time windows . 62

5.3 JSON format for data in the MetroNavigator application 66

B.1 Pseudocode of the SubwayAPPS algorithm . 83

17

LISTINGS

Page 18 of 88

Chapter 1

Introduction and Motivation

Many cities face a constant stream of people who are unfamiliar with the city. This could be

tourists or people who migrate to a city. For example, 28.8 million tourists, both domestic

and overseas, visited London in 2014 [20]. This is more than three times the people that live

in London. Furthermore, in 2013, London had a net migration of 50 180 people [30]. Similar

to London, more and more megacities will face similar streams of people not familiar with

the city environment.

In general, these people do not know their way around the city. To navigate, they rely on

a smartphone. Modern smartphones have a GPS receiver. Thanks to improvements in the

technology of these receivers and the opening of the GPS signal to the public in 2000, the

GPS technology allows smartphone users to accurately find their location anywhere in the

world and under every weather condition. To further improve the accuracy and time-to-first-

fix, a smartphone can make use of other data sources. This can provide satellite position

information, an initial time and position estimate, satellite selection etc. This combination of

a GPS receiver and the external data source is called Assisted-GPS (A-GPS) [35].

In addition to GPS receivers, modern smartphones are equipped with WiFi receivers. In

urban areas, many WiFi access points repeatedly transmit messages that their access point

exists. The WiFi receivers detect the available access points in the area, without needing to

connect to these access points. Databases with a mapping between the access points and

their physical location are available. The access points are identified by their MAC address.

The smartphone derives its location by matching the available access points with the access

points in the database. This technique is called fingerprinting. This method works best in

urban areas because many access points are needed. Because WiFi signals can travel through

19

walls and buildings, it is well-suited for use indoors and outdoors.

Another technique used by smartphones to localize themselves is the standard cellular

network. These networks have almost worldwide coverage. They are divided in cells. Each

cell has a base station that takes care of the communication between the network and the

mobile phone. The base stations have a known location and a cell ID for identification. From

this, with similar techniques to WiFi positioning, the location of the mobile phone can be

derived. The accuracy here depends greatly on the size of the cells and the number of cells

available. A study by [17] showed that the average accuracy of this method is 506m, with a

worst accuracy of 3062m.

Figure 1.1: Locations of cellular base stations in Hasselt. Red base stations are operational, yellow are
approved building applications and green are submitted building applications [3]

Because modern smartphones have these techniques built-in, together with popular

map applications (e.g. Google Maps, Apple Maps and Bing Maps) they have become the

de facto standard for daily life navigation. Tomtom, one of the biggest sellors of navigation

devices, had a big decrease in their standalone navigation devices sales, mainly to navigation

applications on smartphones [12].

The ability of smartphones to find its location also has created new possibilities for social

media applications. For example, geocaching is an increasingly popular activity where people

search for hidden objects (caches) by solving puzzles and navigating with their smartphone.

Users can also share their location when posting messages on social media like Twitter and

Facebook.

Page 20 of 88

1.1. PROBLEM

1.1 PROBLEM

In 2015, 34% of all public transport journeys were made underground (see figure 1.2). Still

59% of public transport journeys are made by bus. With the increasing population growth,

which causes an increasing traffic congestion, we believe that the share of underground

journeys will increment to save time on the road. To save space, it is also better to build

tunnels for transportation than to construct roads overground.

Figure 1.2: Distribution of public transport journeys in London in 2015 [9]

The GPS technique was designed for usage outdoors and uses radio signals to transmit

messages from the satellites to the GPS receiver. This has some negative consequences.

The GPS signals have difficulties traveling through solid objects. Not all signals can reach

the receiver when indoors or underground. As the GPS technique needs at least 4 satellite

signals, this makes it unusable in these situations. This problem can not be solved with the

enhancements of A-GPS.

The same problem exists for the WiFi-positioning technique. The signals broadcasted by

the access points can not travel through concrete. Because of this, the access points above the

ground are invisible in the underground. A solution for this is to install many access points in

the underground. This is very expensive. For example, the London underground network has

270 stations and spans 408 kilometer. To completely cover this network, many access points

are needed.

Page 21 of 88

1.2. GOALS

Cellular positioning suffers from the same problem as well. There is bad cellular ser-

vice while travelling underground. This decreases the accuracy of the cellular positioning

technique. Even if there is a good service underground, the accuracy of this method is not

good enough. In London, the average distance between adjacent stations is 1.31 kilometers.

From [17], we know that the accuracy of cellular positioning can vary a lot and can get as

worse as 3 kilometers.

From this, we can conclude that smartphones, with its three positioning methods, is

unable to locate itself accurately while using underground transportation networks. This is

problematic, because people depend on their smartphone for navigational aid in unfamiliar

environments. This causes people to exit the train at the wrong stop. Therefore researchers

and practitioners came up with several techniques to also provide positioning in underground

public transportation systems [24,28,29,32] as we outline in detail in the related work section.

Knowing your location while traveling underground also has some other benefits. For

example, tourists could be notified about landmarks that are overground while the train is

riding. Advertisers could provide targeted advertisements, based on the location of the user.

1.2 GOALS

This thesis has three contributions. First we study the structure of underground transporta-

tion networks. We do this by analyzing the height differences between stations for five cities.

Next, we develop a novel algorithm for detecting underground stations using only a smart-

phone’s air pressure sensor. Our technique is novel because we are the first to use an air

pressure sensor together with the known height differences between stations and the effects

of the piston effect. We proof that we can achieve reasonable accuracy with our method.

Further, we implement this algorithm for the Android platform, so navigation applications

can listen for events generated by the algorithm. As an example, we integrated the algorithm

with the existing MetroNavigator+ application, for real-life usage. Finally, we analyze the

accuracy of smartphone air pressure sensors for height difference detection. It is essential for

our technique that the sensors have good accuracy.

1.3 STRUCTURE OF THE THESIS

This thesis is structured as follows:

Page 22 of 88

1.3. STRUCTURE OF THE THESIS

• In section 2 we take a look at the existing localization methods. Next, we study and

compare specific localization methods for underground transportation systems. After

that, we take a look at what air pressure is and how it can be measured with a sensor in

a smartphone. To conclude this section, we investigate the behavior of air pressure in

closed environments.

• In section 3 we study the depth structure of underground transportation networks. The

height differences between stations in five cities are analyzed.

• In section 4 we define the SubwayAPPS algorithm. We do this by plotting and analyzing

recorded air pressure data during subway trips.

• In section 5 the implementation of the SubwayAPPS algorithm is explained in detail.

The algorithm is implemented on the Android platform. An example of the usage of

the algorithm in an application, MetroNavigator+, is given.

• Before we tested the algorithm, we studied the accuracy of the air pressure sensors

in smartphones. More specifically, we investigated how sensitive the sensors are for

measuring relative height differences. The results of this study are explained in section 6.

After this, the SubwayAPPS algorithm was tested on the subway systems of Brussels

and London.

• Finally, we draw conclusions in section 7. We discuss how we can further improve

localization in underground transportation networks and how air pressure sensors can

be used in other applications.

Page 23 of 88

1.3. STRUCTURE OF THE THESIS

Page 24 of 88

Chapter 2

Related Work

In this section, we will study several localization techniques, compare them and analyze how

they can be used on underground transportation networks. Next, we will look at interesting

properties of air pressure in general and how air pressure can be measured with a mobile

device. To conclude this section, we study the behaviour of air pressure in underground

transportation networks.

2.1 LOCALIZATION TECHNIQUES AND METHODS

In this section, different general localisation techniques and methods are presented. We struc-

ture this by using the taxonomy of Hightower and Borriello [14]. We also present common

examples for some techniques.

Location sensing techniques can be divided into the following categories:

• Triangulation uses the geometric properties of triangles to determine location. It can

be further divided into lateration and triangulation.

Lateration uses the distance to multiple reference points to determine the location. In

3 dimensions, at least 4 reference points are required. There are 3 methods to define

the distance to the reference point: direct (using a physical action or movement),

time-of-flight (using the time it takes for a signal to arrive) and attenuation (using the

strength of a signal). A well known example of the lateration technique is GPS. This

uses time-of-flight to determine the distance to the GPS satellites.

25

2.1. LOCALIZATION TECHNIQUES AND METHODS

Figure 2.1: a) Example of trilateration in 2 dimensions. The location can be determined by calculating
the intersection of the circles that are defined by the distance from reference points (1, 2 and 3), b)
Scene analysis: Features (red dots) are observed from different vantage points. The position of the
vantage points can be calculated [27]

Angulation uses angles instead of distances to determine the location. To determine a

position in a 3D space, one length measurement, one azimuth measurement and two

angle measurements are needed.

• Scene analysis uses specific distinguishable features of a scene, observed from a par-

ticular vantage point, to determine the current position. There are two variations of

this technique: static and differential. In static scene analysis, a predefined dataset

of features is used to determine the position. Differential scene analysis looks at the

differences of the features in successive scenes. If the features are at a fixed position

in the environment, a change of the position of a feature in the consecutive scenes

corresponds to a movement of the observer.

• Proximity relies on the presence of nearby objects with a known location. There are

three approaches for this technique: detecting physical contact, monitoring wireless

cellular access points (both cellular and WiFi) and observing automatic ID systems.

• Inertial navigation does not rely on external references. Instead it uses sensors (e.g.

accelerometer or gyroscope) and information about the initial location to predict the

current location incrementally (e.g. [1, 8, 22, 23]).

Furthermore, we can classify localisation techniques using the following properties:

• Physical position vs. Symbolic location: a physical position denotes the real physical

location (e.g. a coordinate) while a symbolic location gives an abstract idea of where

Page 26 of 88

2.1. LOCALIZATION TECHNIQUES AND METHODS

something is (e.g. at Hasselt University). Note that, if we have the information, we can

convert between these representations. For example, if we know the physical positions

of subway stations and we know the station we are currently in, we can infer our current

physical position.

• Absolute vs. Relative: an absolute position system uses the same reference grid for

all located objects while in a relative position system each object can have its own

reference frame.

• Localized location computation: whether the object that is located computes the

location itself or the computation is done by the system.

• Accuracy: the grain size of the position.

• Precision: how often we can get the accuracy.

• Scale: at what scale does the system work? This can be in a single room up to worldwide.

• Recognition: whether the system can recognize and identify the objects that need to

be located.

• Cost: the cost (money, space and time) of the system.

• Limitations: the limitations of the system. Some systems will not work in specific

environments (e.g. GPS does not work well underground).

2.1.1 Example: GPS

The most commonly used localization technique is GPS (Global Positioning System). GPS

uses the lateration technique to determine location. Thirty two earth orbiting satellites

continuously transmit messages that contain the time of the transmission, according to an

atomic clock in the satellite, and the current location of the satellite. A GPS receiver calculates

its position by solving the following equations: [4]

(x1 −x0)2 + (y1 − y0)2 + (z1 − z0)2 = [c(t1 − t0)]2

(x2 −x0)2 + (y2 − y0)2 + (z2 − z0)2 = [c(t2 − t0)]2

(x3 −x0)2 + (y3 − y0)2 + (z3 − z0)2 = [c(t3 − t0)]2

(x4 −x0)2 + (y4 − y0)2 + (z4 − z0)2 = [c(t4 − t0)]2

Page 27 of 88

2.1. LOCALIZATION TECHNIQUES AND METHODS

where x, y and z are cartesian coordinates, t is the time, c is the speed of light, subscript 0

denotes the receiver and subscripts 1 to 4 denote the 4 satellites. Because there are 4 unknown

values (x0, y0, z0 and t0) there need to be at least 4 equations and thus at least 4 satellites

to calculate an accurate position. Besides GPS, there are other systems that use the same

technique but are not developed by the United States, e.g. GLONASS (Russia), GALILEO

(Europe) and BeiDou-2 (China).

2.1.2 Example: WiFi positioning

Another frequently used localization technique is WiFi positioning. If we take into account

all nearby WiFi access points, with a known location, and determine our current location, we

use the lateration technique. Another approach is to use the proximity technique and look for

the presence of a known WiFi access point. To map a WiFi access point to a specific location,

we need a database of access points and their location. The process of gathering this data is

called wardriving. Examples of existing databases are Skyhook Wireless1 and Wigle2.

Figure 2.2: Visualization of the Wigle database of known WiFi access points in Hasselt

For example, there is free WiFi available in all stations and tunnels of the Moscow subway

system [18]. This makes it possible for the company that operates the subway to track the

passengers as they travel3.

However, this requires the presence of WiFi access points in all the subway stations, which is

not always the case. If these need to be installed, this can be a big cost.

1http://www.skyhookwireless.com
2https://wigle.net/
3http://map.maximatelecom.ru

Page 28 of 88

http://www.skyhookwireless.com
https://wigle.net/
http://map.maximatelecom.ru

2.2. UNDERGROUND LOCALIZATION TECHNIQUES AND METHODS

2.1.3 Conclusion

A downside of the GPS technique is that the signal is weak and travels by line of sight. They

can not pass through solid objects like buildings and mountains. This is problematic for

usage in urban areas where the GPS receiver is surrounded by buildings (urban canyon effect)

and locating underground objects, as is the case on subway systems.

WiFi positioning requires the presence of WiFi access points across the whole subway net-

work. This is not the case in all networks and involves a big cost.

Traditional localization methods do not perform well in underground transportation net-

works. To get an accurate location fix, more specialized techniques are required.

2.2 UNDERGROUND LOCALIZATION TECHNIQUES AND METHODS

Most current smartphones are equipped with various sensors such as accelerometers, magne-

tometers and barometers to support user input and output. In addition to their main purpose

the sensors can also be used to support positing, using inertial navigation techniques (e.g.

[1, 8, 22, 23]), when GPS or WiFi positioning are not available.

2.2.1 SubwayPS

SubwayPS [28], presented at Sigspatial 2014, uses the accelerometer to do station detection.

This technique relies on the fact that while a subway train is moving, the total acceleration

(in all directions) is higher than when the train is stationary. Before the total acceleration is

calculated, the gravity component is filtered out by making use of the gyroscope, such that

the total acceleration is 0 when the device is at rest. The following formula is used to calculate

the total acceleration: a =
√

a2
x +a2

y +a2
z

The algorithm uses a hard threshold to determine if the subway train is riding or stationary.

If a number of samples is above this threshold, the algorithm decides that the train is moving.

Similarly, if a number of samples is below this threshold, the algorithm decides that the

train is stationary. These parameters (threshold and number of samples) can be tweaked

for specific subway networks. If the parameters were tweaked, around 85% of all stops

were classified correctly. With the standard, world-wide parameters, 75% of the stops were

classified correctly.

Page 29 of 88

2.2. UNDERGROUND LOCALIZATION TECHNIQUES AND METHODS

Figure 2.3: Example of the SubwayPS algorithm. The total acceleration during stationary periods
(indicated by A and B) is lower than during periods when the train is riding [28]

2.2.2 Co-operative Transit Tracking

Thiagarajan et al. [29] use the accelerometer to make a prediction whether the train is riding

or stationary. The accelerometer samples of stationary and riding periods were modeled as

Laplace distributions, f (x|µmov ,bmov) and f (x|µst a ,bst a) with µ the median of the training

set and b = 1
N

∑N
i=1 |xi −µ|. Bayes’ theorem is then used to calculate the probability that the

train is riding:

p(mov |x) = f (x|µmov ,bmov)p(mov)
f (x|µmov ,bmov)+ f (x|µst a ,bst a) .

A 30 second time window is used to calculate the mean accelerometer value. During the

interval when a subway train is riding and arrives at a station, a probability peak (train is

moving) and valley (train is stationary) will occur, which is detected by a peak detector. The

average difference between the time that the train arrives at a station and the prediction of

the algorithm is 41 seconds.

Page 30 of 88

2.2. UNDERGROUND LOCALIZATION TECHNIQUES AND METHODS

Figure 2.4: Example of the algorithm by Thiagarajan et al. [29] Each interval between two stations
corresponds to a peak and trough

2.2.3 StationSense

Another technique that uses the accelerometer is the StationSense passenger tracking system

[15]. On top of the accelerometer, it utilises the magnetometer to complement the station

detection algorithm. Typically, motors and electrical inverters emit magnetic noise when the

train accelerates and decelerates. During stationary periods, the values of the magnetometer

have a lower variance. A stop probability is calculated by using Bayes’ theorem, similar to [29].

However, the stop probability can sometimes increase due to inertia driving of the trains. To

filter out these false positives, readings of the accelerometer are used. With this method, 72%

of all detections were indeed a stop and 82% of all stops were classified correctly.

2.2.4 Air Pressure Template Matching

Similar to the work presented in this paper, Watanabe et al. [32] used an air pressure sensor

to detect subway stations. Instead of measuring relative height difference, they assume that

the height profile of every subway line was unique and these height differences could be

measured by an air pressure sensor. They also take into account the structural factors (e.g.

ventilation shafts) of each line. They assume that the change of air pressure is unique for each

ride between adjacent subway stations. First, a template is generated for each ride between

adjacent stations by recording the air pressure while riding the train. The algorithm then tries

to match the incoming air pressure values to one of the templates. Because the train speed

varies (e.g. because of the crowdedness on the train), the variation of air pressure is elastic

in time. To overcome this problem, Dynamic Time Warping (DTW) is used. Furthermore,

because the absolute air pressure values change over time (e.g. due to weather differences),

Page 31 of 88

2.2. UNDERGROUND LOCALIZATION TECHNIQUES AND METHODS

this technique only takes into account the relative change of air pressure. This method was

tested in the Tokyo Metro (9 lines with 192 stations) and 85% of all stops were classified

correctly.

2.2.5 Comparison

GPS WiFi position-

ing

SubwayPS Co-operative

transit tracking

StationSense Air pressure

template

matching

Sensor Physical Symbolic Accelerometer Accelerometer Accelerometer

& magnetome-

ter

Barometer

Physical/

symbolic
Physical Symbolic Symbolic Symbolic Symbolic Symbolic

Absolute/

relative
Absolute Absolute Relative Relative Relative Relative

LLC Yes Yes Yes Yes Yes Yes

Recognition No No No No No No

Accuracy &

precision

1-5 meters

(95-99%)
WiFi cell size 75-85% Unknown 72% 85%

Scale 24 satellites

worldwide

Worldwide Subway net-

works world-

wide

Subway net-

works world-

wide

Subway net-

works world-

wide

Analyzed sub-

way networks

only

Cost Expensive in-

frastructure and

receivers

WiFi access

points

Accelerometer

in smartphone

Accelerometer

in smartphone

Accelerometer

and magne-

tometer in

smartphone

Barometer in

smartphone

Limitations Not indoors, in

urban canyons

and under-

ground

Needs to be in

range of WiFi

access points,

wardriving

necessary

Tweaking

needed for

specific subway

networks

False positives

due to train

joilts

Magnetic noise

from other

train influences

results

Template

needed

Table 2.1: Comparison of localization techniques using the taxonomy of Hightower and Borriello

In contrast to related work, we are the first to use an air pressure sensor in a mobile phone

to provide positioning in underground public transport systems. That goes beyond basic

station detection or simple approaches that detect if a train is moving or not. By making use

of of the height differences between subway stations and the piston effect, we overcome the

problems of template matching approaches using air pressure, that need trips of multiple

stations to achieve decent accuracies, as we show in section 6.1.

Page 32 of 88

2.3. SENSING AIR PRESSURE WITH A MOBILE DEVICE

2.3 SENSING AIR PRESSURE WITH A MOBILE DEVICE

Before we describe the technical implementation of the SubwayAPPS application, in this

section we describe how air pressure is measured on mobile devices to make use of these

sensors for underground localization. The relationship between air pressure and relative

height is explained in detail.

Pressure is defined as the perpendicular force applied per unit area: p = F
A [34]. The SI unit

of pressure is the pascal (Pa). Other frequently used units of pressure are shown in table 2.2.

Unit Symbol Conversion

pascal Pa 1 Pa = 1 N /m2

bar bar 1 bar = 105 Pa

millibar mbar 1 mbar = 102 Pa

atmospheric pressure atm 1 atm = 1.013 ·105 Pa

Table 2.2: Frequently used units of pressure

The air pressure varies due to weather conditions and is related to the altitude. Because air

itself is not weightless, the upper air layers exert pressure on the lower air layers, resulting in

a higher pressure at sea level. At higher altitudes, the pressure is lower than at sea level.

The relation between pressure and altitude is as follows (hypsometric formula) [26]:

h = ((
P0
P)

L·R
g −1)·(T+273.15)

L

where P0 and P are pressures at different altitudes (in hPa), h is the height different

between these points (in meter), L is the lapse rate of the temperature (-0.0065 K/m), R is the

universal gas constant (287.053 J/kg.K), g is earth’s gravity constant (9.81 m/s2) and T is the

temperature in (°C).

If we assume a constant temperature of 15°C, this formula results in:

h = ((
P0
P)

−0.0065·287.053
9.81 −1)·(15+273.15)

−0.0065 = ((P0
P)−0.19 −1) ·−44330)

Another interesting phenomenon about pressure is Pascal’s law: Pressure applied to an

enclosed fluid is transmitted undiminished to every portion of the fluid and the walls of the

containing vessel [34]. This means that when the air pressure changes (for example, due to

changing weather conditions), this change will be transmitted to all depths. The differences

in pressure at different heights will be the same as before the pressure change.

Page 33 of 88

2.3. SENSING AIR PRESSURE WITH A MOBILE DEVICE

2.3.1 Commonly Used Sensors and Devices

Nowadays, most mid-priced smartphones are equipped with barometers. The primary

reason to equip smartphones with a barometer is to improve the time for a GPS fix. The

barometer can detect the altitude and thus provide a better z-coordinate for the GPS position

calculation [24], as the accuracy of the z-coordinate is the lowest with the GPS technique,

compared to x and y . Besides that, smartphones use the barometer sensor to detect on which

floor the smartphone is in multistory buildings and to gather weather data [21].

Barometer sensors in smartphones are Microelectromechanical systems (MEMs). MEMs

are very small devices, ranging from 0.02 to 1.0 mm, which are manufactured by using pho-

tolithography. Most MEMs barometers are of the piezoresistive type. The electrical resistivity

of a piezoresistor changes when mechanical strain is applied, for example due to atmospheric

pressure.

The barometer exists of a diaphragm over a small vacuum cavity. The air pressure presses the

diaphragm into the cavity, which causes a change of the electrical resistivity of the piezoresis-

tors on the diaphragm [24]. This change of resistance can be measured and converted to the

atmospheric pressure.

The following factors can influence the MEMs barometer sensor:

• Temperature: The piezoresistors are sensitive to the temperature, a different tempera-

ture will change the electrical resistivity of the piezoresistor. To adjust for this, current

pressure sensors also contain a temperature sensor. The driver takes into account the

temperature and compensates the value of the air pressure.

• Installation bias: Because we only need the relative change in air pressure to calculate

the relative height difference, the installation bias will not have an impact on this

project.

• Aging drift: The aging drift of a pressure sensor is only significant over the course of

months. As we measure the air pressure during short trips, this will not influence this

project.

• Weather: As mentioned before, the air pressure depends on the current weather con-

ditions. The weather drift can lead to a drift of a few meters in an hour, but intense

storms can cause a drift of 3 to 4 meters in only 10 minutes.

A possible solution is to only measure the relative height difference between adjacent

stations as opposed to measuring the height difference compared to the first station of

Page 34 of 88

2.4. AIR FLOW IN UNDERGROUND TRANSPORTATION NETWORKS

the trip. This reduces the time window of the measurements and thus the influence of

changing weather conditions.

• Sunlight and wind: This will not have an impact in underground transportation net-

works. Furthermore, the MEMs barometer is well protected from sunlight and wind by

the case of the smartphone.

The most common barometer sensors used in smartphones are listed in table 2.3. We see

that the accuracy is ±0.12 hPa, which corresponds to ±1m. When the pressure sensor has no

built-in noise filter, we can smoothen the height values using the following filter [24]:

cur r ent Hei g ht =α∗ sensor Hei g ht + (1−α)∗pr ev Hei g ht

Smartphones that use the Bosch BMP280 barometer sensor do this filtering automatically in

a special hardware component.

Barometer chip Bosch BMP180 Bosch BMP280 STM LPS331AP

Used in Samsung Galaxy

Nexus, Samsung

Galaxy S4, Google

Nexus 4

Google Nexus 5,

Apple iPhone 6

Samsung Galaxy

S3

Temperature sensor Yes Yes Yes

Temperature compen-

sation

Quadratic (in

driver)

Quadratic (in

driver)

Linear (on chip)

Noise filter No Yes No

Relative accuracy ±0.12 hPa ± 0.12 hPa ±0.1 hPa

Table 2.3: Comparison of common smartphone barometer sensors

2.4 AIR FLOW IN UNDERGROUND TRANSPORTATION NETWORKS

Because our suggested method depends on the air pressure, it is important to have an

understanding of the air flow in underground transportation networks, as this influences the

air pressure.

It is important to understand that when a vehicle is moving, it actually moves through air.

Because of this, the air in front of the vehicle gets pushed away to the front and sides, while

there is a vacuum behind the moving vehicle that sucks the air into it. When the vehicle

Page 35 of 88

2.4. AIR FLOW IN UNDERGROUND TRANSPORTATION NETWORKS

moves in open air, the air can move freely in any direction. But when the vehicle moves in a

narrow tunnel (as is the case with underground transportation) the air can not move as freely

and is “trapped” between the vehicle and the walls of the tunnel. This is known as the piston

effect [19]. A sketch of this effect is shown in figure 2.5.

Figure 2.5: Sketch comparing the piston effect with a vehicle that moves in open air (top) and a vehicle
that moves in a tunnel (below)

When the subway train enters a tunnel, the air pressure in and behind the train will drop

while the air pressure in front of the train increases. When the subway train arrives at a station,

the air around train can move freely again. The air pressure normalises: the air pressure in

front of the train decreases and the air pressure in and behind the train increases.

The piston effect also depends on the environment. A change in width of the tunnel affects

the air flow around the train and thus influences the measured air pressure. Additionally,

when the train passes a ventilation shaft in the tunnel, the air in front of the train can escape

and air can be sucked in from the ventilation shaft at the back of the train. This reduces the

piston effect. Finally, when another train passes on another track, the piston effect of the

other train will also affect the air pressure measurements.

We have to take into account this effect when we calculate the current elevation to not

confuse it with a change in elevation. But the effect can be useful as well, to detect when a

subway train arrives or departs at a station.

Page 36 of 88

Chapter 3

Depth Structure of Underground

Transportation Networks

Our method relies on detecting relative height difference between adjacent stations. This

can be measured by the built-in smartphone barometer. In the first step we analyse the

relative height differences of adjacent subway stations across four different subway networks

(London, UK; Moscow, Russia; Tokyo, Japan; Vienna, Austria; Brussels, Belgium) to find

out if our approach would work across major underground networks. All cities are among

the largest subway networks in the world [33] and the depth information of the stations

where available for us. In section 3.3 we also analyse the hypothesis of Watanabe et al. [32] if

template matching of air pressure data, could be reliable used across different lines, cities or

global networks.

To analyse the subway networks, we calculate the following measures:

• Hei g ht Di f fst at i on : The height difference between two adjacent stations

• Hei g ht Di f f T r i pn : The height difference for a trip of length n, where n ranges from

1 to the maximum number of stations in a line.

• Hei g ht Di st Di f fst at i on : The height difference between two adjacent stations, di-

vided by the distance between the stations.

• Hei g ht Di st Di f f T r i pn : The height difference divided by the distance for a trip of

length n, where n ranges from 1 to the maximum number of stations in a line.

Notice that Hei g htDi f fst ati on is equal to Hei g htDi f f Tr i pn for n = 1. The same is true

for Hei g htDi stDi f fst ati on and Hei g htDi stDi f f Tr i pn .

37

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

The distance between the stations was calculated by using the haversine formula, which

gives the shortest distance between two points on a sphere. If we want to compare the depths

of subway stations, we need to take into account the datum that the depths are given in. A

datum is a coordinate system used to locate places on Earth. Both horizontal and vertical

datums exist. For this study, we are only interested in vertical datums. The difference between

datums is called the datum shift. This shift can reach up to hundreds of meters.

In this section, we will analyse the height differences between subway stations in different

cities. Furthermore, we take a look at the slope between adjacent stations. At the end of this

section, we will make a comparison of the different underground transportation networks.

3.1 RELATIVE HEIGHT OF SUBWAY NETWORKS

3.1.1 London

The height information and the geolocations of the stations were extracted from Transport for

London (TfL), the company that operates the London underground transportation network.

With 270 subway stations, 10 lines and spanning 402 kilometers, London has the biggest

subway network in Europe [10].

The average height difference between stations of the 10 lines of the London underground

system is shown in figure 3.16. As can be seen, even for the line with the minimum average

height differences between the stations (District line), the average height difference is well

above 2m. The average height difference, over all lines, is 5.63m.

When we look at the height differences for trips of different lengths (figure 3.1), we see

that in general the height difference increases when the trip length increases. This can make

it easier to detect a trip between multiple stations, because the higher elevation difference

can be better detected by the barometer.

For the average slope for a trip of length n (figure 3.3), we see that the slope decreases

when the trip length increases. This can be explained by the fact that after an ascend, a

descend may follow and vice versa. These cancel each other out, resulting in a smaller slope.

Page 38 of 88

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.1: Average height difference for a trip of length n in London, per line

Figure 3.2: Average slope between stations in London, per line

Page 39 of 88

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.3: Average slope for a trip of length n in London, per line

3.1.2 Moscow

The depth information for the Moscow subway system is based on the 3D visualization of

Evgeniy Varfolomeev [31]. For this visualization, the depth information of Alexey Goncharov

[11] was used. This consisted of the depth of the stations beneath the ground level. Because

the ground of Moscow is not levelled, we could not use this data directly to compare the

depth of the stations. To put the depth data in the same datum, the depth data was combined

with the elevation data of Google Earth. For example, when we know a station is 10m below

ground level and the ground level at the station is 20m above sea level, we can deduce that

the subway station is 10m above sea level.

Page 40 of 88

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.4: Average height difference for a trip of length n in Moscow, per line

Figure 3.5: Average slope between stations in Moscow, per line

Page 41 of 88

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.6: Average slope for a trip of length n in Moscow, per line

3.1.3 Tokyo

The depth information of the Tokyo subway system was available on the website of Tokyo

Metro1. The depths of all stations were given in meters relative to sea level.

1http://www.tokyometro.jp/en/

Page 42 of 88

http://www.tokyometro.jp/en/

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.7: Average height difference for a trip of length n in Tokyo, per line

Figure 3.8: Average slope between stations in Tokyo, per line

Page 43 of 88

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.9: Average slope for a trip of length n in Tokyo, per line

3.1.4 Vienna

The data of the Vienna U-Bahn was obtained from Wiener Linien, the company that operates

the subway network in Vienna. The locations of the stations were available via the Open Data

Portal from the city of Vienna2.

As we can see in figure 3.16, the height differences between stations are much bigger

for line U6. This can be explained by the fact that, except for four short tunnels, the line

runs above ground on elevated tracks. Because of this, we will exclude line U6 from the

comparison in section 3.2.

2https://open.wien.gv.at/site/open-data/

Page 44 of 88

https://open.wien.gv.at/site/open-data/

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.10: Average height difference for a trip of length n in Vienna, per line

Figure 3.11: Average slope between stations in Vienna, per line

Page 45 of 88

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.12: Average slope for a trip of length n in Vienna, per line

3.1.5 Brussels

Depth information of the Brussels subway network was unavailable. However for testing

purposes, due to its proximity to Hasselt University, it was useful to know the depth of the

subway stations in Brussels. We have recorded air pressure data of multiple subway trips in

Brussels with the air pressure logger application (see appendix A). This data was recorded

on two different days, using a Google nexus 4 (Bosch BMP180) and Apple iPhone 6 (Bosch

BMP280). From this data, we calculated the depth information of the Brussels subway stations

using the hypsometric formula. If height data between two stations from multiple recorded

trips was available, the average value of these recordings was used.

Page 46 of 88

3.1. RELATIVE HEIGHT OF SUBWAY NETWORKS

Figure 3.13: Average height difference for a trip of length n in Brussels, per line

We see from figures 3.16 and 3.13 that the height differences between stations for all lines

are close to each other. This can be explained by the fact that many of the lines in Brussels

share the same tracks. Line 1 and 5 share the same tracks between Weststation and Merode

(12 stations), while line 2 is just a part of the longer line 6.

Figure 3.14: Average slope between stations in Brussels, per line

Page 47 of 88

3.2. COMPARISON

Figure 3.15: Average slope for a trip of length n in Brussels, per line

3.2 COMPARISON

Next, we compare the depth information statistics of the different cities.

Figure 3.16: Average height difference between subway stations of all lines

Page 48 of 88

3.2. COMPARISON

Figure 3.17: Average height difference for a trip of length n, per city

The Moscow subway system has the biggest height differences, so we can expect that our

proposed method works best in this city. The Tokyo subway system has the smallest height

differences. This can be explained by the fact that there is no river running through Tokyo and

no tracks have to be build underneath a river. For all cities, the height difference increases

when the trip length increases, making it easier to detect trips covering multiple stations.

Page 49 of 88

3.2. COMPARISON

Figure 3.18: Average slope for a trip of length n

We also see a big difference between Brussels and the other cities when we look at the

slope between the subway stations. With an average slope of 0.97%, Brussels’ average slope is

more than twice as big as London’s (0.44%).

Figure 3.19: Average height difference and slope for trips

As expected, the average height difference between stations increases when the trip length

increases (figure 3.19). The average slope decreases when the trip length increases. A negative

slope is often followed by a positive slope (e.g. when the track needs to run temporarily

deeper underground). Over longer trips, this evens out.

Page 50 of 88

3.3. TECHNICAL EVALUATION

Figure 3.20: a) Chart showing the probability (y-axis) that the height difference between two stations
is above a threshold (x-axis), b) Accuracy of pattern matching algorithm (red) [32] compared to our
approach SubwayAPPS (black). Please note, that in this case we assume that the pattern matching
approach [32] works with a 100% accuracy. The blue dotted line shows the accuracy achieved by [32]

3.3 TECHNICAL EVALUATION

In general, we see that the average height difference between stations for all lines is well

above 2 meters (the granularity of the air pressure sensors is around 1m) for the researched

five global subway systems, therefore our approach works in general across all networks. To

further analyse this, we calculated at the probability that the height difference between two

adjacent stations exceeds the air pressure sensors accuracy. As expected, the probability

that the height difference between two adjacent stations is bigger than 0m is 100% and the

probability naturally decreases when the height difference between two adjacent stations

increases (figure 3.20). The probability that two adjacent stations have a height difference

of 0.5m is still 91.38%. For a height difference of 1m, this probability is decreased to 82.11%.

Therefore, in a worse case scenario, our approach can detect 82.11% of all 1-stations rides

across the five networks. Of course, this is a very theoretic value, as the typical subway ride

is about 8.75 minutes long and takes 6 stations [28]. For a 2-stations ride, we already can

technical detect 88% of all trips and for a 4-station ride nearly 92% (figure 3.20).

Nevertheless, this highlights the difference to the template matching approach by Watan-

abe et al. [32]. We have also calculated how unique the height difference patterns are across

different lines, cities and across the five networks we have investigated. On average, 54% of

1-station trips are unique in an individual line. This increases to 96% for 2-station trips. If we

look at the uniqueness of a height difference pattern at the level of a city, we see that only 10%

of 1-station patterns are unique. This increases quickly, with 94% uniqueness for a 4-station

Page 51 of 88

3.3. TECHNICAL EVALUATION

trip. This is the same as the uniqueness of 4-station trips at worldwide level. This explains

why the template matching approach performs bad on short trips. This improves when the

trip length increases.

Page 52 of 88

Chapter 4

Concept

In previous sections we looked at the properties of air pressure, how it behaves in closed

environments like underground subway tunnels and how it can be measured with a sensor

in a mobile device. Furthermore, we studied the depth structure of underground subway

networks. In this section, we use this information to propose an algorithm for subway station

detection using only a mobile air pressure sensor.

4.1 OVERGROUND TRANSPORTATION

To get an indication if location detection using an air pressure sensor was feasible on trans-

portation networks, some data was recorded while using overground transportation. The

data was recorded using the air pressure logger application (see appendix A). The air pressure

measurements during a 30 kilometer car trip were recorded, along with location data as

provided by the operating system of the smartphone. The location data was used to create a

height profile of the trip. Using the Google Maps Elevation API [7], the altitude of each point

was retrieved. The relative altitude, as measured by the air pressure sensor, was calculated by

using the hypsometric formula (see section 2.3). The result is plotted in figure 4.1.

53

4.1. OVERGROUND TRANSPORTATION

Figure 4.1: Measured elevation with an air pressure sensor (black), compared to real elevation accord-
ing to the Google Maps Elevation API (red)

From this, we see that there is an apparent relationship between the elevation and the

readings of the air pressure sensor in a mobile device while during movement. The absolute

average measured height error of the measured elevation, compared to the elevation acquired

from the Google Maps Elevation API, for this trip is 2.35m. The big difference between the

measured height and the height as retrieved from the Google Maps Elevation API at 1800

seconds, is due to a bridge. The Elevation API returned the elevation below the bridge, while

the car drove over the bridge.

However, we should take into account that a car trip is significantly different to a subway

trip:

• The car trip was recorded completely in open air. Most subway trips are completely

inside tunnels. This can have an effect on the air pressure due to the piston effect.

• A subway train stops at every station. This allows the air pressure to stabilize while the

train is stationary. While riding, there is a constant movement of air around the vehicle.

• When driving a car, we only have to stop for traffic lights and holdups. These incidents

happen less frequent with subway rides.

Page 54 of 88

4.2. UNDERGROUND TRANSPORTATION

• When the subway train has stopped at a station, the doors of the train open. This can

create an air flow between the train and the station which influences the air pressure in

the train.

4.2 UNDERGROUND TRANSPORTATION

In the next phase, we recorded the air pressure measurements while using an underground

transportation network. Five subway trips on three different lines were recorded on a single

day in the Brussels underground network. To make sure the recordings were representative,

recordings were made in the front, middle and the back of the train.

The recorded data was plotted to analyze the characteristics of air pressure during a subway

trip. An example is shown in figure 4.2. Pressure in hPa is plotted on the vertical axis, the time

in seconds on the horizontal axis. To indicate whether the subway train was stationary or

riding, the background of the chart is altered. A gray background indicates that the train is

riding, a white background means that the train is at a station.

Figure 4.2: Example of air pressure during a subway trip in Brussels

From these measurements, it was clear that the behaviour of air pressure during a subway

trip depends on the position on the train, whether the train is in a tunnel or not and the

characteristics of the subway tunnel (tunnel width, presence of ventilation shafts etc.). To

make our proposed method work universally on all subway lines worldwide, our method

needs to take into account these variables. No assumptions about these variables should be

made.

Page 55 of 88

4.3. SUBWAYAPPS

4.2.1 Train Arrival Detection

The piston effect is not only measurable when riding a subway train. Changes in air pressure

are also present while standing at a station platform when a subway train arrives and departs.

Two air pressure recordings were made at the Stokkel and Zuid stations in Brussels, shown in

figure 4.3. A white background indicates a train is at the station, a gray background indicates

no train is at the station.

Again, the effect of the piston effect depends on the position of the measurement on the

station platform. When standing at the beginning of the platform (where the train arrives),

there is an increase in air pressure due to the air stuck in front of the train, followed by a

decrease to fill the vacuum behind the train. Finally, the air pressure normalises again to its

original state.

When a train departs, there is a sudden decrease of the air pressure to fill the vacuum behind

the train (± 150 seconds on the right chart).

This makes it possible to detect the arrival and departure of a subway train by looking at the

behaviour of air pressure while standing on a subway platform.

Figure 4.3: Example of air pressure at a subway station

4.3 SUBWAYAPPS

With the SubwayAPPS technique, we show that it is possible to achieve reasonable positioning

accuracy on underground transportation networks. SubwayAPPS makes use of the smart-

phone’s barometer by relying on the piston effect and height differences between subway

stations. In our current implementation, we also expect the user to provide a start station.

This could also be done automatically by selecting the closest subway station near the last

known GPS coordinate.

Page 56 of 88

4.3. SUBWAYAPPS

As described earlier, some smartphones already filter the air pressure data on the chip. If

the air pressure sensor does not have an internal filter, the received air pressure is filtered

using an alpha filter, as used by [24].

We use the piston effect to detect whether the train is currently riding or not. When the

train is riding, the piston effect, together with variations in the environment (width of tunnel,

ventilation shafts etc.) cause the air pressure to be unstable. When the train has arrived at a

station, the air pressure becomes stable again.

To detect if the air pressure is currently stable we look at the variance of the air pressure in

a sliding time window. Variance is a statistic measure that indicates the variability and spread

of a set of values by looking at the distance between the values and the mean of the set [2]. It

is given by the formula s2 = 1
n−1

∑n
i=1(Xi −X)2. The square root of the variance is called the

standard deviation: s =
p

s2. When all values in the data set are the same, the variance will be

0. If there is a big spread between the values, the variance will be higher.

There are two parameters necessary to decide whether the air pressure is currently stable

or not: the size of the sliding time window and a threshold that determines the boundary

between stable and unstable air pressure.We experimentally found the optimal values for the

parameters by using different values and count the number of undetected station arrivals and

false positives that work across all networks. The optimal values for the sliding time window

and threshold are 12 seconds and 0.0015 hPa respectively.

To further improve the SubwayAPPS algorithm, we make use of the height differences

between the stations. As mentioned in section 2.3, we can calculate the height difference

between two points by their air pressure at these two points by using the hypsometric formula:

h = ((P0
P)−0.19 −1) ·−44330)

When we detect that the air pressure is stable, we can not assume directly that the train is

stationary. Instead, we first look if the relative height difference between the current position

and the previous station, measured by the smartphone’s air pressure sensor, matches the real

height difference between the stations. Only when the air pressure is stable and the height

difference check succeeds, we can conclude that the subway train has arrived at a station.

We experimentally observed that a tolerance of 2 meters between the actual height difference

Page 57 of 88

4.3. SUBWAYAPPS

and the measured height difference is optimal to detect most stations and eliminate false pos-

itives. In section 3.2, we concluded that 82.11% of adjacent stations have a height difference

above 2 meters. With this height difference check, we can thus eliminate false positives as

seen in figure 6.4 if the next station is located more than 2 meters above or below the current

station.

Additionally, the height difference check prevents that an unscheduled stop between two

stations is classified as an arrival at a station. When the subway train has stopped between

two stations, the air pressure can become stable. In this case, the height difference check will

fail and the period of stable air pressure will rightfully not be seen as an arrival at a station.

An example of the algorithm with height difference check is shown in figure 4.4. The

variance of the air pressure, height difference and result of the algorithm are shown below

each other. The blue dotted lines on the height difference chart shows the tolerance for

the height difference check. The height difference check succeeds if the measured height

difference between the previous stop and the current position is between the two dotted

lines. We can see how the false positive between 450 and 500 seconds is filtered out in this

version of the algorithm due to the height difference check. After the first stable air pressure

period ends, the algorithm only expects a new stop at a relative height difference 9 meter

below the current stop. Because of this, the second period of stable air pressure is not seen as

a stop, because the relative height difference is ± 0 meters.

Page 58 of 88

4.3. SUBWAYAPPS

Figure 4.4: Example of the SubwayAPPS algorithm. The top chart shows the variance of the air
pressure in the time window. When the variance is below the threshold (blue dotted line), the air
pressure is stable. The chart in the middle shows the relative height difference measured between
stations. The blue dotted line shows the expected height difference ± tolerance. When the air pressure
is stable and the height difference is as expected, the algorithm concludes that the train has arrived at
a station (bottom chart).

Page 59 of 88

4.3. SUBWAYAPPS

Page 60 of 88

Chapter 5

Implementation

The SubwayAPPS algorithm introduced in the previous section is implemented in an appli-

cation on the Android platform, for versions 4.0.4 and up. The application is based on the

existing MetroNavigator application, developed by Stockx et al. [28] in their Sigspatial 2015

paper. Furthermore, to facilitate the research and evaluation, the algorithm is implemented

in Javascript and R. In this section, we will discuss the details of the implementation of the

algorithm in the Android application.

5.1 IMPLEMENTATION ON ANDROID

To access the air pressure sensor of the smartphone, we use Android’s built-in API to access

environment sensors [13]. Once registered, this API returns the air pressure at 5Hz in hPa.

Before we can use the returned air pressure for the calculations of the algorithm, smoothing

may be necessary. A boolean variable keeps track whether smoothing is recommended.

By default, the value is set to true. If an air pressure sensor has built-in smoothing (e.g.

Bosch BMP280), this can be turned off. The vendor and version number of the sensor can

be retrieved using the Android API as shown in listing 5.1. In this example, we check if the

version of the Bosch air pressure sensor is better than the Bosch BMP180 (version 1, with no

built-in filtering).

61

5.1. IMPLEMENTATION ON ANDROID

1 boolean doFi l ter ing = true ;

2 i f (mPressure . getVendor () . contains ("BOSCH")

3 && mPressure . getVersion () > 1) {

4 doFi l ter ing = f a l s e ;

5 }

Listing 5.1: Code for retrieving information about the built-in air pressure sensor

We use the same filter as [24], with α= 0.1:

cur r entPr essur e =α∗ sensor Pr essur e + (1−α)∗pr evi ousPr essur e

This gives results comparable to air pressure sensors with built-in filtering (see sec-

tion 6.1).

Throughout the duration of the algorithm, we keep a time window to check whether the air

pressure is stable or not. We store this values in an ArrayList. This allows for quick access to

the head (to add the most recent air pressure measurement) and tail (to remove values that

fall out of the time window) of the time window. Along with the air pressure, we also store

the timestamp of the air pressure measurements in a separate list. This is needed to remove

the outliers when updating the time window. The time window is updated each time a new

measurement is received by the Android API. The algorithm for updating the time windows is

shown in listing 5.2. The size of the time window is 12 seconds, as discussed in the previous

section.

1 / / add new value

2 pressureTimeWindow . add(newPressure) ;

3 timestampTimeWindow . add(newTimestamp) ;

4

5 / / remove values outside the window

6 while (timestampTimeWindow . s i z e () > 0

7 && timestampTimeWindow . get (0) < newTimestamp − timeWindowSize) {

8 pressureTimeWindow . remove (0) ;

9 timestampTimeWindow . remove (0) ;

10 }

Listing 5.2: Code for updating the time windows

We keep a boolean, stopDetected, to save the current status of the train (riding or stationary).

When the algorithm has just started and the time window is not full yet, the variance of the

Page 62 of 88

5.1. IMPLEMENTATION ON ANDROID

values in the time window will be low. The algorithm decides that the air pressure is stable.

This is acceptable because we assume that the user starts the application when he boards the

subway train and it is still waiting to depart. The value of stopDetected is thus initialized as

true.

When a new value is received from the air pressure sensor, the value is smoothed (if

necessary), the time window gets updated and the variance of the time window is calculated.

The continuation of the algorithm depends on the stability of the air pressure and the current

value of stopDetected:

• Stable air pressure:

– When currently a stop is detected and the measured air pressure is still stable, the

status of the train remains stationary. A special window is kept with air pressure

measurements when the train is stationary. This is used to calculate the average

air pressure during the whole period that the train is stationary. This improves the

accuracy of the height difference checks.

– When the air pressure becomes stable and the current status of the train is riding,

there is a possibility that the train has arrived at a station. To assure that this is the

case, a height difference check is done. The relative height difference between the

current air pressure and the average air pressure at the previous stop is calculated.

If this matches the expected height difference, with a tolerance of 2 meters, the

algorithm decides that the train has arrived at the station. The values of the time

window are copied to the stationary time window and stopDetected is set to true.

• Unstable air pressure:

Unstable air pressure always is an indication that the train is riding. If a stop was

detected previously, the train has departed from the station again. The average air

pressure from the stationary time window is stored and stopDetected is set to false.

When no stop was detected, the train remains in its riding state and the algorithm does

not take any action.

An overview of the algorithm described above is shown in figure 5.1. The implementation

of the algorithm, in pseudocode, is given in appendix B.

Page 63 of 88

5.2. METRONAVIGATOR+

Figure 5.1: Graphical representation of the station detection algorithm using air pressure

5.2 METRONAVIGATOR+

The algorithm described above runs as a background service. When an event, e.g. train

arrived at a station, happens, the service sends an intent (message) to the Android OS. Every

application on the OS can register to receive these intents. The receiving application can

then use this information for navigational purposes etc.

One such application that listens for these intents is MetroNavigator+, an application

developed by Stockx et al. [28]. The application lets users select a start and destination station.

Page 64 of 88

5.2. METRONAVIGATOR+

It then tracks the subway trip and shows number of stations left, time left to next station,

the name of the next station, the estimated arrival time and a visualization of the progress

between the previous and next station. While riding, the user can share tweets about his

ride and see Wikipedia information about landmarks that he passes. Finally, a smartwatch

extension allows the user to follow the progress of his trip on his watch.

Figure 5.2: Screenshots of the MetroNavigator application

The SubwayAPPS algorithm needs to know the relative height differences between the

adjacent stations of the trip. Because of this, the storage of the station data in the MetroN-

avigator application needed to be changed. The data is saved in JSON format, as shown in

listing 5.3. To facilitate the querying of the data, a datastore class was implemented to retrieve

the information.

Page 65 of 88

5.2. METRONAVIGATOR+

1 [

2 {

3 " City " : "London" ,

4 " Latitude " : 51.528308 ,

5 "Longitude " : −0.3817765 ,

6 " Lines " : [

7 {

8 "Name" : " Bakerloo " ,

9 " Color " : "#B36305 " ,

10 " Stations " : [

11 {

12 "Name" : "Elephant & Castle " ,

13 " Latitude " : 51.495849394281 ,

14 "Longitude " : −0.10072431173602

15 }

16] ,

17 "Segments " : [

18 {

19 "From" : "Elephant & Castle " ,

20 "To " : "Lambeth North " ,

21 " HeightDifference " : 6 , // in meters

22 "Time " : 2.13 // in minutes

23 }

24]

25 }

26]

27 }

28]

Listing 5.3: JSON format for data in the MetroNavigator application

Page 66 of 88

Chapter 6

Evaluation

In this section, we evaluate our proposed SubwayAPPS method. First, we look at the per-

formance of air pressure sensors to detect height differences. Next, we calculate optimal

parameter values for the SubwayAPPS algorithm. To conclude this chapter, we evaluate the

algorithm in Brussels and London and compare it to Stockx’ method [28].

6.1 TECHNICAL EVALUATION

The manufacturers of pressure sensors claim that the sensors have an accuracy of ±0.1 hPa.

This corresponds to a height difference of ±1 meter. To make our proposed method function

properly, it is important that a good accuracy is achieved. Height accuracy tests were executed

to test the accuracy of the Bosch BMP180 and Bosch BMP280 pressure sensors.

The tests were executed by a Google nexus 4 (Bosch BMP180) and an Apple iPhone 6 (Bosch

BMP280). Both phones were put in a pocket. The pocket was attached to a rope which was

marked every 10cm. The pocket was then hung over a balcony. Every 10 seconds, the pocket

was manually lowered 10cm and then kept stable at the same height. This was repeated until

a distance of 230cm was completed. The air pressure logger application (see appendix A) was

used on both phones to record the air pressure. To record the real current height, a simple

stopwatch application was developed using JavaScript. This application recorded the current

timestamp and height when a button was clicked. The output was exported to a csv-file. To

make sure the clocks of both the phones and computer were in sync, they were synchronized

by using NTP.

The results were analyzed using the R programming language. The height difference, relative

67

6.1. TECHNICAL EVALUATION

to the start height, is calculated by using the hypsometric formula explained in section 2.3.

The results are visualized in figure 6.1.

Figure 6.1: Unfiltered results of the height accuracy test

We can see that there is a significant difference between the BMP180 (red) and BMP280

(blue) sensors. The readings of the BMP180 sensor are not smooth and have great variance.

The BMP280 has a built-in noise filter that smooths the results internally. The readings of

the BMP180 sensor can be smoothened manually by using a simple filter: cur r ent Hei g ht =
α∗ sensor Hei g ht + (1−α)∗pr ev Hei g ht , with α = 0.1. The filtered results are shown in

figure 6.2. For completeness, the results of the BPM280 were filtered using the same filter as

well.

Page 68 of 88

6.1. TECHNICAL EVALUATION

Figure 6.2: Filtered results of the height accuracy test

To compare the air pressure sensors, statistics about the error of the measured height

difference were calculated. This was done by looking at the absolute difference between

the measured height difference and the real (ground truth) height difference for the periods

when the pocket was kept stable at the same height. A boxplot of these statistics is shown in

figure 6.3.

Figure 6.3: Boxplot of the error of the height accuracy tests

Page 69 of 88

6.2. PARAMETER DETERMINATION

It is clear that filtering the results of the BMP280 again does not improve the results. The

internal filter of the BMP280 is the optimal filter, further filtering worsens the result. The

average height error for the BPM180 is 13.43cm, with a maximum error of 50.09 cm, which is

comparable to the results of the BPM 280, 7.88cm and 44.93cm respectively. This is a better

accuracy than is indicated by the manufacturer of the pressure sensors. The boxplot also

clearly shows the bigger variance of the BMP180 sensor.

In section 3, we investigated the height differences between adjacent subway stations. We

concluded that 91.38% of adjacent stations have a height difference of at least 0.5m. If we

combine this with the results of the height accuracy tests, we can conclude that we can detect

91.38% of subway stations by only taking into account the height differences between subway

stations.

6.2 PARAMETER DETERMINATION

The SubwayAPPS algorithm depends on two variables to execute the station detection: the

size of the time window that holds the measured air pressure values and a threshold that

decides whether the air pressure is stable or not.

To make a good assumption about accurate values for these parameters, we manually

marked the time intervals on our recorded air pressure logs where the air pressure was stable.

We found that the average duration and variance for these intervals were 16.2 seconds and

0.0015 hPa respectively. For further optimization, we manually found the optimal values for

the parameters by using different values and compare the results with the real truth. The

following statistics were used:

• Undetected stations: the number of stations that was undetected

• False positives: number of times stable air pressure was detected while the train was

still riding

• Sum: the sum of the above statistics

Page 70 of 88

6.2. PARAMETER DETERMINATION

Table 6.1: Results for different values for time window size (vertical) and threshold (horizontal)

From table 6.1 we can see that the number of undetected stations decreases when the

time window size decreases and the variance threshold increases. However, the number

of false positives increases in this case. Because we can still filter out the false positives by

making use of the height information between adjacent stations, it is more important that

the number of undetected stations is zero. We conclude that the optimal values for the time

window size and variance threshold are 12 seconds and 0.0015 hPa respectively. With these

values, we still have 20 false positives, meaning that the algorithm has detected 20 stops while

the subway train was still riding. An example of the station detection algorithm making only

use of the variance of the air pressure is shown in figure 6.4. The variance of the air pressure in

the time window is plotted over time. The threshold between stable and unstable air pressure

is indicated by the blue line. When the variance is below the threshold, it is plotted in green.

Figure 6.4: Example of the station detection algorithm using only stability of air pressure

All station arrivals are detected. It is clear that when the train is riding, the variance of the

air pressure is significantly higher than when the train is stationary. We can also see some

false positives, more specifically between 450 seconds and 500 seconds. We see that the air

Page 71 of 88

6.3. EMPIRICAL EVALUATION

pressure becomes stable as the train arrives at the station. Then, while still stationary, it

becomes unstable for a short while. This happens twice before the train starts riding again at

± 500 seconds.

6.3 EMPIRICAL EVALUATION

To evaluate the SubwayAPPS algorithm, a real-world study was done in the subway networks

of Brussels and London. A logger application was developed to record the air pressure, along

with information about the current station and the riding status of the train, while riding

the train (see appendix A). This application saves the recorded data in the CSV format. The

logs were recorded with a Google Nexus 4 (Bosch BMP180 pressure sensor) and iPhone 6

(Bosch BMP280 pressure sensor). The logs were recorded at a random position in the train, to

prevent the position on the train from influencing the evaluation results. The phone used to

record was kept on the lap or in the pocket of the user.

The algorithm is implemented in R. The recorded logs are imported and the algorithm runs

over the data. The result is plotted as four charts:

• The status of the train (riding or stationary) as indicated by the user while recording

the log

• The prediction of the algorithm of the status of the train

• The current variance of the air pressure in the sliding time window

• The current height difference compared to the previous detected station

This allows us to easily count the number of detected stations and to analyze why the

algorithm fails. When an arrival at a station is not detected, no recalibration is done. This

causes the subsequent stations on the trip to be undetected, because the algorithm relies on

relative height differences between adjacent stations.

6.3.1 Results

In Brussels, the algorithm was tested on two separate days. In total, 20 recordings were made

with an average time of 22 minutes. The average number of stations per trip was 14. The

BMP180 sensor was used for 12 recordings, the other were recorded by the BMP280 sensor.

All lines were recorded completely at least once.

Page 72 of 88

6.3. EMPIRICAL EVALUATION

With the BMP180 pressure sensor, 162 out of 170 stations (95.29%) were detected correctly.

8 out of 12 (66.66%) complete trips were detected correctly.

Using the BMP280 pressure sensor, 92 out of 114 stations (80.70%) were detected correctly. 5

out of 8 (62.5%) trips were detected correctly.

A second test was done in London. 9 logs were recorded with the BMP180 sensor and

10 with the BMP280 sensor. The trips were randomly chosen on the London underground

network in zones 1 and 2. The goal of this test was to board the train, ride it for 7 minutes and

then exit at the next stop. The average trip time of this test is 9 minutes. The average length of

a trip was 4 stations.

Here, the BMP180 sensor classified 20 out of 30 stations (66.66%) correctly. 5 out of 9 complete

trips (55.55%) were successfully classified.

The BMP280 classified 21 out of 36 stations (58.33%) correctly. It could only detect 1 complete

trip correctly.

BMP180 BMP280 Total

Brussels 95,29% 80,70% 88,00%

London 66,66% 58,33% 62,50%

Total 80,98% 69,52%

Table 6.2: Accuracy results of the evaluation

From this results, we can conclude that there is a noticeable difference between the Bosch

BMP180 and BMP280 sensors. From the analysis, we see that some station stops are not

detected because the air pressure readings are not stable enough to be under the stable

threshold. A possible cause for this, is the built-in filter of the BMP280 sensor. This filter is

not as strong as the alpha filter we use to filter the readings of the BMP180 sensor. Because

the filter of the BMP280 is not as strong, the variance of the values in the time window does

not decrease enough when the train is stationary.

Further, we notice a difference in performance between the tests in Brussels and London.

From the analysis, we see two causes for this. First, we notice that the air pressure while

stationary does not become stable enough for the algorithm to detect a stop. The subway

stations in London are bigger and busier than those in Brussels. They often connect multiple

lines. When a train arrives or departs from the same station but at a different platform, this

destabilizes the air pressure in the whole station. Another difference between the test in

Page 73 of 88

6.3. EMPIRICAL EVALUATION

Brussels and London, is the source of the data of the height differences between the stations.

The data for London comes from TfL and dates from 2011. We have no control over the

accuracy of the data. Changes in the depth structure of some lines may have happened. The

data for Brussels is derived from measurements done by the same pressure sensors that we

use to do the test. This is more suitable for the execution of the algorithm.

The results for the Brussels underground network are slightly better than Stockx’ [28]

method, which uses the accelerometer to do station detection. However, this method per-

forms better for the London underground network. We expect that the performance of our

method improves when the depth structure of the network is mapped using the same air

pressure sensors used for the SubwayAPPS algorithm.

Our method does not depend on the type of train or the smoothness of the tracks, something

that negatively influenced Stockx’ algorithm. Another advantage of our method is that we

can rely on two properties of air pressure: the piston effect and the changing air pressure at

different altitudes. This allows us to filter out most false positives. A downside of SubwayAPPS

is that the depth structure of the underground network must be known prior to tracking. This

information is not publicly available for all underground networks. Preferably, the depth

structure is mapped with an air pressure sensor, for accurate results.

Page 74 of 88

Chapter 7

Discussion and Conclusion

In this thesis, we presented SubwayAPPS, a novel method that uses the air pressure sensor in

a smartphone to detect the riding status of a subway train. SubwayAPPS uses the characteris-

tics of air pressure in closed environments (like subway tunnels) and the height differences

between adjacent stations to execute the detection. It does not need any additional instru-

mentation of the environment, sparing the operators of subway networks who are often on a

low budget. The only information the algorithm needs, is a start and end station and a depth

map of the subway line (gathered manually using an air pressure sensor or otherwise).

In our first study, we showed that the height differences between adjacent subway stations

are big enough for air pressure sensors in modern smartphones to detect. For this, the subway

networks of five major cities (London, Moscow, Tokyo, Vienna and Brussels) were analyzed.

Furthermore, we tested the accuracy of air pressure sensors to detect height differences. From

this, we saw that we could theoretically classify 82.11% of subway stations by looking at their

height differences alone.

Our evaluation shows that our method, when the depth structure of the underground

network is mapped with an air pressure sensor, can get a 10% better accuracy than existing

solutions. Despite this, the algorithm is simple to understand and can be implemented in less

than 100 lines of code. As a proof of concept, the algorithm is implemented on the Android

platform with the MetroNavigator+ application.

75

7.1. LIMITATIONS

7.1 LIMITATIONS

However, there might be various reasons why the algorithm might fail at some times. As

mentioned before in our evaluation of the algorithm in London, arriving or departing trains

on other platforms in the same station can influence the stability of the air pressure. This can

obstruct the station detection algorithm.

When a train brakes before it arrives at a station and then drives slowly into the station,

the algorithm may be detecting the stop too early. This can be solved by using additional

sensors like the accelerometer or a brightness sensor that detects whether the train is still in

the tunnel or not.

Furthermore, drastic changes of the weather change the air pressure universally. During

an intense storm, an air pressure change which corresponds to a height difference of 3 to

4 meters can happen in only 10 minutes. The probability that this happens is small, as the

average riding time between adjacent stations is 1 to 2 minutes. We can resolve this issue

by involving weather information (e.g. base pressure at sea level) for the calculations of

the algorithm. This way, we can compensate for the drift in air pressure due to weather

conditions.

During rush hours, trains can be very crowded. The user might only be able to sit down

during a part of the trip. Alternating between a sitting and standing position changes the

height of the smartphone. Even when the user remains in the same position during the whole

trip, putting the phone from his hands into his pockets or vice versa changes the height of

the phone. This can be resolved by using an external air pressure sensor. This sensor can be

attached to a body part that remains at the same height, e.g. the user’s shoe.

Finally, the algorithm fails when the services of the subway network change. An example of

this, is the temporary closure of a station due to adjustments of the station. The algorithm will

expect the train to stop at the closed station, but can not detect this when the train rides past

the station. Consequently, all next stations can not be detected by the algorithm, because the

expected height difference is not adjusted. To resolve this, the application should frequently

receive service updates from the underground network operator. The algorithm can take this

info into account and skip the closed station.

Page 76 of 88

7.2. FUTURE WORK

The algorithm can not recover when it misses a station stop. As a consequence, all sub-

sequent stations are not detected as well. A recalibration function could put the algorithm

back on track. For this, the algorithm could use another localization method (e.g. WiFi

positioning), or he could manually indicate the current station during a stop. The algorithm

can then resume its tracking.

7.2 FUTURE WORK

7.2.1 Piston effect

The presence of an air pressure sensor in mobile devices opens up new possibilities for

applications. The piston effect is an interesting phenomenon that can be detected by mobile

devices.

Although the effect is greater when an object is moving inside a closed and narrow envi-

ronment, it also exists when an object moves in an open environment. in our tests, we saw

that our algorithm works for overground segments as well. this suggests that looking at the

stability of the air pressure might be useful for transport-mode detection.

Another situation where the piston effect occurs, is when an elevator moves through an

elevator shaft. The elevator cabin pushes the air away while moving. The air can escape

the elevator shaft through the landing doors (if they are not air-tight). This can possibly be

detected by an air pressure sensor in a mobile device.

7.2.2 Pattern Matching with Neural Networks

From our analysis of the behavior of air pressure while on a subway train, we saw some

recurring patterns, mainly due to the piston effect. The air pressure was mostly unstable

when the train was riding, and stable when the train was stationary. We detected these

patterns by looking at the variance of the air pressure in a sliding time window. Another

method to use this patterns for station detection is making use of neural networks. A neural

network is a set of artificial processing units (neurons) which are interconnected via a set

of weights [5]. Signals can then travel from one or multiple input nodes, through these

processing units via the connections, to one or multiple output nodes. This network is based

on the decision making via neurons that happen in the human brain. Such a network is

well-suited for tasks like pattern recognition.

Page 77 of 88

7.2. FUTURE WORK

In our case, a neural network can be used to make a decision whether the train is stationary

or not by looking at patterns in the measured air pressure. Before we can use the network to

make this decision, a training phase is needed. We can do this by feeding the network the

recorded air pressure, together with the manual indications of the status of the train.

7.2.3 Train Arrival Detection in Station

From our test data, we noticed a change in air pressure when a train arrive or departs while

standing on a station platform. This can be used to notify the user of an arriving subway

train. It can also aid the SubwayAPPS algorithm to decide when to start the execution of the

algorithm.

7.2.4 Crowdsourcing Data

From our evaluation, we concluded that the accuracy of the algorithm increases when the

height structure of the subway line is mapped by an air pressure sensor. Mapping a complete

subway network is a time-consuming job. To facilitate this, users who use the algorithm

while riding the subway could automatically record the measured air pressure data. This

recorded data can then be uploaded for processing to a server. With more information, a

better estimate of the real height differences between the stations could be calculated.

7.2.5 Sensor Fusion

Previous research has shown that other sensors can be used for localization when riding a

subway network. The accelerometer [15,28,29] and magnetometer [15] have been successfully

utilized for location purposes. To develop a better algorithm, these existing algorithms could

be fused. This algorithm could use other techniques to overcome the shortcomings of a

method. For example, the height difference check from SubwayAPPS could be used to filter

out false positives for an accelerometer based method. A weighted average could be used to

make a decision about the riding state of the train.

Page 78 of 88

Appendices

79

Appendix A

Air Pressure Log Application

To gather air pressure data while using public transportation networks, an application that

logs the air pressure was developed. The app was developed for the Android and iOS platforms

and used the pressure sensor present in the smartphone. By developing our own application

we had have more control over the logger. We are sure that we log with the maximum accuracy

and can define the output format. Finally, we can store additional information such as the

geographical coordinates, whether the vehicle is stationary or riding and the current station.

The interface of the application is shown in figure A.1.

The logger application logs the following information:

• The date and time. This is saved in a human-readable format and as a timestamp,

which makes it easier to create charts with Microsoft Excel.

• The air pressure. This is done through the built-in pressure sensor of the device [13]. If

no pressure sensor is available, an alert dialog will be displayed to notify the user.

• The moving state of the vehicle. This is saved as a boolean value (0 = stationary, 1 =

riding). The user has to indicate this manually.

• The name of the last station that the vehicle passed. The user has to indicate this

manually in the application. The city, line and station can be selected through spinner

widgets. Currently, the subway stations of Brussels, Paris and London are available.

More cities can be added by specifying them in a JSON file.

• The geographical coordinates (latitude and longitude). This information is gathered

through the built-in Android location API. This data is particularly useful when using

80

Figure A.1: The pressure logger application on Android (left) and iOS (right)

the logger application on overground public transport networks. Through the location

data, the altitude of the location can be retrieved. This allows us to compare the

calculated altitude (from the air pressure data) with the real altitude.

Each time one of these is updated, a new entry is added to the log file.

The logging data is saved to a csv text file. This makes it easy to use the data in Microsoft

Excel or R to do further analysis. To make the file accessible, it is saved on the external

memory of the phone (if this is available, if not it is saved to the internal memory), in the

Documents directory. On iOS, the recorded log can be exported by using File sharing in

iTunes.

Page 81 of 88

Page 82 of 88

Appendix B

Station Detection Algorithm Code

1 / / the previous pressure value , used f o r smoothing

2 f l o a t previousPressure = null ;

3 / / array to save the pressure values in the time window

4 ArrayList < f loat > pressureTimeWindow = new ArrayList < >() ;

5 / / array to save the timestamp values in the time window

6 ArrayList <long> timestampTimeWindow = new ArrayList < >() ;

7 / / s i z e of the time window, in mill iseconds

8 private int timeWindowSize = 12 * 1000;

9 / / the treshold f o r the variance of the pressure values

10 double varianceTreshold = 0.0015;

11 / / boolean that tracks whether the train i s currently stat ionary

12 boolean stopDetected = true ;

13 / / a ir pressure at previous stop , used to c a l c u l a t e the r e l a t i v e height d i f f e r e n c e

14 f l o a t previousStopPressure = null ;

15 / / array to keep the pressure values while the train i s stationary ,

16 / / used to c a l c u l a t e previousStopPressure

17 ArrayList < f loat > stationaryWindow = new ArrayList < >() ;

18 private double heightTolerance = 2 ; / / tolerance in meters

19 private Long startTimestamp = null ; / / timestamp of the s t a r t of the algorithm

20

21 function doStationDetection (long currentTimestamp , f l o a t currentPressure) {

22 i f (startTimestamp == null) { / / save s t a r t timestamp

23 startTimestamp = currentTimestamp ;

24 }

25

26 / / smoothen pressure data i f necessary

27 i f (doFi l ter ing) {

28 currentPressure = smoothPressure (currentPressure) ;

29 / / save pressure f o r next step

30 previousPressure = currentPressure ;

31 }

32

33 / / update window values

34 updateWindows (currentPressure , currentTimestamp) ;

35

36 / / c a l c u l a t e variance

83

37 f l o a t windowVariance = calculateVariance () ;

38

39 i f ((currentTimestamp − startTimestamp) * 1000 < timeWindowSize) {

40 / / add pressure to stationaryWindow to c a l c u l a t e pressure of current stop

41 stationaryWindow . add(currentPressure) ;

42 } else {

43 i f (windowVariance < varianceTreshold) {

44 / / variance i s below treshold

45 i f (stopDetected) {

46 / / Train i s s t i l l s tat ionary

47 / / add current pressure to stat ionary window

48 stationaryWindow . add(currentPressure) ;

49 } else {

50 / / c a l c u l a t e height d i f f e r e n c e

51 f l o a t heightDifference = calculateHeightDifference (previousStopPressure ,

52 calculateMean (pressureTimeWindow))

53

54 i f (Math . abs (heightDifference − expectedHeightDifference) < heightTolerance) {

55 / / Train arrived at s t a t i o n

56 / / c r e a t e stat ionary window

57 stationaryWindow . clear () ;

58 stationaryWindow . addAll (pressureTimeWindow) ;

59 stopDetected = true ;

60 } else {

61 / / Train i s s t i l l riding

62 }

63 }

64 } else {

65 / / variance i s above treshold

66 i f (stopDetected) {

67 / / Train i s riding again

68 stopDetected = f a l s e ;

69 previousStopPressure = calculateMean (stationaryWindow) ;

70 } else {

71 / / Train i s s t i l l riding

72 }

73 }

74 }

75 }

Listing B.1: Pseudocode of the SubwayAPPS algorithm

Page 84 of 88

Bibliography

[1] C. Ascher, C. Kessler, M. Wankerl, and G. Trommer. Using orthoslam and aiding tech-

niques for precise pedestrian indoor navigation. In Proc. of ION GNSS ’09, pages 743–749,

2001.

[2] Michael Baron. Probability and Statistics for Computer Scientists, Second Edition. Chap-

man & Hall/CRC, 2nd edition, 2013.

[3] BIPT. Kadaster antennesites. http://www.sites.bipt.be/. Consulted on May 11,

2016.

[4] Geoffrey Blewitt. Basics of the gps technique: observation equations. Geodetic applica-

tions of GPS, pages 10–54, 1997.

[5] SS Cross, RF Harrison, and RL Kennedy. Introduction to neural networks. The Lancet,

8982(346):1075–1079, 1995.

[6] Android Developers. Android api guide: Environment sensors. http://developer.

android.com/guide/topics/sensors/sensors_environment.html. Consulted on

May 2, 2016.

[7] Google Developers. The google maps elevation api. https://developers.google.

com/maps/documentation/elevation/intro. Consulted on April 16, 2016.

[8] C. Fischer, K. Muthukrishnan, M. Hazas, and H. Gellersen. Ultrasound-aided pedestrian

dead reckoning for indoor navigation. In Proc. of MELT ’08, pages 31–36. ACM, 2008.

[9] Transport for London. Public transport journeys by type of transport. http://data.

london.gov.uk/dataset/public-transport-journeys-type-transport. Con-

sulted on May 11, 2016.

85

http://www.sites.bipt.be/
http://developer.android.com/guide/topics/sensors/sensors_environment.html
http://developer.android.com/guide/topics/sensors/sensors_environment.html
https://developers.google.com/maps/documentation/elevation/intro
https://developers.google.com/maps/documentation/elevation/intro
http://data.london.gov.uk/dataset/public-transport-journeys-type-transport
http://data.london.gov.uk/dataset/public-transport-journeys-type-transport

BIBLIOGRAPHY

[10] Transport for London. Tfl: Facts & figures. https://tfl.gov.uk/corporate/

about-tfl/what-we-do/london-underground/facts-and-figures. Consulted on

April 11, 2016.

[11] Alexey Goncharov. Transport schemes. http://www.alexeygoncharov.com/

index1-eng.html. Consulted on November 25, 2015.

[12] The Guardian. Navigating decline: what happened to tom-

tom? https://www.theguardian.com/business/2015/jul/21/

navigating-decline-what-happened-to-tomtom-satnav. Consulted on May

11, 2016.

[13] Android Developer Guide. Android: Environment sensors. http://developer.

android.com/guide/topics/sensors/sensors_environment.html. Consulted on

October 20, 2015.

[14] Jeffrey Hightower and Gaetano Borriello. Location systems for ubiquitous computing.

Computer, (8):57–66, 2001.

[15] Takamasa Higuchi, Hirozumi Yamaguchi, and Teruo Higashino. Tracking motion context

of railway passengers by fusion of low-power sensors in mobile devices. In Proceedings

of the 2015 ACM International Symposium on Wearable Computers, pages 163–170. ACM,

2015.

[16] N. Kawaguchi, M. Yano, S. Ishida, T. Sasaki, Y. Iwasaki, K. Sugiki, and S. Matsubara.

Underground positioning: Subway information system using wifi location technology.

In Mobile Data Management: Systems, Services and Middleware, 2009. MDM ’09. Tenth

International Conference on, pages 371–372, May 2009.

[17] Marian Mohr, Christopher Edwards, and Ben McCarthy. A study of lbs accuracy in the

uk and a novel approach to inferring the positioning technology employed. Computer

Communications, 31(6):1148–1159, 2008.

[18] Germain Moyon. Business insider: Moscow metro’s wi-fi rev-

olution as city gets wired. http://www.businessinsider.com/

afp-moscow-metros-wi-fi-revolution-as-city-gets-wired-2014-12?IR=T.

Consulted on February 10, 2016.

Page 86 of 88

https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/facts-and-figures
https://tfl.gov.uk/corporate/about-tfl/what-we-do/london-underground/facts-and-figures
http://www.alexeygoncharov.com/index1-eng.html
http://www.alexeygoncharov.com/index1-eng.html
https://www.theguardian.com/business/2015/jul/21/navigating-decline-what-happened-to-tomtom-satnav
https://www.theguardian.com/business/2015/jul/21/navigating-decline-what-happened-to-tomtom-satnav
http://developer.android.com/guide/topics/sensors/sensors_environment.html
http://developer.android.com/guide/topics/sensors/sensors_environment.html
http://www.businessinsider.com/afp-moscow-metros-wi-fi-revolution-as-city-gets-wired-2014-12?IR=T
http://www.businessinsider.com/afp-moscow-metros-wi-fi-revolution-as-city-gets-wired-2014-12?IR=T

BIBLIOGRAPHY

[19] Song Pan, Li Fan, Jiaping Liu, Jingchao Xie, Yuying Sun, Na Cui, Lili Zhang, and Binyang

Zheng. A review of the piston effect in subway stations. Advances in Mechanical Engi-

neering, 5:950205, 2013.

[20] London & Partners. London tourism report 2014-2015.

http://files.londonandpartners.com/l-and-p/assets/media/

tourismannualreview2014-15.pdf. Consulted on May 6, 2016.

[21] Pressurenet. Pressurenet: The weather’s future. https://www.pressurenet.io/. Con-

sulted on November 2, 2015.

[22] P. Robertson, M. Angermann, and B. Krach. Simultaneous localization and mapping for

pedestrians using only foot-mounted inertial sensors. In Proc. of Ubicomp ’09, pages

93–96. ACM, 2009.

[23] A. Ruiz, F. Granja, J. Prieto Honorato, and J. Rosas. Accurate pedestrian indoor navigation

by tightly coupling foot-mounted imu and rfid measurements. IEEE Transactions on

Instrumentation and Measurement, 61(1):178–189, 2012.

[24] Kartik Sankaran, Minhui Zhu, Xiang Fa Guo, Akkihebbal L Ananda, Mun Choon Chan,

and Li-Shiuan Peh. Using mobile phone barometer for low-power transportation context

detection. In Proceedings of the 12th ACM Conference on Embedded Network Sensor

Systems, pages 191–205. ACM, 2014.

[25] Bosch Sensortec. Restricted data sheet bmp180 digital pressure sensor.

https://ae-bst.resource.bosch.com/media/products/dokumente/bmp180/

BST-BMP180-DS000-12~1.pdf. Consulted on October 21, 2015.

[26] Portland State Aerospace Society. A quick derivation relating altitude to air pressure.

http://psas.pdx.edu/RocketScience/PressureAltitude_Derived.pdf. Con-

sulted on October 21, 2015.

[27] Henrik Stewenius, Christopher Engels, and David Nistér. Recent developments on direct

relative orientation. ISPRS Journal of Photogrammetry and Remote Sensing, 60(4):284–

294, 2006.

[28] Thomas Stockx, Brent Hecht, and Johannes Schöning. Subwayps: towards smartphone

positioning in underground public transportation systems. In Proceedings of the 22nd

ACM SIGSPATIAL International Conference on Advances in Geographic Information

Systems, pages 93–102. ACM, 2014.

Page 87 of 88

http://files.londonandpartners.com/l-and-p/assets/media/tourismannualreview2014-15.pdf
http://files.londonandpartners.com/l-and-p/assets/media/tourismannualreview2014-15.pdf
https://www.pressurenet.io/
https://ae-bst.resource.bosch.com/media/products/dokumente/bmp180/BST-BMP180-DS000-12~1.pdf
https://ae-bst.resource.bosch.com/media/products/dokumente/bmp180/BST-BMP180-DS000-12~1.pdf
http://psas.pdx.edu/RocketScience/PressureAltitude_Derived.pdf

BIBLIOGRAPHY

[29] Arvind Thiagarajan, James Biagioni, Tomas Gerlich, and Jakob Eriksson. Cooperative

transit tracking using smart-phones. In Proceedings of the 8th ACM Conference on

Embedded Networked Sensor Systems, pages 85–98. ACM, 2010.

[30] GLA Intelligence Unit. 2014 round population projections. http://data.london.gov.

uk/dataset/2014-round-population-projections. Consulted on May 6, 2016.

[31] Evgeniy Varfolomeev. 3d-model of moscow metro. http://varf.ru/metro3d/?en=1&

p=-90&t=45&d=41.05255888325765. Consulted on November 25, 2015.

[32] Takafumi Watanabe, Daisuke Kamisaka, Shigeki Muramatsu, and Hiroyuki Yokoyama.

At which station am i?: Identifying subway stations using only a pressure sensor. In

Wearable Computers (ISWC), 2012 16th International Symposium on, pages 110–111.

IEEE, 2012.

[33] Wikipedia. List of metro systems — wikipedia, the free encyclopedia, 2016. [Online;

accessed 8-June-2016].

[34] H.D. Young and R.A. Freedman. Sears and Zemansky’s University Physics. Addison-

Wesley series in physics. Addison-Wesley, 2000.

[35] Paul A Zandbergen. Accuracy of iphone locations: A comparison of assisted gps, wifi

and cellular positioning. Transactions in GIS, 13(s1):5–25, 2009.

Page 88 of 88

http://data.london.gov.uk/dataset/2014-round-population-projections
http://data.london.gov.uk/dataset/2014-round-population-projections
http://varf.ru/metro3d/?en=1&p=-90&t=45&d=41.05255888325765
http://varf.ru/metro3d/?en=1&p=-90&t=45&d=41.05255888325765

	Introduction and Motivation
	Problem
	Goals
	Structure of the Thesis

	Related Work
	Localization techniques and methods
	Example: GPS
	Example: WiFi positioning
	Conclusion

	Underground localization techniques and methods
	SubwayPS
	Co-operative Transit Tracking
	StationSense
	Air Pressure Template Matching
	Comparison

	Sensing Air Pressure with a Mobile Device
	Commonly Used Sensors and Devices

	Air Flow in Underground Transportation Networks

	Depth Structure of Underground Transportation Networks
	Relative height of subway networks
	London
	Moscow
	Tokyo
	Vienna
	Brussels

	Comparison
	Technical evaluation

	Concept
	Overground Transportation
	Underground Transportation
	Train Arrival Detection

	SubwayAPPS

	Implementation
	Implementation on Android
	MetroNavigator+

	Evaluation
	Technical Evaluation
	Parameter Determination
	Empirical Evaluation
	Results

	Discussion and Conclusion
	Limitations
	Future work
	Piston effect
	Pattern Matching with Neural Networks
	Train Arrival Detection in Station
	Crowdsourcing Data
	Sensor Fusion

	Appendices
	Air Pressure Log Application
	Station Detection Algorithm Code

