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Abstract

The electric field distribution excited by a Medtronic lead (Mo. 3389, Medtronic Inc., Minneapo-
lis, MN, USA) in deep brain stimulation was simulated by the low-frequency electroquasistatic
(FEM) solver in Sim4life (Sim4life, ZMT Zurich MedTech AG). The simulations are performed
in the high-resolution head and neck model, called MIDA. The dependency of electric field dis-
tribution on the frequency of the applied stimulus current was studied and it was found that the
distribution is approximately independent of frequency. An approximation for the assessment
of the electric field distribution excited by a biphasic square-wave is then proposed.

The simulated electromagnetic field was subsequently used to calculate the transmembrane
voltage and gate-parameters during two square-wave periods on the neurons of the lenticular
fasciculus (LF) and macaca fascicularis (MF). For this end a program was written in Mat-
lab (MATLAB 8.6, The MathWorks Inc., Natick, MA, 2000). The neurons were modelled as
straight multi-compartmental fibers. In this way different specialised neuronal models can be
used for different parts of the neuron. The resulting differential equations were discretised by
the Crank-Nicolson scheme and iterated in the Matlab program. The percentage of activated
neurons (%AN) was also determined by the Matlab code. A comparison was made for the %AN
in the LF and MF for two stimulation set-ups in deep brain stimulation.

The Matlab code was first tested for several more simple configurations. The stimulation of a
single straight neuron and a neuron bending at a specific location were studied and compared for
both cathode-make and anode-make stimulation. The different mechanisms by which neuronal
activation occurs is subsequently discussed. Matlab was furthermore programmed to calculate
the mean propagation velocity of the action potential. Also some simple bundles of multiple
neurons were simulated and the influence of the distance between the bundle and the electrode
on the neuronal activation was assessed.

Keywords: electric field distribution, transmembrane voltage, gate-parameters, neuronal acti-
vation, deep brain stimulation
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Abstract—In this work, a program in Matlab (MATLAB 8.6, The Math-
Works Inc., Natick, MA, 2000) was written to solve for the membrane-
voltage and gate-parameters in a general multi-compartmental neuron and
in bundles of multiple neurons. The Matlab-program was coupled with
electromagnetic simulations in Sim4life (Sim4life, ZMT Zurich MedTech
AG), to obtain the neuronal response to an electromagnetic field distribu-
tion that is excited by one or more electrodes. Simulations on single neurons
are done to determine the influence of the electrode configuration and neu-
ronal boundary conditions on the membrane-voltage and gate-parameters.
Furthermore electromagnetic simulations in a high-resolution head and
neck model (MIDA) are coupled with the calculation in Matlab of the per-
centage of activated neurons in the lenticular fasciculus and macaca fascic-
ularis, to mimic a typical DBS-configuration.

Keywords— electric field distribution, transmembrane voltage, gate-
parameters, neuronal activation, deep brain stimulation

I. INTRODUCTION

IN deep brain stimulation (DBS) an electrode or lead is sur-
gically placed in the brain of the patient. An electromag-

netic field, that will stimulate the surrounding neuronal tis-
sue, is subsequently excited around the electrode. This will
lead to increased or decreased firing in the bundles of neu-
rons, neighbouring the electrode. The goal is to reduce symp-
toms in patients suffering from a wide range of neurologi-
cal disorders, f.i. Parkinson disease (Benabid et al.,2003 [1]),
essential tremor (Benabid et al,1996 [2]), dystonia (Kupschl
et al.,2006 [3]), treatment-resistant depression (Maybergh et
al.,2005 [4]), obsessive-compulsive disorder (Nuttin et al.,2003
[5]) and epilepsy (Hodaie et al.,2002 [6]).

To study electromagnetic neurostimulation a program was
written in Matlab (MATLAB 8.6, The MathWorks Inc., Natick,
MA, 2000) that will solve a multi-compartmental neuron, that
is exposed to an electric field distribution, for the membrane-
voltage and gate-parameters. The electromagnetic field distribu-
tion will first be simulated in Sim4life (Sim4life, ZMT Zurich
MedTech AG) and will subsequently be exported to Matlab, to
be used as a source-term in the neuronal models. In total six dif-
ferent neuronal models were implemented in Matlab1. This way
it is possible to describe each structure of the neuron with the
most appropriate neuron model. For instance, for the nodes of
Ranvier the CRRSS-model was chosen, while for the synapse
a (warm) Hodgkin-Huxley model was applied. An overview
of the different neuron models is given in Rattay (2005) [7].
The differential equations of each neuronal model were dis-
cretized by a Crank-Nicholson scheme and the resulting matrix-
equations can subsequently be iterated in Matlab.

1Passive (transmissionline) model, Hodgkin-Huxley (HH) model,
Frankenhaeuser-Huxley (FH) model, Chiu-Ritchie-Rogert-Stagg-Sweeney
(CRRSS) model, Schwarz-Eikhof (SE) model and Scwharz-Reid-Bostock
(SRB) model

First, some simulation results on isolated neurons will be dis-
cussed in section II. Secondly, simulations on bundles of multi-
ple neurons are presented in section III.

II. SIMULATIONS ON SINGLE NEURONS

In this section we will discuss results of simulations that are
done on single isolated neurons2, stimulated by a spherical elec-
trode in homogeneous tissue. These simulations are relatively
simple, but allow to draw some general conceptual conclusions.
For example, these simulations allow to determine the influence
of different factors on the membrane-voltage, gate-parameters
and neuronal activation. Different factors and parameters that
were varied in order to study their influence on the neuron will
be briefly discussed in this section: the distance delec between
the neuron and the electrode (subsection II-B), the location of
the electrode along the neuron (subsection II-D), the electrode-
voltage (subsection II-C and subsection II-A), the applied neu-
ronal boundary conditions (subsection II-F) and the angle over
which the neuron bends (subsection II-E).

A. Anode-make versus cathode-make stimulation

Fig. 1. Anode-make stimulation by a spherical electrode (60 V) at 2mm from
the soma of a straight neuron. A colour map of the reduced membrane
voltage is shown.

From theoretical considerations (Roth, 1993 [8]) it follows
that the neuronal membrane right under the electrode will tend
to hyperpolarise,3 when the spherical stimulation electrode is an
anode (i.e. a positive electrode-potential is applied). In other

2The electric and geometric parameters of the used multi-compartmental neu-
ron are obtained from Rattay (2005) [7]

3The reduced membrane voltage Ṽ is defined as: Ṽ = Vi − Ve − Vr . Here
Vi is the intercellular potential, Ve is the extracellular potential, and Vr is the
rest (Nernst) potential of the membrane. We say that the neuronal membrane
depolarizes, if Ṽ > 0. Conversely, the membrane hyperpolarizes if Ṽ < 0.



Fig. 2. Cathode-make stimulation by a spherical electrode (-60 V) at 2mm
from the soma of a straight neuron. A colour map for the reduced membrane
voltage Ṽ is shown.

words, the of hyperpolarisation (RoH) on the neuron, is local-
ized at the anode-position. Furthermore the neuron will tend
to depolarise at the so-called “virtual” cathodes. There are two
virtual cathodes: one at both sides of the anode. Ofcourse, the
exact manifestation of this theory is dependent on the electrical
parameters of the neuron.

Analogously, if the spherical stimulation electrode is a cath-
ode, the neuron will tend to depolarize at the cathode. Two re-
gions where the neuron tends to hyperpolarize are localized at
the virtual anodes.

Stimulation by a spherical cathode, is called “cathode-make”
(CM) stimulation, if the neuron is stimulated because the cath-
ode is turned on4. Analogously we speak of anode-make (AM)
stimulation when the spherical electrode is an anode.

Furthermore we notice that in the AM-stimulation the action-
potential will reach the synapse (at x = 4.4mm), which is not
the case for CM-stimulation. This is due to the fact that in the
latter case, the actionpotential is initiated at the beginning of the
axon, and consequentially has a longer distance to travel to reach
the synapse than in the case of AM-stimulation. Furthermore in
CM-stimulation a region of hyperpolarization is present at the
end of the axon, impeding the actionpotential in its way to the
synapse.

In this section we will only compare the colour maps for the
reduced membrane voltage produced by the Matlab program.
However also plots for the spatial and temporal distribution of
the voltage and gate-parameters (m, n, h and p) are generated
by Matlab and can be compared. As an example we refer to a
colour map for the m-gate parameter (Fig. 10) and a spatial dis-
tribution plot (Fig. 9) of the membrane voltage, in the appendix.
These plots were generated in the simulation of AM-stimulation
by a spherical electrode at 2mm from the soma. When an ac-
tionpotential is initiated, natrium-channels in the neuronal mem-
brane will open. This is reflected by the m-gate parameter, that
will increase towards unity. Note that the m-gate parameter will
only increase on the active compartments (i.e. nodes of Ranvier,
soma, the unmyelinated axon and the synapse) and will remain
zero on passive compartments (f.i. myelinated internodes on the
axon). This is a consequence of the fact that no natrium-gates
are present in the myelinated parts of the neuron.

4In contrast, in cathode-break stimulation, the neuron is stimulated because
the cathode is turned off (Roth (1993) [8])

B. Distance between the electrode and the neuron

Fig. 3. Anode-make stimulation by a spherical electrode (10 V) at 1mm from
the soma of a straight neuron. A colour map for the reduced membrane
voltage Ṽ is shown.

Secondly, we examine the role of the distance between the
electrode and the neuron delec. For this end, we compare the re-
sults of AM-stimulation with an electrode at 2mm and at 1mm
from the soma (Fig. 1 and Fig. 3 respectively). We observe that
the distance delec determines the shape of the spatial distribu-
tion of the reduced voltage map. For instance the width of the
RoH increases, with increasing delec. This result could be antic-
ipated from a theoretical perspective: the distance between the
anode and virtual cathodes can be calculated and increases with
increasing delec.

C. Electrode-potential

Fig. 4. Anode-make stimulation by a spherical electrode (40 V) at 2mm from
the soma of a straight neuron. A colour map for the reduced membrane
voltage Ṽ is shown.

Note in the previous subsection (subsection II-B), that the
electrode potential was also changed from 60V for AM-
stimulation at 2mm (Fig. 1) to 10V for AM-stimulation at
1mm (Fig. 3)5. Nevertheless we observed for activated neu-
rons, that the electrode-potential has little influence on the spa-
tial distribution of the reduced membrane voltage. For instance,
we compare anode-make stimulation by an electrode at 2mm
from the soma of a neuron, at 40V (Fig. 4) and at 60V (Fig. 1).

5The idea is to approximately equalize the amount of power incident on the
neuron. For instance, AM-stimulation at 2mm from the soma at an electrode-
potential of 10V was also simulated. The neuron was however not activated in
this case.



Both neurons are clearly activated and by comparing the volt-
age maps we conclude that the spatial distribution of the volt-
age was not significantly influenced by the electrode-potential.
Also, a higher electrode potential will not lead to stronger de-
polarisation of the neuronal membrane. This is due to the fact
that the system of equations to determine the membrane voltage
Ṽ is non-linear: as observed in literature (f.i. De Geeter, 2014
[9]) an all-or-nothing principle applies for the actionpotential.
In contrast, the spatial distribution of the membrane voltage can
qualitatively be predicted by the activation function f , defined
in Rattay (2005) [7]. This activation function is linear in the
electrode-potential, explaining the result that the spatial distri-
bution of the membrane-voltage was maintained, while altering
the electrode-potential.

The only difference between the result for AM-stimulation at
40V and AM-stimulation at 60V , is a shift in time: a higher
stimulus (60V ), results in a faster initiation of the action poten-
tial.

We conclude that the spatial distribution of the membrane
voltage is determined by delec, for an activated neuron. Lower-
ing the electrode-potential will not alter the spatial distribution,
but will delay the time of neuronal activation. If the electrode-
potential is too low, no neuronal activation will occur at all dur-
ing the simulation time.

D. Location of the electrode along the neuron

Fig. 5. Anode-make stimulation by a spherical electrode (60 V) at 2mm from
the centre of a straight neuron. A colour map for the reduced membrane
voltage Ṽ is shown.

We will now briefly discuss the influence of the location of
the electrode along the neuron. For this end, an AM-stimulation
(60 V) at 2mm from the neuron is shown in Fig. 5, but now the
electrode is placed at the centre of the neuron, instead of at the
soma, as in Fig. 1.

We observe that the RoH has shifted with the electrode, to the
centre of the neuron. This could be anticipated, because the re-
gion of hyperpolarisation is expected to be located at the anode-
position. The position of the virtual cathode is now located at
the end of the axon, leaving only a small region in which the
actionpotential can freely propagate.

E. Straight neuron versus bending neuron

It is interesting to study the impact of neuronal bendings on
the distribution of the membrane voltage. In literature it is ob-
served, both from an experimental as from a theoretical perspec-

Fig. 6. Anode-make stimulation by a spherical electrode (60 V) at 2mm from
the centre of a neuron, that bends at the centre over 15◦. A colour map for
the reduced membrane voltage Ṽ is shown.

tive, that neuronal activation is likely to occur at neuronal termi-
nations and bendings. Depending on the direction of the bend-
ing, increased hyperpolarisation or increased depolarisation is
expected (Roth, 1993 [8]). As an example, AM-stimulation by
a spherical electrode (60 V; electrode at 2mm from the centre
of the neuron) of a neuron, that bends at the centre over 15◦ is
shown in Fig. 6. This simulation corresponds with the simula-
tion for a straight neuron from the previous subsection (see Fig.
5). The bending will promote depolarisation of the neuronal
membrane. Because the bending is located at the centre of the
RoH, no net depolarisation will occur at the bending. Instead,
the RoH is split into two parts: the membrane at the bending is
less hyperpolarised than it would have been if the neuron were
straight.

F. Sealed-end versus voltage-clamped boundary conditions

Until now all simulations were done with sealed-end bound-
ary conditions. This means that no current can leave the neu-
ron (the neuron terminals are “sealed”). To determine the influ-
ence of the boundary conditions on the distribution of the volt-
age, some simulations were done with voltage-clamped bound-
ary conditions (i.e. the neuron terminals are clamped to con-
stant voltage). By comparing the results, we observed that the
boundary conditions do not alter the global distribution of the
membrane-voltage and gate-parameters significantly. Because
of this, the colour maps for the voltage and gate-parameters are
similar for both types of boundary conditions. However, in a
very small region close to the neuronal terminations, the voltage
and gate-parameters will strongly depend on the applied bound-
ary conditions. This is difficult to see on the colour maps, but
can for instance be visualized by plotting the voltage and gate-
parameters at the synapse for both types of boundary conditions.

III. SIMULATIONS ON BUNDLES OF MULTIPLE NEURONS

In this section simulations on bundles of multiple neurons are
considered. The influence of the stimulation parameters on the
percentage of neurons that are activated in the bundle (%AN ;
percentage of activated neurons) and the percentage of neurons
in the bundle for which the synapse was activated (%AS; per-
centage of activated synapses) can be determined. For example,
we mention the influence of the distance between a spherical
electrode and a simple straight bundle in subsection III-A.



Finally, simulations resembling a DBS-configuration were
performed (subsection III-B). For this end, a realistic DBS-
lead was modeled in Sim4life, based on specifications pro-
vided by Medtronic (Mo. 3389, Medtronic Inc., Minneapolis,
MN, USA). A typical biphasic square-wave was applied on the
Medtronic lead (65Hz, pulse duration 60µs). The electromag-
netic field distribution was subsequently simulated in a high-
resolution head and neck model MIDA (Iacono et al., 2015 [10])
for different electrode-configurations.

A. Dependency of percentage of activated neurons in bundle on
electrode-bundle distance

Fig. 7. The relation between the percentage of activated neurons %AN and the
distance between the electrode and the centre of the neuronbundle is shown.
The neurons in the bundle contain a central bending over 15◦.

Some general simulations on bundles of multiple neurons
were done. We discuss the example of the dependency of the
percentage of activated neurons (%AN ) in the bundle on the
distance between the electrode and the centre of the bundle dbe.
A bundle of 19 neurons, bending at the centre over 15◦ was con-
sidered. The distance between the electrode and the centre of the
bundle was increased in steps of ∆x = 0.1mm from 2.6mm
to 3.5mm. For each distance the membrane-voltage and gate-
parameters for all neurons in the bundle was calculated. Subse-
quently each neuron was evaluated for neuronal activation, by
the Matlab code, and the %AN was determined. The result is
shown in Fig. 7.

We observe that the %AN decreases, with increasing dbe.
This is ofcourse expected, because for higher distances dbe and
the same electrode potential, less power will reach the neuron
bundle. A similar result was obtained for a straight neuronbun-
dle. We note that the relation between the %AN and dbe seems
continuous. However, this is probably due to the low resolution
of the spatial step ∆x. For high spatial resolution, %AN(dbe)

is expected to be a staircase function.

B. Deep brain stimulation in MIDA-head phantom

Fig. 8. Representation of the two considered neuronbundles (lenticular fascicu-
lus and macaca fascicularis). The thalamus (Th) is shown in orange and the
globus pallidus internus (GPi) in yellow. The tracts of the individual neurons
are shown as white lines. Also the Medtronic DBS lead is shown (insulation
in yellow and electrodes in blue).

We will now discuss a simulation, that is meant to resem-
ble a realistic DBS-configuration. A Medtronic DBS-lead (Mo.
3389) was modeled in Sim4life and was placed at the subthala-
mic nucleus (STN) of the high resolution head and neck MIDA
model. The azimuthal and polar angles of the DBS-lead were
set to 7◦ and 20◦ respectively. Simulations were done with two
types of bipolar electrode-configurations: a 01xx-stimulation
and a 10xx-stimulation6

For the treatment of Parkinson’s disease, two distinct neu-
ronal bundles are often stimulated: projection neurons (macaca
fascicularis; MF) of the STN and the output fibers (lenticular
fasciculus; LF) of the globus pallidus internus (GPi). These
two neuronal tracts were roughly approximated and modeled as
straight neurons, randomly connecting the relevant brain struc-
tures (thalamus, STN, GPi). This is shown in figure 8: the white
lines represent the two neuronal tracts (LF and MF). The thala-
mus is shown in orange and the globus pallidus in yellow. The
electromagnetic field distribution was simulated in Sim4life and
subsequently used for the assessment of the %AN and %AS in
Matlab.

The result is shown in table 1. Some observations can be
made. First, the activation percentages are always higher for

6The Medtronic DBS-lead contains four electrodes, that are numbered 0 to 3.
The electrode closest to the tip of the lead is the zeroth electrode. In the 01xx-
stimulation, the zeroth electrode is set to 0V . For the first electrode a typical
biphasic square-wave (65Hz, pulse duration 60µs) is used with amplitude of
1V . The voltage on the second and third electrode is left floating with the envi-
ronment (Neumann-conditions). Analogously, for the 10xx-stimulation the role
of the zeroth and first electrode is reversed.



01xx-stimulation than for 10xx-stimulation. This is a result of
the fact that the first electrode tends to be closer to the axon
of a random neuron in both bundles, than the zeroth electrode.
Furthermore initiation of an actionpotential often occurs at the
axon. Secondly, the activation percentages are higher in the MF,
compared to the LF. This can be explained in a similar way, by
noting that the neurons of the macaca fascicularis are closer to
the active electrodes.

Finally it is interesting to note that not all neurons, on which
an actionpotential is generated, will be activated at the synapse.
This is observed by comparing the %AN and %AS values in
the table. In other words, not every actionpotential will reach the
synapse. By plotting the colour maps for the voltage and gate-
parameters, we observed that this can be explained by noting
that the RoH can impede the propagation of the actionpotential.

IV. CONCLUSION

Electromagnetic simulations were done in Sim4life in a ho-
mogeneous medium and in the high resolution MIDA model.
The resulting field distribution is coupled to a program in Mat-
lab, that was written to solve for the membrane-voltage and gate-
parameters in a multi-compartmental neuron and in bundles of
multiple neurons. First, simulations on single neurons resulted
in general conceptual conclusions about neurostimulation. Sec-
ondly, simulations on bundles of neurons were done, resembling
a DBS-configuration.

V. APPENDIX

Fig. 9. Anode-make stimulation by a spherical electrode (60 V) at 2mm from
the soma of a straight neuron. The spatial distribution of the reduced mem-
brane voltage Ṽ at 7 subsequent times is shown.

Fig. 10. Anode-make stimulation by a spherical electrode (60 V) at 2mm from
the soma of a straight neuron. A colour map for the m-gate parameter is
shown.
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Introduction

In deep brain stimulation an electromagnetic field distribution is excited around an electrode
or lead, that has been surgically placed in the brain of the patient. This electromagnetic field
will stimulate the surrounding neuronal tissue, which is therapeutically beneficial for patients
suffering of a wide range of neurological disorders, as Parkinson disease (Benabid et al.,2003 [1];
Benabid et al.,1994 [2]; Deuschl et al.,2006 [3]; Obeso et al., 2001 [4]), essential tremor (Benabid
et al,1996 [5]), dystonia (Kupschl et al.,2006 [6]; Vidailhet et al.,2005 [7]), treatment-resistant
depression (Maybergh et al.,2005 [8]), obsessive-compulsive disorder (Nuttin et al.,2003 [9]) and
epilepsy (Hodaie et al.,2002 [10]). The goal of this thesis is to simulate the electric field dis-
tribution in the brain of the patient and to subsequently use the field distribution to obtain a
measure of neuronal activation.

The simulation of the electromagnetic field excited by the electrode or DBS lead was done in the
Sim4life (S4L) software (Sim4life, ZMT Zurich MedTech AG). In Sim4life a low-frequency elec-
troquasistatic (FEM) solver was used to obtain the field distribution. Different electrode shapes
and stimulation current waveforms can be used for these simulations. In this thesis, we first
used a spherical electrode in a homogeneous medium for simple simulations, intended to verify
certain concepts. Secondly, to obtain a more accurate picture of deep brain stimulation, more
realistic simulations were done in the high-resolution head and neck MIDA-phantom (Iacono et
al.; 2015 [11]). A biphasic square-wave stimulus current is then applied on a Medtronic DBS
lead (Mo. 3389, Medtronic Inc., Minneapolis, MN, USA), to obtain a realistic field distribution.
The methodology for the different simulations of the electromagnetic field in the brain of the
patient is discussed in chapter 1.

The simulated electromagnetic field distribution is exported from S4L and imported in Mat-
lab (MATLAB 8.6, The MathWorks Inc., Natick, MA, 2000). For this thesis several neuronal
models have been implemented in Matlab, that solve for the transmembrane voltage V and
gate-parameters (m, n, p and h). These gate-parameters specify the state of the neuronal
membrane. Each model consists of a set of coupled non-linear differential equations in V and
the gate-parameters. The applied electromagnetic field is included in the model as a source
term. The implemented neuronal models (a passive transmissionline model, the Hodgkin-
Huxley (HH) model, Frankenhaeuser-Huxley (FH) model, Chiu-Ritchie-Rogert-Stagg-Sweeney
(CRRSS) model, Schwarz-Eikhof (SE) model, Scwharz-Reid-Bostock (SRB) model) are dis-
cussed in chapter 2.
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The Matlab code is first verified by reproducing some simulations from literature (Rattay, 2005
[12]). These simulations still have an exact analytic solution for the excited electromagnetic field
distribution, and can thus be carried out only using Matlab (i.e. without the need of the S4L
FEM solver). Furthermore the simulation is restricted to one completely straight neuron, with-
out bifurcations. The Matlab-code and the comparison with results from literature is discussed
in chapter 3. In chapter 4 some more general simulations are studied, now using the imported
electromagnetic field distribution simulated in Sim4life, although still a spherical electrode in
a homogeneous medium is used. The field distribution is now obtained by a FEM simulation,
and can’t be be derived analytically anymore. Although we still study single neurons without
bifurcations in this chapter, the neurons are now allowed to bend. We will use these simple
simulations on a single neuron to draw some general conclusions, f.i. about the influence of neu-
ronal bendings on activation and about the difference between anode-make and cathode-make
stimulation.

After finishing the simulation of the transmembrane voltage and the gate-parameters, we are
able to determine if the neuron has been activated. A check for neuronal activation has been
implemented in Matlab: the code will look after activation of the neuron (i.e. the propagation of
an actionpotential over the neuronal axon), and it will generate a table listing all the positions
and times on the neuron where activation has occurred. In section 4.3 we will discuss the heuris-
tics by which neuronal activation is determined in the Matlab code. The activation table will
also list the speed by which the activation pulse will propagate over the neuron. A distinction
is made between the forward propagating speed MSOAf (mean speed of activation pulse in
forward direction) which represents orthodromic propagation, from the backward propagating
speed MSOAb (mean speed of the activation pulse in backward direction), which represents
the antidromic propagation of the activation potential. In other words propagation is defined
as forward propagation, if it occurs in the direction of the synapse (orthodromic). In contrast,
backward propagation (antidromic) is in the direction of the soma.

In chapter 4 it is observed that neuronal bendings and terminations play an important role in
the initiation of an action potential. This effect is also observed in experiments (Maccabee et
al.,1993 [13]; Nagarajan et al.,1993 [14]). The important influence of bendings and terminations
on the locus of activation is described by Roth et al. (1993) [15]. A similar discussion will be
presented in chapter 5.

In part III of this thesis, the Matlab code is generalised to enable us to simulate bundles of
multiple neurons. In chapter 6 we will discuss some simulations of simple neurons bundles.
The membrane voltage and gate-parameters on each individual neuron of the bundle can then
be examined. Furthermore the global response of the neuron bundle on the applied stimulus,
is studied by the percentage of activated neurons (%AN). Subsequently, we will discuss the
dependency of the %AN on the electrode-bundle distance delec.

Finally in chapter 7 we try to mimic a realistic DBS-setup. The electric field distribution is
simulated in S4L in the high-resolution head and neck MIDA-model (Iacono et al.,2015 [11]).
The fields are excited by a representation of a Medtronic lead (Mo. 3389, Medtronic Inc.,
Minneapolis, MN, USA), that was modelled in Sim4life. We study the activation of two neuronal
pathways, that are important in practice for deep brain stimulation: the lenticular fasciculus
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(LF) and macaca fascicularis (MF). The former neuron bundle connects the globus pallidus
internus (GPi) with the thalamus (Th). The latter neuron bundle connects the subthalamic
nucleus (STN) with the GPi. Some approximations were made to model the geometry and
electrical parameters of the neurons in both pathways. Nevertheless the results of the simulations
can give some conceptual insight in the mechanisms of deep brain stimulation. It was noticed
that not all neurons that were activated, i.e. neurons on which an action potential starts to
propagate, will be stimulated at the synapse. In other words, not all action potentials will
reach the end of the neuron. This phenomenon was studied through membrane voltage plots of
individual neurons in the bundle. It was noticed that electric stimulation induces a region of
hyperpolarisation (RoH) on the neuron, that can effectively stop the propagation of the action
potential. Finally we observed that the freedom of stimulation-configurations (the DBS-lead
consists of four independent electrodes) can be used to alter the volume of activated tissue
(%V TA).
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Part I

Methodology
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Chapter 1

Simulation of the electromagnetic
field

Our goal is to determine the neuronal response to an applied electrode stimulus current. The
first step to reach this goal, is to determine the distribution of the electromagnetic field around
the electrode. This electromagnetic field distribution will be simulated in Sim4life, and will
subsequently be exported to Matlab, where it will be used as source to determine the neuronal
response (see chapter 2). The electromagnetic simulation will depend on the electrode shape, the
surrounding medium (homogeneous or heterogeneous, isotropic or anisotropic), the discretisation
grid, boundary conditions, the applied waveform of the stimulationcurrent, ... The simulation
however won’t depend on the surrounding neuron geometries, as long as they don’t affect the
electric properties of the medium. Because of this we can reuse one electromagnetic simulation
when determining its effect on various neuronal geometries. In this section we will discuss the
electromagnetic simulation set-ups we used in the thesis.

1.1 Spherical electrode in homogeneous medium

The most simple simulation we considered, consists of a spherical electrode in a completely
homogeneous and isotropic medium (i.e. constant permittivity ε). This electromagnetic simula-
tion will be used to obtain the results in chapter 4. The simulation geometry is shown in figure
1.1, which is a screenshot of the Sim4life software after the geometry was defined. In chapter
4 the electrode will be a sphere of radius 0.1mm. The electrode is displayed in figure 1.1 as a
small purple sphere in a green cube. The purple cube determines the simulation domain. At
the end of the simulation domain, Dirichlet-conditions are applied for the electric potential. In
the purple cube the medium is completely homogeneous and isotropic. The used grid however
is not homogeneous, but it is cartesian. The green cube, shown in figure 1.1 is only used as a
grid mask to define the inhomogeneous Sim4life grid and has no electromagnetic properties. On
the electrode we then use Dirichletconditions to define the applied electrode voltage Velec.

The simulation will result in a file that determines the electromagnetic field on a specific inho-
mogeneous cartesian grid. Subsequently this field is exported to Matlab (MATLAB 8.6, The
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Figure 1.1: Simulation geometry of a spherical electrode in a homogeneous medium in Sim4life.

MathWorks Inc., Natick, MA, 2000), where it will be used to determine the neuronal response.
However the used grid to discretise the neuron(s) in Matlab will in general not match with the
S4L-grid used to obtain the electric field. Consequentially it is necessary to convert the elec-
tromagnetic field from the S4L-grid to the Matlab-grid. This is achieved by three-dimensional
interpolation between the S4L-grid and Matlab-grid.

1.2 Medtronic electrode in head phantom

A more realistic virtual electrode was created based on the specifications of a Medtronic DBS
lead (Mo. 3389,Medtronic Inc.,Minneapolis, MN, USA). This approach of simulating the elec-
tromagnetic field excited by a virtual electrode based on the specifications of a Medtronic DBS
lead, using a FEM-method, and subsequently coupling the fields with a compartmental neuron-
model, has been widely used in literature (Chaturvedi et al.,2012 [16]; Schmidt et al.,2012 [17];
Butson et al,2005 [18]; Sotiropoulos et al. [19]).

A model of the Medtronic 3389 DBS lead was made in Sim4life, as is shown in figure 1.2. The
Medtronic DBS lead contains four platinum-iridium electrodes (shown in blue), the outer jacket
tubing (shown in yellow) in between the electrodes is made of polyurethane. In our model
the electrodes were modelled using Dirichlet-boundary conditions (approximating the platinum-
iridium as a perfect conductor) and the polyurethane jacket was modelled as a perfect insulator,
using Neumann-boundary conditions for the voltage. Furthermore, one or more electrodes can
also be left floating with the environmental potential, by applying Neumann-conditions on these
electrodes. In this thesis we will number the electrodes from 0 to 3, where electrode 0 is closest
to the tip of the DBS-lead. This convention is also often used in literature.
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CHAPTER 1. SIMULATION OF THE ELECTROMAGNETIC FIELD

Figure 1.2: Virtual electrode based on the specifications of the Medtronic 3389 DBS lead,
modelled in Sim4life.

Due to the inflammatory response of the body to the DBS-implant, an encapsulation layer will
enclose the Medtronic lead, some weeks after the operation (Schmidt et al.,2012 [17]; Yousif
and Liu, 2009 [20]; Grant et al.,2010 [21]; Butson et al.,2006 [22]). This inflammation layer will
influence the electromagnetic fields in the tissue and is included in the Sim4life model, shown in
figure 1.2, as a transparent yellow layer of thickness 0.2mm. However for our simulations with
the MIDA-model in chapter 7 we will omit the inflammation layer, mimicking the conditions of
acute DBS.

As mentioned, the electric simulations with the virtual Medtronic lead, will be done in the
MIDA-head phantom (Iacono et al,2015 [11]), in chapter 7. The DBS-lead was placed under az-
imuthal and polar angles of respectively 7◦ and 20◦, referring to room axes (the same orientation
parameters of the DBS lead are used in Schmidt et al.,2012 [17]). For therapeutic applications,
the DBS-lead is typically located in the region of the subthalamic nucleus (STN) (Limousin et
al.; 1998 [23],Hamel et al;2003 [24], Nowinkski et al.;2005 [25],Saint-Cyr et al.;2002 [26],Starr
et al.;2002 [27]),Voges et al.; 2002 [28], Yelnik et al.;2003 [29]; Zonenshayn et al.; 2004 [30]).
Because of this we chose the STN as the location of preference for the DBS-lead. First, the
location of the subthalamic nucleus was estimated, relative to the thalamus. Electrode 0 was
subsequently placed at the estimated position of the subthalamic nucleus. The resulting model
is shown in figure 1.3.
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Figure 1.3: MIDA-head model with implanted DBS-lead at the subthalamic nucleus. The
regions of the brain, important for deep brain stimulation, were made less transparent than the
surrounding tissue.

The Sim4life software will now calculate the electric field distribution in the MIDA-head phan-
tom. We notice that the full set of Maxwell equations can be simplified to the electroquasistatic
equation, under conditions that are fulfilled for the spatial dimensions of the brain and the
corresponding tissue types (Bossetti et al.,2007 [31]):

∇ · ((σ + iωεrε0)∇φ) = 0 (1.1)

For the most important frequencies relevant in DBS and for the electrical properties of brain
tissue the electroquasistatic equation can be simplified to the stationary-currents equation, using
iωεrε0 � σ (Bossetti et al.,2007 [31]):

∇ · (σ∇φ) = 0 (1.2)

Equation (1.2) can subsequently be solved in Sim4life, while applying Dirichlet-boundary con-
ditions at the end of the simulationdomain.

For deep brain stimulation the Medtronic electrode is typically stimulated by a square-wave
biphasic pulse with a duration of 60µs and frequency of 65Hz (Gimsa et al.,2005 [32]). To
calculate the electric field excited by a square-wave stimulation potential, in general the fouri-
erspectrum of the square-wave has to be determined. Subsequently FEM-simulations at several
harmonic frequencies have to be carried out. To determine which harmonic frequencies need to
be simulated, the subsequent fourierapproximations of a biphasic square-wave were calculated
in Matlab (the same was done for a monophasic square-wave by Gimsa et al. (2005) [32]). The
result is shown in figure 1.4. A zoomed-in version on a single pulse is shown in figure 1.5.
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Figure 1.4: Fourierapproximations of a biphasic square-wave for different amounts of harmonic
frequencies (HF). The corresponding frequency range is mentioned in each subplot.

We notice from figure 1.5 that a good approximation of the biphasic square-wave is obtained
after summation of 1000 harmonic frequencies (HF), which is equivalent to considering frequen-
cies in the range 0Hz − 65kHz. The conductivity used in equation (1.2) depends strongly on
frequency in this range. To illustrate this, conductivities for gray matter and white matter brain
tissue were extracted from Sim4life, which makes use of the IT’IS anatomical tissue database
[33]. (figure 1.6 and 1.7).

However, while the conductivity depends strongly on frequency, the electric field distribution
around the DBS-lead does not vary that much with frequency. To establish this dependency
of the field distribution on frequency, the electromagnetic field was simulated in Sim4life for
41 frequencies, that were logarithmically distributed in the range 10Hz − 100kHz. The field
distribution was excited by two types of electrode stimulation. We abbreviate the first simula-
tion set-up as 10xx-stimulation. Here the 1 refers to the zeroth electrode, on which a sinusoidal
voltage with unit amplitude was applied. The 0 refers to the first electrode, on which a zero-
potential is applied1. In the notation (10xx) the x denotes that the second and third electrode
are left floating with the surrounding tissue (i.e. Neumann-conditions are used). Analogously,
also a 10xx-stimulation set-up was used.

Subsequently the variation in the field distributions of the simulated fields was observed. To do
this, we denote the electric field at the ground frequency as E1 = E(65Hz). The field excited

1Dirichlet-conditions are applied on the end of the simulation domain. As such, the end of the simulation
domain acts as reference for all potentials
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Figure 1.5: Subsequent fourierapproximations of a biphasic square-wave. A zoomed-in version
on a single pulse is shown. The amount of harmonic frequencies (HF) that need to be summed
is shown in each subplot.

at frequency f is denoted by Ef . To measure the deviation in the distribution between E1 and
Ef , the normalised inner product is used:

< E1,Ef >

||E1||||Ef ||
=

∫
V
dVE1 ·Ef√∫

V
dVE1 ·E1

√∫
V
dVEf ·Ef

(1.3)

The result for the 01xx-stimulation is shown in figure 1.8 and for the 10xx-stimulation in figure
1.9.

We notice that the normalised inproduct in figure 1.8 and figure 1.9 is necessarily lower or equal
than one, by the Cauchy-Schwarz theorem. The normalised inproduct will reach unity at the
groundfrequency of 65Hz. For 01xx-stimulation the normalised inproduct will deviate at most
approximately 0.2% from unity. For the 10xx-stimulation setup the maximum deviation of the
normalised inproduct from unity is approximately 4.5%. This deviation is reached at three
frequencies. However for other frequencies the deviation from unity is much lower. We conclude
that the electric field distribution doesn’t seem to depend much on frequency. However the norm
of the electric field could still vary with frequency. To establish the dependency of the norm of
the field distribution with frequency, we define the ratio r(f):

12
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Figure 1.6: White matter conductivity versus frequency

Figure 1.7: Gray matter conductivity versus frequency
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Figure 1.8: Normalised inproduct between Ef and E1 versus frequency for 01xx-stimulation

Figure 1.9: Normalised inproduct between Ef and E1 versus frequency for 10xx-stimulation

r(f) =
||Ef ||
||E1||

=

√∫
V
dV ||Ef (r)||2√∫
V
dV ||E1||2

(1.4)
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This ratio r(f) is shown for 10xx-stimulation and 01xx-stimulation in figure 1.10 and figure 1.11
respectively. We notice that for both stimulation-setups the ratio is approximately equal to one.
Indeed for 01xx-stimulation r(f) deviates at most 0.2% from unity. For the 10xx-stimulation
the deviation is again somewhat larger, but still deviates at most 0.5% from unity. We notice
that r(f) peaks at the same frequencies, as the normalised inproduct in 10xx-stimulation. We
conclude that the field distribution does not depend much on frequency. Because of this we
will approximate the field distribution excited by a biphasic square-wave by assuming that the
transfer function does not depend on frequency. This allows us to simplify the computational
complexity: instead of carrying out 1000 FEM simulations, we only need a single simulation to
determine the transfer function. This simulation was done at the groundfrequency of 65Hz.

Figure 1.10: Ratio r(f) between the norm of the electric field distribution at frequency f and
the norm of the electric field distribution at the ground frequency (65Hz) for 10xx-stimulation.

The field distribution seems mostly independent of frequency for both 10xx- and 01xx-stimulation,
although the white-matter and gray-matter conductivities do depend strongly on frequency, as
was noticed from figure 1.7 and figure 1.6. We notice that also the mutual ratio of the conduc-
tivities does depend strongly on frequency, as can be seen in figure 1.12.

For the independency of the field distribution with frequency, we propose as explanation that
the field distribution will be very localized. This is naturally the case, because in deep brain
stimulation only a very localized region has to be stimulated. This is illustrated in figure 1.13,
where a slice of the electric field distribution is shown. Some important brain structures are
shown as well: the thalamus is shown in orange, the GPi in yellow. We notice that indeed the field
dimishes very fast (the black colour means that the field has dimished by more than 50dB). This
means that the conductivity is locally approximately constant, in a zeroth order approximation.
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Figure 1.11: Ratio r(f) between the norm of the electric field distribution at frequency f and
the norm of the electric field distribution at the ground frequency (65Hz) for 01xx-stimulation.

Figure 1.12: Dependency on frequency of the ratio of the conductivity in gray matter with the
conductivity in white matter.
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In this approximation the stationary-currents equation would reduce to a Laplace-equation,
which is indeed independent of frequency:

∇2φ = 0 (1.5)

Figure 1.13: Slice view of the RMS-value of the electric field distribution in the MIDA-head
phantom. Two important brain structures are shown as well: the thalamus (orange) and globus
pallidus (yellow).
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Chapter 2

Discussion of some neuronal models

The electromagnetic field distribution excited by an electrode can be simulated in Sim4life, as
discussed in chapter 1. In this section we will discuss how this field distribution can subsequently
be used as a source term, to obtain the neuronal response.

The structure of a generic neuron is depicted in figure 2.1. For the calculation of the neuronal
response, the neuron is divided into compartments with different electric properties. Active and
passive neuronal compartments can subsequently be distinguished by the presence of a myelin
layer. For instance parts of the axon are myelinated (myelinated internodes) and the neu-
ronal dendrites might be myelinated too. Because of this myelin layer, the neuronal membrane
will only admit a loss current due to conduction by electrons. Active transport of electrolytes
through neuronal gates is impossible, due to the insulating properties of myelin. Compartments
surrounded by a myelin layer are thus electrically passive.

The nodes of Ranvier, the soma and the synapse however are not insulated by myelin. Their
behaviour is electrically active: the membrane current is now determined by electronic conduc-
tion like in the passive case, but also by the transport of electrolytes (f.i. natrium and kalium)
through the gates in the neuronal membrane. The state of these neuronal gates is determined
by parameters m, n, h and p (or a subset of these, depending on the neuronal model). These are
dimensionless numbers between 0 and 1 that indicate the resistance to conduction of a specific
type of electrolyte. The exact meaning of the gate-parameters depends on the neuronal model.

In Matlab the simulated electromagnetic field will be used to determine the neuronal response
on the stimulation. For this end a solver was programmed, to determine the transmembrane
voltage and gate-parameters on the neuron in time, for a general multi-compartmental neuron.
This means that the neuron is segmentated into different compartments for the dendrites, soma,
nodes of Ranvier, synapse, initial segment and myelinated internodes. On each compartment a
specific neuronal model was chosen, for the calculation of the voltage and gate-parameters. The
program will then iterate for V and m, n, h and p, after combining all neuronal models on the
multi-compartmental neuron in a single matrix equation. First we will give an overview of the
different neuronal models that were programmed, and their properties, in this chapter1

1A similar overview of the active compartments discussed in this chapter, is also given in Rattay (2005) [12].
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Figure 2.1: Schematic representation of the neuronal structure. Figure reproduced from Wiki-
media Commons [35].

2.1 Passive transmissionline model

When the compartment (f.i. the internodes or the dendrites) is myelinated, there is no transport
of electrolytes through the membrane-gates. The only possible current through the membrane
is thus seen to be the electroncurrent. The passive compartment can then be replaced by an
equivalent electric circuit, as shown in figure 2.2. We obtain for the membrane current im:

im = cm
∂V

∂t
+
V − Vr
rm

(2.1)

The membrane current im is expressed per unit length, cm is capacitance per unit length and rm
is the membrane resistance times unit length. A rest potential term Vr is added both to equation
(2.1) and to the electric equivalent circuit (figure 2.2), to account for the diffusion of electrons
through the neuronal membrane. This diffusion is due to the non-equilibrium of the intracellular
and the extracellular system. This rest voltage can be obtained by the Nernst-equation or by
experiment.

Furthermore we can express the membrane current im as:

im = −∂Ia
∂l

=
1

ra
(
∂2V

∂l2
− ∂El

∂l
) (2.2)

An overview of the properties of the passive transmissionline model and Hodgkin-Huxley model is for instance
also given in De Geeter (2014) [34]. There is also specialised literature for each neuronal model.
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CHAPTER 2. DISCUSSION OF SOME NEURONAL MODELS

Here we used Kirchoff-current law for the first equality and Ohm’s law for the second. Ia is the
axial current and ra the axial resistance per unit length.

Because this electric model of the passive compartment is just a transmissionline-model, we re-
cover the transmissionline equation (Roth and Basser,1990 [36]; Rattay, 1989 [37]), by combining
equation (2.1) and equation (2.2):

λ2 ∂
2V

∂l2
− (V − Vr) = τ

∂V

∂t
+ λ2 ∂El

∂l
(2.3)

We defined a space constant λ =
√

rm
ra

and a time constant τ = rmcm. Equation (2.3) describes
the transmembranevoltage V , defined as the difference of the intracellular and extracellular
potential, by a partial differentialequation. This equation can then be solved for the trans-
membranevoltage V , when the electric field distribution El = E · ul is known, which occurs as
source term in the differential equation. Only the derivative of the projection of the electric
field on the neurondirection ul seems to be important as activation mechanism when solving for
V . The derivation of the transmissionline equation assumes straight and long transmissionlines
though, neglecting charge accumulation at neuronal bends and terminations. These additional
activation mechanisms are directly proportional to El, and will be discussed in section 5.

Figure 2.2: Equivalent electrical circuit for a passive compartment. Figure reproduced from De
Geeter (2014) [34].

2.2 Active models

An active model is used when there is no myelin layer: the active membrane-gates are now
important as well. There are several different types of active models, that are used for different
types of compartments. For example, for this thesis the CRRSS-model is generally used to
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describe the nodes of Ranvier and the initial segment, while a a warm Hodgkin-Huxley method
is used to describe the soma. There is a vast amount of literature describing different active
neuronal models, for different types of cells. We refer to Varghese (1995) [38] for a summary of
these models. In this thesis we only discuss five important active neuronal models, that have
been implemented in Matlab. For a similar overview of these active models, we refer to Rattay2

(2005) [12].

2.2.1 Hodgkin-Huxley model
The Hodgkin-Huxley model (Hodgkin and Huxley, 1952[39]; De Geeter [34],2014; Rattay, 2005
[12]; Nelson, 2004 [40]) was developed in 1952 by Hodgkin and Huxley based on voltage-clamp
experiments on the homogeneous non-myelinated giant squid axon. The model includes two
additional membrane currents, due to transport of natrium and kalium electrolytes.

im = cm
∂V

∂t
+ iNa + iK + iL (2.4)

The currents are again expressed per unit length: iL is the loss current due the electronic con-
duction, iNa the active natrium current, and iK the active kalium current. Ofcourse one may
also express the currents and capacitance per unit surface, as is done in Rattay (2005) [12] for
active models.

Only the electronic current iL is passive, and can be expressed as in the passive model by Ohm’s
law:

iL = gL(V − VL) (2.5)

Here gL is the conductance per unit length, which is a constant. The currents iNa and iK can
be expressed similarly:

iNa = gNam
3h(V − VNa) (2.6)

The total conductance per unit length gNam
3h is no longer constant, and is seperated in a

constant conductance gNa and time-dependent gate-parameters m and h, that determine the
state of the Na gates. Analogously we have:

iK = gKn
4(V − VK) (2.7)

With n the gate-parameter for kalium transport. Combining equation 2.4, 2.5, 2.6 and 2.7 we
obtain:

im = cm
∂V

∂t
+ gNam

3h(V − VNa) + gKn
4(V − VK) + gL(V − VL) (2.8)

As for the passive model (section 2.1), we can use equation (2.2) to obtain a partial differential-
equation in the transmembrane voltage V with the electromagnetic field distribution El as source
term. Because the model is now active, the differential equation will depend on time-dependent,
yet unknown, prefactors m, n, h.

To solve equation (2.8), we need additional differential equations for the gate-parameters m, h
and n:

dm

dt
= k(αm(1−m)− βmm) (2.9)

2The choice of the active neuronal models that were implemented in Matlab, is based on this publication.
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dh

dt
= k(αh(1− h)− βhh) (2.10)

dn

dt
= k(αn(1− n)− βnn) (2.11)

The coefficients α and β depend non-linearly on the voltage V . The expressions for the different
α and β coefficients can be obtained by fitting to measurements. We refer to Rattay (2005)
[12] for their mathematical expressions. The constant k is a temperature factor: k = 30.1T−0.63.
The temperature is expressed in ◦C. The factor k corrects for temperatures different than
T = 6.3◦C, for which the experiments were performed.

Equation 2.8, 2.9, 2.10, 2.11 form a set of coupled non-linear differential equations in V , m, h
and n, called the Hodgkin-Huxley equations. Because the Hodgkin-Huxley equation in the mem-
branevoltage, equation 2.8, can still be considered linear in V with time-dependent coefficients,
it is still straightforward to apply a Crank-Nicholson discretisation scheme on the HH-equations.
This will be discussed in chapter 3. This type of linearity is no longer present in the FH, SE
and SRB model, making application of a Crank-Nicholson scheme more difficult (see section 3).

2.2.2 Chiu-Ritchie-Rogert-Stagg-Sweeney model
The CRRSS model (Chiu et al.,1979 [41];Sweeney et al.,1987 [42];Rattay 2005[12]) was obtained
by voltage-clamp experiments on myelinated rabbit nerve fibers at 14◦C. The results were
subsequently extrapolated to 37◦C. The model is similar to the HH-model; however there is
now no kalium transport.

im = cm
∂V

∂t
+ gNam

2h(V − VNa) + gL(V − VL) (2.12)

The gate-parameters m and h, are described analogously to the Hodgkin-Huxley case:

dm

dt
= k(αm(1−m)− βmm) (2.13)

dh

dt
= k(αh(1− h)− βhh) (2.14)

The temperature constant k is now introduced to describe temperatures different from 37◦C:
k = 30.1T−3.7. The α and β coefficients are again non-linear in V (Rattay, 2005 [12]). A Crank-
Nicholson scheme can now be applied to solve the discretised version of the CRRSS-equations
for V , m and h.

2.2.3 Frankenhaeuser-Huxley model
The Frankenhaeuser-Huxley model (Frankenhaeuser, 1960 [43]) was developed on the frog axon
node as the first myelinated fiber model. It differs from the more linear HH and CRRSS models
in that the ion current is no longer expressed as function of V by Ohm’s law, but is derived from
the Nernst-Planck equation. This makes discretising the equations by Crank-Nicholson more
tedious. The FH-equation for the membranevoltage is:

im = cm
∂V

∂t
+ iNa + iK + iL + iP (2.15)
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Where a non-specific current density iP was added. The current densities are given by:

iNa = PNam
2h
V F 2

RT

[Na]0 − [Na]i exp
{
V F
RT

}
1− exp

{
V F
RT

} (2.16)

iK = PKn
2V F

2

RT

[K]0 − [K]i exp
{
V F
RT

}
1− exp

{
V F
RT

} (2.17)

ip = Ppp
2V F

2

RT

[Na]0 − [Na]i exp
{
V F
RT

}
1− exp

{
V F
RT

} (2.18)

For the values of the constants we refer to Rattay (2005) [12] (currents and capacitance are ex-
pressed per unit surface). We notice that we defined the transmembrane voltage as V = Vi−Ve,
with Vi the internal potential and Ve the external potential. The equations are different if the
membrane voltage is defined with respect to the rest-voltage (i.e. V = Vi − Ve − Vr), as is
done in f.i. Rattay (2005) [12]. In this thesis we will always define V as the difference be-
tween the internal and external potential: V = Vi − Ve. We will call the membrane voltage
defined with respect to the rest-voltage, the reduced membrane voltage Ṽ = Vi− Ve− Vr. Both
definitions will be used through this thesis: for instance for plots the reduced membrane volt-
age Ṽ is more appropriate, while for calculations the non-reduced membrane voltage V is useful.

The electronic loss current is again given by Ohm’s law:

iL = gL(V − VL) (2.19)

and the gate-parameters m, n, h and p are described by differential equations:

dm

dt
= kαmαm(1−m)− kβmβmm (2.20)

dh

dt
= kαhαh(1− h)− kβhβhh (2.21)

dn

dt
= kαnαn(1− n)− kβnβnn (2.22)

dp

dt
= kαpαp(1− p)− kβpβpp (2.23)

We notice the more general temperature dependency in these gate-parameters equations.

The FH-equations form a set of coupled non-linear differential equations and can be solved
numerically, as will be described in chapter 3.

2.2.4 Schwarz-Eikhof model
The SE-model (Scwharz-Eikhof, 1987 [44]; Rattay, 2005 [12]) is a neural model of the Frankenhaeuser-
Huxley type. It is obtained by voltage-clamp experiments on rat nodes. The SE-equation for
the membrane voltage is given by a FH-like equation, without the non-specific current density:

im = cm
∂V

∂t
+ iNa + iK + iL (2.24)
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with current densities given by:

iNa = PNam
3h
V F 2

RT

[Na]0 − [Na]i exp
{
V F
RT

}
1− exp

{
V F
RT

} (2.25)

iK = PKn
2V F

2

RT

[K]0 − [K]i exp
{
V F
RT

}
1− exp

{
V F
RT

} (2.26)

The equations for the loss current iL and the gate-parameters m, n, h are analogous to the
FH-model.

2.2.5 Schwarz-Reid-Bostock model
The SRB-model (Schwarz, Reid, Bostock, 1995 [45]) provides a set of equations of the FH-type,
without the non-specific current density and where the kalium current density has been sepa-
rated in fast and slow kalium transport iK = iK,fast + iK,slow. The model was obtained in 1995
by experiments on human nerve fibers at room temperature.

im = cm
∂V

∂t
+ iNa + iK,fast + iK,slow + iL (2.27)

The gate-parameters are m, n, h and p and are again described by the usual differential equa-
tions. The natrium current density is obtained from the Nernst-Planck equation:

iNa = PNam
3h
V F 2

RT

[Na]0 − [Na]i exp
{
V F
RT

}
1− exp

{
V F
RT

} (2.28)

The kalium-transport is described by:

iK,fast = gK,fastn
4(V − VK) (2.29)

iK,slow = gK,slowp(V − VK) (2.30)

The loss current iL is described as in equation (2.5). This set of coupled differential equations
will be discretised and iterated over time in Matlab to obtain a solution for the voltage and
gate-parameters, as will be described in the next chapter.
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Chapter 3

Implementation in Matlab

In this chapter we discuss the implementation in Matlab of the different neuronal models (see
chapter 2). The idea is to solve these models for V and the gate-parameters on single neurons
without bifurcations. The generalisation to neuronbundles will be discussed in chapter 6. To
numerically solve the sets of coupled differential equations, we have to apply a discretisation
scheme, as discussed in section 3.1. Furthermore the discretised equations need to be completed
by the appropriate boundary conditions, as will be discussed in section 3.2. The discretised
equations will then be iterated over time and be solved by Matlab. Subsequently the program
is verified by comparing some results with literature in section 3.3.

3.1 Discretisation of the neuronal model
We combine equation (2.4) with equation (2.2), to obtain the differential-equation that describes
the membrane voltage in the Hodgkin-Huxley case:

1

ra
(
∂2V

∂l2
− ∂El

∂l
) = cm

∂V

∂t
+ iNa + iK + iL (3.1)

This equation can easily be generalised: when we denote is as the part of the membrane current,
that does not include the current through the membrane capacitance, we find:

1

ra
(
∂2V

∂l2
− ∂El

∂l
) = cm

∂V

∂t
+ is (3.2)

Equation (3.2) is valid for all neuronal models described in chapter 2. It describes the evolution
of the membrane voltage, with the electric field El as source term. For each neuronal model a
different expression of is is used. We now discretise the spatial coordinate l along the neuron
with separation ∆l1, we obtain:

G∗a(V (l −∆l)− 2V (l) + V (l + ∆l) + ∆lE(l −∆l)−∆lE(l)) = C∗m
∂V (l)

∂t
+ Is(l) (3.3)

1A similar discussion of the Crank-Nicholson discretisation of the neuronal models is given in De Geeter (2014)
[34]
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Here we multiplied equation (3.2) with ∆l and introduced the axial conductance and capacitance
per compartment: G∗a = 1

ra∆l and C
∗
m = cm∆l. We also defined the current Is: Is = ∆lis. We

now apply a Crank-Nicholson discretisation scheme (De Geeter (2014) [34]), f.i.:

Is(l)→
Is(l, t) + Is(l, t+ ∆t)

2
(3.4)

And the time derivative:
∂V (l)

∂t
→ V (l, t+ ∆t)− V (l, t)

∆t
(3.5)

We can simplify the equations, including a staggered time grid:

f(t+
∆t

2
) =

f(t) + f(t+ ∆t)

2
(3.6)

So we finally obtain:

2C∗m
∆t

(V (l, t+
∆t

2
)− V (l, t)) + Is(l, t+

∆t

2
)

= G∗a(V (l−∆l, t+
∆t

2
)−2V (l, t+

∆t

2
)+V (l+∆l, t+

∆t

2
)+∆lE(l−∆l, t+

∆t

2
)−∆lE(l, t+

∆t

2
))

(3.7)

Equation (3.7) implicitly determines V̄ (t+ ∆t
2 ) as function of V̄ (t), Ēl(t+ ∆t

2 ) and Īs(t+ ∆t
2 ).

We will use the notation X̄ to refer to the vector obtained by discretising the spatial parameter
l along the neuron, while X refers to a matrix.

We will in general use the electric field distribution El as source to determine the membrane-
voltage, because the electric field can be obtained from S4L-simulations as discussed in chapter
1. Sometimes it is however easier to use the corresponding potential El = −∂Ve∂l , f.i. when
an analytic expression exists for Ve, as in the case that will be discussed in section 3.3. Note
that writing the electric field El as the derivative of a potential Ve, implicitly implies that the
electric field has to be conservative, excluding the case of magnetic stimulation. The electric
field is conservative however for the case of deep brain stimulation. In this case equation (3.7)
is rewritten as:

2C∗m
∆t

(V (l, t+
∆t

2
)− V (l, t)) + Is(l, t+

∆t

2
)

= G∗a(V (l −∆l, t+
∆t

2
)− 2V (l, t+

∆t

2
) + V (l + ∆l, t+

∆t

2
)

+ Ve(l −∆l, t+
∆t

2
)− 2Ve(l, t+

∆t

2
) + Ve(l + ∆l, t+

∆t

2
)) (3.8)

Because we defined the transmembranevoltage V as V = Vi−Ve, equation (3.8) can be rewritten
as function of the internal potential:

2C∗m
∆t

(V (l, t+
∆t

2
)− V (l, t)) + Is(l, t+

∆t

2
)

= G∗a(Vi(l −∆l, t+
∆t

2
)− 2Vi(l, t+

∆t

2
) + Vi(l + ∆l, t+

∆t

2
)) (3.9)
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Equation (3.9) is not very useful when solving for the transmembranevoltage V , because the
internal potential Vi is not known. The Matlab code will thus make use of equation (3.7) or
equation (3.8) to determine V (x, t), because the source term in these equations (El or Ve) can
be simulated or calculated. However, equation (3.9) is easy to physically interpret: it gives
conservation of current at the compartment with x = l. Indeed, equation (3.9) can be rewritten
as:

IC(l) + Is(l) = I(l−∆l)→l
a + I(l+∆l)→l

a (3.10)

IC(l) =
2C∗

m

∆t (V (l, t+ ∆t
2 )− V (l, t)) is the current that flows through the membrane-capacitance

of compartment x = l. Is denotes the membrane-current of the compartment that is due to
electronic losses and ionic current through the membrane-gates. The current that flows through
the neuronal membrane is compensated by axially flowing current: I(l−∆l)→l

a = G∗a(Vi(l−∆l, t+
∆t
2 )− Vi(l, t+ ∆t

2 )) is the current that flows axially from the compartment at x = l−∆l to the
compartment at x = l. Analogously we have that I(l+∆l)→l

a = G∗a(Vi(l+∆l, t+ ∆t
2 )−Vi(l, t+ ∆t

2 ))
represents the current flowing from the compartment at x = l+∆l to the compartment at x = l.
We see that equation (3.10), and consequently equation (3.9), equation (3.8) and equation (3.7)
can be seen as conservation of current (Kirchoff current law).

The interpretation of the Crank-Nicholson discretised differential-equation for the membrane-
voltage (i.e. equations (3.7) and (3.8)) is useful, when trying to generalize the discretised equa-
tions. In general a neuron has non-homogeneous electric parameters: the membrane-capacitance
per unit length cm and the axial resistance per unit length ra are both functions of the spatial
parameter l. These functions are smooth and continuous in each compartment. They are dis-
continuous however on the boundary between two different compartments (for instance when
going from the dendrites to the soma, from the soma to the axon, etc.). This is important,
because the derivation of the discretised equation (3.7) is no longer valid if ra depends on l
(we can neglect this effect however in one compartment, but a generalisation is needed on the
boundaries between compartments). This is due to the fact that equation (2.2), makes use of:

Ia =
1

ra(l)
(−∂V

∂l
+ El) (3.11)

When ra is a function of l, we obtain a generalisation of equation (2.2):

im = −∂Ia
∂l

= − ∂
∂l

1

ra(l)
(−∂V

∂l
+ El) (3.12)

The generalised version of equation (3.7) and (3.8) is implemented in Matlab, by defining the
compartmental conductances G∗a,f (l) and G∗a,b(l), denoting the forward conductance between
the compartment at x = l and at x = l + ∆l and the backward conductance between the
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compartments at x = l and at x = l −∆l respectively2. We obtain:

2Cm(l)∗

∆t
(V (l, t+

∆t

2
)− V (l, t)) + Is(l, t+

∆t

2
)

= G∗a,f (l−∆l)(V (l−∆l, t+
∆t

2
)−V (l, t+

∆t

2
))+G∗a,b(l+∆l)(V (l+∆l, t+

∆t

2
)−V (l, t+

∆t

2
))

+G∗a,f (l−∆l)(Ve(l−∆l, t+
∆t

2
)−Ve(l, t+

∆t

2
))+G∗a,b(l+∆l)(Ve(l+∆l, t+

∆t

2
)−Ve(l, t+

∆t

2
))

(3.13)

Where the generalised discretised equation (eq. (3.13)) is obtained, by writing down conserva-
tion of current as in equation (3.10).

We can now rewrite equation (3.7), or its generalisation, in a matrix system that determines
V̄ (t+ ∆t

2 ):

A1V̄ (t+
∆t

2
) + Īs(V̄ (t+

∆t

2
), t+

∆t

2
) = BV̄ (t) + CEĒl(t+

∆t

2
) (3.14)

And analogously for equation (3.13):

A1V̄ (t+
∆t

2
) + Īs(V̄ (t+

∆t

2
), t+

∆t

2
) = BV̄ (t) + CV V̄e(t+

∆t

2
) (3.15)

We see that A1, CE and CV are (non-constant) tridiagonal-matrices, that can be defined by
the spdiags command in Matlab. The matrix B is diagonal. This Crank-Nicholson scheme
determines V̄ (t+ ∆t

2 ) implicitly as function of V̄ (t) and Ēl(t+ ∆t
2 ) or V̄e(t+ ∆t

2 ): these vectors
determine the right-hand sides of eq. (3.14) and eq. (3.15) and are supposed to be known. The
Crank-Nicholson matrices depend on the neuronal parameters and on the applied boundary
conditions. They will be determined explicitly for some types of boundary conditions in section
3.2.

The Īs(V̄ (t+ ∆t
2 ), t+ ∆t

2 )-vector depends on the gate-parameters at time t+ ∆t
2 ; its expression

depends on the used model. For the Hodgkin-Huxley model, the CRRSS-model and the passive
model, the discretised equation for the membranevoltage V can be written down completely as
a matrix-equation. We have:

IHHs = πd∆l(GNam
3h(V − VNa) +GKn

4(V − VK) +GL(V − VL)) (3.16)

ICRRSSs = πd∆l(GNam
2h(V − VNa) +GL(V − VL)) (3.17)

IPs = πd∆l(Gm(V − Vr)) (3.18)

Where IHHs , ICRRSSs and IPs are the currents for the Hodgkin-Huxley, CRRSS and passive
model respectively. We introduced conductances per unit area πdG = g, with d the diameter of
the neuron. We note that the diameter d, and even the discretisation step ∆l will in generally

2We only need one of the definitions for the forward and backward conductance, because of the relation:
G∗

a,f (l) = G∗
a,b(l + ∆l). We maintain both notations however to make the equations more clear.
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depend on the spatial parameter l. The Īs(V̄ (t+ ∆t
2 ), t+ ∆t

2 )-vector can now be rewritten, using
matrices:

Īs(V̄ (t+
∆t

2
), t+

∆t

2
) = A2V̄ (t+

∆t

2
)− V̄ ∗(t+

∆t

2
) (3.19)

We note that the matrix A2 and the vector V̄ ∗ depend on the gate-parameters for the active
models at t+ ∆t

2 . We finally obtain, defining A = A1 +A2:

AV̄ (t+
∆t

2
) = b̄

= BV̄ (t) + CEĒl(t+
∆t

2
) + V̄ ∗(t+

∆t

2
)

= BV̄ (t) + CV V̄e(t+
∆t

2
) + V̄ ∗(t+

∆t

2
)

(3.20)

The membrane-voltage at t + ∆t
2 is now obtained, by calculating the solution of this equation,

which can be done efficiently in Matlab.

For the FH model we have:

IFHs = ∆lPNam
2h
V F 2

RT

[Na]0 − [Na]i exp
{
V F
RT

}
1− exp

{
V F
RT

} + ∆lPKn
2V F

2

RT

[K]0 − [K]i exp
{
V F
RT

}
1− exp

{
V F
RT

}
+ ∆lPpp

2V F
2

RT

[Na]0 − [Na]i exp
{
V F
RT

}
1− exp

{
V F
RT

} + πd∆lGL(V − VL) (3.21)

And analogous equations for the SE and SRB model. We see that for these models, there doesn’t
exist a simple matrix expression to determine V (t + ∆t

2 ). The solution of equation (3.14) or
(3.15) is now obtained by using an iterative solver in Matlab. When V (t + ∆t

2 ) is known, we
calculate V (t+ ∆t) by:

V (t+ ∆t) = 2V (t+
∆t

2
)− V (t) (3.22)

We now need to update gate-parameters at t + 3
2∆t to finish the leap-frog staggered in time

scheme. This is easily done, for instance for the m-gate parameter, discretising equation (2.9).

m(t+ 3
2∆t)−m(t+ 1

2∆t)

∆t
= αm(t+ ∆t)(1−

m(t+ 3
2∆t) +m(t+ 1

2∆t)

2
)

− βm(t+ ∆t)
m(t+ 3

2∆t) +m(t+ 1
2∆t)

2
(3.23)

In Matlab the electric and geometric parameters of each compartment (soma, dendrite, ...) will
first be initialised. Then each compartment will be discretised with a specific space-step ∆l. The
Matlab code then determines an appropriate ∆t, making use the Courant limit. The equations
described in this section will then be iterated and the resulting fields are stored and displayed.
The different Crank-Nicholson matrices still depend on the applied type of boundary condition.
In the next section, we will discuss two types of boundary conditions, for which we will obtain
explicit Crank-Nicholson matrices.
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3.2 Implementation of boundary conditions

In this section we will give an explicit formulation for the Crank-Nicholson matrices A1,A2,B,
CE CV and V̄ ∗, to finish the discretisation of the neuronal models. These Crank-Nicholson
matrices depend on the applied boundary conditions. In this thesis we will discuss sealed-end
boundary conditions and clamped-voltage boundary conditions (Koch et al., 1998 [46],p.34).

3.2.1 Sealed-end boundary conditions
The sealed-end boundary conditions are often used in literature. The boundary-condition holds
for a neuron that is sealed at its ends, so that no axonal current Ia will flow at x = 0 and x = L.
When discretising the neuron, the center of the first compartment is made to coincide with x = 0,
while the center of the last compartment will coincide with x = L. These compartments are thus
halved by the boundary conditions. The sealed-end boundary conditions are then implemented,
by complementing equation (3.13) with two equations at the two ends, for instance for x = 0:

1

2
(
2Cm(0)∗

∆t
(V (0, t+

∆t

2
)− V (0, t)) + Is(0, t+

∆t

2
))

= G∗a,b(∆l)(V (∆l, t+
∆t

2
)− V (0, t+

∆t

2
)) +G∗a,b(∆l)(Ve(∆l, t+

∆t

2
)− Ve(0, t+

∆t

2
))

(3.24)

The factor 1
2 is due to the fact that the first compartment is halved, thus halving the compart-

mental capacitance and membrane current. A similar relation holds for x = L.

Combining equation (3.13) with the sealed-end boundary conditions equations, equation (3.24),
we obtain:

A1 =


2C∗

m(0)
∆t + 2G∗a,b(∆l) −2G∗a,b(∆l) 0 ... 0

−G∗a,f (0) 2Cm(∆l)∗

∆t +G∗a,m(∆l) −G∗a,b(2∆l) ... 0

... ... ... ... ...

0 0 0 ...
2C∗

m(L)
∆t + 2G∗a,f (L−∆l)


(3.25)

Here we defined the conductivity G∗a,m(x) = G∗a,f (x−∆l) + G∗a,b(x + ∆l), which is used along

the diagonal of A1. The matrix B is diagonal:

B =


2C∗

m(0)
∆t 0 ... 0

0
2C∗

m(∆l)
∆t ... 0

... ... ... ...

0 0 ...
2C∗

m(L)
∆t

 (3.26)

The CE-matrix is given by:

CE =


−G∗a(0)∆l 0 ... 0
G∗a(0)∆l −G∗a(∆l)∆l ... 0

... ... ... ...
0 0 ... −G∗a(L−∆l)∆l
0 0 ... G∗a(L−∆l)∆l

 (3.27)
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We notice that a spatial mismatch is introduced, when discretising the El(x)-field. Indeed, in
the discretised equation of V (x) we need El(x− ∆l

2 ) and El(x+ ∆l
2 ). If we only want to store the

fields at the grid-locations xi = i∆l (i = 0...S−1; where S is the number of segments), a spatial
mismatch is necessary. We made the identification xi + ∆l

2 → xi, which results in an error that
corresponds to shifting the electromagnetic field El over ∆l

2 . This error thus depends on the
discretisationstep ∆l, and will be small if ∆l � 1. The El-vector is then a (S − 1) × 1-vector,
unlike all other vectors (V ,m,n,...) that are S × 1-vectors. We notice that the corresponding
matrix CE is a S × (S − 1)-matrix.

The CV -matrix is given by:

CV =


−2G∗a,b(∆l) 2G∗a,b(∆l) 0 ... 0

G∗a,f (0) −G∗a,m(∆l) G∗a,b(2∆l) ... 0

... ... ... ... ...
0 0 0 ... −2G∗a,f (L−∆l)

 (3.28)

To finish the discretisation with sealed-end boundary conditions, we take a final look at the
Īs(V̄ (t+ ∆t

2 ), t+ ∆t
2 )-vector. This vector can be split into a linear component Īs

L, which is only
non-zero at passive, Hodgkin-Huxley and CRRSS compartments, and a non-linear component
Īs
NL, which is non-zero at the SRB, SE and FH compartments. The component Īs

L is called
linear, because it can be written as:

Īs
L

(V̄ (t+
∆t

2
), t+

∆t

2
) = A2V̄ (t+

∆t

2
)− V̄ ∗(t+

∆t

2
) (3.29)

Here the A2-matrix is given by:

A2 =


G∗m(0) 0 ... 0

0 G∗m(∆l) ... 0
... ... ... ...
0 0 ... G∗m(L)

 (3.30)

Similarly for V̄ ∗(t+ ∆t
2 ) we write: V̄ ∗(t+ ∆t

2 ) = [V ∗(0) V ∗(∆l) ... V ∗(L)]T .

The compartmental membrane-conductanceG∗m(xi) is only non-zero for passive, HH and CRRSS
compartments:

G∗m(xi) =


πd∆lGm xi ∈ ΩP

πd∆l(GNam
3h+GKn

4 +GL) xi ∈ ΩHH

πd∆l(GNam
2h+GL) xi ∈ ΩCRRSS

0 xi ∈ ΩFH ∪ ΩSRB ∪ ΩSE

Where the right-hand side has to be evaluated in xi. We denoted the different neuronal model
domains by Ω. For instance ΩHH is the set of xi-positions along the neuron, where a Hodgkin-
Huxley model was applied. Similarly we obtain for V ∗(xi):
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V ∗(xi) =


πd∆lGmVr xi ∈ ΩP

πd∆l(GNam
3hVNa +GKVKn

4 +GLVL) xi ∈ ΩHH

πd∆l(GNam
2hVNa +GLVL) xi ∈ ΩCRRSS

0 xi ∈ ΩFH ∪ ΩSRB ∪ ΩSE

Finally we obtain the equation to be solved for the membrane-voltage (A = A1 +A2):

AV̄ (t+
∆t

2
) + Īs

NL
(V̄ (t+

∆t

2
), t+

∆t

2
) = b̄

= BV̄ (t) + CEĒl(t+
∆t

2
) + V̄ ∗(t+

∆t

2
)

= BV̄ (t) + CV V̄e(t+
∆t

2
) + V̄ ∗(t+

∆t

2
)

(3.31)

Equation (3.31) is the general matrix-equation that determines V over the whole neuron, that
consists of different compartments, that are described by different neuronal models (passive
model, HH, CRRSS, FH, SRB or SE model). This equation is solved numerically by Matlab in
this thesis.
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3.3 Program verification by comparison with literature
We now would like to validate the Matlab code by comparison with literature. In Rattay
(2005) [12], p.22, the transmembranevoltage is simulated on a single straight neuron, without
bifurcations. The results obtained in Rattay [12] are shown in figure 3.1. The electromagnetic
field distribution is excited by a point electrode in a completely homogeneous extracellular fluid
with resistivity ρe. As represented in figure 3.1, the electrode is placed just above the soma
(with distance d(soma, electrode) = delec = 1mm). The field is generated by a current pulse
(Ielec = 5mA) that holds on for Tpulse = 100µs. In this case we don’t need S4L-simulations
to determine the electromagnetic field distribution, because the external potential Ve can be
calculated analytically. We have, with r the distance from the point electrode:

Ve =
ρeIelec

4πr
(3.37)

We assume equation (3.37) to be quasistatically valid for every time t. The used neuron consists
of 40 compartments. There are 10 dendrite compartments with variable diameter d and length l
that are all described with a passive transmissionline model. The soma is described as one com-
partment with a Hodgkin-Huxley model. The initial segment is calculated by a CRRSS-model as
one compartment. Then the axon is segmentated into 11 myelinated internode compartments,
that are described with the passive model, implying 10 nodes of Ranvier that are described
with a CRRSS-model. The other 7 compartments are described by a Hodgkin-Huxley model: 6
compartments for the unmyelinated part of the axon, with variable diameter and length, and 1
compartment for the synapse. For the exact neuronal data we refer to Rattay p.23− p.24 [12].

In Rattay (2005) [12] the membranevoltage is calculated on this single, multi-compartmental
neuron. The result obtain in Rattay, is shown in figure 3.1. The membranevoltage is shown as 7
full lines. Each line corresponds with a fixed time. These times are separated by time intervals
of 50µs, so line 1 is the spatial distribution at t = 50µs, line 2 at t = 100µs,. . . The dashed line
(corresponding with the dashed scale) in figure 3.1 represents the activating function f , which
is defined in Rattay [12], as:

f(l) =
G∗a,f (l −∆l)(Ve(l −∆l)− Ve(l)) +G∗a,b(l + ∆l)(Ve(l + ∆l)− Ve(l))

C∗m(l)
(3.38)

Here f is evaluated after the electrode is turned on, at t = 0. The activating function f is
expressed in V

s and it can be interpreted using equation (3.13): the activating function is the
rate of change of the membranevoltage V in each compartment, when the neuron is initially at
rest. Regions where the activating function f is strongly positive are potential candidates for
spike initiation of an action potential, while regions with a strongly negative activating function
are likely to be hyperpolarised.

Although the electrode is located just above the soma, the activating function f has no maxi-
mum, nor minimum at the soma. This indicates that the soma will not be the location of the
neuron from where an actionpotential will start to propagate. The most negative value of f is
reached at the first node of Ranvier, the next node of Ranvier still has a negative value of f , all
other Ranvier-nodes are however likely to depolarise due to a positive peaking value of f . The
strongest positive value of f is obtained at the first unmyelinated element of the axon. This
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Figure 3.1: Result obtained in Rattay [12] for the simulation of the membranevoltage on a
single straight neuron without bifurcations. The 7 full lines represent snapshots of the spatial
distribution of the membranevoltage in intervals of 50µs (line 1 is at time 50µs, line 2 at time
100µs,. . . ). The dashed scale corresponds to the dashed line, which shows the spatial distribution
of the activating function f . Figure reproduced from Rattay (2005) [12].

behaviour, where stimulation does not occur at the electrode, is typical for so-called anode-make
stimulation (see also chapter 4). The stimulation is called “make”, because the depolarisation
on the neuron is caused by applying a voltage on the electrode. This is in contrast with “break”
stimulation, where an action potential might occur after turning the applied voltage off. Be-
cause I > 0 the electrode is an anode here. Both for cathode-make and anode-make stimulation
depolarisation occurs at the (virtual) cathodes (Rattay, 1987 [47]; Ranck, 1975 [48]; Roth, 1993
[15]). This means that for the simulation under consideration, it is expected that depolarisation
will not occur right under the electrode (which is an anode). Instead, depolarisation will occur
at the end of the axon, at the so-called “virtual”-cathode.
We now compare the results obtained in Rattay [12] with the results obtained by the Matlab
code for the transmembranevoltage V in figure 3.2 and the activating function f in figure 3.3.
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Figure 3.2: The simulation from Rattay (2005) [12] of the reduced membrane voltage along a
single neuron is reproduced by the Matlab code. The spatial distribution of Ṽ is shown at 7
subsequent times along the same neuron.

We notice that the results obtained by the Matlab-code are indeed similar to these obtained by
Rattay [12]: the activating function (fig. 3.3) is in both cases strongly negative at the first node,
stays negative at the second node and obtains positive stimulating values at the other nodes of
Ranvier. The membranevoltage at the other hand in fig. 3.2 is initially hyperpolarised at the
first two nodes of Ranvier, while depolarising activation first occurs at node 4− 6 in both cases.
Because of the strong hyperpolarisation at the beginning of the axon we see that in Rattay [12],
as in our case, the generated actionpotential will first reach the end of the myelinated axon,
before reaching the soma. This effect is more clear when we plot the membranevoltage as a colour
map, as is done in figure 3.43. This is a manifestation of the fact that a hyperpolarised region
can effectively “block” the propagation of an actionpotential (Fang et al.,1991 [49]; Ranck, 1975
[48]). We notice that although the actionpotential reaches node 10 before reaching the soma,
it will never reach the synapse in the simulation time Tsim = 350µs (it will reach the synapse
though, when we extend the simulation time). This is due to the fact that propagation of
the actionpotential is slowed down when entering the unmyelinated part of the axon. This
corresponds with the well known fact that information propagates faster in myelinated axons,
compared with unmyelinated axons (Kandel, 2000 [50]). Furthermore we notice that at the
dendrite-terminals (i.e. x = 0m) depolarisation occurs over about 20mV , as can be seen in
figure 3.2. This is a manifestation of the fact that neuronal bendings and terminations are
especially sensitive to depolarisation, as will be discussed in chapter 5.

3To illustrate the position on the neuron for any location on the colour map, a schematic representation of
the neuron is shown along the y-axis on the right of the figure. This schematic representation of the neuron will
be used in all colour maps in this thesis, and is reproduced from Rattay (2005) [12] (see also figure 3.1)
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Figure 3.3: The simulation from Rattay (2005) [12] of the activation function f along a single
neuron is reproduced by the Matlab code.

Figure 3.4: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by stimulation with a spherical electrode (10V )
at 1mm from the soma of a straight neuron.
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We can also plot the gate-parameters, as is done for the m-gate parameters in figure 3.5. We
notice that the m gate-parameter reflects the behaviour of the membrane voltage on the axon.
When a strongly positive activating function f is obtained at a node of Ranvier, the sodium-
gates will open and the neuronal membrane will depolarise: an actionpotential is generated that
will propagate over the neuronal axon. This phenomenon of the opening of the sodium gates is
described by m and h. The activation gate-parameter m contributes to the fast opening of the
sodium channels and will increase when activation occurs. The inactivation gate h in contrast
(Figure 3.6), contributes to the relatively slow closing of the sodium gates, and will decrease
when activation occurs. Because of this, the sodium channel current will be transient. We no-
tice that the m gate-parameter is by definition zero at the dendrites and myelinated internodes,
because these compartments are described by a passive model. The m and h parameter can
only be non-zero at active (in this case Hodgkin-Huxley and CRRSS) compartments.

Figure 3.5: Colour map of the m-gate parameter in time and space. The colours represents the
value of m. The map is obtained by stimulation with a spherical electrode (10V ) at 1mm from
the soma of a straight neuron.

A similar discussion holds for the gate parameter n, shown in figure 3.7. This gate param-
eter describes the opening of the potassium gates, and will increase by activation. However
this gate-parameter is not used in the CRRSS-model, that we used for the initial segment and
Ranvier nodes. Because of this the n gate parameter will be by definition zero at the passive
compartments (dendrites and myelinated internodes) and at the Ranvier nodes and the initial
segment. The n parameter still reflects the activation at the Hodgkin-Huxley compartments
though (unmyelinated axonterminal, synapse and the soma).

We are now also able to determine if the neuron has been activated. Neuronactivation occurs if
the neuronal membrane has depolarised, which can be formulated mathematically by requiring
V > Vtresh, for some thresholdvoltage Vthresh. This depolarisation of the membrane is called
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Figure 3.6: Colour map of the h-gate parameter in time and space. The colours represents the
value of h. The map is obtained by stimulation with a spherical electrode (10V ) at 1mm from
the soma of a straight neuron.

Figure 3.7: Colour map of the n-gate parameter in time and space. The colours represents the
value of n. The map is obtained by stimulation with a spherical electrode (10V ) at 1mm from
the soma of a straight neuron.

an actionpotential. We only consider the active compartments when we want to determine
neuronactivation. Furthermore we require that the actionpotential has to propagate over the
neuron. We will discuss the details of this problem of determining neuronactivation in section
4.3. The Matlab code will determine if the neuron has been activated and summarize the results
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in an activationtable, as represented in figure 3.1. We see that the activationtable mentions that
the neuron is indeed activated at 3 locations at the same time t = 0.1ms after initiation of
the stimulationpulse. The locations correspond with the fourth till sixth node of Ranvier. This
result can also be noted by inspecting the colour maps for V in figure 3.4 and for the m gate-
parameter in figure 3.5. We notice that indeed activation initiates somewhat simultaneously at
nodes 4 − 6. The activationtable mentions all 3 activationpositions corresponding to node 4, 5
and 6, because the Matlab code could not find any causal relation between the actionpotentials
that originated at these nodes. In this case the external source electrode caused activation on
node 4, 5 and 6, which caused subsequently activation on the other nodes of Ranvier due to
propagation of the signal through the myelinated internodes. The actionpotential propagates
both in the direction of the soma and the direction of the synapse (antidromic and orthodromic
propagation).

Table 3.1: Activation table summarizing neuronal activation locations, times and speeds. The
table is obtained by stimulation with a spherical electrode (10V ) at 1mm from the soma of a
straight neuron.

We note that the table 3.1 also mentions if the activationpulse has propagated to the synapse
in the simulationtime Tsim. This is not the case for this simulation. However when extending
the simulationtime the actionpotential will reach the synapse. The neuron will then transmit
the signal to the next neuron by neurotransmission at the synapse.

The activationtable will also show the mean speeds by which the activationpotential has propa-
gated, denoted by MSOAf and MSOAb for the forward and backward mean speed of propaga-
tion respectively. We emphasize that these speeds are ofcourse mean speeds, because the insta-
neous speed of propagation depends on the compartment (propagation through myelinated in-
ternodes versus propagation through nodes of Ranvier). We see from the activationtable that the
mean speed in the forward direction (i.e. to the synapse), 12ms , is faster than the speed of prop-
agation towards the soma 7ms . This is due to the initial hyperpolarisation of the first two nodes
of Ranvier, preventing the actionpotential to propagate towards the soma. When considering
the forward speed, notice that MSOAf (4) = 18ms > MSOAf (5) = 15ms > MSOAf (6) = 12ms .
With MSOAf (i) the MSOAf on node i. This is due to the fact that the actionpotential
starts almost simultaneously at the 4th, 5th and 6th node. When determining MSOAf (5), the
Matlab-code will include the speed of propagation from node from node 5 to node 6, increasing
the mean. The mean speed on the 4th node is consequently even higher. Ofcourse in this case
only the MSOAf (6) is relevant. An analogous discussion is valid for the backward mean speed
MSOAb. We will discuss neuronal activation and the corresponding activationtables in detail
in section 4.3.
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Chapter 4

Simulation of the transmembrane
voltage and gate-parameters on a
single neuron

In this chapter we will consider some more general simulations on single neurons. Simulations
on bundles of multiple neurons will be discussed in part III of this thesis. In this chapter,
we use a simple stimulation set-up of a spherical electrode in a homogeneous medium. The
electric field will now be simulated by Sim4life, as discussed in section 1.1. In contrast with the
simulation from section 3.3, the electrode is no longer a point-electrode, boundary conditions are
now applied at the end of the simulation domain and the electric field is simulated numerically
with Sim4life. This transition from an analytical solution for the electric field to a numerically
simulated field distribution by S4L, is also useful to prepare us to consider Sim4life simulations
of a more general Medtronic electrode in chapter 7. Although the simulations discussed in
this chapter make use of some simplifications (spherical electrode, homogeneous medium, single
neuron), they are still interesting because they lead to some conceptual insights about the
activation and stimulation of neurons. We will first consider simulations on a neuron that is
completely straight, in section 4.1. Subsequently we discuss a neuron that is bending at a certain
location in section 4.2.

4.1 Simulations on a single straight neuron

In this section, we will consider five simulations on a completely straight neuron. We will make
use of the neuron we defined in section 3 (see p.22-p.23 in Rattay (2005) [12]).

The first simulation in subsection 4.1.1 is similar to the configuration of the simulation in sec-
tion 3.3. However instead of using an analytically calculated electric potential, the electric field
distribution is now simulated by Sim4life. Furthermore, instead of turning the electrode off after
100µs as was done in subsection 4.1.1, the electrode will now stimulate the neuron for the whole
simulation time (Tsim = 350µs). Consequentially, there will be some differences between the
simulation set-up of subsection 3.3 and subsection 4.1.1. Nevertheless, we expect a similarity
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between the results of both simulations. This similarity can then be seen as a verification of
the code necessary to couple the Matlab program with the Sim4life simulations. This coupling
of electromagnetic simulations with the multi-compartmental neuronsolver will subsequently be
used in all the following simulations in this thesis.

Simulations 2 − 4 deal with a configuration of a spherical electrode at 2mm from the soma.
In simulation 2, discussed in subsection 4.1.2, a constant electrode voltage of 60V is applied
and the neuron is solved under sealed-end boundary conditions. As such, this simulation can
be compared with simulation 1 (subsection 4.1.1). The influence of the boundary conditions
is studied in simulation 3 (subsection 4.1.3) in which the neuron is voltage-clamped, while an
electrode voltage of 60V is applied. In simulation 4 we test for cathode-make stimulation, by
applying a negative electrode voltage of −60V . The neuron in simulation 4, is again solved with
sealed-end boundary conditions.

Finally, in simulation 5 (section 4.1.5), we study the influence of the location of the electrode.
Anode-make stimulation is used (Velec = 60V ), while the electrode is placed 2mm above the
centre of the neuron (i.e. at the myelinated axon).

4.1.1 Simulation 1. Anode-make stimulation by spherical electrode
(10 V) at 1 mm from soma

The first simulation on a single straight neuron, is similar to the simulation of section 3.3. As
in section 3.3 we use a spherical electrode at 1mm from the soma of a straight neuron. Fur-
thermore the simulation is again done for a completely homogeneous medium. The difference
with section 3.3 is that now no longer a point electrode is used, on which a specific stimulus
current is applied. Instead we use a spherical electrode with radius 0.1mm on which a constant
voltage of 10V is applied. Also, the field distribution is no longer obtained analytically but by
simulation with Sim4life. This means that now boundary conditions are applied at the end of
the simulation domain. To subsequently calculate the neuronal response to the simulated field
distribution, an interpolation step from the Sim4life grid to the Matlab grid is now necessary,
as was explained briefly in chapter 1. Furthermore, instead of turning the electrode off after
100µs, as was done in the simulation of subsection 3.3, the electrode will now stimulate the neu-
ron during the whole simulation time Tsim. Although this simulation has some differences with
the simulation of subsection 3.3, we expect similar results. As such the simulation discussed in
this section makes it possible to qualitatively verify the additional code to couple the Sim4life
simulations with the Matlab code, that will be used to calculate more general simulation-setups
later on.

Because the applied voltage is positive and because the neuron-stimulation will occur due to the
fact that the electrode is turned on, the stimulation is called anode-make stimulation. Because of
this we expect, similarly as in subsection 3.3, that neuronal activation does not occur under the
electrode (i.e. at the soma), but rather at the axon (at the virtual cathode). This observation
that stimulation occurs at the (virtual) cathode(s), is discussed in Roth (1993) [15]. Furthermore,
a region of hyperpolarisation (RoH) is expected at the (virtual) anode(s). In this case, the
electrode is the anode and consequentially we expect hyperpolarisation right under the electrode.
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Figure 4.1: Anode-make stimulation by spherical electrode (10V ) at 1mm from the soma. Spatial
distribution of the reduced membrane voltage Ṽ at 7 subsequent times is shown.

The electrode is turned on at t = 0, we can thus write for the electrode potential Velec(t),

Velec(t) = 10V θ(t) (4.1)

with θ the Heaviside function. The electrode-potential is turned on for the whole simulation time
Tsim. We assume that the electric field distribution varies quasistatically with this Heaviside
pulse. This implies that the electric field can be calculated with a single Sim4life simulation at
0Hz.

The activation function f is shown in figure 4.2. The results are seen to be qualitatively similar
to those obtained in subsection 3.3. This is a result of the fact that the activation function f is
evaluated just after the electrode is turned on (at t = 0). The longer duration of the electrode-
stimulus in this simulation (compared to the simulation of subsection 3.3) has consequentially
no effect on f . There are some small differences between the activation functions of both sim-
ulations though. These can be explained by the difference in electrode-shape, which is now
no longer a point source, and the difference in the applied dirichlet-conditions on the electrode
(dirichlet-condition on the voltage (10V ) in S4L-simulation (this subsection) versus condition
on the applied electrode current (5mA) in the exact solution of the electric field distribution
(subsection 3.3)). Furthermore boundary conditions at the end of the simulation domain are
now applied and the electric field distribution is simulated at the discretised grid locations. This
is in contrast with the simulation of subsection 3.3, where an exact solution for the electric field
in a homogeneous tissue was used.
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Figure 4.2: Anode-make stimulation by spherical electrode (10V ) at 1mm from the soma. Spatial
distribution of the activation function f is shown.

The spatial distribution of the reduced membranevoltage Ṽ is displayed in figure 4.1. We notice
the difference with the simulation of the membranevoltage in subsection 3.3 (figure 3.2). We
can clearly see the effect of turning the electrode off at 100µs (as done in subsection 3.3). The
region of hyperpolarisation at the electrode-position, will disappear when the electrode is turned
off at t = 100µs, allowing the actionpotential to travel towards the soma. In contrast, in the
simulation of this subsection, the electrode is not turned off and the RoH will persist. The
actionpotential is consequentially not allowed to propagate towards the soma.

The colour maps for the reduced membranevoltage Ṽ and gate-parameter m are shown in
figures 4.3 and 4.4 respectively. We note that the results are again similar to those obtained in
subsection 3.3. In these colour maps we can now clearly see that the region of hyperpolarisation
at the beginning of the axon will persist, when the electrode is not turned off.

Table 4.1: Activation table for a straight neuron, stimulated by a spherical electrode (10V ) at
1 mm from the soma.

The activationtable is shown in figure 4.1. The neuron is activated and activation starts at
2.45mm from the beginning of the neuron. This corresponds to the 5th node of Ranvier at
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Figure 4.3: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (10V ) at 1mm from the soma of a straight neuron.

the axon. This can also be seen in the figures for the membranevoltage and m-gate parameter.
We note that this corresponds to our previous simulations in subsection 3.3, where stimulation
was initiated simultaneously at node 4, 5 and 6. We note that neuronal activation has shifted
towards later times: in this section we obtain neuronal activation 0.15ms after turning on the
electrode. In contrast, in subsection 3.3, we obtained activation after 0.1ms. This observation
can also be made by comparing the colour maps of the voltage or gate-parameters. However, we
attribute this observation to the different electrode-conditions that were used (in this subsection
the electrode-potential is set to 10V , in subsection 3.3 the electrode-current is set to 5mA).

The colour maps for the h-gate parameter and n-gate parameter are shown in figure 4.5 and in
figure 4.6 respectively. We note again the similarity with the corresponding plots in subsection
3.3. Furthermore the fact that the region of hyperpolarisation persists, can also be observed in
the plot of the h-gate parameter. As in subsection 3.3 the n-gate parameter is identically zero
on the axon, because no n value is used in the CRRSS-model used for the nodes of Ranvier.
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Figure 4.4: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (10V ) at
1mm from the soma of a straight neuron.

Figure 4.5: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (10V ) at
1mm from the soma of a straight neuron.
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Figure 4.6: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (10V ) at
1mm from the soma of a straight neuron.

4.1.2 Simulation 2. Anode-make stimulation by spherical electrode
(60V) at 2 mm from soma.

We will now observe the effect of the distance of the electrode to the neuron. In this subsection,
we increase the distance between the electrode and the soma from 1mm to 2mm. Because this
will result in a decrease of the electromagnetic field on the neuron, we increase the electrode-
potential Velec from 10V to 60V . The electromagnetic field at the neuron excited by the source
of 10V will not be strong enough to stimulate the neuron, and we would like to study activated
neurons in this subsection. The simulation setup with an electrode potential of 10V and elec-
trode at 2mm from the soma however, is treated as an appendix (section A.2). Furthermore a
similar simulation with an electrode source at 2mm from the soma, but with electrode potential
at 40V , will also result in neuronal activation, and is treated in section A.3. To study the effect
of the electrode potential on the transmembrane voltage and gate-parameters, the results from
this subsection and from section A.3 can be compared.

The results for the membranevoltage and activation function f , for the configuration of a spher-
ical electrode at 2mm from the soma and at 60V , are shown in figure 4.7 and 4.8. We compare
the results of this subsection, with the results of the previous subsection (subsection 4.1.1), to
identify the influence of distance between the electrode and the neuron. From the activation
function f we notice that the region of hyperpolarisation around the electrode-position has ex-
tended from the first two nodes of Ranvier to the first four nodes of Ranvier. The strenght
of hyperpolarisation isn’t significantly altered for the first node of Ranvier however. The sub-
sequent three nodes however will now be hyperpolarised more strongly, leaving only six nodes
(as compared to eight Ranviernodes in subsection 4.1.1 and section 3) where depolarisation
can occur. This behaviour is also reflected in the membranevoltage in figure 4.7: the region
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Figure 4.7: Anode-make stimulation by spherical electrode (60V ) at 2mm from the soma. Spatial
distribution of the reduced membrane voltage Ṽ at 7 subsequent times is shown.

of depolarisation and neuronal activation is shifted to the end of the axon, while the first four
Ranviernodes are now hyperpolarised.

The same conclusions hold for the colour maps of the reduced membranevoltage Ṽ and gate-
parameter m in figure 4.9 and 4.10 respectively. The activation of the neuron is shifted to the
last sixth nodes of Ranvier, as can be seen most clearly in the plot for the m-gate parameter 4.10.

The initiation of the actionpotential is consequently also shifted towards the end of the neuron,
as can be seen in the activationtable 4.2. The startpoint of the actionpotential has moved from
2.45mm in simulation 1 (subsection 4.1.1) to 3.6mm in this simulation.

From a theoretical perspective (Roth, 1993 [15]), it makes sense that increasing the distance
between the electrode and the neuron will increase the length of the central region of hyperpo-
larisation in anode-make stimulation. Analogously, increasing the distance between electrode
and neuron will increase the length of the central region of depolarisation in cathode-make stim-
ulation. This is due to the fact that the distance between the (virtual) cathode(s) and (virtual)
anode(s) will increase with delec. The electrode-potential in contrast does not alter the shape
of the activation function. Indeed, from linearity we see that by scaling the electrode-potential,
the activation function will scale with the same parameter. We conclude that the shape of the
activation function f is dictated by the electrode-neuron distance, while altering the electrode-
potential will only scale f with a constant value and will not alter the shape of f . To verify
these theoretical observations, we compare the results of this subsection, with the results of
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Figure 4.8: Anode-make stimulation by a spherical electrode (60V ) at 2mm from the soma.
Spatial distribution of the activation function f is shown.

Figure 4.9: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (60V ) at 2mm from the soma of a straight neuron.
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section A.2 (anode-make stimulation with 10V ) and section A.3 (anode-make stimulation with
40V ). We indeed notice from the respective activation functions (10V in figure A.9, 40V in
figure A.19, 60V in figure 4.8) that the electrode-voltage will only introduce a scaling, and will
not alter the shape of the activation function.

Figure 4.10: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma of a straight neuron.

The results for the m-gate, h-gate and n-gate parameters for anode-make stimulation (60V )
with a spherical electrode at 2mm from the soma, is shown in figure 4.10, figure 4.11 and fig-
ure 4.12 respectively. These colour maps again agree with the conclusion, that with increasing
electrode-neuron distance the length of the region of hyperpolarisation will increase. The action
potential will start further on the axon.

We can compare the results, for the membrane voltage and gate-parameters, obtained in this
subsection for anode-make stimulation at 60V , with the results obtained in section A.3 for
anode-make stimulation at 40V 1. Both for 60V and 40V stimulation the neuron will be acti-
vated and the distribution of the voltage and gate-parameters will be similar. This could be
anticipated from the fact that the activation function has the same shape for both simulations.
Furthermore by comparing the activation tables (figure 4.2 and figure A.3), we note that acti-
vation occurs at the exact same location (3.5985mm from the start of the dendrites). However
the neuronal activation will start on a later time for the anode-make stimulation at 40V , i.e. at
tact = 0.14ms, than for the anode-make stimulation at 60V (tact = 0.11ms). This makes sense,
because for 60V -stimulation, the activation function f will have higher values, so depolarisation

1For the spatial distribution of the membrane-voltage we compare figure 4.7 with figure A.17. For the colour
map of the membrane voltage we compare figure 4.9 with figure A.18. For the m, n, and h parameter, compare
figures 4.10, 4.12, 4.11 with figures A.20, A.22, A.21 respectively
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is likely to occur faster than for 40V -stimulation.

Figure 4.11: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma of a straight neuron.

Figure 4.12: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma of a straight neuron.

Finally we can also compare the results from this subsection and section A.3, with the results
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obtained by anode-make stimulation at 10V in section A.22. However for stimulation at 10V the
neuron will not be activated: no action potential will propagate along the axon. Consequentially
there is little similarity between the maps for the voltage and gate-parameters for stimulation
at 60V and stimulation at 10V .

Table 4.2: Activation table for a straight neuron, stimulated by a spherical electrode (60V ) at
2 mm from the soma.

4.1.3 Simulation 3. Anode-make stimulation of voltage-clamped neu-
ron by spherical electrode (60 V) at 2 mm from soma

Until now we always used “sealed-end” boundary conditions in the simulations of the membrane
voltage and gate-parameters. We would like to examine the effect of the boundary conditions on
distribution of the voltage, gate-parameters and activation function and the effect on neuronal
activation. For this end we consider anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma (i.e. the simulation setup is identical to simulation 2, in subsection 4.1.2).
However the difference between simulation 3 (in this subsection) and simulation 2 (in the pre-
vious subsection) is that sealed-end boundary conditions were used in simulation 2, while in
this subsection voltage-clamped boundary conditions will be used. The reduced voltage will be
clamped to zero at the neuronal terminations, Ṽ |x=±L2 = 0. Here the neuron starts at x = −L2
and ends at x = L

2 . In other words, the non-reduced membrane voltage V is equal to the rest-
voltage at the terminations of the neuron.

The spatial distribution of the reduced membrane voltage Ṽ , for the simulation with voltage-
clamped boundary conditions, is shown in figure 4.13. We observe that indeed the reduced
voltage is zero at the ends of the neuron. Because of this, the depolarisation over about 40V
at the termination of the dendrites that could be observed in the simulation of the previous
subsection 4.1.2, is not present anymore when applying voltage-clamped boundary conditions.
Furthermore we notice that the spatial distribution of the voltage for voltage-clamp boundary
conditions is very similar to the voltage distribution for sealed-end conditions. It is only close
to the neuron ends, that the neuron will “feel” the boundary conditions, and the voltage will
drop to zero.

The activation function for the voltage-clamped neuron is shown in figure 4.14. We observe that
the activation function is identical to the activation function for sealed-end conditions, in figure
4.8. This is ofcourse the case, because the activation function does not depend on the applied
boundary conditions. The neuron will be stimulated by the same activation function, leading

2For anode-make stimulation at 10V the spatial distribution of the reduced and non-reduced membrane
voltage (Ṽ and V respectively) is shown in figure A.10 and figure A.12 respectively. The colour maps of Ṽ and
V is shown in figure A.11 and figure A.13 respectively. The gate parameters are shown in figures A.14, A.16,
A.15
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Figure 4.13: Anode-make stimulation by a spherical electrode (60V ) at 2mm from the soma.
Neuron is voltage clamped. Spatial distribution of the reduced membrane voltage Ṽ is shown.

Figure 4.14: Anode-make stimulation by spherical electrode (60V ) at 2mm from the soma.
Neuron is voltage clamped. Spatial distribution of the activation function f is shown.
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to a very similar distribution for the voltage and gate-parameters, except close to the neuron
terminations where the boundary conditions are applied.

Figure 4.15: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (60V ) at 2mm from the soma of a straight, voltage clamped, neuron.

Comparing the colour maps of this subsection and the previous subsection for the reduced mem-
brane voltage Ṽ 3, we observe again that the voltage distribution is very similar. Only close to
the neuron ends, the boundary conditions will influence the membrane voltage.

Also the distribution for the gate-parameters for voltage-clamped and sealed-end boundary
conditions is similar4. At the termination of the dendrites, no gate-parameters are defined
because the dendrites were modelled as a passive compartment. At the synapse, the gate-
parameters are now clamped to their rest-values m0, n0 and h0, and do not depend on time.
This is due to the fact that the membrane voltage does not depend on time (at the synapse for
voltage-clamped conditions), resulting in a stationary solution for the gate-parameters. The rest
values for the gate-parameters depend on the neuronal model. We used a warm Hodgkin-Huxley
model for the synapse; the rest-values for the gate-parameters in this case are:

m0 = 0.0529

n0 = 0.3177

h0 = 0.5961

3For the reduced membrane voltage Ṽ , we compare figure 4.9 and figure 4.15.
4For the remainder of this chapter we will only show the m-gate parameter in the text. The n- and h-gate

parameter are included in Appendix A. For the gate-parameters compare figures 4.10, 4.11, 4.12 for sealed-end
conditions with figures 4.16,A.23, A.24 for voltage-clamped conditions.
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Figure 4.16: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma of a straight, voltage clamped, neuron.

For the simulation with voltage-clamped conditions the gate-parameters are fixed at the synapse
to m0, n0 and h0. The synapse can not be activated, because the membrane can’t depolarize.
In contrast for the sealed-end conditions, the m-gate and n-gate parameters will increase to a
maximum of 0.9952 and 0.8061 respectively. The inactivation gate h will decrease to 0.0495.
For sealed-end conditions, the synapse is activated.

The difference between the colour maps for the gate-parameters solved with sealed-end or
clamped-voltage boundary condition, is very small. Especially for the h-gate parameter, this
difference might be difficult to observe. We conclude that only very close to the synapse, the gate-
parameters in the sealed-end solution differ from the gate-parameters in the clamped-voltage
solution. Because the effect of the boundary conditions is very local, it is difficult to observe in
a colour map. However when we plot the gate-parameters as function of time at the synapse, we
conclude that at the synapse the boundary conditions have a large influence on these parame-
ters. This is done for the m, n and h gate parameters in figures 4.17, A.26 and A.25 respectively.

Table 4.3: Activation table for a straight (voltage-clamped) neuron, stimulated by a spherical
electrode (60V ) at 2 mm from the soma.

Finally we can also compare the activationtables, table 4.3 and table 4.2. Because the effect
of the boundary conditions is restricted to a small region close to the neuron terminations, the
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Figure 4.17: m-gate parameter as function of time at the synapse for sealed-end conditions and
voltage-clamped conditions.

location and time of activation will not be affected. Ofcourse, when the voltage of the synapse
is clamped at rest-voltage, the synapse will not be activated (as noted in table 4.3).

4.1.4 Simulation 4. Cathode-make stimulation by spherical electrode
(-60V) at 2 mm from soma

In the previous simulations we considered anode-make stimulation. This means that the electrode-
potential was positive until now: the electrode is called an anode. Anode-make stimulation
results in a region of hyperpolarisation right under the electrode. A region of depolarisation
is found further away from the electrode (at the virtual cathodes). We refer to Roth (1993)
[15] for a theoretical explanation of the different types of electrode stimulation (cathode-make,
cathode-break, anode-make and anode-break). In this subsection we would like to study a case of
cathode-make stimulation, by a spherical electrode (−60V ) at 2mm from the soma of the neuron.
This simulation setup can be compared with simulation 2 in subsection 4.1.2. In simulation 2 the
same simulation setup is considered as in this subsection, but anode-make stimulation is applied.

From linearity it follows that the activation function for cathode-make stimulation fCM is the
negative of the activation function for anode-make stimulation fAM : fCM = −fAM . This result
is indeed obtained: the activation function for cathode-make stimulation is shown in figure 4.18
(cfr. figure 4.8 for anode-make stimulation). Because of this, we expect that for cathode-make
stimulation there will now be a region of depolarisation under the electrode, where activation
might potentially occur.
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Figure 4.18: Cathode-make stimulation by spherical electrode (−60V ) at 2mm from the soma.
Spatial distribution of the activation function f is shown.

Figure 4.19: Cathode-make stimulation spherical electrode (−60V ) at 2mm from the soma.
Spatial distribution of the reduced membrane voltage Ṽ at 7 subsequent times is shown.
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The spatial distribution of the voltage for cathode-make stimulation is shown in figure 4.19. The
colour map for the voltage and m-gate parameter for cathode-make stimulation is shown in figure
4.20 and figure 4.21 respectively. The colour maps for the other gate-parameters are included in
Appendix A (see figure A.27 and figure A.28). From these plots we observe that there is indeed
a region of depolarisation around the electrode. The region of hyperpolarisation is now found at
the dendrite terminals and at the unmyelinated axon terminal. The activation table (table 4.4)
shows that neuron activation for cathode-make stimulation starts at the beginning of the axon
(1.3025mm from the beginning of the neuron, this is at the first node of Ranvier). The activation
pulse will however not reach the synapse. This is due to the fact that the actionpotential starts
at the beginning of the axon, so the distance that the actionpotential has to travel to reach the
synapse has substantially increased with respect to anode-make stimulation. Furthermore, in
cathode-make stimulation, the actionpotential has to overcome a region of hyperpolarisation on
its way to the synapse.

Figure 4.20: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by cathode-make stimulation by a spherical
electrode (−60V ) at 2mm from the soma of a straight neuron.

Table 4.4: Activation table for a straight neuron, stimulated by a spherical electrode (−60V ) at
2 mm from the soma.
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Figure 4.21: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by cathode-make stimulation by a spherical electrode (−60V )
at 2mm from the soma of a straight neuron.

4.1.5 Simulation 5. Anode-make stimulation by spherical electrode
(60V) at 2 mm from centre of the neuron

We now want to observe the effects of moving the electrode parallel with the neuron. For this
simulation we place the electrode at the middle of the neuron (i.e. at 2.2mm from the beginning
of the dendrites, as the neuron has a length of 4.4mm). The distance between the electrode and
the neuron is 2mm and the electrode-potential is 60V . This simulation can be compared with
simulation 2 (subsection 4.1.2), which is the same simulation setup, except for the location of the
electrode along the neuron. Because for anode-make stimulation the location of the electrode
coincides with the region of hyperpolarisation on the neuron, we expect that now the centre of
the neuron will hyperpolarise, shifting the region of neuronal activation towards the synapse.

We indeed observe from the activation function f , shown in figure 4.22, that hyperpolarisation
will occur along most of the axon. The region of depolarisation has shifted to the end of the
myelinated axon, making the unmyelinated axon more important for initiating the actionpoten-
tial than before.

The spatial distribution of the membrane voltage (figure 4.23) and the colour plots for the mem-
brane voltage and gate-parameters (figures 4.24, 4.25, A.30, A.29) indeed show that neuronal
activation has shifted towards the end of the neuron. The centre of the neuron, which now
coincides with the location of the electrode, is hyperpolarised.

The activationtable (table 4.5) mentions that indeed the neuron is still activated, but at the
unmyelinated axon terminal. The location where the actionpotential starts is determined by
the Matlab code: xact = 4.197mm. Low forward propagation velocity (MSOAf ) is tabulated,
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Figure 4.22: Anode-make stimulation by spherical electrode (60V ) at 2mm from the centre of
the neuron. Spatial distribution of the activation function f is shown.

Figure 4.23: Anode-make stimulation by spherical electrode (60V ) at 2mm from the centre of
the neuron. Spatial distribution of the reduced membrane voltage Ṽ at 7 subsequent times is
shown.

64



CHAPTER 4. SIMULATION OF THE TRANSMEMBRANE VOLTAGE AND GATE-PARAMETERS ON A
SINGLE NEURON

Figure 4.24: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (60V ) at 2mm from the centre of a straight neuron.

Figure 4.25: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the centre of a straight neuron.
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which is due to the slow propagation of the actionpotential in the unmyelinated axon. The
activation table also mentions very high backward activation speed (MSOAb = 94ms ). However
it is unlikely, for the used neuronal electric and geometric parameters, that the actionpotential
did indeed propagate with this speed in the antidromic direction. Normally an actionpoten-
tial occurs at a certain location along the neuron, subsequently causing activation along the
whole axon by propagation of this actionpotential. When observing the colour maps however, it
seems more likely that the neuron was activated by the stimulation of the electrode at locations
x < xact, before the actionpotential could reach these locations. A similar phenomenon was
observed in the activationtable of subsection 3.3. The Matlab code interprets this as propaga-
tion with very high speed, however a threshold propagation velocity can be set in Matlab to
distinguish physical and unphysical speeds.

Table 4.5: Activation table for a straight neuron, stimulated by a spherical electrode (60V ) at
2 mm from the centre of the neuron.

4.2 Simulations on a single bending neuron

It is interesting to study simulations on neurons that bend over a specific angle. In this section
we reconsider simulations on straight neurons from section 4.1, but we now add a central bending
over 15◦. Because the neuron is no longer straight, activation might now occur even in absence
of electric field gradients, which is not possible for uniform straight neurons in a homogeneous
medium. This will be discussed more theoretically in section 5. Simulation 6 (subsection 4.2.1)
deals with anode-make stimulation (60 V) of a neuron, with central bending over 15◦, with a
spherical electrode at 2mm from the soma. Simulation 7 (subsection 4.2.2) will deal with the
same simulation setup as in simulation 6, with the exception that the electrode location is placed
at 2mm from the centre of the neuron.

4.2.1 Simulation 6. Anode-make stimulation of neuron with central
bending (15◦) by spherical electrode (60 V) at 2 mm from soma

We reconsider the simulation from subsection 4.1.2 (simulation 2), but we now introduce a
bending of 15◦ at the centre of the neuron. The neuron bends towards the electrode. Except
for this bending, the simulation in this subsection is completely the same as simulation 2, i.e.
anode-make stimulation by a spherical electrode (60 V) at 2mm from the soma of a neuron,
that is bending over 15◦.

The activation function f for the neuron with a central bend, is shown in figure 4.27. When
we compare this result with the corresponding simulation on a straight neuron (figure 4.8), we
observe that the activation function f now has a positive peak at the bending. In other words,
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the neuronal bending promotes the depolarization of the membrane. The influence of bendings
on neuronal activation, will be studied in more depth from a theoretical perspective in chapter
5. In literature it is observed that neuronal activation indeed tends to occur at bendings and
terminations of the neuron.

Figure 4.26: Anode-make stimulation by spherical electrode (60V ) at 2mm from the soma. A
bending over 15◦ is introduced in the centre of the neuron. Spatial distribution of the reduced
membrane voltage Ṽ at 7 subsequent times is shown.

The spatial distribution of Ṽ for AM-stimulation of a neuron with central bending, by an
electrode at the soma, is shown in figure 4.26. The colour map for the reduced voltage is shown in
figure 4.28, and the gate-parameters are shown in figures 4.29, A.32, A.31. The activationtable is
shown in figure 4.6. We compare these results, with the results of the corresponding simulation
of a straight neuron5. We conclude that when a bending is introduced, the membrane will
depolarize at the bending. Furthermore the width of the region of hyperpolarization that was
observed for the straight neuron, is reduced in the results of this subsection.

Table 4.6: Activation table for a bending neuron, stimulated by a spherical electrode (60V ) at
2 mm from the soma.

5For the spatial distribution of the membrane voltage, compare figure 4.28 with 4.9. For the colour maps
compare figures 4.29, A.32, A.31, 4.28 with figures 4.10,4.12, 4.11, 4.9
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Figure 4.27: Anode-make stimulation by spherical electrode (60V ) at 2mm from the soma. A
bending over 15◦ is introduced in the centre of the neuron. Spatial distribution of the activation
function f is shown.

Figure 4.28: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (60V ) at 2mm from the soma of a bent (15◦) neuron.
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Figure 4.29: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma of a bent (15◦) neuron.

4.2.2 Simulation 7. Anode-make stimulation of neuron with central
bending (15◦) by spherical electrode at 2 mm from the centre

In this last subsection, we consider another simulation on a neuron with a central bending over
15◦. This simulation is similar to simulation 6 of previous subsection, except that the electrode-
position is now located at the centre of the neuron and not at the soma. The corresponding
simulation for a straight neuron is simulation 5 (subsection 4.1.5).
The activation function for this simulation is shown in figure 4.30. The difference with the

corresponding simulation of a straight neuron is clear (compare with figure 4.22): at the bending
the activation function f now has a positive peak, that was not present for the straight neuron.
Consequentially the neuron will tend to depolarize at the bending.
This effect can be observed in the plots for the reduced membrane voltage (figure 4.31 and

figure 4.32). In simulation 5 a large region of hyperpolarization (RoH) was observed, at the
position of the electrode. Because the bending of the neuron coincides with the position of the
electrode, we see that the RoH is now “interrupted” by the bending. At the bending, no net
depolarization is observed, but the neuron has hyperpolarized less than it would have been, if
the neuron were straight.

The colour maps for the gate-parameters are shown in figures 4.33, A.33 and A.34. The activa-
tion table is shown in table 4.7. The bending has no significant effect on the activation of the
neuron: both with and without bending, neuronal activation occurs at the termination of the
axon, far away from the central bending. Nevertheless there are some slight differences when
comparing the actionpotential of simulation 5 with the actionpotential of simulation 7. For
instance, when comparing the colour maps of simulation 5 with these of simulation 7, we notice
that the “interruption” of the region of hyperpolarization, that was caused by the bending, has
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Figure 4.30: Anode-make stimulation by spherical electrode (60V ) at 2mm from the centre of
the neuron. A bending over 15◦ is introduced in the centre of the neuron. Spatial distribution
of the activation function f is shown.

Figure 4.31: Anode-make stimulation by spherical electrode (60V ) at 2mm from the centre of
the neuron. A bending over 15◦ is introduced in the centre of the neuron. Spatial distribution
of the reduced membrane voltage Ṽ at 7 subsequent times is shown.
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Figure 4.32: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (60V ) at 2mm from the centre of a bent (15◦) neuron.

Figure 4.33: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the centre of a bent (15◦) neuron.
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pushed the now two separated parts of the RoH further up and further down the neuron.

Table 4.7: Activation table for a bending neuron, stimulated by a spherical electrode (60V ) at
2 mm from the centre of the neuron.

4.3 Determination of neuronal activation
The Matlab code programmed for this thesis will first calculate the transmembranevoltage and
gate-parameters on the neuron. Then it will calculate if the neuron has been activated, using
the now known membranevoltage V (x, t). Subsequently Matlab will determine the mean speed
by which the activationpulse propagates in forward and backward direction on the axon, and
will mention these speeds in the activationtable if the neuron has been activated. The resulting
activationtables for simulations on a single neuron were already shown in the previous sections.
However we did not yet discuss how neuronal activation is determined by the Matlab code.
In this section we will examine how neuronal activation is determined by Matlab (i.e. which
conditions are satisfied, if the activationtable mentions that the neuron has been activated).

We will say that neuronactivation has occurred (“the neuron has been activated”), if two condi-
tions are satisfied:

1. An actionpotential is locally generated.

2. The actionpotential propagates over the neuron.

The first condition implies that the neuron will “feel” the electrode-stimulus. The neuronal
membrane responds to the presence of the electrode by depolarisation. However, local depo-
larization of the membrane at a certain location on the neuron is not enough. To be able to
speak of neuronactivation, the “information” should propagate along the neuron. This idea is
summarized in the second condition.

A program was implemented in Matlab that checks the membrane voltage V (x, t) for these two
conditions. In this way, an activationtable can be generated automatically. This is for instance
useful when considering a bundle with a high number of neurons. Instead of checking the neu-
rons one by one for activation, the Matlab code will automatically calculate the percentage of
activated neurons. In this section we will briefly discuss the ideas behind the implementation
of the code, that will check if neuronactivation has occurred.

It is easy to quantify the first condition. For the initiation of an actionpotential somewhere on
the neuron, an all-or-nothing principle applies. A higher stimulus will not result in a stronger
depolarisation of the membrane. We can thus say that an actionpotential is locally generated
at the position x, if the membranevoltage has increased sufficiently:

Ṽ ≥ Vthresh (4.2)
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We will use a tresholdvoltage of 50mV : Vthresh = 50mV . This value can be modified in Matlab
however.

We will denote S as the set of points P = (x, t)6 on the neuron, that satisfy the condition in
equation (4.2). Obviously, if S is empty, no neuronactivation has occurred. The opposite how-
ever is not true. If the set S is not empty, it does not follow that the neuron is activated. Indeed,
if the set S is not empty the second condition has yet to be satisfied: the actionpotential should
have propagated over the neuron. It is not straightforward to determine from S if this is the case.

The set S is in general a continuum of points in the xt-plane. It would be easier to check if the
actionpotential has propagated, with a finite set of points S̃. We define this subset S̃ as the set
of points that satisfy the conditions:

1. V (P ) ≥ Vthresh

2. ∂V
∂t (P ) = 0

3. x is located at an active compartment of the neuron

The first condition corresponds to equation (4.2), ensuring that S̃ ⊂ S. The second condition
means that we identify the points where an actionpotential is locally generated, with local max-
ima in time of the transmembranevoltage. This condition will restrict the continuum of points
of the set S to a discrete set of points. The third condition implies activation can only occur at
active compartments, where the kalium- and natriumgates can open.

The Matlab code will determine the set S̃, and store its information in a structured way. For
this end, we define three Matlab-items:

1. A vector xAct containing the locations of the active compartments

2. A cell timescell containing the times t in S̃

3. A cell pkscell containing the membrane-voltages at the points P ∈ S̃

We denote the number of active compartments by AS. First, the location of the ith active
compartment is stored in xAct(i). Secondly, the cells timescell and pkscell are determined. A
cell is a Matlab-structure, that can be seen as a matrix of matrices.
To define timescell and pkscell, we first consider the subset S̃i := {P = (x, t) ∈ S̃ : x = xi}7.
In words, S̃i contains all points P at the ith active compartment, at which an actionpotential is
locally generated (see the three conditions in the definition of S̃). So we have defined a partition
of S̃: ∪ASi=1S̃i = S̃. The time-components of the points P ∈ S̃i are now stored as a rowvector
in timescell{i}. So, timescell just holds all the times of points for which an actionpotential is
locally generated. Furthermore timescell holds these times in a structured way: timescell{i}
refers to the ith active compartment. The corresponding cell pkscell has the same structure,
but holds the corresponding membrane-voltages (pks = peaks, referring to the second condition
in the definition of S̃)8. It is not difficult to obtain these cells in Matlab:

6x denotes the spatial coordinate on the neuron, t is the time.
7Here xi = xAct(i) is the location of the ith active compartment.
8So mathematically we have that pkscell{i}(j) = V (xAct(i), timescell{i}(j)).
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f o r i = 1 :AS
[ pks , l o c s ] = f indpeaks ( Vact ive ( i , : ) ) ;
t imes = timef low ( l o c s ( pks>Vtres ) ) ; pks = pks ( pks>Vtres ) ;
p k s c e l l { i } = pks ; t im e s c e l l { i } = times ;
end

The for-loop runs over all active compartments. First findpeaks will determine the local max-
ima in time at the ith active compartment (see the second condition in the definition of S̃). The
voltage at these peaks is stored in the vector pks and the corresponding times in the vector locs.
In the third line it is then verified if the condition in equation (4.2) is satisfied. The resulting
values for the times and voltages are subsequently stored in the cells pkscell and timescell.

However as mentioned earlier, to state that the neuron has been activated at a point Pact, it
is not enough that an actionpotential has locally been generated, as is the case for the points
stored in the Matlab-cells. The actionpotential should have propagated over some amount of
active compartments. However, thanks to the cells, it is easy to determine over how many
active compartments an actionpotential initiated at Pact has propagated, in the antidromic and
orthodromic direction9. The Matlab code will list the neuron as activated, if #ACf and #ACb
exceed certain thresholds.

We will now briefly discuss how the values #ACf and #ACb are determined. First we consider
two points P1 = (xi, tj), P2 = (xi+1, tk) ∈ S̃, at neighbouring active compartments. By using
the cells, the Matlab code determines if the actionpotential initiated at P1 has propagated to
P2 (we denote P1 → P2). This is done by calculating the (potential) propagation velocity of
the actionpotential vprop = xi+1−xi

tk−ti . The times necessary to determine vprop are obtained from
timescell, while the distances are obtained from xAct. We then have for neigbouring points:

P1 → P2 ⇐⇒ 0 ≤ vprop ≤ vthresh (4.3)

Here vthresh is a certain threshold velocity: velocities above the thresholdvelocity are assumed to
be unlikely. The velocity vprop has to be positive, to ensure that the actionpotential propagates
from P1 to P2, and not the other way around. If the condition in equation (4.3) is satisfied,
then we have P1 → P2 and vprop is indeed the propagation velocity of the actionpotential, while
it is propagating between these two points. Furthermore the actionpotential initiated at P1 has
already propagated over at least one compartment in the forward direction. This reasoning is
repeated to finally obtain #ACf and #ACb.

9We denote the amount of compartments over which an actionpotential, initiated at Pact, has propagated by
#ACf (number of active compartments in forward direction) and by #ACb (number of active compartments in
backward direction), for the orthodromic and antidromic direction respectively.
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Chapter 5

Discussion of mechanisms of
neuronal activation

5.1 Introduction

From the results of the previous chapters we already observed that neuronal bendings and
terminations seem to promote depolarisation of the membrane, potentially leading to an ac-
tionpotential. However also on straight uniform neurons in a homogeneous medium neuronal
activation can occur. The underlying mechanism of neuronal stimulation in this case, is the
excited electric field distribution that will directly alter the axonal current Ia, flowing inside
the neuron. From equation (2.3) we identify the activation mechanism for a uniform straight
neuron as the spatial derivate of the electric field component along the neuron, multiplied with
−λ2:

A1 = −λ2 ∂El
∂l

(5.1)

Here λ =
√

rm
ra

is the square root of the membrane-resistance rm per unit length divided by the
axonal resistance ra per unit length. The activation mechanism A1 for straight uniform fibers
is expressed in volt V . The meaning of this first activation mechanism is for instance explained
in Roth (1993) [15], i.e. that for steady-state stimulation with an electric field distributed in
space over distances larger than a length constant λ, the total depolarisation of the neuronal
membrane will be equal to A1. This follows from equation (2.3), because the first terms in
both sides of the equation will then be negligible. However the depolarisation of the membrane
voltage can be significantly different from A1, when the applied electric field distribution varies
strongly over lengths shorter than λ.

The activation mechanism A1 is valid for straight uniform neurons in a homogeneous medium.
However neuronal fibers may be short, curve, change in diameter, terminate and branch. Also
the electric properties of the medium might be discontinuous. In these cases neuronal activation
might occur, even in absence of electric field gradients.
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At neuronal bends and at terminations, a second activation mechanism proportional to the elec-
tromagnetic field is observed (Roth, 1993 [15]). This effect was indeed observed in experiments:
Maccabee et al. (1993) [13] shows that the activationtreshold is reduced for bent neurons or for
stimulation at the neuronal terminals. Furthermore Nagarajan et al. (1993) [14] suggests that
excitation of short axons occurs at neuronal terminations, rather than at the regions of high
spatial derivative of the electric field.

At neuronal bends activation can occur, without external electric field gradient. However this
can be explained, by the fact that in equation (5.1), the electric field component along the
neuron is used. In other words, a constant electric field distribution does not imply that the
source-term in equation (5.1) vanishes at the neuronal bend. Even if the electric field E is
constant throughout space, the component El of the electric field along the neuron will have a
nonzero spatial derivative along the neuronal coordinate l. For a constant electric field this spa-
tial derivative will be proportional to a Dirac-delta distribution, centered at the bending. This
delta distribution appearing in the right-hand side of equation (2.3) will result in depolarisation
at the neuronal bending, even in a constant electric field distribution. This depolarisation will
be proportional to λE, as will be derived in section 5.2.

Also at neuronal termination activation can occur, even while the electric field distribution is
constant in space, meaning that there is no source in equation (2.3). However in this case, the
electric field distribution is reintroduced in the equations, via the sealed-end boundary condi-
tions. This will result in depolarisation at the neuronal bendings proportional to λEn = λE·un1.
This activation mechanism at neuronal terminations will be reviewed in section 5.3.

Finally also a fourth activation mechanism proportional to −λ∆E
2 (Miranda et al., 2007 [51]) will

occur at discontinuities of the electric parameters in the medium surrounding the neuron, for
instance at the GM-WM interface2. This activation mechanisms is often negligible, compared
to the former two mechanisms (De Geeter, 2014 [34]). All three mechanisms have have been
computed by Silva et al. (2008) [52] in a cortical sulcus and were tested by Salvador et al.
(2011) [53] on synthetic neuronal fibres.

1Here un is the vector at the sealed-termination, pointing outwards with respect to the neuron
2Gray matter - White matter interface
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5.2 Activation at a neuronal bend

Figure 5.1: Neuron bending from an angle θ2

with the electric field, to an angle θ1. Figure
reproduced from Roth (1993) [15].

In this section we will study the ef-
fect of a neuronal bend on the mem-
brane potential. As noted in Maccabee
et al. (1993) [13], Tranchina et al.
(1986) [54], Amassian et al. (1992) [55]
a bend in the neuron will cause polar-
isation, even in the absence of electric
field gradients. This is due to the fact
that even if E is constant, the projec-
tion of the electric field El will change in
the bend, because the direction of projec-
tion ul changes. This activation mech-
anism is proportional with the electric
field λE, meaning that the depolarisation
of the membrane will be proportional to
λE.

We consider a (homogeneous) neuron bending
from an angle θ1 with the constant field E to
an angle θ2, as in Roth (1993) [15], see figure
5.1. The electric field is seen to be:

El(l) =

{
E cos(θ2) l < 0

E cos(θ1) l > 0
(5.2)

The spatial derivative of the electric field El then becomes:

− λ2 ∂El
∂l

= −λ2(E cos θ1 − E cos θ2)δ(l) (5.3)

When applying the transmissionline equation (eq. (2.3)) and assuming steady-state (∂V∂t = 0),
we obtain:

Ṽ − λ2 ∂
2Ṽ

∂l2
= −λ2(E cos θ1 − E cos θ2)δ(l) (5.4)

Again Ṽ refers to the reduced membrane voltage: Ṽ = V − Vr = Vi − Ve − Vr. Because of the
dirac delta in this equation, the spatial derivative of the membrane-voltage Ṽ will satisfy the
jump-condition:

∂Ṽ

∂l
(dl)− ∂Ṽ

∂l
(−dl) = E(cos θ1 − cos θ2) = −2E sin

(
θ1 + θ2

2

)
sin

(
θ1 − θ2

2

)
(5.5)

For the first equality we integrated equation (5.4) between l = −dl and l = dl, applying conti-
nuity for Ṽ .
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We can solve equation (5.4) for l > 0 and l < 0:

Ṽ =

{
A2 exp

(
l
λ

)
l < 0

A2 exp
(
− l
λ

)
l > 0

(5.6)

Here we used as boundary conditions at infinity: Ṽ (∞) = 0 and Ṽ (−∞) = 0, and we applied
continuity of Ṽ in l = 0. The coefficient A2 can then be determined, using the jumpcondition
in equation (5.5). We find:

A2 = Eλ sin

(
θ1 + θ2

2

)
sin

(
θ1 − θ2

2

)
(5.7)

This result can also be verified directly by rewriting equation (5.6) as:

Ṽ = A2 exp

(
l

λ

)
θ(−l) +A2 exp

(
− l
λ

)
θ(l) (5.8)

Here θ is the heaviside-function, the derivative of Ṽ is then:

∂Ṽ

∂l
=
A2

λ
exp

(
l

λ

)
θ(−l)− A2

λ
exp

(
− l
λ

)
θ(l) (5.9)

We see that indeed the jumpcondition is satisfied:

∂Ṽ

∂l
(dl)− ∂Ṽ

∂l
(−dl) = −2A2

λ
(5.10)

By calculating the second derivative of Ṽ we can also verify equation (5.4) directly. From equa-
tion (5.10) we also see that the polarisation of the membrane-voltage at the bend l = 0 is given
by A2 = Eλ sin

(
θ1+θ2

2

)
sin
(
θ1−θ2

2

)
and is indeed proportional to λE. This second activation

mechanism A2 for neuronal bendings, was also obtained by Roth (1993) [15]. We see that if the
neuron is bent toward the electric field the membrane will hyperpolarise, if the neuron is bent
away from the electric field the membrane will depolarise (Roth, 1993 [15]).

We note that in the case of electric stimulation (ES)3, the electric field is conservative and can
be expressed in terms of the external voltage V ESe , which can be determined by integrating
E = −∇V ESe :

V ESe =

{
−El cos(θ1) l < 0

−El cos(θ2) l > 0
(5.11)

In this case the internal voltage Ṽ ESi = Ṽ ES + V ESe is:

Ṽ ESi =

{
A2 exp

(
l
λ

)
− El cos(θ1) l < 0

A2 exp
(
− l
λ

)
− El cos(θ2) l > 0

(5.12)

By calculating the derivative of equation (5.12), we note that the spatial derivative of the internal
potential V ESi does not exhibit a jump, and is consequentially continuous. This can be explained

3This thesis focuses on deep brain stimulation, which is a type of electric stimulation.
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physically. First we observe that for electric stimulation the electric field is conservative, meaning
that we have for the axonal current: Ia = − 1

ra

∂V ESi

∂l . Secondly, in steady-state the axonal current
has to be continuous at the bending, which implies that the spatial derivative of V ESi has to be
continuous to. We conclude that the jump in the spatial derivative of V ES , can be completely
attributed to the contribution of the external potential V ESe .

5.3 Stimulation at neuronal terminations
In a constant electric field a straight neuron can still be stimulated due to neuronal terminations.
The stimulation mechanism will be proportional to λEn = λE ·un at the neuronal terminations,
with un the outward unitvector. An inward electric field will result in hyperpolarisation of the
membranevoltage with λEn, while an outward electric field will result in depolarisation of V
over λEn (Plonsey et al., 1988 [56]; Rubinstein, 1993 [57]; Altman et al., 1990 [58]; Nagarajan,
1992 [59]; Nagarajan, 1993 [14]). Much of the work done by Reilly assumes that stimulation
at the endpoints of the neuron is the dominant activation mechanism (Reilly, 1985 [60]; Reilly,
1989 [61]). We discuss a possible way to derive this result.

This mechanism of activation, proportional to En, occurs due to applying Neumann-boundary
conditions on the edges when solving the transmissionline equation, eq. (2.3). If we consider
a straight, but finite, neuron in a homogeneous constant electric field E = Eux, and assume
steady-state we obtain:

Ṽ − λ2 ∂
2Ṽ

∂l2
= 0 (5.13)

Because the electric field is constant the activation mechanism in the right hand side of the
transmissionline equation, proportional to the spatial derivative of El, drops out. If the neuron
would be infinite there would be no stimulation (Ṽ = 0), because there is no electric field
gradient. However for a finite neuron, applying Neumann-boundary conditions reintroduces the
electric field E, leading to a non-zero solution. If we assume the ends are sealed, then there is
no axonal current at the neuronal terminations. If the neuron is assumed to start at x = −L
and end at x = L, we can write this condition as:

Ia(±L) = 0→ ∂Ṽ

∂l
(±L) = El(±L) (5.14)

Indeed: For electric stimulation (as in the case of DBS) the electric field is conservative, so
Ia = − 1

ra
∂Ṽi
∂l = 0. Using Ṽi = Ṽ + Ve and El = −∂Ve∂l , we obtain equation (5.14).4

We find that the solution of equation (5.13) and equation (5.14) is given by:
4Note that equation (5.14) is also valid for magnetic stimulation (f.i. transcranial magnetic stimulation

(TMS)). In this case the electric field is non-conservative, due to the time-dependent magnetic field. Because
of the high conductivity of the tissue, the conservative part of the external electric field is negligible w.r.t. the
non-conservative part: Ve ≈ 0 (De Geeter, 2014 [34]). The axonal current can be written as the sum of the
current due to the conservative part of the electric field, Icons

a = − 1
ra

∂Ṽ
∂l

= − 1
ra

∂Ṽi
∂l

, with the current due to
the non-conservative part of the electric field Inon−cons

a = 1
ra

El. Then at the neuronal terminations we have
Ia = Icons

a + Inon−cons
a = 0, which indeed yields equation (5.14).
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Ṽ = Eλ
sinh x

λ

cosh L
λ

(5.15)

For very small neurons L � λ, we have Ṽ ≈ Ex. The maximum polarisation of the neuronal
membrane is Ṽmax = EL, increasing linearly with L. This linear relation between the maximum
polarisation and L levels off to Eλ, when L � λ. This follows from sinh ±L

λ

cosh L
λ

−−−→
L�λ

±1. So for

L� λ we obtain Ṽ (±L) = ±Eλ = A3, which was predicted in section 5.1.
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Chapter 6

Bundles of multiple neurons

In this chapter we will discuss the simulation of bundles of multiple neurons. For this end the
Matlab-program was altered, to make simulation of multiple neurons at once possible. Because
the membrane-voltage V and the gate-parametersm, n, h and p can be calculated for all neurons
at the same time (in parallel), the time-complexity of the program will not scale linearly with
the amount of neurons. The time-complexity will be considered in section 6.1. In section 6.2
we will discuss a simulation on a neuronbundle consisting of 19 neurons and the percentage of
activated neurons %AN in the bundle will be determined. Finally in section 6.3 the influence
of the distance from the electrode to centre of the bundle delec on the %AN will be determined.

6.1 Time-complexity

The total calculation time needed on the used computer for a single neuron is about tsingletot =
2.5min. This time is defined as the total time Matlab needs to determine the membrane-voltage
V and gate-parameters on the neuron. The total calculation time includes initialisation of
recorders 1, itialisation of the Crank-Nicolson matrices and the iteration over time of the dis-
cretised equations. It does not include loading of the electromagnetic field and plotting the
recorders.

When considering a neuron bundle, we will denote the amount of neurons in the bundle as AN .
If the voltages and gate-parameters on each neuron of the bundle would be determined sequen-
tially, the total calculation time would become tbundletot,seq = AN ∗ 2.5min. The time-complexity
in a sequential calculation process would thus be linear, which is a disadvantageous. The main
advantages of a sequential calculation process however is that the implementation in Matlab is
straightforward and that the necessary RAM-memory will not scale with AN .

To limit the time-complexity a parallel calculation process was implemented in Matlab, by which
the membrane-voltages and gate-parameters for all neurons in the bundle will be determined at

1In the Matlab code recorders are defined for the membrane voltage and gate-parameters. These recorders are
vectors that store (“record“) the voltage and gate-parameter values. When the program has finished, the colour
maps and spatial distribution plots are obtained by plotting the recorders.
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once without additional for-loop2. To do this the Matlab-code was altered, leading to a slower
total calculation time for a single neuron of 8.5min for the parallel implementation as compared
to 2.5min for the sequential implementation on the used computer. The influence of this parallel
process on the time-complexity was measured in Matlab, by running the (parallel) program for
several bundles with different amount of neurons AN . These simulations were done twice, to
put the potential influence of the external factors (programs running in the background on the
computer, ...) in perspective. The total calculation time as function of AN is shown in figure
6.1. We indeed notice that the time-complexity is sub-linear: the time needed by Matlab to
calculate all fields with the parallel method doubles from 8.5min to 17min when the amount of
neurons in the bundle is increased from 1 neuron to 20 neurons. We recognize that when more
than 5 neurons are considered in the bundle, the program using a parallel calculation process
will be considerably faster, than the program that makes use of sequential calculation.

Figure 6.1: Total calculation time as function of the number of neurons in the bundle. This
calculation time was determined by using the parallel calculation method. The calculation time
was measured twice on the same computer. The calculationtime was determined for a straight
and bent neuron bundle.

We notice that in figure 6.1 the calculationtime suddenly increases from 6 to 7 neurons. Because
the calculationtime increases uniformly over the whole code, we hypothesize that the sudden in-
crease might be explained by memory-speed considerations. The main disadvantage of a parallel

2For this end we define V (x, t, n) for the voltage and for instance m(x, t, n) for the m-gate parameter (other
gate-parameters are analogous). Here as usual x is the spatial parameter along the neuron and t is the time.
We now have an additional discrete parameter n, that refers to the nth neuron in the bundle. We see that the
voltages and gate-parameters can be stored as three-dimensional matrices. Furthermore it is possible to iterate
all neurons at once, without for-loop, by matrix operations on S× 1×AN -matrices (S is the number of (spatial)
segments, and AN the number of neurons in the bundle; one time-snapshot is considered per iteration).
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calculation method to determine the voltages and gate-parameters on all neurons is that the
necessary RAM-memory will increase with AN . To solve this problem the implemented Matlab-
code makes use of a combination of parallel and sequential calculations. The total amount of
neurons is distributed over several bundles. All neurons in each bundle will be considered in
parallel, while a sequential approach is chosen for the bundles themselves. Computers with high
RAM-memory will benefit from high number of neurons per bundle. Furthermore this approach
enables us to use different discretisation steps and times for different types of neuronbundles3.

6.2 Bundle of straight neurons
In this section we will consider a simulation on a bundle consisting of 19 straight neurons. The
geometry is shown in figure 6.2. The black lines represent straight neurons, while the blue
sphere represents the spherical electrode. The electrode is placed at 3mm from the centre of
the bundle. A voltage of 40V is imposed as Dirichlet-condition on the electrode.

Figure 6.2: The geometry of a neuron bundle consisting of 19 straight neurons. The black lines
represent the straight neuron geometry. The blue sphere is a schematical representation of the
electrode.

As before Matlab will generate an activationtable mentioning for every neuron if activation
occurred. The result is shown in figure 6.1. The activationtable will also mention the total

3For this “hybrid” method (combining sequential and parallel calculation) for instance the membrane voltage
is stored in a 1×BDLs cell. Here BDLs is the amount of considered neuronbundles. The iBDLth neuronbundle
consists of AN(iBDL) neurons. So V {iBDL}(x, t, n) refers to the the nth neuron of the iBDLth neuronbundle
at location x and time t. In the program a for-loop over the bundle-parameter iBDL will be used to process the
neuronbundles sequentially, while the voltage on all neurons in the same bundle (distinguished by n) is calculated
in parallel (without for-loop).
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percentage of activated neurons during the simulation time of 350µs: %AN = 36.8%.

Table 6.1: Activation table of a bundle of 19 straight neurons, excited by a spherical electrode
at 3mm from the centre of the bundle.

We can also plot the gate-parameters and membrane-voltage on each neuron as function of time
and space along the neuron. As an example the membrane-voltage for two neurons (neuron 11
and 15 respectively) is shown in figures 6.3 and 6.4. The activationtable mentions that activa-
tion has occurred for neuron 15, as can be recognised by considering figure 6.4. The plot of the
membranevoltage of neuron 11 in figure 6.3 shows no activation during the simulationtime, as
mentioned in the activationtable (although activation might start on the end of the simulation-
domain). Activation of neurons mentioned in the activationtable will always refer to activation
during the simulationtime that is used.
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Figure 6.3: Membrane-voltage as function of space and time for neuron 11 in the bundle.

Figure 6.4: Membrane-voltage as function of space and time for neuron 15 in the bundle
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6.3 Dependency of percentage of activated neurons on elec-
trode distance

In this section we will determine the influence of the distance from the centre of the neuronbun-
dle to the electrode delec on the percentage of activated neurons %AN . We obtain this relation
by moving the neuronbundle sequentially over ∆x = 0.1mm. The procedure is schematically
shown in figure 6.5. Every colour represents a single location of the neuronbundle, consisting of
19 neurons. In total 10 locations, corresponding to 10 colors, are considered. The total range
for delec will thus be from 2.6mm to 3.5mm. For electrode distances greater than 3.5mm the
percentage of activated neurons will be zero, while for delec lower than 2.6mm the %AN will
be 100%. We notice that due to graphical constraints not all 190 neurons are shown in figure 6.5.

Figure 6.5: Schematical representation of all the bundles considered when determining the
dependency of %AN on delec

The percentage of activated neurons is plotted as function of delec in figure 6.6 for a neuron
bundle consisting of straight neurons. We notice that %AN declines monotonically from 100% to
0% when increasing delec, as expected. We expect that for a high spatial resolution, i.e. ∆x→ 0,
the %AN(delec) function should become a staircase function. The height of the different stairs
will become smaller with higher number of neurons AN , so for very high neuronnumbers, the
function %AN(delec) should become more continuous again. Similarly the dependency of the
%AN on the distance delec for a bundle consisting of neurons, that bend over 15◦ is shown in
figure 6.7.
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Figure 6.6: Dependency of the %AN on the distance of the electrode to the centre of the bundle
delec for a bundle of straight neurons.

Figure 6.7: Dependency of the %AN on the distance of the electrode to the centre of the bundle
delec for a bundle of neurons bending over 15◦.
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Chapter 7

Deep brain stimulation in
MIDA-head phantom

In this chapter we describe a simulation of deep brain stimulation by a Medtronic-lead in the
MIDA-head phantom. The MIDA-phantom (Iacono et al.,2015 [11]) is a high-resolution head
and neck phantom, featuring a high amount of structures relevant for deep brain stimulation.
The DBS lead was modelled in Sim4life based on the geometry of the Medtronic 3889 lead
(Medtronic Inc., Minneapolis, MN, USA). The lead was placed at the subthalamic nucleus
(STN) in the MIDA-brain. The STN is often mentioned in literature as an effective stimulation-
location for Parkinson’s disease (Kumar et al.;1998 [62], Kleiner et al.; 2006 [63]). The azimuthal
and polar angles of the DBS-lead were set to 7◦ and 20◦ respectively, as was also done in Schmidt
et al. [17]. The DBS-lead with the thalamus and globus pallidus of the MIDA-phantom is shown
in figure 7.1.

As stimulus applied to the DBS-electrodes, a typical biphasic square-wave with duration of 60µs
and frequency of 65Hz was used. The electromagnetic field was determined at 65Hz in Sim4life
for 01xx and 10xx stimulation, to determine the frequency-response. The approximation of a
frequency independent field distribution, discussed in chapter 1, was made.

Stimulation of two types of neuronal tracts are often mentioned to be therapeutic in deep brain
stimulation for Parkinson’s disease. Projection neurons from the STN to the globus pallidus
internus (GPi) and lenticular fasciculus fibers from the GPi to the thalamus (Th). The response
of these neuronal tracts on an applied square wave signal was calculated in Matlab. For this
end the neuronal tracts were approximated by straight neurons. The starting and endpoints of
the neurons in the thalamus, globus pallidus and STN were approximated by spheres of radius
4mm, as shown in figure 7.2. Subsequently 100 random neurons were generated connecting the
spheres representing the STN and GPi and 100 other random neurons were generated to repre-
sent the lenticular fasciculus. The neurons of the first neuronal tract (STN-GPi) were checked
for intersection with the DBS-lead, and neurons intersecting the lead were removed. Finally
the membrane-voltage, gate-parameters and activation table on the remaining 197 neurons was
calculated in Matlab.
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Figure 7.1: Medtronic-lead at the subthalamic nucleus in the MIDA-phantom. The thalamus
(orange) and globus pallidus (yellow) are shown.

Figure 7.2: Spheres are drawn, to represent the neuronal starting- and endpoints in the thalamus,
GPi and STN.

The generated neuronal tracts between the spheres that represent the thalamus, GPi and STN
are shown in figure 7.3. The resulting model of the thalamus and GPi with the neuronal tracts
are shown in figure 7.4 and 7.5.
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Figure 7.3: Representation of the considered neuronal tracts between the spheres that represent
the Th, GPi and STN.

Figure 7.4: Representation of the considered neuronal tracts between the Th, GPi and STN.
Surrounding brain structures are made transparent.
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Figure 7.5: Representation of the considered neuronal tracts between the Th, GPi and STN.
Surrounding brain structures are made non-transparent.

The results of these simulations are summarized in table 7.1. The table summarizes for both
neuronal pathways (GPi-Th or lenticular fasciculus (LF) and STN-GPi or macaca fascicularis
(MF)) and for both stimulation set-ups (01xx- and 10xx-stimulation) the total percentage of
activated neurons in the bundle (%AN). The table also mentions the percentage of neurons in
the neuronal pathway, where the synapse is activated (%AS).

01xx-stimulation 10xx-stimulation
Lenticular fasciculus (GPi-Th) Macaca fascicularis (STN-GPi) Lenticular fasciculus (GPi-Th) Macaca fascicularis (STN-GPi)

%AN 10 19.6 6 14.4
%AS 6 14.4 4 9.28

Table 7.1: %AN and %AS in the lenticular fasciculus (GPi-Th) and macaca fascicularis (STN-GPi) for 01xx- and 10xx-stimulation.

From table 7.1 we notice that the percentage of activated neurons is higher for stimulation by a
square-wave of amplitude 1V , when the first electrode is used, rather than zeroth electrode. This
is true both for the neurons of the lenticular fasciculus as for the macaca fascicularis. This can
be explained for both neuronbundles by noticing that the distance between the first electrode
and the axon of a typical neuron of the bundle is smaller than the distance between the zeroth
electrode and the axon of a typical neuron. Furthermore neuron activation typically occurs at
the axon (see f.i. chapter 4).

We note the distinction between the percentage of neurons where an activation pulse starts
(%AN) and the percentage of neurons where the synapse is activated (%AS). The latter might
be more important when considering the effect of deep brain stimulation on neuronal activation.
The difference between activation of the neuron and activation at the synapse is clarified by
considering some colour maps of the membrane-voltage for specific neurons in the bundle.
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An example of a neuron which is not activated is shown in figure 7.6. Indeed, there is no
considerable depolarisation and no action potential starts on the axon. The neuron is not at
rest however: the influence of the biphasic square-wave can still be seen in the plot. Nevertheless
we note that even for a neuron at rest the reduced membrane potential shown in the plots won’t
be zero everywhere. We refer to the appendix (appendix A.1) for a discussion of a neuron at
rest.

Figure 7.6: Neuron 1 in the macaca fascicularis in 01xx-stimulation. This is a representation of
a neuron that is not activated by the DBS-lead. The simulation time extends over two periods
of the biphasic square-wave stimulus.

Two examples of a neuron activated at the synapse are shown in figure 7.7 and figure 7.8. The
activation pulse starts at the axon and travels toward the synapse and the soma. It is interesting
to note that the location of the region of hyperpolarisation is not the same for both neurons. In
contrast, an example of a neuron on which depolarisation has occurred, but on which no synapse
activation is observed is shown in figure 7.9. In this case the propagation of the action potential
is hindered by a region of hyperpolarisation. We conclude that the location of the region of
hyperpolarisation, that is mostly determined by the location of the electrode with respect to the
neuron (see chapter 4), plays a significant role in whether or not the actionpotential will reach
the synapse.
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Figure 7.7: Neuron 3 in the macaca fascicularis in 01xx-stimulation. This is a representation of
a neuron on which an actionpotential is initiated. Furthermore the actionpotential has reached
the synapse. The simulation time extends over two periods of the biphasic square-wave stimulus.

Figure 7.8: Neuron 79 in the macaca fascicularis in 01xx-stimulation. This is a representation of
a neuron on which an actionpotential is initiated. Furthermore the actionpotential has reached
the synapse. The simulation time extends over two periods of the biphasic square-wave stimulus.
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Figure 7.9: Neuron 76 in the macaca fascicularis in 01xx-stimulation. This is a representation
of a neuron on which an actionpotential is initiated. Nevertheless the actionpotential has not
reached the synapse. The simulation time extends over two periods of the biphasic square-wave
stimulus.
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Conclusions

The electric field distribution excited by a Medtronic DBS-lead (Mo. 3389, Medtronic Inc.,
Minneapolis, MN, USA) was simulated in the MIDA-head phantom in Sim4life (Sim4life, ZMT
Zurich MedTech AG) for two types of electrode stimulation (01xx- and 10xx-stimulation). For
a typical biphasic square-wave with pulse width of 60µs and frequency of 65Hz a relevant fre-
quency range for the simulations was determined by calculation of the fourierspectrum. This
frequency range is from 10Hz to 100kHz for deep brain stimulation, as can be seen in figure
1.5. A total number of 82 FEM simulations were done in this frequency range and the electric
field distribution was recognized to be roughly independent of frequency (figure 1.8 and figure
1.9). An approximation of the electric field distribution in the MIDA-head excited by a bipha-
sic square-wave can thus be obtained by calculating the frequency response at a single frequency.

The obtained electric field distribution was subsequently used to determine the neuronal re-
sponse. For this end a multi-compartmental neuron model was programmed in Matlab (MAT-
LAB 8.6, The MathWorks Inc., Natick, MA, 2000): the neuron is segmentated into compart-
ments described by specialised neuronal models, discussed in section 2, and the corresponding
differential equations are discretised and iterated.

The Matlab code was first validated by comparison of results with literature (section 3.3). Sub-
sequently some simple single neuron simulations were done, in which the electric field was excited
by a spherical electrode in a homogeneous medium. Both anode-make and cathode-make stim-
ulation were studied and it was observed that stimulation occurs at the (virtual) cathode(s),
corresponding with literature (Roth et al.; 1993 [15]). Furthermore comparing the stimulation
of straight neurons and bent neurons shows that neuronal bendings play an important role in
stimulation. The activation mechanisms at neuronal bendings and terminations were discussed
in section 5. The Matlab code was furthermore programmed to determine if neuronal activation
has occurred and to calculate the mean speed of propagation (MSOA) of the activation pulse.

Finally stimulation of bundles of multiple neurons was studied. In section 6 the influence of
the electrode-bundle distance on the %AN was simulated for a straight bundle consisting of 19
neurons. Subsequently in section 7 a more realistic simulation was done. Neuronal activation
was simulated for a deep brain stimulation configuration. A medtronic DBS-lead was modelled
in Sim4life in the MIDA-head phantom (Iacono et al.;2015) [11]. A biphasic square-wave poten-
tial was applied on the zeroth and first electrode of the DBS-lead resulting in two stimulation
configurations (01xx and 10xx stimulation). The neuronal activation and synapse activation
in two types of bundles often targeted in deep brain stimulation (the lenticular fasciculus and
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macaca fascicularis) was studied. For this end both types of neuron bundles were approximated
by randomly distributed straight neurons. We concluded that the neuronal activation is influ-
enced by the DBS-lead stimulation configuration. Furthermore not all activated neurons will
experience activation at the synapse. We observed that a region of hyperpolarisation on the
neuron might impede the propagation of the action potential towards the synapse.
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Appendix A

Additional simulation results on a
single neuron

In this appendix some additional simulations on single neurons are first presented. In section
A.1 we consider the membrane-voltage and gate-parameters of a neuron at rest. Next, AM-
stimulation of a single neuron by a spherical electrode at 2mm from the soma for an electrode-
potential at 10V and at 40V is discussed in section A.2 and section A.3 respectively. The results
from these two sections are to be compared with AM-stimulation at 60V , discussed in subsection
4.1.2.

Next, we briefly present some additional results for the n-gate and h-gate parameters for sim-
ulations that were discussed in the thesis. These results are mentioned in this appendix for
completeness. For the simulations on a straight neuron, sections A.4, A.5, A.6 expand the re-
sults presented in subsections 4.1.3, 4.1.4, 4.1.5 respectively. For the neuron with a bending,
sections A.7 and A.8 present additional results for the subsections 4.2.1 and 4.2.2 respectively.

A.1 Single multi-compartmental neuron at rest
In this section we consider a neuron at rest, i.e. no electrode is placed in its neighbourhood.
This simulation is interesting, because it will allow us to recognize neurons in a bundle on which
the stimulus-electrode has little effect. First, the activation function f is shown in figure A.1.
Ofcourse, because no electrode is present, the activation function is identically zero.

Table A.1: Activation table for a straight neuron at rest.

More interesting is the spatial distribution of the reduced membrane voltage Ṽ , in figure A.2
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and in figure A.3. The distribution of the reduced membrane voltage looks remarkably dis-
continuous. This result might be surprising at first, but can be explained by the fact that we
considered a multi-compartmental neuron. Different compartments will have a different value
for the rest-voltage Vr. For instance, the nodes of Ranvier and the initial segment were described
by a CRRSS-model, and have as rest-voltage: V CRRSSr = −80V . In contrast, the synapse, soma
and unmyelinated axonterminal are described by a warm Hodgkin-Huxley model, for which we
have: V HHr = −70V . Furthermore the rest-potential Vr is defined for a uniform neuron, con-
sisting of one compartment, at rest. However for a general multi-compartmental neuron at rest
the membrane voltage will not be equal to the rest-potential. This explains why the reduced
membrane voltage is not identically zero. For this case of a multi-compartmental neuron, a
distinction can thus be made between the rest-voltage distribution Vr(x) and the final voltage
distribution Vf (x). The value Vr(x) will give the rest-voltage of the compartment at x. For a
uniform neuron at rest made of this compartment, the voltage will everywhere be equal to the
single value Vr(x). The final voltage distribution Vf (x) represents the non-reduced membrane
voltage (NRMV; V = Vi − Ve) distribution on a multi-compartmental neuron at rest.

Figure A.1: Neuron at rest. Spatial distribution of the activation function f is shown.

We expect, for physical reasons, that the final voltage Vf (x) will be continuous. This is indeed
the case, as shown in figure A.4 and in figure A.5. We observe that at the dendrites and un-
myelinated axonterminal the voltage V will be equal to −70V , which is the rest-voltage in the
Hodgkin-Huxley and passive model. On the axon, the membrane voltage takes a value between
−70V and −80V , which is expected since the nodes of Ranvier have a rest-potential of −80V
and the myelinated internodes of −70V .
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Figure A.2: Neuron at rest. Spatial distribution of the reduced membrane voltage Ṽ at 7
subsequent times is shown.

Figure A.3: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained for a neuron at rest.
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Figure A.4: Neuron at rest. Spatial distribution of the non-reduced membrane voltage (NRMV)
Ṽ at 7 subsequent times is shown.

Figure A.5: Colour map of the non-reduced membrane voltage (NRMV) in time and space. The
colours represent the value of V . The map is obtained for a neuron at rest.

We recognize that there is some time-dependency in the colour maps. Ofcourse, this time-
dependency is unphysical, because the neuron should be at rest. The time-dependency is a
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consequence of the fact that Matlab needs to initialize the membrane voltage at t = 0. The
most obvious way to do this, because the final voltage is not known, is by initialising the
membrane voltage by the rest-voltage V (x, t = 0) = Vr(x). However, as explained, for a multi-
compartmental neuron the rest-potential will not be equal to the final membrane voltage. The
plots thus show how the membrane-voltage evolves from V (x, t = 0) = Vr(x) to the final voltage
Vf (x).

We now also understand why the reduced membrane voltage Ṽ is discontinuous. The final volt-
age Vf (x) is continuous, but the rest-potential distribution Vr is discontinuous, so we obtain a
discontinuous reduced membrane voltage for a neuron at rest: Ṽ |t=∞ = Vf (x)− Vr.

Finally the gate-parameters are shown in figures A.6, A.7 and A.8. The activation table is shown
in table A.1. As expected, no action potential is initiated. The gate-parameters are close to
their rest-values, for instance on the unmyelinated axon terminal a Hodgkin-Huxley model is
applied. The rest-values of the gate-parameters in this model are (Rattay, 2005 [12]):

mHH
0 = 0.05

nHH0 = 0.32

hHH0 = 0.6

These theoretical values correspond well with the values obtained in the colour maps. Analo-
gously also the rest-values for the gate-parameters in the CRRSS-model that describes the nodes
of Ranvier, correspond well with the obtained results.

Figure A.6: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained for a neuron at rest.

107



Figure A.7: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained for a neuron at rest.

Figure A.8: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained for a neuron at rest.
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A.2 Anode-make stimulation by spherical electrode (10 V)
at 2 mm from soma

In this section we discuss AM-stimulation by a spherical electrode (10V ) at 2mm from the
soma. This simulation is to be compared with the simulation of next section (section A.3),
where the electrode-potential is put at 40V , and with the simulation of subsection 4.7, where
the electrode-potential is 60V .

Table A.2: Activation table for a straight neuron, stimulated by a spherical electrode (10V ) at
2 mm from the soma.

Together, the three mentioned simulations show us the influence of the electrode-potential on
the membrane-voltage and gate-parameters. In this section the electrode-potential is only 10V
and the neuron will not be activated (see table A.2). The shape of the distribution of the
activation function f does not depend on the applied electrode-potential because of linearity
(figure A.9). However, f scales linearly with Velec, and is too low in this simulation to initiate
an actionpotential.

Figure A.9: Spherical electrode (10V ) at 2mm from the soma. Spatial distribution of the
activation function f is shown.
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Figure A.10: Spherical electrode (10V ) at 2mm from the soma. Spatial distribution of the
reduced membrane voltage Ṽ at 7 subsequent times is shown.

Figure A.11: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (10V) at 2mm from the soma of a straight neuron.
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The reduced membrane voltage is shown in figures A.10 and A.11. As was observed in section
A.1, some depolarisation and hyperpolarisation will always be present in a multi-compartmental
neuron, even when the neuron is at rest. This is because a multi-compartmental neuron is not
homogeneous. We see from the voltage maps that stimulation by an electrode at 10V , will not
result in the propagation of an actionpotential. Nevertheless some small polarization over about
10V does occur.

Figure A.12: Spherical electrode (10V ) at 2mm from the soma. Spatial distribution of the
non-reduced membrane voltage V (NRMV) at 7 subsequent times is shown.

For this (not activated) neuron, it is interesting to also consider the non-reduced membrane
voltage V (figure A.12 and figure A.13). The non-reduced membrane voltage has a continuous
spatial distribution, unlike the reduced membrane voltage. When we compare with the results
for the neuron at rest (figure A.4 and figure A.5), we observe that the electrode has caused some
small polarization, additional to the polarization that was already present in the neuron at rest.

The gate-parameters are shown in figures A.14, A.16 and A.15. There is some deviation from
the rest-values of the gate-parameters. Nevertheless no actionpotential is observed in these
colourplots.
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Figure A.13: Colour map of the non-reduced membrane voltage (NRMV) in time and space.
The colours represent the value of V . The map is obtained by anode-make stimulation by a
spherical electrode (10V) at 2mm from the soma of a straight neuron.

Figure A.14: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (10V) at
2mm from the soma of a straight neuron.
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Figure A.15: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (10V) at
2mm from the soma of a straight neuron.

Figure A.16: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (10V) at
2mm from the soma of a straight neuron.
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A.3 Anode-make stimulation by spherical electrode (40 V)
at 2mm from soma

In this section, AM-stimulation by a spherical electrode at 40V at 2mm from the soma is
discussed. In section A.2 and subsection 4.1.2, we discussed the same configuration, but at
different electrode-potential (10V and 60V respectively). In this section the neuron will be
activated (table A.3), in contrast with section A.2 (electrode-potential at 10V ). Comparing
with the results of subsection 4.1.2 shows that increasing the electrode-potential will not alter
the shape of the spatial distribution of the membrane voltage, neither will it increase the strenght
of depolarisation (an all-or-nothing principle applies for the generation of an actionpotential).
Instead, a higher electrode-potential will lead to faster activation of the neuron.

Figure A.17: Spherical electrode (40V ) at 2mm from the soma. Spatial distribution of the
reduced membrane voltage Ṽ at 7 subsequent times is shown.

The reduced membrane voltage is shown in figures A.17 and A.18. We indeed observe that
the neuron is activated. The activation function f is shown in figure A.19. Next, the gate-
parameters are shown in figures A.20, A.22, A.21. For a discussion of the results, we refer to
section 4.1.2.
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Figure A.18: Colour map of the reduced membrane voltage in time and space. The colours
represent the value of Ṽ . The map is obtained by anode-make stimulation by a spherical
electrode (40V) at 2mm from the soma of a straight neuron.

Figure A.19: Spherical electrode (40V ) at 2mm from the soma. Spatial distribution of the
activation function f is shown.
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Figure A.20: Colour map of the m-gate parameter in time and space. The colours represent the
value of m. The map is obtained by anode-make stimulation by a spherical electrode (40V) at
2mm from the soma of a straight neuron.

Figure A.21: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (40V) at
2mm from the soma of a straight neuron.
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Figure A.22: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (40V) at
2mm from the soma of a straight neuron.

Table A.3: Activation table for a straight neuron, stimulated by a spherical electrode (40V ) at
2 mm from the soma.
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A.4 Additional results for simulation 3. Anode-make stim-
ulation of voltage-clamped neuron by spherical elec-
trode (60 V) at 2 mm from soma

In this section we expand on the results presented in subsection 4.1.3 for completeness. AM-
stimulation of a voltage-clamped neuron by a spherical electrode (60V ) at 2mm from the soma
is considered. The colour maps for the h-gate parameter and n-gate parameter are shown in
figure A.23 and figure A.24 respectively.

Figure A.23: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (60V) at
2mm from the soma of a straight, voltage clamped, neuron.

Figure A.24: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (60V) at
2mm from the soma of a straight, voltage clamped, neuron.
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We compare the temporal distribution at the synapse of the h-gate parameter and n-gate pa-
rameter for sealed-end boundary conditions and voltage-clamped boundary conditions in figures
A.25 and A.26.

Figure A.25: h-gate parameter as function of time at the synapse for sealed-end conditions and
voltage-clamped conditions

Figure A.26: n-gate parameter as function of time at the synapse for sealed-end conditions and
voltage-clamped conditions
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A.5 Additional results for simulation 4. Cathode-make stim-
ulation by spherical electrode (-60V) at 2 mm from
soma

In this section we expand on the results presented in subsection 4.1.4 for completeness. CM-
stimulation of a straight neuron by a spherical electrode (−60V ) at 2mm from the soma is
considered. The colour maps for the h-gate parameter and n-gate parameter are shown in figure
A.27 and figure A.28 respectively.

Figure A.27: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by cathode-make stimulation by a spherical electrode (-60V)
at 2mm from the soma of a straight neuron.

Figure A.28: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by cathode-make stimulation by a spherical electrode (-60V)
at 2mm from the soma of a straight neuron.
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A.6 Additional results for simulation 5. Anode-make stim-
ulation by spherical electrode (60V) at 2 mm from the
centre of the neuron

In this section we expand on the results presented in subsection 4.1.5 for completeness. AM-
stimulation by a spherical electrode (60V ) at 2mm from the centre of the neuron is considered.
The colour maps for the h-gate parameter and n-gate parameter are shown in figure A.29 and
figure A.30 respectively.

Figure A.29: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (60V) at
2mm from the centre of a straight neuron.

Figure A.30: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (60V) at
2mm from the centre of a straight neuron.
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A.7 Additional results for simulation 6. Anode-make stim-
ulation of neuron with central bending (15◦) by spher-
ical electrode (60 V) at 2 mm from soma

In this section we expand on the results presented in subsection 4.2.1 for completeness. AM-
stimulation of a bend neuron (bending over 15◦) by a spherical electrode (60V ) at 2mm from
the soma is considered. The colour maps for the h-gate parameter and n-gate parameter are
shown in figure A.31 and figure A.32 respectively.

Figure A.31: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma of a bent (15◦) neuron.

Figure A.32: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the soma of a bent (15◦) neuron.
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A.8 Additional results for simulation 7. Anode-make stim-
ulation of neuron with central bending (15◦) by spher-
ical electrode at 2 mm from centre

In this section we expand on the results presented in subsection 4.2.2 for completeness. AM-
stimulation of a bend neuron (bending over 15◦) by a spherical electrode (60V ) at 2mm from
the centre of the neuron is considered. The colour maps for the h-gate parameter and n-gate
parameter are shown in figure A.33 and figure A.34 respectively.

Figure A.33: Colour map of the h-gate parameter in time and space. The colours represent the
value of h. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the centre of a bent (15◦) neuron.

Figure A.34: Colour map of the n-gate parameter in time and space. The colours represent the
value of n. The map is obtained by anode-make stimulation by a spherical electrode (60V ) at
2mm from the centre of a bent (15◦) neuron.
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