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Nearly a third of all job seekers have been unemployed for more than two years. A more proactive effort towards
significantly reducing such level of long-term unemployment (e.g. through better guidance to job seekers) is essential.
And so, the main objective of this thesis is to develop a model that makes it possible to predict upfront who is at
risk of long-term unemployment and explore significant attributes that allow for better insights on how to shorten the
unemployment duration.

For this purpose, different multiclass classification models have been built based on current data from the VDAB
(public employment service of Flanders) by means of a variety of machine learning algorithms used for supervised
learning. In general, the performance level of these constructed models is low, with the highest F score at around 0.46.
Low-term unemployment proves to be significantly easier to predict than medium-term and to a lesser extent long-
term unemployment. In addition, white-box systems perform significantly better than black-box methods in predicting
unemployment duration, allowing for more interpretable algorithms to be used. Finally, suggestions for further research
include, applying more detailed attributes and more specific models.
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Management Summary

The Public Employment Service of Flanders - also known as VDAB - is tasked with guiding job
seekers in their search for employment [1]. To be more specific, a consultant of the VDAB assists
people in their search for a job based on his/her knowledge accumulated throughout his/her
career. However, information dating from December 2015 [2] reveals that nearly a third of job
seekers have been unemployed for at least 2 years. Given this situation, a proactive person-
specific approach could influence the guiding process in a more positive manner than the mere
expertise of a VDAB consultant.

Unemployment data was obtained from the VDAB in order to build multiclass classification
models. These models seek to ascertain patterns in the data that allow for the newly unem-
ployed to be correctly predicted in terms of time intervals in unemployment. Time intervals were
acquired from a business context and set at Low (0-3 months), Medium (3-6 months), and High
(>6 months). In this way, people who are at risk of long-term unemployment could be identified
early in the process.

To build those models, the ’raw data’ had to undergo some form of transformation and reduc-
tion. This resulted in a final dataset of 33 attributes and 1,352,446 instances. Afterwards, eleven
prediction methods were trained on a randomly sampled trainset to predict at registration the
unemployment duration of a job seeker based on his/her distinctive personal characteristics. In
addition, most of the trained models were able to provide insights on why a certain job seeker
would be at risk, e.g. lowly educated. These kinds of insights are derived from white-box algo-
rithms, and can be expressed in an intuitive manner, e.g. rules or decision trees. These outcomes
can then be used by the VDAB to provide guidance to job seekers in a more proactive manner.

However, due to a low predictive performance by the initial models, others were trained using
different subsamples. That is, the data was subsampled by applying filters based on age and
education. More precisely, the data was split into different age categories: younger than 25,
between 25 and 50, and older than 50; as well as different educational levels: low, medium, and
high. This, however, did not have any significant impact on the predictive performance measure
- macro-averaged F score - of the models.

All models were evaluated based on overall performance through their macro-averaged F score,
which is a combination of precision and recall. On the whole, the trained models’ performances
are rather low, with the highest scores at around 0.46 and the highest possible value at 1. How-
ever, short-term unemployment and to a lesser extent long-term unemployment are easier to
predict than medium-term unemployment. It is thus possible to provide job seekers at risk of
long-term unemployment with more effective guidance, as these are to a certain extent distin-
guishable from those with short-term unemployment. One ought to exercise caution though
when drawing conclusions based on the constructed models, as so far all without exception have
been underperforming.

In conclusion, further research paths may include increasing the number of filters in order to
train more specific and smaller models, adding more detailed information on certain attributes
that have been aggregated in this thesis (e.g. degree of education), and incorporating attributes
that describe job seekers’ social and soft skills, motivation, and willingness to work.
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Chapter 1

Introduction

The public employment service of Flanders (also known as VDAB) was founded in 1989. Inher-
ent to its foundation is the need to bring together supply and demand in the job market. Hence,
its main task is to assist job seekers in their search for employment [1]. And so, job seekers are
guided through dialogue with a consultant. This consultant is an employee of the VDAB, whose
task is to guide people in their search for a job based on his/her past experiences. This, however,
is a rather general approach that makes it hard to account for all the relevant characteristics of
a job seeker.

At the end of 2015, there were 228,987 non-working job seekers (NWWZ) in Flanders according
to data from the VDAB [2]. Table 1.1 shows how certain categories based on age, education level
and unemployment duration are represented among these non-working job seekers. According to
the Belgian Ministry of Economic Affairs, 5.2% of the population in Flanders were unemployed
in 2015. More detailed information can be found on their website [3].

Table 1.1: Unemployment data by VDAB (December 2015)

Within the age categories, two relatively large groups emerge: - 25 years old and + 50 years old,
representing respectively 19.60% and 27.70% of the 228,987 job seekers. Taking into account
that the minimum legal working age is 15 for part-time work and 18 for full-time work, this
means that the -25 years old category consists of a much smaller age range than the 25-50 years
old category. As a result, a share of 19.60% is quite high. The same reasoning, combined with a
rising share of 5.20%, makes the +50 years category the second of the two aforesaid large groups.
Note that the legal retirement age in Belgium is set at 65 [4]. Moreover, it becomes more difficult
to find a job beyond the age of 50 [5]. Consequently, both groups will be highlighted in Ch. 5,
where results are discussed.

The main issue that presents itself here is that nearly a third - and still rising - of all non-working
job seekers have been unemployed for more than two years, as shown in Table 1.1. In general,
the longer a person is unemployed, the harder it is to find a job [6]. Therefore, it is crucial to
provide better guidance to job seekers and to detect more quickly those that pose a risk in terms
of long-term unemployment. In addition, a more person-specific approach is needed to function
as guide instead of solely relying on the general expertise of a VDAB consultant.
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3

The problem description is structured in the following part. When people look for a job
they register themselves - sometimes mandatory - at the VDAB. From the moment a job seeker
registers as unemployed, we would like to know is whether s/he poses a risk in terms of long-term
unemployment. A number of analyses have already been conducted on this, each with emphasis
on asserting why a certain person is unemployed for a longer period than another [7][8][9]. In this
research, we mainly focus on predicting the time interval between registration and the taking
up of a job. Hence, the problem can be structured as a survival analysis. Survival analysis
encompasses different methods which analyse time in terms of event occurrences, as illustrated
in Figure 1.1. Here, the outcome attribute is the time needed by a specific person to find a
job and the event is ’job found’. One can also think of other domains where problems can be
structured as time to event (see infra, Ch. 3).

Figure 1.1: Time to event instances

In the context of machine learning, the problem of predicting unemployment duration among new
job seekers can be modelled as a supervised classification task. In supervised learning, patterns
are derived from a dataset in order to classify instances (unemployed people) in their appropriate
class [10]. The algorithms keep on learning - and improving - by adding new instances to the
dataset. In this way, models, based on current data, try to give an accurate indication of how
long a new job seeker will be unemployed, given his/her characteristics. In addition, models
should be somewhat interpretable to VDAB consultants, in a way that enables them to provide
clear explanation to job seekers about the risk of ending up in long-term unemployment. A small
hypothetical example will try to clarify the above.

Alexander recently graduated from university and enrols at the VDAB as a job
seeker. He has a driving license B, Dutch as mother tongue, and is 22 years old.
There are of course many other characteristics that can be taken into account such
as residence, knowledge of French, etc. The VDAB registers all of Alexander’s
details, puts them into (different) models, and as a result obtains the predicted un-
employment period. Preferably an indication is given as to why this certain period
is predicted, e.g. time period is low because he has a driver’s license. Based on
this duration and a number of business rules, the VDAB is able to determine in an
objective way whether or not to (intensively) guide Alexander in his search for a job.

This proactive approach should have an improving effect on actions taken by the VDAB, which
are in a sense beneficial to both job seeker and employer. For example, the model could suggest
that taking up a certain course of training would lower the unemployment duration. The VDAB
could then recommend that specific course of training to the job seeker, from which an eventual
employer will one day benefit. The VDAB can also take advantage of this approach by ensuring
a more efficient and effective allocation of resources.



Chapter 2

Research Questions

In general, we would like an answer to the following question: How long does it take for a specific
person to find a job after s/he becomes unemployed at a certain point in time? Moreover, we are
also interested in finding out why it takes ’that amount of time’ to find a job. Both questions
can be combined and made more specific in order to define a clearer scope to this study. More
precisely, the main question of this research is formulated as follows:

Which data mining techniques can be used to predict and explain unemployment
duration among the newly unemployed?

The latter is split up into four sub-questions, which are used as a guide throughout the process
of ascertaining results; these are also aligned with the different steps of knowledge discovery in
data, as explained in the research setup (see infra, Ch. 4).

The first sub-question addresses the importance of attributes in the dataset: which attributes
have an impact on the performance of predictive models? Feature or attribute selection
is a very important step in reducing the dimensionality of the dataset in order to build simpler
and more predictive models [11]. In this research, many attributes were provided in the dataset.
However, not all of them were useful for predicting unemployment duration or had any impact
on the models’ performance. This first sub-question is discussed in chapter 4, the data selection
and pre-processing step.

The second sub-question refers to the performance of different techniques that were applied:
which machine learning techniques have a high performance in predicting time un-
til employment? In total, 11 algorithms were chosen based on their proven track record, as
discussed in chapter 3 Related Work. A variety of techniques were considered to address this
sub-question: decision trees, neural networks, boosting, support vector machines, etc. All of
them are described in section 4.1. Note that white box models (DT, Rule learners, etc.) are
preferred over black box models (NN, SVM, etc.) because a specific result should be traceable.
Therefore, more white-box algorithms are considered.

Thirdly, exploring is done over the main reasons why someone would take a certain amount
of time until employment: which attributes are significant in explaining the predicted
unemployment duration? Cox proportional hazard model is performed to check for any sig-
nificant attributes. It is essential that the VDAB is able to provide a very clear explanation over
the outcomes of this model. In this way, they would be able to cope with difficulties one might
have at the beginning of his/her unemployment, e.g. an inadequate understanding of Dutch, a
rather low level of education, etc. These results are briefly discussed in chapter 5.

Last but not least, techniques are compared and trade-offs are made: how do the different
data mining techniques relate to each other? This will allow for the selection of the best
algorithm, given the different methods that are applied. Clearly, a trade-off should be made
between performance on the one hand and interpretability or comprehensibility of the model on
the other. This trade-off is discussed in chapter 6.
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Chapter 3

Related Work

Survival analysis is used in multiple areas, as indicated by the following diverse research topics.
J. Lu (2002) [12] focused on customer churn rate in the telecommunications industry. More
precisely, customer survival functions were estimated using the accelerated failure time (AFT)
model in SAS. Binary class labels were used to predict whether someone churned or not. Sim-
ilar research was conducted by J. Lu & O. Park (2003) [13] and more recently by L. Fu & H.
Wang (2014) [14]. The latter explored the Cox proportional hazard model in an insurance-based
setting. Other areas can be envisaged as well: engineering (e.g. time until failure of some com-
ponent) or social behaviour (e.g. time until couples divorce).

However, most of the applicable techniques are discussed in research about medical prognosis.
Survival analysis is widely used to predict the survivability chances of diseases, e.g. cancer. A
first strand of literature includes W.C. Levy et al. (2006) [15], L. Franco, J.M. Jerez & E. Alba
(2005) [16], J. Llobera et al. (2000) [17], A. Barth, L.A. Wanek & D.L. Morton (1995) [18], P.C.
Adams, M. Speechley & A.E. Kertesz (1991) [19], C. Rozman et al. (1984) [20], and J.L. Binet
et al. (1981) [21]. These cover the use of the Kaplan-Meier (KM) estimator to estimate survival
functions from datasets containing patient records. In addition, Cox proportional hazard model
has been used to test the significance of different variables related to time until event.

In recent decades, a second strand has discussed the use of machine learning algorithms to pre-
dict survival times. S.S. Anand et al. (1999) [22] have compared an artificial neural network
(ANN), regression tree, and a manipulated K-nearest neighbour algorithm with the Cox regres-
sion model. Despite the fact that ANNs can model non-linear relationships, results indicated
that Cox regression still performs best when a dataset contains censored instances. This imme-
diately conjures up one of the major problems with machine learning in a survival-based setting:
censored data. Different approaches have been used to overcome this hurdle. L. Bottaci et al.
(1997) [23] have simply ignored censored instances, while others have assigned them to separated
groups learning as a true/false classifier; H.B. Burke (1994) [24], H.B. Burk et al. (1997) [25],
L. Ohno-Machado (1997) [26], and A. Bellaachia et al (2006) [27]. However, these methods do
not address the issue of censored records directly, and may involve information loss in particular
settings, e.g. small datasets.

M.D. Laurentiis & P.M. Ravdin (1994) [28] have suggested a framework for incorporating cen-
sored cases. More specifically, they proposed a transformation of the dataset into different time
intervals and then use KM to estimate the survival probabilities for each of these intervals. They
applied their approach to neural networks and found that ”NN work well in producing predictive
models in situations where Cox regression has some limitations”. B. Zupan et al (2000) [29]
used this framework when comparing the Naive Bayes classifier and decision tree with the Cox
regression model. Results indicated that Naive Bayes performs equally to the conventional Cox
PH model in a prostate cancer dataset. An important limitation of the suggested framework is
the inability to predict survival times for individual instances. N. Street (1998) [30] addressed
this issue by formulating an alternative model that integrates censored cases ”directly into the
training set” and does not use artificial time intervals. Street’s approach has been applied by C.
Chi et al. (2007) [31]. Other modifications of ANNs so as to manage censored data have been
listed in B. Baesens et al. (2004) [32]. Although neural networks are widely discussed in the
literature, they are not very useful for this research because of their ”black box nature” as

5



6 CHAPTER 3. RELATED WORK

described by J.V. Tu (1996) [33]. Worth remembering is that acceptance of our model by the
VDAB largely depends on the comprehensibility of the results.

Other interpretable data mining techniques include rule- and tree-based classifiers, logistic re-
gression models, and to a lesser extent ensemble methods. The latter have the advantage of
performing better in terms of accuracy than single decision trees, as described by A.T. Azar &
S.M. Metwally (2012) [34]. G. Llczuk & A. Wakulicz-Deja (2005) [35] discussed different kinds
of rule- and tree-based algorithms for a medical diagnosis system: Ridor, J48, PART, JRip, etc.
These types of classifiers were chosen for their proven track record in medical decision systems
and their interpretability for humans. As a result, new patients can be classified based on intu-
itive rules.

When higher predictive performance is necessary, one can apply the ensemble methods as de-
scribed by A.M. Prasad, L.R. Iverson & A. Liaw (2006) [36] and by B.P. Roe et al. (2005) [37]
Bagging, Boosting, Voting, and Stacking. A.T. Azar & S.M. Metwally (2012) [34] have applied
three types of decision tree classifiers to a breast cancer dataset: Single decision tree (SDT),
boosted decision tree (BDT), and random forest (RF) which is a variation on bagging. BDT
scored better on all performance criteria - accuracy, recall and ROC - than SDT. However, SDT is
a more comprehensive technique and easier to visualize. Clearly, a trade-off should be made here.
Y.H. Chan (2005) [38] has given an overview of multinomial logistic regression models (MLR).
These models are capable of handling dependent variables with more than two levels. MLR is
able to predict the outcome for new instances based on categorical and continuous variables,
and does not adopt many assumptions according to J.A. Anderson (1982) [39]. B. Kempen et
al. (2009) [40] used multinomial logistic regression to update soil maps based on previous mea-
sures. Another application is discussed by Y. Wang (2005) [41], who evaluates an MLR model
for anomaly intrusion detection.

Other techniques used in literature to classify instances are the Support Vector Machines (SVM)
and Naive Bayes. The former is mathematically more difficult and results are less interpretable
than those of the latter. B.K. Bhardwaj & S. Pal (2011) [42] applied Naive Bayes to predict
students’ academic performance based on different variables. They split up the response variable
into five intervals so as to be able to classify the scores. On the other hand, SVM have been
used in a credit rating analysis by Z. Huang et al. (2004) [43]. More precisely, they classified
companies according to their credit rating into different groups and found that SVM outperform
logistic regression and even have a slightly higher accuracy than ANNs.

In this study, different statistical (e.g. Cox PH model) and machine learning techniques (e.g. DT,
NN, etc.) are applied to an employment dataset in order to build a model that can classify the
newly unemployed according to different time intervals. One possible outcome is that the VDAB
can use these results to allocate resources more efficiently. Similar research has already been
conducted by V. Ciuca & M. Matei (2010) [7] in Romania. However, their study was mainly
focused on finding the explanatory variables for predicting time until employment, while this
research is more focused on predicting this ’time’. Overall, they found that age and education
seem to have the most predictive power. Unlike our research, their dataset was very limited in
terms of dimensionality and they only used a single technique: Cox regression.

Finally, an overview is made in Table 3.1. Different aspects and techniques are related by means
of the several research methods mentioned above. Occasionally, a specific reason for using a
certain technique is mentioned between brackets.
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Chapter 4

Research Setup

The research setup is structured according to the knowledge discovery in database (KDD) process
described by Fayyad et al (1996) [44]. This process consists of different steps: data selection,
pre-processing, transformation, mining, and finally, interpretation of the results. Afterwards, it
is possible to adapt different steps - as illustrated by the grey dotted line - based on feedback
from new findings. Figure 4.1 shows these different steps and the relation between them. The
goal is to extract new knowledge from the input data and use this knowledge to create value,
e.g. efficiently allocating resources to the newly unemployed, predicting the occurrence of cancer
in order to start treatment very early and thus raise the survivability chances, etc. The KDD
process is applied in the following sections.

Figure 4.1: KDD process by Fayyad et al (1996)[44]

4.1 Data Selection & Preparation

Data was gathered from the VDAB. More precisely, a spreadsheet was obtained containing 102
attributes and 2,064,192 records. Each record represents a person who enrolled at the VDAB.
Multiple records can concern one person as it is possible that after finding a job, one can again
become unemployed. The data spans from the beginning of 2012 until the end of 2015. Note
that when the data was extracted, some people were still unemployed. As a consequence, some
records do not have a value for catwz uit, meaning that they have yet to be signed out at the
VDAB. This phenomenon is called censored data, which was referred to in chapter 3.

As our research question is about predicting the unemployment duration of new entrants (into
unemployment), attributes that do not have a value at the beginning of this period are not useful
and should be removed from the dataset. Further reduction in dimensionality includes attributes
that have a constant value, are redundant or highly correlated as well as attributes that can be
aggregated. Due to a malfunction of some algorithms when applied to the data with missing
values, some numerical attributes have been transformed into true/false values. All attributes
are tabulated in appendix 1. The second column indicates whether an attribute is retained from
the dataset, and the underlying reason is described in the third column. After having reduced the
dimensionality of the dataset into 33 attributes - including the class label -, some transformations
were made to the records.

8



4.2. DATA TRANSFORMATION 9

4.2 Data Transformation

Each record in the dataset contains three key attributes which uniquely identify someones un-
employment duration: klnr, catwz in, and catwz uit. Klnr is simply an ID number to represent
a specific person in the dataset. Catwz in contains a code that indicates the way in which some-
one signed up at the VDAB, e.g. code 3 means that a person signed up on a voluntary basis.
Similarly, catwz uit represents codes for leaving the VDAB, e.g. code 79 means that a person
signed out at the VDAB without finding a job. A list of all codes can be found in appendix 2.
A simplified example of a single record is shown in Table 4.1.

KLNR Date in Date out Catwz in Catwz uit # Days Unemployed
42561 1/01/2013 25/03/2013 3 79 83

Table 4.1: Example of a record

However, in this research we are only interested in examining the unemployment duration of
people who were really unemployed but eventually found a job or are still looking for one. In
other words, not all codes from catwz uit are reliable proxies to represent ’job found’. The same
holds for catwz in, wherein some people are enrolled at the VDAB not because they do not
already have a job but because they want to make a switch. This translates into redefining the
unemployment period for certain people. More precisely, four distinct cases related to catwz uit
are recognized by the IBM team at VDAB in which data has to be transformed, each of which
is explained separately below. In order to cope with catwz in, all people who already had a job
when signing in at the VDAB were filtered out of the dataset. Before the data was transformed,
220 observations were removed because there the age was above 65, which is the legal age of
retirement.

4.2.1 Case 1

Every record that does not have good successors is checked. Note that good successors are
records with the same klnr and have appropriate proxies for ’job found’. If those records contain
inappropriate proxies, they are removed from the dataset. Inappropriate proxies are defined from
a business context and do not represent ’job found’. More specifically, a list of inappropriate
values for catwz uit can be found in appendix 3. For example, code 77 means that a person has
not found a job but signs out because s/he wants to continue with studies. Note that this process
has to be executed iteratively until no more changes occur in the dataset. Table 4.2 gives one
example of records that will be removed because they have inappropriate proxies and no good
successors (bold format of catwz uit). Currently, interim work is regarded as ’job found’. As
explained further in section 4.3.2, one can argue that a person who has found a job only for a
day is not actually employed.

KLNR Date in Date out Catwz in Catwz uit # Days Unemployed
5 1/01/2015 23/02/2015 3 77 53
5 1/03/2015 23/04/2015 3 77 53
6 1/05/2015 28/06/2015 3 78 58

Table 4.2: Removals in case 1
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4.2.2 Case 2

After applying an algorithm to cope with records of case 1, it is still possible for inappropriate
proxies to occur. Tables 4.3 and 4.4 provide examples of this behaviour. Remaining records with
wrong proxies can be split into two groups, of which the second is discussed in case 3. The first
group consists of people who returned to unemployment without any fundamental change(s) in
their characteristics. This is often the result of a mere database manipulation, e.g. to get a
different catwz in for a person. Consequently, their unemployment duration is added to the next
period. Note that the timespan between two periods is not accounted for and could result in an
underestimation of the total unemployment duration. This timespan is not included because the
probability of finding a job in that period was nihil.

KLNR Date in Date out Catwz in Catwz uit # Days Unemployed
4 6/01/2014 14/02/2014 14 79 39
4 14/02/2014 4/12/2015 0 78 689

Table 4.3: Removals in case 2

4.2.3 Case 3

The second group consists of people who returned with changed characteristics, e.g. dropped out
of the VDAB to continue studying. When they return to the VDAB, a new record is registered
and one unemployment period is added. The previous record is removed, as illustrated in Table
4.4. Codes included are listed in appendix 3. Again, one may argue that this transformation
could underestimate the actual unemployment duration.

KLNR Date in Date out Catwz in Catwz uit # Days Unemployed
4 6/01/2014 14/02/2014 14 77 39
4 14/02/2014 4/12/2015 0 78 689

Table 4.4: Removals in case 3

4.2.4 Case 4

Finally, censored records are removed if their duration is lower than the lower boundary of the
highest class label (see Table 4.5). This boundary is extracted from the business context in which
this research is posited. We can justify this approach thanks to the large dataset that remains
after all the removals and the fact that the distribution of this dataset is nearly the same as
in the original population. Apparently, most censored cases were already unemployed for more
than six months. Note that the inconvenience of censored data is resolved in a context specific
way.

These different data transformations reduced the total number of records from 2,064,192 to
1,352,446. As described in Table 4.5, three class labels were used to predict new unemployment
durations instead of the actual number of days. The use of discrete intervals is necessary in a
supervised classification task.
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Class label
Low Medium High

Interval 0-3 months 3-6 months >6 months
Distribution 58.34% 16.42% 25.24%

Table 4.5: Class labels

As mentioned above, some algorithms are not capable of handling missing values. They overcome
this hurdle by only taking into account records that have a value for each attribute. In order to
perform a useful benchmarking exercise, missing values were replaced by NaNa or -1, depending
on the attribute type. In this way, all algorithms were trained and tested with the same records.
However, to speed up the training process, a random sample was drawn from the 1,352,446
records, resulting in a final sample of 135,245 records. Note that this threshold of 10% was
chosen arbitrarily.

4.3 Data Mining Techniques

We have applied a 5-fold cross validation to the training set. One may argue for applying more
than five but as we have quite a large sample, splitting up the dataset into ten parts would greatly
increase the computing time. Moreover, some tests with 10-fold cross validation did not lead to
significant improvements. Whenever possible, parameters are optimized using the caret package
in RStudio®. More precisely, different combinations of tuning parameters are used to train the
models. The final model is chosen based on Cohen’s kappa statistic rather than accuracy because
of the imbalanced dataset [45]. Finally, a test set, which accounts for 30% of the final sample,
is used to evaluate the best model’s performance. If techniques have only one tuning parameter
or even none, then the underlying packages are directly addressed rather than through caret.

4.3.1 Overview of Machine Learning Techniques

Each machine learning technique for building classification models in this research is briefly
discussed.

Decision trees are a supervised learning model that hierarchically maps a data domain onto
a response set. It divides a data domain (node) recursively into two subdomains such
that the subdomains have a higher information gain than the split node [46]. J48 is an
open-source Java implementation of the C4.5 algorithm in the Weka data mining tool.
C4.5 is a program that creates a decision tree based on a set of labelled input data [47].
The J48 algorithm was used from the RWeka package. C5.0 is an update of the C4.5
algorithm. It includes all functionalities of C4.5 and applies new technologies, the most
important among them being boosting [48]. The C5.0 train method of the caret package
was used, and two parameters were tuned: the number of boosting operations and feature
selection [49]. Rpart implements many of the ideas found in caret, and Rpart programs
build classification and regression models of a very general structure using a two-stage
procedure; the resulting models can be represented as binary trees [50]. The ’rpart’ train
method of the caret package was used, tuning the complexity parameter [49].

Bagging , also known as bootstrap aggregating, is an ensemble machine learning method for
generating multiple versions of a classifier and aggregating these different predictions into
one. In terms of classification, the majority vote will be the predicted class label. ”The
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multiple classifiers are formed by making bootstrap replicates of the training set and using
these as new learning sets” according to Breiman (1994) [51]. The ’bagging’ method was
used from the iPred package, incorporating recursive partitioning (Rpart) as tree algorithm
[36]. In order to save computing time, the number of cross folds was set to zero and the
number of bootstrap replications was held constant at 25.

Random Forest(RF) is an ensemble of unpruned classification or regression trees created by
using bootstrap samples of the training data and random feature selection in tree induction.
Prediction is made by aggregating (majority vote or averaging) the predictions of the
ensemble [52]. The Random Forest model was trained using the ’randomForest’ package in
R; it implements Breiman’s random forest algorithm based on Breiman and Cutlers original
Fortran code [53]. The number of variables randomly sampled as candidates at each split
was set to three, and 300 trees were grown for each model. According to Oshiro, Perez &
Baranauskas (2012) [54], significant performance increases stop at 64 - 128 trees. However,
their largest dataset had around 3,500 instances, so we tripled the average number of trees
because most of our samples have around 10,000 records.

Gradient Boosting constructs a single model based on multiple base learners. More precisely,
different weak learners (trees) are combined into a single strong learner. The difference
between boosting and bagging is that the latter takes bootstrap samples and trains learners
on each sample, whereas the former uses the entire dataset to train different learners.
Misclassified instances are here given more weight so that the next learner would try to
classify them correctly [55]. The ’gbm’ method from the caret package was used to build
the classifier. Four parameters were tuned: number of boosting iterations, maximal tree
depth, learning rate or shrinkage, and minimum terminal node size [56].

JRip is a propositional rule learner based on incremental reduced error pruning (irep). It was
described by Cohen (1995) [57] as an optimization of irep: a fast effective rule induction
learner. The method is more known under the name of repeated incremental pruning to
produce error reduction (RIPPER). As in irep, a rule is pruned immediately after composi-
tion and then added to the rule set. However, some modifications were made for RIPPER,
e.g. ordering classes as well as replacement and revision rules [58]. JRip - to our knowledge
- has only been implemented in the Weka tool of Waikato University. Fortunately, the
RWeka package provided an interface between R and Weka. As such, the JRip method
was addressed directly. Two parameters were set: the number of folds for reduced error
pruning which was set to equal the number of cross folds (= 5), and the minimal weights
of instances within a split, which equalled two.

Single hidden-layer neural networks are feed-forward neural networks with one hidden layer,
which can consist of different hidden nodes. In general, the more nodes and layers, the
more complex are the concepts a perceptron can learn. Multi-layer perceptrons are also
available in R packages but much more time-consuming to build. Moreover, single hidden
layers were used more often in related work. Training is performed by the Broyden-Fletcher-
Goldfarb-Shanno algorithm [59][60]. More thorough information regarding neural networks
is provided by Huang, Chen & Babri (2000) [61]. The ’nnet’ method from the caret package
was used to build a neural network. There were two parameters to optimize: the number of
hidden nodes present in the hidden layer, and the weight decay [62] [63]. Note that before
training, the input data was normalized to overcome biased attributes [64].

Support Vector Machines (SVMs) are a set of related methods for supervised learning, appli-
cable to both classification and regression problems. An SVM classifier creates a maximum-
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margin hyperplane that lies in a transformed input space and splits the example classes
while maximizing the distance to the nearest cleanly split examples. The parameters of
the solution hyperplane are derived from a quadratic programming optimization problem
[65]. When no linear separation is possible, a non-linear mapping into a higher dimensional
feature space is realized. The hyperplane found in the feature space corresponds to a non-
linear decision boundary in the input space [66]. The ’svmRadial’ model from the train
function in the caret package was used to build models based on support vector machines
with a radial basis function (RBF) kernel. This type of kernel was chosen based on research
by Huang et al (2004) [43]. There were two parameters to optimize: sigma and cost [49].

Naive Bayes classifier is a machine learning technique based on Bayes rule and a set of condi-
tional dependences, as described by Mitchell & Hill (2015) [67]. More information on the
Bayes rule (theorem), together with a clear example, is provided by Triola (2010) [68]. In
order to compute the different probabilities, the ’nb’ method from the caret package was
used. Two parameters had to be tuned: Laplace correction and the type of distribution.
More precisely, Laplace correction dealt with zero probabilities while distribution type was
set to the Gaussian distribution [69].

Multinomial logit models are an extension of the binary logistic regression (LR) models. Un-
like binary LR models, multinomial logit models are capable of handling multiclass response
variables. Moreover, the latter contains a variety of models, including the cumulative logit
model or proportional odds logistic regression model (OLR). It relates an ordered multi-
class response variable to predictors [70] [71]. The ’polr’ function from the MASS package
in R is used to train such a cumulative logit model. More technical details can be found
in CRAN [72]. Note that there are no tuning parameters to optimize.
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4.3.2 Overview of Samples

First, all techniques were applied to the first sample: All. Afterwards, new samples were drawn
based on the most explanatory attributes found by V. Ciuca & M. Matei (2010) [7], namely
age and education. Table 4.6 presents the different samples used. The different thresholds
for age are derived from the business context. Samples were drawn randomly from the entire
population - limited by age and education - with some preservation of class distributions through
the ’createDataPartition’ function in the caret package [73]. Sample size was set at about 10%
of the All sample (∼10,000) to speed up computing time.

Sample Age Education # Records Controls
All ( - 89) All - 135,245 (86,002) 5-fold
All Laag ( - 89) All Low 10,951 (11,912) 5-fold
All Midden ( - 89) All Medium 11,215 (11,976) 5-fold
All Hoog ( - 89) All High 11,592 (10,060) 5-fold
J 25 ( - 89) <26 - 10,110 (11,380) 5-fold
J 25 Laag ( - 89) <26 Low 11,505 (10,801) 5-fold
J 25 Midden ( - 89) <26 Medium 11,377 (10,719) 5-fold
J 25 Hoog ( - 89) <26 High 11,306 (11,119) 5-fold
J 50 ( - 89) >49 - 10,004 (11,157) 5-fold
J 50 Laag ( - 89) >49 Low 10,477 (10,464) 5-fold
J 50 Midden ( - 89) >49 Medium 10,444 (11,435) 5-fold
J 50 Hoog ( - 89) >49 High 10,690 (10,925) 5-fold
J 25-50 ( - 89) >25 & <50 - 10,703 (11,047) 5-fold
J 25-50 Laag ( - 89) >25 & <50 Low 10,871 (11,043) 5-fold
J 25-50 Midden( - 89) >25 & <50 Medium 10,002 (11,074) 5-fold
J 25-50 Hoog ( - 89) >25 & <50 High 10,709 (11,270) 5-fold

Table 4.6: Different samples used to train models

As discussed in the data transformation section, redefining the unemployment period was neces-
sary because some catwz uit values were not useful in presenting ’job found’. However, one can
argue about those correct proxies in the sense that a person who has found a job for one day is
not actually employed. In line with this argument, all records with temporary work (value for
catwz uit equals 89) were removed from the dataset and new samples were drawn. The number
of records in these samples is presented between brackets in Table 4.6. Class distribution of All
(-89) sample is 33.46% High, 19.80% Medium, and 46.74% Low. Similar to the All sample, the
sample size of All (-89) includes 10% of the population without 89.

4.3.3 Evaluation Metrics

Throughout this research, different evaluation measures were used. First of all, optimal param-
eters were chosen based on Cohen’s kappa statistic. The ’caret’ package in R has two embedded
performance measures when dealing with multiclass labels: accuracy and kappa statistic. Ac-
curacy could not be used due to imbalanced class distributions in the different samples. In
contrast, Cohen’s kappa statistic, which integrates the expected accuracy, is better in addressing
the imbalanced problem [45]. As a result, it was preferred over accuracy. Note that a possible
solution to cope with imbalanced class distributions is over or under sampling. However, due to
a certain bias that evolves out of this solution, it was not preferred.
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Next, precision1, recall, and macro-averaged F score were computed for the final model of each
machine learning technique. These performance measures are recommended for multiclass classi-
fication models, as discussed in M. Sokolova & G. Lapalme (2009) [74]. Macro-averaged F score
was preferred over micro-averaged F score because the latter tends to be biased by imbalanced
classes, as described by A. zgr et al (2005) [75] and Y. Yang & X. Liu (1999) [76]. As a result,
the former was used to rank the models: the higher the metric, the better. Note that precision
was often NaN, leading to an F score of NaN.

To round it off, all used metrics in the context of a multiclass classification task are defined below:

Cohen’s Kappa Statistic measures the inter-rater agreement of different class labels. The
raters can be seen as the columns and rows of a confusion matrix (actual vs predicted). Both
observed accuracy and expected accuracy (random classifier) are computed. As a result,
one can calculate Kappa statistic as the difference in observed and expected accuracy over
one minus the expected accuracy. More information about Kappa statistic and its scaling
interpretation can be found in A.J. Viera & J.M. Garrett (2005) [77].

Precision defines the number of correctly classified instances of a certain class label compared
to the number of instances that were predicted for that class label [74].

Recall defines the number of correctly classified instances of a certain label compared to the
number of instances for that label in the entire dataset [74].

Macro-averaged F score is a combination of precision and recall, as discussed in M. Sokolova
& G. Lapalme (2009) [74]. Note that from a business context, preference is given to
precision.

1Precision or positive predictive values = PPV



Chapter 5

Results

Results are presented in the following subsections. First, the variable importance according to
the Cox proportional hazard model is presented. Second, the two general samples, with and
without temporary work, are discussed based on their evaluation measures. Next, the results
of subsamples as tabulated in Table 4.6 are discussed. Finally, the results of models without
temporary work are illustrated.

5.1 General Samples

5.1.1 Cox PH Model

The Cox proportional hazard model was used to plot a survival graph of both samples in order
to portray the relation between the number of unemployed days and the probability of finding a
job. This graph is shown in Figure 5.1. Note that censored cases were not included as the curve
would be rendered unreadable.

Figure 5.1: Survival curve of both samples

It makes sense that the curve with temporary work is lower than that without because a lot
of records with temporary work found a job after 1-10 days. As a result, the curve lowered
’faster’ than the one without temporary work. In addition, results from both curves are useless
to compare with each other. Besides the survival graph, the most significant attributes in the cox
model were also computed. In Table 5.1, the top eight (p-value <2e-16, α of 5%) are illustrated
for both with and without temporary work. Note that most attributes are the same in both
samples, which suggests there is not much of a difference in fitting both. More extensive results
from the cox regression model for the general sample are attached in appendix 7, but will not be

16
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discussed further. Hence, we refer to V. Ciuca & M. Matei (2010) [7] for a deeper analysis with
Cox PH model.

All with temporary work All without temporary work
Catwz in 2/5/11 (base 0) Catwz in 2 (base 0)
Leeftijd start wklshd Leeftijd start wklshd
Provincie west vl (base Antwerpen) DGRAGH N (base J)
DGRAGH N (base J) Studie niveau laag/midden (base hoog)
Taal N NANA (base 0) Taal N 0/1/2/3 (base NaNa)
Wrkls periodes voor instr Dagen wrkls 10j voor
Dagen wrkls 10j voor Aantal bedrijven
Aantal bedrijven DGRALL N (base J)

Table 5.1: Significant attributes

5.1.2 Predictive Models

Turning to the results of different machine learning techniques in both samples, precision (PPV),
recall, and the macro-averaged F score are tabulated in Tables 5.2 and 5.3. More precisely,
precision and recall of each class label - High, Medium, Low - are shown together with the
overall F score of the classifier. The best classifier is chosen based on the F score, as mentioned
in 4.3.3 on evaluation metrics.

All High (25%) Medium (16%) Low (58%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5634 0.3628 NaN 0.0000 0.6446 0.9269 NaN
Bagging RPART 0.5487 0.3210 NaN 0.0000 0.6369 0.9319 NaN
RandomForest 0.5922 0.3791 0.3415 0.0104 0.6493 0.9292 0.4156
J48 0.5092 0.3780 0.2626 0.0542 0.6523 0.8713 0.4236
GBM 0.5700 0.4543 0.2840 0.0171 0.6657 0.9021 0.4364
C5.0 0.5666 0.4307 0.2292 0.0082 0.6608 0.9106 0.4237
JRip 0.5674 0.3417 NaN 0.0000 0.6363 0.9264 NaN
Nnet 0.4994 0.4071 NaN 0.0000 0.6448 0.8797 NaN
SVM 0.5200 0.3648 0.2344 0.0223 0.6427 0.8909 0.4054
NB 0.1818 0.0010 0.5000 0.0030 0.5830 0.9975 0.2479
OLR 0.5290 0.3097 NaN 0.0000 0.6300 0.9218 NaN

Table 5.2: Results from general sample with temporary work

For every algorithm, recall and precision of the class label Low are the highest compared to the
other two labels. Recall of Medium is at most 0.0542, which is extremely low. In addition, five
out of eleven techniques give a precision of NaN. These NaN values in the PPV columns mean
that there were no predictions for a certain label, e.g. if there were 1000 instances with class
label Medium, then none of them was actually classified as Medium. Most of the techniques have
a precision above 60% for the Low label and a recall for the Low label that is about twice that
of the High label, expect for Naive Bayes. It is clear that Naive Bayes is unable to distinguish
High class labels, resulting in an F score of 0.2479. In general, the best classifiers are C5.0, J48
and gradient boosting, with respective F scores of 0.4237, 0.4236 and 0.4364. Note that C5.0
and J48 are similar algorithms. Significance tests are performed in section 6.1.

Next, the results for the sample without temporary work are discussed in Table 5.3. In line with
the previous sample, the combination of recall and precision for the Low class label is again for
every technique the highest compared to the other two labels. However, they are lower than the
previous sample. Medium has again very low support, not even covering 10%. Precision of High
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is on average 0.5296, which is almost equal to that of the Low label (0.5675). Overall, the best
classifiers are again J48, C5.0 and gradient boosting (GBM), with respective macro-averaged F
scores of 0.4412, 0.4314 and 0.4355. However, these are still quite low scores compared to the
highest possible value of 1.

All (-89) High (33%) Medium (19%) Low (47%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5362 0.5894 0.5227 0.0045 0.5750 0.7757 0.4103
Bagging RPART 0.5221 0.5658 NaN 0,0000 0.5671 0.7734 NaN
RandomForest 0.5740 0.5808 0.3478 0.0109 0.5842 0.8185 0.4268
J48 0.5326 0.5778 0.2546 0.0811 0.5863 0.7201 0.4412
GBM 0.5772 0.6183 0.3228 0.0119 0.5963 0.8091 0.4355
C5.0 0.5526 0.6169 0.3875 0.0181 0.5943 0.7851 0.4314
JRip 0.6038 0.4281 0.5218 0.0039 0.5421 0.8806 0.3933
Nnet 0.5294 0.6227 NaN 0.0000 0.5896 0.7657 NaN
SVM 0.5546 0.5687 0.2037 0.0021 0.5762 0.8068 0.4129
NB 0.3000 0.0007 0,0000 0.0000 0.4699 0.9987 NaN
OLR 0.5431 0.5176 NaN 0.0000 0.5617 0.8178 NaN

Table 5.3: Results from general sample without temporary work

All things considered, Low class labels are easier to predict than Medium class labels and to
a lesser extent High class labels. In addition, GBM is the best albeit still underperforming
classifier over the two samples (with and without 89). These underwhelming results suggest that
classifiers are not capable of fitting the data well. In the following sections, models’ performances
on the subsamples are discussed.

5.2 Subsamples with Temporary Work

In this section, results regarding certain subsamples including temporary work are discussed. We
refer to Table 4.6 for the names and specifications of those samples. Samples’ results were chosen
based on the business context. More precisely, acquiring more information about lowly educated
people under the age of 26 and highly educated people above the age of 49 was interesting. The
other results can be found in appendix 4.

J 25 Laag High (30%) Medium (17%) Low (52%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5246 0.4933 0.4151 0.0369 0.6227 0.8303 0.4229
Bagging RPART 0.5254 0.4480 NaN 0.0000 0.6084 0.8595 NaN
RandomForest 0.5688 0.4740 0.3438 0.0184 0.6177 0.8689 0.4383
J48 0.5025 0.3969 0.2312 0.0725 0.5978 0.8044 0.4548
GBM 0.5527 0.4798 0.2292 0.0185 0.6156 0.8479 0.4571
C5.0 0.5283 0.4942 0.3696 0.0285 0.6250 0.8375 0.4278
JRip 0.5836 0.3902 NaN 0.0000 0.5920 0.8986 NaN
Nnet 0.5215 0.4316 NaN 0.0000 0.6023 0.8595 NaN
SVM 0.5015 0.4827 0.1270 0.0134 0.6112 0.8039 0.4049
NB NaN 0.0000 0.0000 0.0000 0.5257 0.9966 NaN
OLR 0.5011 0.4403 NaN 0.0000 0.5972 0.8347 NaN

Table 5.4: Results from sample J 25 Laag
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Performances shown in Table 5.4 are not very different from the general sample. However, recall
has lowered slightly for the Low label and increased somewhat for the High label. Medium class
is still very hard to fit and GBM is again among the best classifiers together with J48 and to a
lesser extent Random forest.

J 50 Hoog High (38%) Medium (16%) Low (46%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5685 0.6278 0.2222 0.0038 0.6080 0.7723 0.4281
Bagging RPART 0.5396 0.6385 NaN 0.0000 0.6096 0.7380 NaN
RandomForest 0.5697 0.6450 0.0909 0.0132 0.6160 0.7394 0.4334
J48 0.4877 0.6661 0.1954 0.0644 0.6157 0.5772 0.4186
GBM 0.5756 0.6352 0.1875 0.0113 0.6137 0.7702 0.4361
C5.0 0.5683 0.6122 0.0000 0.0000 0.6014 0.7791 NaN
JRip 0.5960 0.5127 NaN 0.0000 0.5644 0.8354 NaN
Nnet 0.5365 0.6763 NaN 0.0000 0.6176 0.7078 NaN
SVM 0.5304 0.6516 0.2667 0.0075 0.6159 0.7160 0.4206
NB 0.4601 0.7666 0.0000 0.0000 0.6395 0.5158 NaN
OLR 0.5268 0.6621 NaN 0.0000 0.6123 0.7652 NaN

Table 5.5: Results from sample J 50 Hoog

Similar findings hold for results in Table 5.5. Random forest and GBM perform just about the
same, with an almost identical F score as consequence. Again, all learners have difficulties with
fitting the medium class label. Notice that the recall of the Low label has lowered with nearly
10% on average. In other words, when comparing highly educated people above the age of 49
with low unemployment duration to lowly educated people under the age of 26 with low unem-
ployment duration, the former was more difficult to support as such.

To summarize, the overall F scores of different data mining techniques still underperform. A
lot of them are incapable of predicting the medium class labels, where the highest recall on
both samples is 10.81%. In contrast, the Low and to a lesser extent High interval are better
predicted, meaning that people at risk of long-term unemployment are distinguished from those
with shorter term (0-3 months). For example, according to GBM (Table 5.5), 77% of the Low
instances were recognized as short-term unemployed, and 61% of the records predicted as short-
term unemployed were correctly classified as such.

5.3 Subsamples without Temporary Work

In contrast to the two samples in the previous section, temporary work is now excluded. Table
5.6 presents results for lowly educated people under the age of 26, while Table 5.7 shows those
for highly educated people above the age of 49. More results are shown in appendix 5.
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J 25 Laag(-89) High (40%) Medium (21%) Low (39%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5905 0.6574 0.2471 0.0324 0.5159 0.6872 0.4229
Bagging RPART 0.5764 0.7015 NaN 0.0000 0.5265 0.6775 NaN
RandomForest 0.6089 0.7051 0.3512 0.0262 0.5396 0.7084 0.4383
J48 0.5867 0.6645 0.2979 0.1081 0.5363 0.6374 0.4548
GBM 0.6176 0.6912 0.3737 0.0571 0.5457 0.7173 0.4571
C5.0 0.6141 0.7022 0.2258 0.0108 0.5299 0.7116 0.4278
JRip 0.5356 0.8125 NaN 0.0000 0.5663 0.5410 NaN
Nnet 0.5552 0.7279 NaN 0.0000 0.5220 0.6174 NaN
SVM 0.5582 0.7125 0.2333 0.0108 0.5214 0.6239 0.4049
NB 0.6892 0.3228 0.0000 0.0000 0.4356 0.9204 NaN
OLR 0.5700 0.7007 NaN 0.0000 0.5137 0.6539 NaN

Table 5.6: Results from sample J 25 Laag (-89)

Records with long unemployment duration are predicted in quite the same manner as those
with short unemployment duration. The average precision and recall are respectively 0.5404 and
0.6726 for the High label. The Medium class is still very difficult to fit, with barely 10% as
highest recall and about 40% as highest precision. J48 and GBM are the best classifiers.

J 50 Hoog(-89) High (46%) Medium (19%) Low (35%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5727 0.7885 0.3500 0.0113 0.5197 0.5311 0.4036
Bagging RPART 0.5661 0.7951 NaN 0.0000 0.5140 0.5153 NaN
RandomForest 0.5885 0.8281 0.2125 0.0276 0.5604 0.5206 0.4255
J48 0.5237 0.7300 0.1644 0.0797 0.4681 0.3532 0.3733
GBM 0.5960 0.8221 0.2826 0.0211 0.5563 0.5539 0.4285
C5.0 0.5703 0.8096 0.2667 0.0130 0.5445 0.5206 NaN
JRip 0.5215 0.9124 NaN 0.0000 0.5871 0.3190 NaN
Nnet 0.5641 0.7938 NaN 0.0000 0.5202 0.5197 NaN
SVM 0.5661 0.8182 0.1628 0.0113 0.5399 0.4917 0.4017
NB 0.4648 0.9947 0.0000 0.0000 0.5600 0.0123 NaN
OLR 0.5394 0.8038 NaN 0.0000 0.5180 0.4654 NaN

Table 5.7: Results from sample J 50 Hoog (-89)

The High interval is now predicted quite well in terms of recall, as shown in Table 5.7. However,
Medium intervals are still poorly fitted. The Low class label’s recall lowered with 15% to 20%
on average. Precision on the High and Low label are nearly the same, with an average of around
0.54. On the whole, gradient boosting and Random forest seem to be the best in predicting
unemployment duration. Note that both models highly underperform with respective F scores
of 0.4285 and 0.4255.

To summarize, distinguishing records from Medium class labels still poses a challenge. This
suggests that some further research could be done with regard to the different interval thresholds.
Moreover, one can train models on even smaller subgroups, e.g. people under the age of 26 with
a degree and driver’s license. In this way, classifiers might fit the data better and good predictive
models could be built. Unfortunately, we were unable to conduct further research on this issue
due to time constraints.
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Benchmarking

Relationships between data mining techniques and samples are discussed. First, the best and
worst performing algorithms are illustrated and compared over both kinds of samples. Next, the
macro-averaged F scores of the top three algorithms are depicted on the basis of the different
samples. A graph is also plotted to discuss the differences in performance between the white and
black box techniques. Finally, a sneak peek is provided for further research.

6.1 Comparing Data Mining Techniques

In Figure 6.1, the top scoring data mining techniques are illustrated. The absolute values in the
pie charts represent the number of times a certain technique occurred in a sample’s top three.
The top three represent the three highest F scores over all samples with and without temporary
work. More precisely, the pie chart to the left in Figure 6.1 presents the best classifiers over all
samples, while that to the right presents those over all samples without temporary work.

Figure 6.1: Classifiers over all samples (left), without temporary work (right)

There is one main difference between the two pie charts. Random forest (13) is well represented
among the best classifiers on the right, while on the left it makes way for C5.0 decision tree (9).
Similar in both charts is the fact that artificial neural networks and support vector machines
each appear only once. It seems that Random forest is better at fitting the data when the lower
boundary of number of days until employment is higher. On the other hand, when more instances
have a very low number of days until employment, C5.0 and to a lesser extent Rpart are the
better learners. Note that some people find a temporary job after two days, and a ’real’ (full-
or part-time) job only after 100 days. Generally speaking, gradient boosting is the best classifier.

The worst learners are depicted in Figure 6.2. The absolute values in the pie charts represent
the number of times a certain technique occurred with the lowest F score of a sample.
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Every time, more than three algorithms had NaN values. As a result, they all have the same
(lowest) value. Notice that on the left chart the total number of NaN occurrences (84) is higher
than that on the right chart (72). In other words, more classifiers had difficulties in fitting the
samples with temporary work.

Figure 6.2: Classifiers over all samples (left), without temporary work (right)

On the whole, Rpart bagging, Ordinal logistic regression, and JRip are the worst performers.
From the pie chart on the left, Naive Bayes and Nnet also have many NaN values. While on
the right chart, support vector machines is not represented in the top three algorithms nor is
it found among the poorest learners. Notice that on the left chart, J48 and GBM have zero
occurrences, while on the right chart Random forest, GBM, J48 and support vector machines
have zero occurrences.

Next, the top three performing data mining techniques are depicted in detail in Figure 6.3. More
precisely, each sample with its respective F score is illustrated for the three methods. Notice
that for each sample the F scores of the three top performing techniques are shown, even if they
were not among the best three for a specific sample. NaN values are excluded and represented
by a discontinuous interval. Finally, J48 was preferred over Rpart because the latter had two
non-values.

Figure 6.3: Top three performing classifiers



6.1. COMPARING DATA MINING TECHNIQUES 23

In general, GBM seems to be better in predicting new instances than C5.0 and J48 decision
tree. The highest F scores can be found in samples with age above 50. In contrast, the lowest
overall performances are found in the sample with highly educated people under the age of 26:
All 25 Hoog. In Figure 6.4, the same is depicted for samples without temporary work. Notice
that Random forest, GBM, and J48 were the best classifiers.

Figure 6.4: Top three performing classifiers (-89)

On the whole, Random forest and GBM are better in fitting the data and thus predicting new
instances. The performances of J48 decision tree are high at the J 25 Laag sample but subse-
quently dip to very low at J 25 Hoog. GBM is able to maintain a nearly constant performance
with heights in samples where age is under 26. The same is true of Random forest. Comparing
both figures, it would seem that samples with age above 50 are better classified when temporary
work is included, while instances under the age of 26 are better predicted when temporary work
is excluded. However, if the three classifiers in each figure are combined into their respective
averages per sample, then there is no significant difference between those averages, as shown by
a paired Wilcoxon signed-rank test (p-value of 0.978, 5% α). To conclude, we again want to
stress the fact that F scores around 0.4 are actually well below par.

Finally, white box versus black box techniques are discussed. As already mentioned in the intro-
duction, it is important for the VDAB to have some explanatory indications of the final output.
White box algorithms are in a sense more interpretable than black box methods because their
structure gives insights into the final result. Two of the eleven techniques are considered as
black box algorithms: neural networks and support vector machines. The others are white box
methods, even gradient boosting machines according to Natekin and Knoll (2013) [78].

In Figure 6.5, support vector machines are compared to gradient boosting machines. Gradient
boosting is the best classifier over all samples, and SVM is a black box technique whose perfor-
mance fluctuates between high and low. It makes no sense to compare them with neural networks
as they have NaN values on nearly all samples. We can see that support vector machines perform
reasonably well compared to gradient boosting on all samples except three: All Laag, J 50 Laag,
and J 50 Midden. Nevertheless, a paired Wilcoxon signed-rank test (α = 5%) shows that on
average GBM performs significantly better than SVM: p-value of 2.4410e-04. This kind of test
was preferable to a normal t-test because the F scores were not normally distributed.
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Figure 6.5: Random forest compared to support vector machines on all samples

In Figure 6.6, Random forest, SVM and GBM are depicted. GBM is on average the best white
box classifier on samples without temporary work. It performs on average significantly better
than support vector machines (p-value of 3.052e-05, 5% α) and to a lesser extent than random
forest (p-value of 3.052e-04, 5% α). In addition, random forest performs also significantly better
than SVM (p-value of 3.052e-04, 5% α).

Figure 6.6: GBM and RF compared to SVM

In conclusion, white box algorithms - especially GBM - are on average significantly better in
predicting new instances compared to black box methods on both kinds of samples.

6.2 Comparing Time Intervals

Some further research into the different labelling could be conducted. Here, we try to give a brief
introduction on how different time intervals can change the performance of six machine learning
techniques. More precisely, a combination of the best and worst methods was chosen. The All
sample and All sample (-89) are used to train and test the algorithms, and are shown respectively
in Figures 6.7 and 6.8. More detailed results are tabulated in appendix 6, where ’High’ is set
counterintuitively as the ’positive’ class label. Samples are drawn randomly (∼10,000 records)
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and split into 70/30% for training and testing models. Class distributions are also tabulated in
appendix 6 where H stands for High and L for Low.

Figure 6.7: Comparison of different time intervals

Three different time intervals are used; more specifically, the split between the Low and High
label is made consecutively after 3, 6, and 12 months. Notice that these are binary class labels
instead of multiclass ones, which were initially used in this research. The medium label was
always fitted very poorly, so it was removed in order to have better distinguishable groups. We
can see that overall the F scores are improved to an average of around 0.6, excluding Naive
Bayes. All algorithms considered, there are no significant differences among the time intervals
(p-value between <3 & <6 months equals 0.8438, <6 & <12 p-value of 0.0625 and <3 & <12
p-value of 0.0625 5% α).

Figure 6.8: Comparison of different time intervals in sample without temporary work

F scores are also around 0.6, excluding Naive Bayes. Performances over intervals are not sig-
nificantly different, all algorithms considered (p-value between <3 & <6 months equals 0.4375,
<6 & <12 p-value of 0.2188 and <3 & <12 p-value of 0.3125 5% α). Naive Bayes is for both
samples the most underperforming classifier.
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Recommendations to the VDAB

In this thesis, different prediction models were trained to predict at registration the unemploy-
ment duration of a job seeker on the basis of his/her distinctive personal characteristics. In
addition, most of these models were found capable of providing insights as to why certain job
seekers are at risk, e.g. lowly educated. These outcomes can be used by the VDAB to become
more proactive in their effort to provide guidance to job seekers.

The ’best’ models for each sample are indicated in Table 7.1. These models were chosen based
on their performance with regard to precision and recall of the Low and High label. The Medium
label was very hard to predict and is less important when the other two are well distinguishable.
Only samples that include temporary work are illustrated because no significant difference was
found between samples with and without temporary work (see section 6.1). Note that the macro-
averaged F score is still computed over all three class labels.

High Medium Low Overall
Sample Technique

PPV Recall PPV Recall PPV Recall MacroF
All GBM 0.5700 0.4543 0.2840 0.0171 0.6657 0.9021 0.4364
All Laag RF 0.6025 0.4856 0.2500 0.0079 0.6404 0.8893 0.4325
All Midden GBM 0.5422 0.4070 0.1837 0.0166 0.6795 0.9076 0.4242
All Hoog Nnet 0.4499 0.4831 NaN 0.0000 0.6691 0.8653 NaN
J 25 GBM 0.5979 0.4018 0.2432 0.0163 0.6922 0.9466 0.4369
J 25 Laag RF 0.5688 0.4740 0.3438 0.0184 0.6177 0.8689 0.4247
J 25 Midden GBM 0.5229 0.3404 0.3426 0.0634 0.7129 0.9260 0.4416
J 25 Hoog GBM 0.4658 0.2086 0.3362 0.1119 0.7260 0.9239 0.4231
J 50 GBM 0.5852 0.6134 0.5000 0.0089 0.6488 0.8189 0.4468
J 50 Laag GBM 0.5938 0.6032 0.1094 0.0156 0.6598 0.8090 0.4509
J 50 Midden GBM 0.5998 0.5752 0.3077 0.0087 0.6487 0.8457 0.4461
J 50 Hoog GBM 0.5756 0.6352 0.1875 0.0113 0.6137 0.7702 0.4361
J 25-50 GBM 0.5541 0.4249 0.2881 0.0331 0.6457 0.8829 0.4288
J 25-50 Laag GBM 0.5592 0.4615 0.1111 0.0021 0.6432 0.8715 0.4166
J 25-50 Midden GBM 0.4945 0.3990 0.2553 0.0253 0.6476 0.8623 0.4091
J 25-50 Hoog GBM 0.5325 0.4467 0.3000 0.0268 0.6556 0.8861 0.4296

Table 7.1: Results based on Low & High class label

Based on the sample All Laag, the random forest model has the highest precision of the High
label over all samples, as illustrated in Table 7.1. Put alternatively: if a lowly educated person is
predicted as long-term unemployed, then in 60.25% of cases a prediction as such will be accurate.
On the other hand, the gradient boosting model, based on the sample J 25 Hoog, has the highest
precision of the Low label. This means that if a highly educated person under the age of 26 is
predicted as short-term unemployed, then in 72.60% of cases such a prediction will be spot on.

Finally, some recommendations regarding further research may here be proffered. One of the
limitations of the current research was a lack of attributes describing job seekers’ motivation, will-
ingness to work, social and soft skills (e.g. some people are extrovert, while others are introvert).
These attributes might have a significant impact on the risk of long-term unemployment
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and could distinguish between different groups in terms of unemployment duration [79]. Further
research could look into ways of incorporating these attributes as well. This, however, might
come with possibly inaccurate reflections of reality due to the less quantifiable and more subjec-
tive nature of this kind of attributes.

In addition, further research could also examine how models behave on more detailed samples. In
the current research, samples were filtered based on two attributes: age and education. However,
another attribute diversifier such as driving license could also be introduced. Or, more detailed
information about the degree of education/previous job experience might be proposed, e.g. train
models only on a sample of engineers or fishermen living relatively far away from a harbour. In
this way, a variety of small models might better fit the data and hence have a better predictive
performance. Note that in this research very detailed attributes were aggregated, e.g. level of
education or city/town. As education and residence are significant attributes in explaining the
unemployment duration, one could use them in a more detailed manner. However, this kind of
fine granularity - 1196 factor levels in Studies - will take a certain amount of time to model.
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Conclusion

The main objective was to predict and explain the unemployment duration among the newly
unemployed so as to provide better guidance to those who are at risk of long-term unemploy-
ment. Different machine learning techniques were tested to construct predictive models upon
multiple specified samples. These samples were split into 70/30% to train and subsequently test
the performance of the model. Generally speaking, the performance of those models in terms of
F scores was rather low, with the highest score at around 0.46, which is quite low compared to
the highest possible value of 1.

In all, gradient boosting performs best in predicting unemployment duration. However, for cer-
tain groups of job seekers, unemployment duration is best predicted using the J48 algorithm,
C5.0 decision tree or Random Forest. On the whole, the performance of classifiers on samples
without temporary work is lower than that of those with such work. This is mostly due to a
better recall of the Medium class label in the latter scenario. On the one hand, classifiers tend
to be better at predicting unemployment duration for job seekers under the age of 26 when
temporary work is not included in the train data. While on the other hand, job seekers above
the age of 49 are better distinguished from the other samples when temporary work is included
in the train data. However, all samples considered, the difference in performance found between
samples with and without temporary work is not significant.

As described in the introduction, the high number of people in long-term unemployment is a key
issue. It is crucial to provide better guidance to job seekers and work more proactively towards
significantly reducing the number of long-term unemployment. This research can thus conclude
that short-term unemployment and to a lesser extent long-term unemployment are both easier
to predict than medium-term unemployment. This means that people at risk of long-term unem-
ployment (more than 6 months) are distinguishable from those with short-term unemployment
(up to 3 months). As a result, it is possible to provide guidance in a more efficient manner to the
former group. However, any conclusion based on these results should be handled with caution
as the predictive performance is low.

Another important finding of this research is that in general white box algorithms performed
significantly better in predicting unemployment duration than black box methods. This means
that it is possible to offer insights into the predicted unemployment duration by means of ex-
planatory indications. This allows for addressing job seekers’ characteristics that are negatively
impacting their unemployment duration, thereby improving their chance of finding a job in a
more timely manner.

A brief comparison of different time intervals has shown that classifiers better fit the data when
the medium class label is removed. Excluding Naive Bayes, F scores rose from an average of
0.4 to 0.6. In addition, there are no significant differences between different splits in interval.
However, when Naive Bayes is excluded, prediction models perform better when the Low class
is split from the high class label at three months. Nevertheless, considering three months as a
fair threshold for long-term unemployment is not a straightforward decision.

Finally, further research paths include building models on more detailed samples by raising the
number of filters, adding more detailed information on certain aggregated attributes, and incor-
porating attributes that describe job seekers’ social and soft skills, motivation, and willingness
to work.
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Appendix A

1. List of attributes

Attribute Exclude Reason to exclude Explanation
KLNR yes No explanatory use ID number of a person
DATUM INSTROOM WKLSHD yes No explanatory use Date of signing up at VDAB
DATUM UITSTROOM WKLSHD yes No explanatory use Date of signing out at VDAB
AANTAL DAGEN WERKLOOS yes Changed to tijdsinterval

(Class.)
Difference between Date in and
Date out

CATWZ IN(STROOM) no Code of signing up at the VDAB
CATWZ UIT(STROOM) yes No explanatory use Code of signing out at the VDAB
LEEFTIJD START WKLSHD no Age at start of unemployment

(14<x<67)
PROVINCIE no Province of accommodation
GEMEENTE yes Aggregated into Provincie Town of accommodation
CD POST yes Equivalent to Gemeente City code
CD NIS yes Equivalent to CD POST NIS code
DGRLFT yes Included in

leeftijd start wklshd
Age at start of unemployment

DGRAGH no Disabled
DGRLGS yes Aggregated into

studie niveau
Lowly educated

DGRVER yes Constant value /
DGRALL no Foreign
DGRZAG yes Constant value Heavily disabled
EIGEN WAGEN no Owns car
RIJBEWIJS no Drivers license
CAT ARBGESCH no Able to work
GESLACHT no Gender
NATIONALITEIT no Aggregated into Conti-

nent
Nationality

GEBOORTEDAT yes Included in
leeftijd start wklshd

Date of birth

STUDNIV DBDA yes Aggregated into
studie niveau

Education ranking

UITREIKINGSDATUM LED yes Too detailed Date reception degree
AFSTUDEER JAAR BURGER yes Missing values (+-50%) Graduating date
STUDIE NIVEAU no Education level (low, medium,

high)
STUDIES yes Aggregated into

studie niveau
Degree of studies

STUDIES2 yes Aggregated into
studie niveau

Extra degree of studies

29
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STUDIESA yes Aggregated into
studie niveau

Extra degree of studies

KENNIS NEDERLANDS yes Included in Taal N Knowledge of Dutch
TAAL N no Knowledge of Dutch
TAAL F no Knowledge of French
TAAL E no Knowledge of English
MOEDERTAAL yes No explanatory use Mother tongue
AANTAL TALEN NIV 1 yes Included in Taal N,F,E Languages of level 1
AANTAL TALEN NIV 2 yes Included in Taal N,F,E Languages of level 2
AANTAL TALEN NIV 3 yes Included in Taal N,F,E Languages of level 3
WRKLS PERIODES VOOR INSTR no Number of periods unemployed
DAGEN WERK 10J VOOR yes Aggregated into Ar-

beid dagen
# worked days within 10 years

DAGEN WRKLS 10J VOOR no # days unemployed within 10
years

DAGEN WERK 1J NA yes Constant value # days worked one year after
signing up

DAGEN WRKLS 1J NA yes No explanatory use # days unemployed one year af-
ter signing up

AANTAL MOM yes No explanatory use # tailored emails
AANTAL MOM 1J VOOR yes No explanatory use # tailored emails one year before

job
AM yes No explanatory use # matching job openings
AM MAIL TOEGEKOMEN yes No explanatory use # matching job openings re-

ceived by mail
AM GELEZEN yes No explanatory use # matching job openings read
AM 1J VOOR yes No explanatory use # matching job openings one

year before job
AM MAIL TOEGEKOMEN 1J VOOR yes No explanatory use # matching job openings re-

ceived by mail one year before
job

AM GELEZEN 1J VOOR yes No explanatory use # matching job openings read
one year before job

CVS INSTROOM no # CVs
CVS TOEGEVOEGD yes No explanatory use # CVs added
GEWENSTE JOBS INSTROOM no # wanted jobs
GEW JOBS TOEGEVOEGD yes No explanatory use # wanted jobs added
GEWENSTE JOBS ERV 1 INSTROOM no # wanted jobs with one-year ex-

perience
GEW JOBS ERV 1 TOEGEVOEGD yes No explanatory use # wanted jobs with one-year ex-

perience added
GEWENSTE JOBS ERV 2 INSTROOM no # wanted jobs with two-year ex-

perience
GEW JOBS ERV 2 TOEGEVOEGD yes No explanatory use # wanted jobs with two-year ex-

perience added
GEWENSTE JOBS ERV 3 INSTROOM no # wanted jobs with three-year

experience
GEW JOBS ERV 3 TOEGEVOEGD yes No explanatory use # wanted jobs with three-year

experience added
GEWENSTE JOBS ERV 4 INSTROOM no # wanted jobs with four-year ex-

perience
GEW JOBS ERV 4 TOEGEVOEGD yes No explanatory use # wanted jobs with four-year ex-

perience added
GEWENSTE KNELPUNTBEROEPEN no # wanted bottleneck jobs
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GEWENSTE UITZONDERING
BEROEPEN

no # wanted jobs with no openings

MAX RATIO VAC PER KANDIDATEN no Ratio job openings & # appli-
cants

TOTAAL AANTAL VACATURES yes Included in
max ratio vac..

# job openings

TOTAAL AANTAL KANDIDATEN yes Included in
max ratio vac..

# job applicants

OPL UREN VOOR INSTROOM no # training hours before unem-
ployment

OPL VOOR INSTROOM yes Included in
opl uren voor instroom

# training before unemployment

OPL BEEINDIGD VOOR INSTROOM yes Included in
opl uren voor instroom

# training ended before unem-
ployment

OPL WEBLEREN VOOR INSTROOM yes Included in
opl uren voor instroom

# online training before unem-
ployment

OPL UREN yes No explanatory use Training hours during unemploy-
ment

OPL BEGONNEN yes No explanatory use # training started during unem-
ployment

OPL BEEINDIGD yes No explanatory use # training ended during unem-
ployment

OPL WEBLEREN yes No explanatory use # online training during unem-
ployment

INTERESSES INSTROOM no Changed into true/false # interests
INTERESSES TOEGEVOEGD yes No explanatory use # interests added
INTERESSES NU yes No explanatory use # interests now
REFERS INSTROOM no Changed into true/false # references
REFERS TOEGEVOEGD yes No explanatory use # references added
AANTAL BEDRIJVEN no # companies worked for
ARBEID DAGEN no # days worked
AANTAL ARBEIDSCONTRACTEN no # employment contracts
AANTAL BEDRIJVEN INTERIM yes High correlation (0,94)

with aantal bedrijven
# companies worked for as tem-
porary emp.

ARBEID DAGEN INTERIM no # days worked as temporary
emp.

AANTAL ARBEIDSCONTR INTERIM yes High correlation
(0,96) with aan-
tal arbeidscontracten

# employment contracts as tem-
porary emp.

AANTAL BEDRIJVEN STUDENT yes Aggregated into aan-
tal bedrijven

# companies worked for as stu-
dent

ARBEID DAGEN STUDENT yes Aggregated into ar-
beid dagen

# days worked as student

AANTAL ARBEIDSCONTR STUDENT yes Aggregated into aan-
tal arbeidscontracten

# employment contracts as stu-
dent

AANTAL BEDRIJVEN X yes Aggregated into aan-
tal bedrijven

# agricultural & catering com-
panies worked for

ARBEID DAGEN X yes Aggregated into ar-
beid dagen

# days worked at companies X

AANTAL ARBEIDSCONTR X yes Aggregated into aan-
tal arbeidscontracten

# employment contracts at com-
panies X

AANTAL BEDRIJVEN IBO yes Aggregated into aan-
tal bedrijven

# companies gave professional
training

ARBEID DAGEN IBO yes Aggregated into ar-
beid dagen

# days worked at companies IBO
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AANTAL ARBEIDSCONTR IBO yes Aggregated into aan-
tal arbeidscontracten

# employment contracts at com-
panies IBO

AANTAL BEDRIJVEN BOUW yes Aggregated into aan-
tal bedrijven

# construction companies
worked for

ARBEID DAGEN BOUW yes Aggregated into ar-
beid dagen

# days worked at companies
BOUW

AANTAL ARBEIDSCONTR BOUW yes Aggregated into aan-
tal arbeidscontracten

# employment contracts at com-
panies BOUW

AANTAL BEDRIJVEN OTHER yes Aggregated into aan-
tal bedrijven

# other companies worked for

ARBEID DAGEN OTHER yes Aggregated into ar-
beid dagen

# days worked at companies
OTHER

AANTAL ARBEIDSCONTR OTHER yes Aggregated into aan-
tal arbeidscontracten

# employment contracts at com-
panies OTHER

TIJDSINTERVAL no class label (time interval)

Table A.1: List of all attributes

2. Catwz in/uit

Catwz in
Code Explanation
0 Fully unemployed, benefit eligibility
2 Job seeker (Article 36) in professional integration time
3 Free-registered job seeker, not working
5 Compulsorily registered O.C.M.W.
6 Registration due to the supervision of a person with a disability (maximum degree OV2)
11 Job seeker in part-time education: job seeker studying part-time or following linked training BUSO-OV3
14 Job seeker excluded from the right to benefits

Table A.2: Catwz in codes

Catwz uit
Code Found a job? Explanation
0 No Fully unemployed, benefit eligibility
2 No Job seeker (Article 36) in professional integration time
3 No Free-registered job seeker, not working
5 No Compulsorily registered O.C.M.W.
6 No Registration due to the supervision of a person with a disability (maximum degree OV2)
11 No Job seeker in part-time education: job seeker studying part-time or following linked train-

ing BUSO-OV3
14 No Job seeker excluded from the right to benefits
18 No Campus enrolment, student who will finish his/her studies at the end of the academic year
19 No Job student: wishes to work as a job student
25 Yes Third employment circuit - full time: working and looking for another job
30 Yes UWV exempt from registration due to PWA activities: working and looking for another

job
32 Yes Dependent RIZIV in preparation for employment:
33 Yes (Candidate) work care assistant
66 No Deceased
70 Yes Regular full-time placement
76 No Unenrolled due to sickness
77 No Unenrolled due to resumption of studies
78 Yes Unenrolled due to job
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79 No Regular unenrolment
80 Yes Part-time employee with benefits: part-time employee receiving benefits and looking for

another job
82 Yes Job seeker (Article 36) in professional integration time, working part-time
85 No Job seeker in individual vocational training
89 Yes/No Regularly works as interim
90 Yes Working full-time, voluntarily registered job seeker
91 Yes Working, part-time student, job seekers: job seeker working part-time and studying part-

time
92 No Temporarily unemployed
93 Yes Working part-time, voluntarily registered job seeker
96 No Enrolment exemption due to family, social reasons
97 No Unemployed exempt from registering as a job seeker because of studies or vocational

training

Table A.3: Catwz uit codes

3. Inappropriate catwz uit

Case 1 Case 2 Case 3
Inappropriate proxies 0,2,3,5,6,11,14,18,19, 0,2,3,5,6,11,14, 76,77,85,96,97

66,76,77,79,85,92,96,97 18,19,76,79,92,96

Table A.4: Inappropriate codes

4. Results on subsamples with temporary work

All Laag High (30%) Medium (16%) Low (54%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5561 0.4587 0.2500 0.0079 0.6285 0.8661 0.4155
Bagging RPART 0.5799 0.3612 NaN 0.0000 0.6065 0.9107 NaN
RandomForest 0.6025 0.4856 0.2500 0.0079 0.6404 0.8893 0.4325
J48 0.5078 0.4886 0.2045 0.0355 0.6377 0.8028 0.4231
GBM 0.5740 0.5095 0.2400 0.0236 0.6460 0.8548 0.4395
C5.0 0.5701 0.5015 0.3333 0.0020 0.6408 0.8678 0.4250
JRip 0.5689 0.3861 NaN 0.0000 0.6099 0.8966 NaN
Nnet 0.5818 0.4000 NaN 0.0000 0.6151 0.9011 NaN
SVM 0.5638 0.4179 0.0000 0.0000 0.6174 0.8836 NaN
NB 0.4286 0.0060 NaN 0.0000 0.5395 0.9966 NaN
OLR 0.5798 0.4159 NaN 0.0000 0.6145 0.8898 NaN

Table A.5: Results on All Laag
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All Midden High (23%) Medium (16%) Low (61%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5060 0.3811 0.2615 0.0313 0.6751 0.8959 0.4202
Bagging RPART 0.6314 0.2545 NaN 0.0000 0.6503 0.9697 NaN
RandomForest 0.5750 0.3566 0.3750 0.0055 0.6699 0.9413 0.4113
J48 0.4835 0.3786 0.2388 0.0589 0.6752 0.8656 0.4259
GBM 0.5422 0.4070 0.1837 0.0166 0.6795 0.9076 0.4242
C5.0 0.5573 0.3708 0.2000 0.0018 0.6701 0.9311 0.4094
JRip 0.5369 0.3385 NaN 0.0000 0.6626 0.9311 NaN
Nnet 0.5091 0.3243 NaN 0.0000 0.6557 0.9198 NaN
SVM 0.4513 0.3592 0.2000 0.0350 0.6663 0.8636 0.4039
NB 0.1000 0.0013 0.0000 0.0000 0.6085 0.9951 NaN
OLR 0.5544 0.2830 NaN 0.0000 0.6509 0.9443 NaN

Table A.6: Results on All Midden

All Hoog High (21%) Medium (19%) Low (60%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.4800 0.3181 0.1966 0.0342 0.6614 0.9058 0.4018
Bagging RPART 0.5382 0.2592 NaN 0.0000 0.6469 0.9590 NaN
RandomForest 0.5802 0.3602 0.1786 0.0078 0.6569 0.9366 0.4105
J48 0.4353 0.2727 0.2000 0.0550 0.6539 0.8814 0.3910
GBM 0.5512 0.3490 0.2796 0.0773 0.6727 0.9058 0.4402
C5.0 0.5306 0.3063 0.1176 0.0030 0.6583 0.9506 0.3907
JRip 0.5849 0.1826 NaN 0.0000 0.6354 0.9765 NaN
Nnet 0.4499 0.4831 NaN 0.0000 0.6691 0.8653 NaN
SVM 0.4746 0.2754 0.2581 0.0475 0.6498 0.9049 0.3951
NB 0.3333 0.0059 0.0000 0.0000 0.6120 0.9967 NaN
OLR 0.4969 0.2327 NaN 0.0000 0.6406 0.9524 NaN

Table A.7: Results on All Hoog

J 25 High (19%) Medium (18%) Low (63%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5593 0.3474 0.1954 0.0308 0.6858 0.9304 0.4238
Bagging RPART 0.6207 0.2526 NaN 0.0000 0.6646 0.9743 NaN
RandomForest 0.6078 0.3240 0.3333 0.0093 0.6806 0.9619 0.4126
J48 0.5189 0.4095 0.2324 0.0599 0.6904 0.8817 0.4425
GBM 0.5979 0.4018 0.2432 0.0163 0.6922 0.9466 0.4369
C5.0 0.4902 0.3965 0.1071 0.0163 0.6944 0.9042 0.4174
JRip 0.5538 0.3070 NaN 0.0000 0.6734 0.9576 NaN
Nnet 0.4426 0.5070 NaN 0.0000 0.7058 0.8791 NaN
SVM 0.5063 0.3526 0.2474 0.0435 0.6883 0.9147 0.4251
NB 0.5000 0.0053 0.4444 0.0072 0.6304 0.9958 0.2656
OLR 0.5538 0.3070 NaN 0.0000 0.6719 0.9555 NaN

Table A.8: Results on J 25
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J 25 Midden High (16%) Medium (17%) Low (66%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.4956 0.2947 0.1628 0.0120 0.7017 0.9415 0.3987
Bagging RPART 0.5951 0.2140 NaN 0.0000 0.6872 0.9761 NaN
RandomForest 0.6371 0.2673 0.3590 0.0236 0.6967 0.9689 0.4105
J48 0.4826 0.2912 0.2917 0.0479 0.7002 0.9216 0.4138
GBM 0.5229 0.3404 0.3426 0.0634 0.7129 0.9260 0.4416
C5.0 0.5588 0.3000 0.3429 0.0205 0.7011 0.9535 0.4124
JRip 0.5427 0.2790 0.2903 0.0154 0.6982 0.9548 0.4014
Nnet 0.4883 0.3298 NaN 0.0000 0.7007 0.9393 NaN
SVM 0.5064 0.2772 0.1644 0.0205 0.6954 0.9322 0.3791
NB 0.0000 0.0000 NaN 0.0000 0.662 1.0000 NaN
OLR 0.5238 0.2316 NaN 0.0000 0.6899 0.9655 NaN

Table A.9: Results on J 25 Midden

J 25 Hoog High (10%) Medium (20%) Low (70%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.3831 0.2362 0.2677 0.2224 0.7290 0.8039 0.4333
Bagging RPART 0.7111 0.0982 NaN 0.0000 0.7046 0.9958 NaN
RandomForest 0.7385 0.1399 0.2143 0.0045 0.7138 0.9937 0.3583
J48 0.3826 0.1845 0.2556 0.0518 0.7134 0.9322 0.3811
GBM 0.4658 0.2086 0.3362 0.1119 0.7260 0.9239 0.4231
C5.0 0.5238 0.1687 0.2895 0.0158 0.7117 0.9763 0.3695
JRip 0.5789 0.1350 NaN 0.0000 0.7075 0.9907 NaN
Nnet 0.3763 0.2239 0.2738 0.0330 0.7207 0.9476 0.3861
SVM 0.4632 0.1350 0.3380 0.0344 0.7124 0.9704 0.3644
NB NaN 0.0000 0.0909 0.0014 0.6978 0.9962 NaN
OLR 0.5341 0.1442 0.0000 0.0000 0.7074 0.9861 NaN

Table A.10: Results on J 25 Hoog

J 50 High (35%) Medium (14%) Low (50%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5514 0.6238 NaN 0.0000 0.6421 0.7760 NaN
Bagging RPART 0.5521 0.6210 NaN 0.0000 0.6412 0.7780 NaN
RandomForest 0.5860 0.5794 0.2778 0.0111 0.6341 0.8229 0.4401
J48 0.5034 0.6310 0.1818 0.0400 0.6457 0.6817 0.4296
GBM 0.5852 0.6134 0.5000 0.0089 0.6488 0.8189 0.4468
C5.0 0.5942 0.5784 0.1429 0.0044 0.6327 0.8296 0.4376
JRip 0.6183 0.5312 NaN 0.0000 0.6211 0.8706 NaN
Nnet 0.5462 0.6040 NaN 0.0000 0.6326 0.7760 NaN
SVM 0.5416 0.5784 0.5000 0.0044 0.6263 0.7834 0.4214
NB 0.6059 0.1758 0.0000 0.0000 0.5331 0.9618 NaN
OLR 0.5374 0.5359 NaN 0.0000 0.6137 0.8001 NaN

Table A.11: Results on J 50
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J 50 Laag High (35%) Medium (14%) Low (51%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.6047 0.5528 0.1852 0.0112 0.6395 0.8417 0.4418
Bagging RPART 0.5674 0.5387 NaN 0.0000 0.6264 0.8201 NaN
RandomForest 0.6144 0.5783 0.1818 0.0095 0.6471 0.8334 0.4475
J48 0.4869 0.5761 0.0899 0.0179 0.6208 0.6829 0.4027
GBM 0.5938 0.6032 0.1094 0.0156 0.6598 0.8090 0.4509
C5.0 0.6004 0.5920 0.2727 0.0268 0.6508 0.8189 0.4567
JRip 0.5898 0.5275 NaN 0.0000 0.6250 0.8410 NaN
Nnet 0.5569 0.5892 NaN 0.0000 0.6376 0.7893 NaN
SVM 0.5651 0.5387 0.0000 0.0000 0.6272 0.8170 NaN
NB 0.5575 0.5023 0.0000 0.0000 0.6118 0.8195 NaN
OLR 0.5602 0.5210 NaN 0.0000 0.6198 0.8195 NaN

Table A.12: Results on J 50 Laag

J 50 Midden High (35%) Medium (14%) Low (51%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5700 0.5429 0.1429 0.0043 0.6317 0.8259 0.4268
Bagging RPART 0.5863 0.5400 NaN 0.0000 0.6323 0.8451 NaN
RandomForest 0.5938 0.5457 0.2308 0.0130 0.6366 0.8414 0.4394
J48 0.4789 0.5524 0.1565 0.0498 0.6146 0.6731 0.4104
GBM 0.5998 0.5752 0.3077 0.0087 0.6487 0.8457 0.4461
C5.0 0.5856 0.5571 0.1579 0.0065 0.6367 0.8309 0.4348
JRip 0.6027 0.5057 NaN 0.0000 0.6175 0.8580 NaN
Nnet 0.5125 0.5838 NaN 0.0000 0.6250 0.7469 NaN
SVM 0.5471 0.4924 0.0000 0.0000 0.6078 0.8198 NaN
NB 0.7143 0.0095 0.2500 0.0022 0.5189 0.9975 0.2353
OLR 0.5475 0.4886 NaN 0.0000 0.6050 0.8198 NaN

Table A.13: Results on J 50 Midden

J 25-50 High (27%) Medium (16%) Low (57%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5206 0.3677 0.2533 0.0370 0.6311 0.8762 0.4098
Bagging RPART 0.5447 0.3554 NaN 0.0000 0.6270 0.9134 NaN
RandomForest 0.6050 0.3516 0.0000 0.0000 0.6238 0.9290 NaN
J48 0.5032 0.3654 0.1772 0.0275 0.6291 0.8632 0.3996
GBM 0.5541 0.4249 0.2881 0.0331 0.6457 0.8829 0.4288
C5.0 0.5659 0.3756 0.2222 0.0039 0.6305 0.9118 0.4015
JRip 0.5931 0.2713 NaN 0.0000 0.6109 0.9489 NaN
Nnet 0.4528 0.3980 0.2800 0.0136 0.6230 0.8291 0.3870
SVM 0.5153 0.3218 0.0909 0.0058 0.6129 0.8901 0.3777
NB 0.2500 0.0022 0.0000 0.0000 0.5627 0.9983 NaN
OLR 0.5443 0.2758 NaN 0.0000 0.6036 0.9229 NaN

Table A.14: Results on J 25-50
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J 25-50 Laag High (29%) Medium (15%) Low (56%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5202 0.4111 0.2093 0.0188 0.6298 0.8533 0.4061
Bagging RPART 0.5429 0.3515 NaN 0.0000 0.6192 0.9014 NaN
RandomForest 0.5841 0.4142 0.1667 0.0021 0.6326 0.8981 0.4104
J48 0.5006 0.4266 0.1290 0.0254 0.6344 0.8194 0.4061
GBM 0.5592 0.4615 0.1111 0.0021 0.6432 0.8715 0.4166
C5.0 0.5387 0.4296 0.1667 0.0021 0.6338 0.8693 0.4051
JRip 0.5659 0.3751 NaN 0.0000 0.6224 0.9009 NaN
Nnet 0.4767 0.4841 NaN 0.0000 0.6407 0.8056 NaN
SVM 0.5126 0.3967 0.1000 0.0042 0.6215 0.8555 0.3917
NB 0.5158 0.2353 0.0000 0.0000 0.5959 0.9286 NaN
OLR 0.5364 0.3556 NaN 0.0000 0.6106 0.8837 NaN

Table A.15: Results on J 25-50 Laag

J 25-50 Midden High (26%) Medium (15%) Low (58%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.4607 0.2698 NaN 0.0000 0.6261 0.9128 NaN
Bagging RPART 0.4602 0.2660 NaN 0.0000 0.6254 0.9139 NaN
RandomForest 0.5112 0.2634 0.0000 0.0000 0.6250 0.9278 NaN
J48 0.4384 0.2909 0.1739 0.0343 0.6354 0.8679 0.3802
GBM 0.4945 0.3990 0.2553 0.0253 0.6476 0.8623 0.4091
C5.0 0.4415 0.3568 0.1778 0.0169 0.6456 0.8600 0.3877
JRip 0.4830 0.1995 NaN 0.0000 0.6129 0.9409 NaN
Nnet 0.4521 0.3261 NaN 0.0000 0.6275 0.8766 NaN
SVM 0.4330 0.2890 0.1333 0.0253 0.6225 0.8526 0.3696
NB 0.0000 0.0000 0.0000 0.0000 0.5815 0.9989 NaN
OLR 0.5194 0.2225 NaN 0.0000 0.6111 0.9340 NaN

Table A.16: Results on J 25-50 Midden

J 25-50 Hoog High (26%) Medium (18%) Low (56%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.4705 0.3959 0.2326 0.0358 0.6395 0.8510 0.4074
Bagging RPART 0.5556 0.2906 NaN 0.0000 0.6204 0.9441 NaN
RandomForest 0.5617 0.3584 0.2000 0.0054 0.6362 0.9299 0.4012
J48 0.4735 0.4121 0.1761 0.0501 0.6442 0.8234 0.4138
GBM 0.5325 0.4467 0.3000 0.0268 0.6556 0.8861 0.4296
C5.0 0.5117 0.3705 1.0000 0.0018 0.6340 0.9069 0.3932
JRip 0.5499 0.3002 NaN 0.0000 0.6192 0.9359 NaN
Nnet 0.4731 0.4358 0.0857 0.0054 0.6410 0.8478 0.3979
SVM 0.4783 0.3036 0.1429 0.0107 0.6182 0.8938 0.3748
NB 0.2857 0.0024 0.0000 0.0000 0.5682 0.9967 NaN
OLR 0.5194 0.2760 NaN 0.0000 0.6115 0.9283 NaN

Table A.17: Results on J 25-50 Hoog
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5. Results on subsamples without temporary work

All Laag High (42%) Medium (19%) Low (38%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5566 0.7175 0.2872 0.0377 0.5223 0.5943 0.4165
Bagging RPART 0.5384 0.6898 NaN 0.0000 0.5049 0.6145 NaN
RandomForest 0.5812 0.7182 0.3333 0.0126 0.5352 0.6682 0.4203
J48 0.5492 0.6818 0.2361 0.0711 0.5122 0.5638 0.4181
GBM 0.5895 0.7043 0.2500 0.0391 0.5409 0.6659 0.4354
C5.0 0.5427 0.6917 0.2254 0.0022 0.5232 0.6130 0.4045
JRip 0.5123 0.8277 NaN 0.0000 0.5698 0.4780 NaN
Nnet 0.5227 0.7835 NaN 0.0000 0.5384 0.5227 NaN
SVM 0.5556 0.7155 0.2353 0.0056 0.5209 0.6234 0.4013
NB 0.4261 0.9934 0.0000 0.0000 0.5897 0.0172 NaN
OLR 0.5508 0.7116 NaN 0.0000 0.5204 0.6271 NaN

Table A.18: Results on All Laag

All Midden High (32%) Medium (20%) Low (48%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5333 0.5290 0.2353 0.0058 0.5662 0.7943 0.4012
Bagging RPART 0.5456 0.4683 NaN 0.0000 0.5546 0.8329 NaN
RandomForest 0.5773 0.5321 0.3750 0.0086 0.5691 0.8253 0.4148
J48 0.4987 0.5214 0.2234 0.0640 0.5703 0.7178 0.4149
GBM 0.5808 0.5792 0.2564 0.0144 0.5899 0.8177 0.4309
C5.0 0.5492 0.5550 0.2500 0.0130 0.5753 0.7931 0.4146
JRip 0.5955 0.4199 NaN 0.0000 0.5446 0.8734 NaN
Nnet 0.5172 0.5572 NaN 0.0000 0.5741 0.7784 NaN
SVM 0.5506 0.4982 0.3333 0.0072 0.5634 0.8236 0.4021
NB 0.3548 0.0097 0.0000 0.0000 0.4813 0.9883 NaN
OLR 0.5457 0.4727 NaN 0.0000 0.5590 0.8365 NaN

Table A.19: Results on All Midden
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All Hoog High 24%) Medium (21%) Low (55%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5009 0.3812 0.2807 0.0526 0.6324 0.8798 0.4191
Bagging RPART 0.4811 0.4290 NaN 0.0000 0.6318 0.8869 NaN
RandomForest 0.5706 0.4205 0.3330 0.0197 0.6376 0.9228 0.4252
J48 0.4496 0.4217 0.2690 0.0644 0.6435 0.8350 0.4220
GBM 0.5360 0.4501 0.2866 0.0740 0.6561 0.8745 0.4522
C5.0 0.5185 0.4346 0.1875 0.0099 0.6357 0.8945 0.4116
JRip 0.5684 0.3038 NaN 0.0000 0.6081 0.9446 NaN
Nnet 0.5192 0.3994 NaN 0.0000 0.6201 0.9022 NaN
SVM 0.5131 0.3868 0.2099 0.0280 0.6294 0.8898 0.4092
NB 0.2500 0.0014 0.5000 0.0016 0.5628 0.9982 0.2420
OLR 0.5345 0.4156 NaN 0.0000 0.6247 0.8851 NaN

Table A.20: Results on All Hoog

J 25 High (24%) Medium (21%) Low (55%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5565 0.4203 0.3509 0.0554 0.6212 0.8848 0.4348
Bagging RPART 0.6471 0.2760 NaN 0.0000 0.5920 0.9609 NaN
RandomForest 0.6028 0.4812 0.3871 0.0166 0.6332 0.9186 0.4389
J48 0.5000 0.4451 0.2513 0.0653 0.6288 0.8359 0.4308
GBM 0.5780 0.5207 0.3228 0.0568 0.6461 0.8763 0.4628
C5.0 0.5889 0.4944 0.3889 0.0097 0.6307 0.908 0.4336
JRip 0.6180 0.4040 NaN 0.0000 0.6128 0.9360 NaN
Nnet 0.5748 0.4580 NaN 0.0000 0.6214 0.9117 NaN
SVM 0.5895 0.4793 0.3333 0.0139 0.6312 0.9117 0.4338
NB 0.3750 0.0075 0.2000 0.0028 0.5557 0.0994 0.2444
OLR 0.5692 0.4956 NaN 0.0000 0.6312 0.9064 NaN

Table A.21: Results on J 25

J 25 Midden High (22%) Medium (21%) Low (58%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5519 0.3551 0.2562 0.0451 0.6207 0.8995 0.4144
Bagging RPART 0.5353 0.3011 NaN 0.0000 0.6061 0.9445 NaN
RandomForest 0.5861 0.3480 0.1818 0.0087 0.6182 0.9374 0.3995
J48 0.4384 0.3699 0.1613 0.0364 0.6160 0.8327 0.3896
GBM 0.5789 0.4276 0.3077 0.0698 0.6382 0.8891 0.4495
C5.0 0.5681 0.4091 0.2045 0.0131 0.6221 0.9094 0.4130
JRip 0.5721 0.3381 NaN 0.0000 0.6132 0.9418 NaN
Nnet 0.5395 0.3395 0.3108 0.0334 0.6172 0.9138 0.4046
SVM 0.5638 0.3452 0.2277 0.0334 0.6181 0.9099 0.4075
NB 0.6667 0.0028 NaN 0.0000 0.5673 1.0000 NaN
OLR 0.5544 0.3906 NaN 0.0000 0.6183 0.9226 NaN

Table A.22: Results on J 25 Midden
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J 25 Hoog High (10%) Medium (21%) Low (68%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.2992 0.2213 0.2324 0.1750 0.7111 0.7919 0.4011
Bagging RPART 0.6230 0.1064 NaN 0.0000 0.6969 0.9930 NaN
RandomForest 0.6418 0.1204 0.2500 0.0088 0.7006 0.9891 0.3467
J48 0.4057 0.1205 0.2742 0.0250 0.7006 0.9656 0.3479
GBM 0.4596 0.2073 0.3000 0.0971 0.7199 0.9256 0.4141
C5.0 0.5752 0.1821 0.2941 0.0221 0.7088 0.9782 0.3799
JRip 0.5603 0.1821 NaN 0.0000 0.7023 0.9839 NaN
Nnet 0.3774 0.2241 0.3516 0.0662 0.7161 0.9334 0.4010
SVM 0.4638 0.1793 0.3467 0.0382 0.7084 0.9626 0.3812
NB 0.0000 0.0000 0.0000 0.0000 0.6888 0.9983 NaN
OLR 0.4667 0.1569 NaN 0.0000 0.7038 0.9848 NaN

Table A.23: Results on J 25 Hoog

J 50 High (47%) Medium (17%) Low (36%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5980 0.7342 0.2973 0.0188 0.5189 0.6025 0.4174
Bagging RPART 0.6010 0.6892 NaN 0.0000 0.4942 0.6407 NaN
RandomForest 0.6042 0.7632 0.3333 0.0085 0.5435 0.6161 0.4229
J48 0.5396 0.7692 0.2282 0.0585 0.5015 0.4065 0.3921
GBM 0.6088 0.7471 0.2143 0.0103 0.5422 0.6340 0.4250
C5.0 0.6074 0.7568 0.2222 0.0137 0.5357 0.6100 0.4234
JRip 0.5333 0.8764 NaN 0.0000 0.5633 0.3693 NaN
Nnet 0.5873 0.7426 0.4444 0.0068 0.5234 0.5950 0.4087
SVM 0.5790 0.7523 0.3333 0.0068 0.5278 0.5751 0.4061
NB 0.5846 0.5959 0.1667 0.0017 0.4584 0.6672 0.3790
OLR 0.5567 0.7773 NaN 0.0000 0.5230 0.5095 NaN

Table A.24: Results on J 50

J 50 Laag High (47%) Medium (16%) Low (36%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.6044 0.7488 0.1875 0.0116 0.5504 0.6136 0.4237
Bagging RPART 0.5507 0.7929 NaN 0.0000 0.5408 0.4787 NaN
RandomForest 0.6132 0.7803 0.2917 0.0136 0.5584 0.6009 0.4305
J48 0.5758 0.7423 0.1626 0.0390 0.5270 0.5118 0.4102
GBM 0.6132 0.7481 0.2571 0.0174 0.5536 0.6292 0.4319
C5.0 0.6041 0.7346 0.2500 0.0116 0.5472 0.6301 0.4237
JRip 0.5338 0.8635 0.3182 0.0136 0.5880 0.3751 0.3813
Nnet 0.5827 0.7631 0.0000 0.0000 0.5379 0.5622 NaN
SVM 0.5870 0.7739 0.5556 0.0097 0.5484 0.5666 0.4147
NB 0.4709 0.9790 0.1000 0.0019 0.5000 0.0287 0.2314
OLR 0.5764 0.7712 NaN 0.0000 0.5424 0.5509 NaN

Table A.25: Results on J 50 Laag
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J 50 Midden High (46%) Medium (17%) Low (37%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5724 0.7534 0.1852 0.0089 0.5008 0.5053 0.3902
Bagging RPART 0.5473 0.8187 NaN 0.0000 0.5148 0.4081 NaN
RandomForest 0.5996 0.7753 0.3182 0.0126 0.5384 0.5619 0.4168
J48 0.5330 0.7482 0.1923 0.0450 0.4910 0.3979 0.3783
GBM 0.6031 0.7393 0.2609 0.0216 0.5273 0.5870 0.4199
C5.0 0.6011 0.7589 0.0000 0.0000 0.5324 0.5862 NaN
JRip 0.5377 0.8871 NaN 0.0000 0.5942 0.3498 NaN
Nnet 0.5626 0.7576 NaN 0.0000 0.5045 0.4996 NaN
SVM 0.5730 0.7454 0.2500 0.0126 0.5087 0.5231 0.3959
NB 0.4791 0.9884 0.0000 0.0000 0.4255 0.0162 NaN
OLR 0.5584 0.7650 NaN 0.0000 0.5021 0.4818 NaN

Table A.26: Results on J 50 Midden

J 25-50 High (38%) Medium (20%) Low (43%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5266 0.5419 0.0000 0.0000 0.5129 0.7298 NaN
Bagging RPART 0.5606 0.4919 NaN 0.0000 0.5113 0.7994 NaN
RandomForest 0.5563 0.5886 0.2727 0.0046 0.5420 0.7579 0.4044
J48 0.5022 0.5498 0.2030 0.0637 0.5092 0.6266 0.3946
GBM 0.5626 0.6111 0.3846 0.0231 0.5489 0.7431 0.4203
C5.0 0.5305 0.5886 0.2759 0.0123 0.5339 0.7157 0.3977
JRip 0.5714 0.4541 NaN 0.0000 0.5006 0.8191 NaN
Nnet 0.5100 0.5982 NaN 0.0000 0.5288 0.6904 NaN
SVM 0.5235 0.5475 0.1765 0.0046 0.5215 0.7326 0.3845
NB 0.6475 0.0636 0.0000 0.0000 0.4374 0.9810 NaN
OLR 0.5306 0.5451 NaN 0.0000 0.5177 0.7417 NaN

Table A.27: Results on J 25-50

J 25-50 Laag High (42%) Medium (19%) Low (39%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5395 0.7144 0.1333 0.0032 0.5310 0.5929 0.3938
Bagging RPART 0.5511 0.7101 NaN 0.0000 0.5220 0.6092 NaN
RandomForest 0.5722 0.7172 0.2857 0.0032 0.5330 0.6395 0.4081
J48 0.5442 0.7058 0.2955 0.0629 0.5169 0.5455 0.4164
GBM 0.5724 0.7265 0.2963 0.0129 0.5419 0.6325 0.4163
C5.0 0.5526 0.7372 0.1250 0.0048 0.5212 0.5726 0.3956
JRip 0.5097 0.8462 NaN 0.0000 0.5949 0.4530 NaN
Nnet 0.5388 0.7023 NaN 0.0000 0.5240 0.6030 NaN
SVM 0.5625 0.6823 0.4000 0.0065 0.5144 0.6387 0.3997
NB 0.6516 0.2664 0.0000 0.0000 0.4323 0.9184 NaN
OLR 0.5439 0.6765 NaN 0.0000 0.5062 0.6137 NaN

Table A.28: Results on J 25-50 Laag
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J 25-50 Midden High (37%) Medium (19%) Low (43%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.5032 0.5028 0.2791 0.0185 0.5015 0.7135 0.3756
Bagging RPART 0.5218 0.4761 NaN 0.0000 0.4982 0.7608 NaN
RandomForest 0.5408 0.5615 0.3889 0.0110 0.5360 0.7493 0.3991
J48 0.4900 0.5667 0.1794 0.0516 0.5103 0.6047 0.3864
GBM 0.5363 0.5815 0.1934 0.0092 0.5305 0.7204 0.3955
C5.0 0.5297 0.6002 0.0769 0.0015 0.5306 0.7051 0.3904
JRip 0.5667 0.3788 NaN 0.0000 0.4870 0.8456 NaN
Nnet 0.4789 0.6067 NaN 0.0000 0.5230 0.6398 NaN
SVM 0.5273 0.5020 0.5000 0.0031 0.5119 0.7629 0.3777
NB 0.6161 0.1054 0.2500 0.0031 0.4468 0.9638 0.2656
OLR 0.5033 0.4972 NaN 0.0000 0.5007 0.7323 NaN

Table A.29: Results on J 25-50 Midden

J 25-50 Hoog High (32%) Medium (21%) Low (48%) Overall
Technique PPV Recall PPV Recall PPV Recall MacroF
RPART 0.4905 0.5369 0.2873 0.0362 0.5708 0.7472 0.4080
Bagging RPART 0.5980 0.2306 NaN 0.0000 0.5187 0.9454 NaN
RandomForest 0.5453 0.4783 0.1081 0.0058 0.5642 0.8356 0.3980
J48 0.4714 0.4629 0.2051 0.0465 0.5638 0.7545 0.3961
GBM 0.5458 0.5236 0.1852 0.0145 0.5762 0.8166 0.4123
C5.0 0.5077 0.4698 0.2115 0.0159 0.5643 0.8129 0.3946
JRip 0.5701 0.3497 NaN 0.0000 0.5341 0.8945 NaN
Nnet 0.4937 0.5539 NaN 0.0000 0.5748 0.7730 NaN
SVM 0.5251 0.4546 0.2963 0.0116 0.5571 0.8325 0.3924
NB 0.2727 0.0057 0.4286 0.0043 0.4833 0.9932 0.2233
OLR 0.5400 0.4216 NaN 0.0000 0.5523 0.8650 NaN

Table A.30: Results on J 25-50 Hoog
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6. Results of different time intervals

Interval Records (H/L) Technique Precision Recall MacroF
All

3 months

6628 x 2841 J48 0.5784 0.4562 0.6134
test: 41/59% GBM 0.6353 0.5103 0.6559
train: 41/59% RF 0.6658 0.4296 0.6396

JRip 0.5789 0.4948 0.6239
NB 0.7843 0.0344 0.4059
Nnet 0.5965 0.5043 0.6355

6 months

6628 x 2841 J48 0.5311 0.2954 0.6170
test: 24/76% GBM 0.6158 0.3372 0.6521
train: 25/75% RF 0.6778 0.2637 0.6265

JRip 0.5556 0.3242 0.6339
NB 0.1667 0.0014 0.4314
Nnet 0.5360 0.2147 0.5817

12 months

6628 x 2841 J48 0.4820 0.1914 0.6028
test: 12/88% GBM 0.5227 0.1971 0.6101
train: 12/88% RF 0.6744 0.0829 0.5421

JRip 0.4933 0.2114 0.6140
NB 0.0000 0.0000 NaN
Nnet 0.3018 0.1457 0.5579

All (- 89)

3 months

7225 x 3097 J48 0.6480 0.6235 0.6135
test: 54/46% GBM 0.6817 0.7062 0.6610
train: 52/48% RF 0.6850 0.7026 0.6630

JRip 0.6591 0.6930 0.6376
NB 0.7826 0.0108 0.3269
Nnet 0.6664 0.6001 0.6227

6 months

7225 x 3097 J48 0.5202 0.3813 0.6037
test: 34/66% GBM 0.6107 0.4023 0.6419
train: 32/68% RF 0.6275 0.3051 0.6061

JRip 0.5833 0.3136 0.5997
NB 0.8000 0.0038 0.4020
Nnet 0.5426 0.3823 0.6124

12 months

7225 x 3097 J48 0.4537 0.0902 0.5254
test: 8/92% GBM 0.5502 0.2118 0.6050
train: 16/84% RF 0.6719 0.0792 0.5242

JRip 0.5517 0.1179 0.5491
NB 0.7500 0.0055 0.4576
Nnet 0.3970 0.1952 0.5753

Table A.31: Results of time intervals
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7. Results of Cox PH model

Figure A.1: Results of Cox Regression
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[29] B. Zupan, J. DemšAr, M. W. Kattan, J. R. Beck, and I. Bratko, “Machine learning for
survival analysis: A case study on recurrence of prostate cancer”, Artificial intelligence in
medicine, vol. 20, no. 1, pp. 59–75, 2000.

[30] W. N. Street, “A neural network model for prognostic prediction.”, in ICML, Citeseer,
1998, pp. 540–546.

[31] C.-L. Chi, W. N. Street, and W. H. Wolberg, “Application of artificial neural network-based
survival analysis on two breast cancer datasets”, in AMIA Annual Symposium Proceedings,
American Medical Informatics Association, vol. 2007, 2007, p. 130.

[32] B. Baesens, T. Van Gestel, M. Stepanova, D. Van den Poel, and J. Vanthienen, “Neural
network survival analysis for personal loan data”, Journal of the Operational Research
Society, vol. 56, no. 9, pp. 1089–1098, 2005.

[33] J. V. Tu, “Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes”, Journal of clinical epidemiology, vol. 49, no.
11, pp. 1225–1231, 1996.

[34] A. T. Azar and S. M. El-Metwally, “Decision tree classifiers for automated medical diag-
nosis”, Neural Computing and Applications, vol. 23, no. 7-8, pp. 2387–2403, 2013.



[36] A. M. Prasad, L. R. Iverson, and A. Liaw, “Newer classification and regression tree tech-
niques: Bagging and random forests for ecological prediction”, Ecosystems, vol. 9, no. 2,
pp. 181–199, 2006.

[37] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor, “Boosted decision trees
as an alternative to artificial neural networks for particle identification”, Nuclear Instru-
ments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 543, no. 2, pp. 577–584, 2005.

[38] Y. Chan, “Biostatistics 305. multinomial logistic regression”, Singapore medical journal,
vol. 46, no. 6, p. 259, 2005.

[39] J. Anderson, “Logistic regression”, Handbook of Statistics. North-Holland, New York, pp. 169–
191, 1982.

[40] B. Kempen, D. J. Brus, G. B. Heuvelink, and J. J. Stoorvogel, “Updating the 1: 50,000
dutch soil map using legacy soil data: A multinomial logistic regression approach”, Geo-
derma, vol. 151, no. 3, pp. 311–326, 2009.

[41] Y. Wang, “A multinomial logistic regression modeling approach for anomaly intrusion
detection”, Computers & Security, vol. 24, no. 8, pp. 662–674, 2005.

[42] B. K. Bhardwaj and S. Pal, “Data mining: A prediction for performance improvement
using classification”, ArXiv preprint arXiv:1201.3418, 2012.

[43] Z. Huang, H. Chen, C.-J. Hsu, W.-H. Chen, and S. Wu, “Credit rating analysis with
support vector machines and neural networks: A market comparative study”, Decision
support systems, vol. 37, no. 4, pp. 543–558, 2004.

[44] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, et al., “Knowledge discovery and data
mining: Towards a unifying framework.”, in KDD, vol. 96, 1996, pp. 82–88.

[47] J. Gholap, “Performance tuning of j48 algorithm for prediction of soil fertility”, Journal of
Computer Science and Information Technology, vol. 8, no. 2, 2012.

[48] S.-l. PANG and J.-z. GONG, “C5. 0 classification algorithm and application on individual
credit evaluation of banks”, Systems Engineering-Theory & Practice, vol. 29, no. 12, pp. 94–
104, 2009.

[49] M. Kuhn, “Package ’caret’”, 2016, https://cran.r-project.org/web/packages/caret/
caret.pdf.

[50] T. Therneau, E. Atkinson, and M. Foundation, “An introduction to recursive partitioning
using the rpart routines”, 2015, https://cran.r-project.org/web/packages/rpart/
vignettes/longintro.pdf.

[51] L. Breiman, “Bagging predictors”, Machine learning, vol. 24, no. 2, pp. 123–140, 1996.

[52] V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, and B. P. Feuston, “Random
forest: A classification and regression tool for compound classification and qsar modeling”,
Journal of chemical information and computer sciences, vol. 43, no. 6, pp. 1947–1958, 2003.

[53] L. Breiman and A. Cutler, “Package ’randomforest’”, 2015, https://cran.r-project.
org/web/packages/randomForest/randomForest.pdf.

[54] T. M. Oshiro, P. S. Perez, and J. A. Baranauskas, “How many trees in a random forest?”,
in MLDM, Springer, 2012, pp. 154–168.

[57] W. W. Cohen, “Fast effective rule induction”, in Proceedings of the twelfth international
conference on machine learning, 1995, pp. 115–123.



[58] W. Cohen, “Fast effective rule induction”, 1995, http://www.csee.usf.edu/~hall/dm/
ripper.pdf.

[60] R. Battiti and F. Masulli, “Bfgs optimization for faster and automated supervised learn-
ing”, in International neural network conference, Springer, 1990, pp. 757–760.

[61] G.-B. Huang, Y.-Q. Chen, and H. A. Babri, “Classification ability of single hidden layer
feedforward neural networks”, Neural Networks, IEEE Transactions on, vol. 11, no. 3,
pp. 799–801, 2000.

[67] T. M. Mitchell, “Machine learning”, Machine Learning, 1997.

[68] M. F. Triola, “Bayes’ theorem”, Elementary Statistics, vol. 11, 2010.

[69] K. Ming Leung, “Naive bayes classifier”, 2007, https://tom.host.cs.st-andrews.ac.
uk/ID5059/L15-LeungSlides.pdf.

[70] Y. So and W. F. Kuhfeld, “Multinomial logit models”, in SUGI 20 Conference Proceedings,
1995, pp. 1227–1234.

[72] B. Ripley, “Package ’mass’”, 2016, https://cran.r-project.org/web/packages/MASS/
MASS.pdf.

[74] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classifi-
cation tasks”, Information Processing & Management, vol. 45, no. 4, pp. 427–437, 2009.

[76] Y. Yang and X. Liu, “A re-examination of text categorization methods”, in Proceedings
of the 22nd annual international ACM SIGIR conference on Research and development in
information retrieval, ACM, 1999, pp. 42–49.

[77] A. J. Viera, J. M. Garrett, et al., “Understanding interobserver agreement: The kappa
statistic”, Fam Med, vol. 37, no. 5, pp. 360–363, 2005.

[78] A. Natekin and A. Knoll, “Gradient boosting machines, a tutorial”, Frontiers in neuro-
robotics, vol. 7, 2013.

[79] R. Kanfer, C. R. Wanberg, and T. M. Kantrowitz, “Job search and employment: A personality–
motivational analysis and meta-analytic review.”, Journal of Applied psychology, vol. 86,
no. 5, p. 837, 2001.

Books

[10] O. Chapelle, B. Schölkopf, A. Zien, et al., Semi-supervised learning. MIT press Cambridge,
2006.

[35] G. Ilczuk and A. Wakulicz-Deja, “Attribute selection and rule generation techniques for
medical diagnosis systems”, in Rough Sets, Fuzzy Sets, Data Mining, and Granular Com-
puting, Springer, 2005, pp. 352–361.

[46] S. Suthaharan, Machine learning models and algorithms for big data classification: Thinking
with examples for effective learning. Springer, 2015, vol. 36, pp. 237–269.

[65] O. Maimon and L. Rokach, Data mining and knowledge discovery handbook. Springer, 2005,
vol. 2.

[66] N. Cristianini and E. Ricci, “Support vector machines”, in Encyclopedia of Algorithms,
Springer, 2008, pp. 928–932.
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