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Samenvatting

In deze thesis wordt een nieuwe hybride methode ontwikkeld voor het tellen van het aantal atomen uit
ringvormige donkerveld rooster transmissie elektronenmicroscopie (ADF STEM) beelden van mono-
atomaire kristallijne nanostructuren. ADF STEM beelden zijn zeer bruikbaar voor een kwantitatieve
analyse, omdat de beeldintensiteit rechtstreeks bepaald wordt door het aantal atomen in het onder-
zochte materiaal en hun atoomtype. Er bestaan tegenwoordig twee methoden die toelaten het aantal
atomen te tellen.
De eerste methode maakt gebruik van beeldsimulaties die het experimentele proefopzet zo goed mo-
gelijk nabootsen en de intensiteiten uit deze gesimuleerde beelden rechtstreeks vergelijken met de
experimentele intensiteiten. Deze methode laat echter niet toe de precisie van de telresultaten te
bepalen. Bovendien hangt de betrouwbaarheid van de telresultaten af van eventuele meetfouten bij
het bepalen van het experimentele proefopzet die onopgemerkt blijven.
De tweede methode voor het tellen van het aantal atomen maakt gebruik van zogenaamde statistische
parameterschattingstheorie. Deze methode modelleert de waarschijnlijkheidsverdeling van de experi-
mentele intensiteiten en schat de parameters die deze verdeling bepalen. Voor beelden met weinig ruis
zijn de telresultaten die op deze manier bekomen worden zeer betrouwbaar. Bovendien voorziet deze
methode in een maat voor het bepalen van hun precisie.
De hybride methode maakt gebruik van de intensiteiten uit gesimuleerde beelden voor het bepalen van
de waarschijnlijkheidsverdeling van de experimentele intensiteiten. De gesimuleerde intensiteiten leve-
ren namelijk een voorkennis over de verwachte waarden voor de experimentele intensiteiten overeen-
komstig met een verschillend aantal atomen onder elkaar in een atoomkolom. Om rekening te houden
met mogelijke kalibratiefouten in het gesimuleerde proefopzet worden niet de gesimuleerde intensiteiten
zelf gebruikt om de verwachte waarden te bepalen, maar een functie ervan. Deze functie wordt bepaald
door het effect van enkele veelvoorkomende meetfouten op de intensiteiten te bekijken. Hieruit volgt de
keuze voor een lineair verband, dat opgenomen wordt in het model dat de waarschijnlijkheidsverdeling
van de experimentele intensiteiten beschrijft, en de basis vormt van de hybride methode ontwikkeld in
deze thesis. De implementatie en interpretatie van de hybride methode worden in detail bestudeerd,
om vervolgens de prestaties van de methode te onderzoeken. Met de hybride methode worden hogere
percentages correct getelde atoomkolommen bereikt dan met de bestaande methode die enkel gebruik
maakt van statistische parameterschattingstheorie zonder de voorkennis uit beeldsimulaties. Vergelijk-
baar met een onderbelichte foto waaruit details moeilijker te herkennen zijn, is het ook moeilijker om
atomen te tellen uit “onderbelichte” ADF STEM beelden, aangezien die meer ruis bevatten. Op basis
van de berekende percentages voorspellen we dat de grootste verbetering merkbaar zal zijn voor de
analyse van kleine nanodeeltjes waarvan beelden met een zeer lage elektronendosis werden opgenomen.
Tenslotte wordt de methode toegepast op experimentele beelden. Als eerste worden atomen geteld
uit een goed geconditioneerd beeld van een goud nanorod, waarvoor atomen reeds met de bestaande
statistische methode geteld konden worden. De telresultaten die hieruit bekomen worden met de
hybride methode komen goed overeen met de eerder bekomen resultaten. We besluiten met de analyse
van een uitdagend experimenteel beeld van een klein platinum-iridium nanodeeltje, opgenomen met
een zeer lage elektronendosis, waaruit voor het eerst betrouwbare telresultaten bekomen worden.
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Abstract

In this thesis, a novel hybrid statistics-simulations based method for atom-counting from annular
dark field scanning transmission electron microscopy (ADF STEM) images of monatomic crystalline
nanostructures is developed. ADF STEM images are very useful for a quantitative analysis, because
the image intensities are directly determined by the number of atoms in the material under study and
their atom type. Nowadays, two methods exist that allow us to count the number of atoms.
The first method uses image simulations that mimic the experimental set-up as accurate as possible and
compares the intensities from the simulated images directly to the experimental intensities. However,
this method does not provide a measure for the precision of the atom-counting results. Furthermore,
any measurement errors in determining the experimental set-up, on which the accuracy of the counting
results depends, remain undetected.
The second method for atom-counting uses so-called statistical parameter estimation theory. This
method models the probability distribution of the experimental intensities and estimates the para-
meters that determine this distribution. For images with a high signal-to-noise ratio, the obtained
counting results are very reliable. Furthermore, this method provides a measure for their precision.
The hybrid method uses the intensities of the simulated images to determine the probability distribu-
tion of the experimental intensities, since the simulated intensities provide a prior knowledge about
the expectation values of the experimental intensities corresponding to different numbers of atoms
stacked below one another in an atomic column. To account for possible calibration errors in the
simulated experimental set-up, a function of the simulated intensities is used to determine the expec-
tation value, rather than the simulated intensities themselves. This function is determined by studying
the effect of common measurement errors on the intensities. This study results in the choice for a
linear relationship, which is included in the model for the probability distribution of the experimental
intensities, and forms the basis of the hybrid method developed in this thesis. The implementation
and interpretation of the hybrid method are studied in detail, and used to study the performance of
the hybrid method. Higher percentages of correctly counted atomic columns are reached using the
hybrid method as compared to using the existing method based on statistical parameter estimation
theory without the prior knowledge from image simulations. Comparable to a dimly lit photograph,
from which features are harder to recognise, it is also very difficult to count atoms from “dimly lit”
ADF STEM images, which have a low signal-to-noise ratio. The largest improvement is predicted for
the analysis of small nanoparticles, imaged using a very low electron dose.
Finally, the method is applied to some experimental images. First, atoms are counted from a well-
conditioned image of a gold nanorod, for which atom-counting was already possible using the existing
statistics-only based method. The atom-counts obtained from this image using the hybrid method are
in good agreement with the previously obtained results. We conclude with the analysis of a challenging
experimental image of a very small platinum-iridium nanoparticle, imaged with a very low electron
dose. For the first time, reliable atom-counts are obtained for this image.
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Chapter 1

Introduction

Modern society depends strongly on materials science, a research area that comprises the inter-
disciplinary study of materials properties and ultimately aims to design new, advanced materials
with pre-specified optical, dynamical, thermodynamic, electronic and/or chemical properties. Such
advanced materials are used in technologically innovating applications, such as the use of lightweight
composites for faster vehicles, optical fibres for telecommunications and silicon microchips in smart-
phones and computers that are becoming increasingly smaller and faster, keeping up with Moore’s law
[Moore, 1998]. Over the last decades, materials science has evolved from the macro- to the microscale
and even further down to the nanoscale, thanks to the development of advanced imaging techniques
for nanomaterials. Nanomaterials are materials with at least one dimension in the nanometer range.
Interestingly, materials often exhibit strongly different properties at the nanoscale, as compared to
their macroscopic properties. For example, gold in its macroscopic form is chemically inert, while gold
nanoparticles can be used as a catalyst to enhance the efficiency of a chemical reaction [Mikami et al.,
2013]. In the field of nanomedicine, gold nanoparticles can also be used to control the protein orienta-
tion [Lin et al., 2015]. Changing the length of gold nanorods, nanoparticles with an elongated shape,
can be used to tune the wavelength of the absorbed light, enabling the use of such nanorods in medical
applications, such as drug delivery [Stone et al., 2011]. Another group of nanoparticles with parti-
cularly interesting properties are the bimetallic nanoparticles, such as for example platinum-iridium
nanoparticles. Such platinum-based bimetallic nanoparticles are very efficient catalysts, and can be
used for carbon monoxide oxidation in fuel cells [Ralph and Hogarth, 2002].

Materials science ultimately aims to understand how the synthesis of a material influences its struc-
ture, and thus the material’s properties and performance. This understanding is called the “materials
paradigm” [Olson, 2000; Yang and Tarascon, 2012]. Knowledge of the interrelationships among a
material’s properties, performance, processing and structure allows us to evolve from experimental
observation, theoretical understanding and description of existing materials towards theoretical pre-
dictions and the actual production of new materials.

The physical properties of nanostructures are mainly controlled by their composition, their chemi-
cal bonding and the positions of their atoms. At the nanoscale, the electronic structure of materials
becomes size-dependent [Koli et al., 2014]. An example of the size-dependence of properties of nanopar-
ticles is shown in figure 1.1. The optical properties of silver nanoparticles can be tuned by changing
the size of the nanoparticles. Figure 1.1 shows how the colour of the colloids changes with increasing
nanoparticle size [Huang and Nancy Xu, 2010]. The size dependence of nanomaterials opens up many
possibilities for production of materials with unique properties. Due to the crucial dependence of a
nanomaterial’s properties on its size, we need to be able to determine the size with high precision
and accuracy in order to allow for production of materials with predicted properties. This can be
achieved through accurately counting the number of atoms on an atomic scale. In order to count
atoms with atomic resolution, electron microscopy images of the particles are recorded. By counting
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Size dependence of the optical properties of colloidal silver nanoparticles. The colour of the colloids
changes with the nanoparticle size [Huang and Nancy Xu, 2010].

the number of atoms from two-dimensional (2D) images, recorded under different viewing directions,
a three-dimensional (3D) reconstruction of the structure can be obtained, as shown in figure 1.2,
where counting results of two different projections have been used as an input for discrete tomography
to obtain a 3D reconstruction of a silver (Ag) nanoparticle embedded in an aluminium (Al) matrix
[Van Aert et al., 2011]. From such 3D reconstructions of a particle, the exact shape and size can be
determined. Using the exact atomic positions, the properties of the nanomaterial can be predicted
and studied using ab-initio calculations1. Atom-counting results have already been combined with
ab-initio calculations to study the dynamical behaviour of ultrasmall germanium clusters [Bals et al.,
2012].

Figure 1.2: 3D atomic imaging of crystalline nanoparticles. (a) Experimental HAADF STEM images of
nanosized Ag clusters embedded in an Al matrix in [101] zone-axis orientation and [100] zone-axis orientation.
(b) Number of Ag atoms per column. (c) The computed 3D reconstruction of the Ag nanocluster viewed along
three different directions. Figure adjusted from [Van Aert et al., 2011].

In order to be able to count atoms, images of the structure at the atomic scale need to be recorded
that contain information about the thickness of the nanoparticle. Different experimental methods
exist to image nanomaterials. Scanning tunnelling and atomic force microscopy provide information
about the local surface structure [Wiesendanger, 1994]. X-ray and neutron diffraction techniques,
on the other hand, do not only provide information about the surface but about the inside of the
material as well, albeit averaged structure information [Zanchet et al., 2000]. Diffraction techniques
are therefore very useful for the analysis of periodic materials, such as crystals, whereas they do not

1Theoretical calculations using the exact structure information as an input, in order to calculate electronic properties
“from the beginning”.
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suffice for the analysis of nanomaterials which are usually aperiodic. An excellent technique to study
nanostructures that provides non-averaged information about the entire material is atomic resolution
(scanning) transmission electron microscopy (STEM) because of the strong interaction of electrons
with small volumes of matter [Fujita and Sumida, 1994; Henderson, 1995; Spence, 1999]. In a scanning
transmission electron microscope, schematically shown in figure 1.3, an electron beam is focused into
a fine probe and scans across the sample in a 2D raster. For each probe position, the electrons scat-
tered towards the detector are integrated to determine the image intensity. An image of the sample
is formed, displaying the scattered intensities at the different probe positions. Intensities in annular
dark field scanning transmission electron microscopy (ADF STEM) images increase with increasing
number of atoms in an atomic column as well as with increasing atomic number of the atoms [Ander-
son et al., 1997]. Thanks to this property, counting atoms through quantitative analysis of the ADF
STEM image intensities is possible.

Figure 1.3: Ray diagram of a scanning transmission electron microscope, indicating how the most important
lenses and apertures effect the electron beam before it is focussed onto the sample. Scattered electrons are
detected on the annular detector, and integrated to calculate the ADF STEM image intensity.

At present, two methods for counting the number of atoms from scanning transmission electron micro-
scopy images exist. The first method makes use of image simulations. ADF STEM images under
the experimental conditions can be accurately simulated in order to count atoms through direct
comparison between the simulated image intensities and the experimental image intensities [LeBeau
et al., 2010]. Advanced image simulations software exists that can simulate the images formed in
different imaging modes for samples under study [Loane et al., 1991; Bollig et al., 1996; Kirkland,
1998; Muller et al., 2001; Ishizuka, 2002; Koch, 2002; Croitoru et al., 2006; Rosenauer and Schowalter,
2007; Rosenauer et al., 2008]. Quantitative comparison of experimental images with simulations
requires intensity measurements on an absolute scale [LeBeau et al., 2008]. This is achieved by
normalising the experimental intensities with respect to the incident electron beam. Furthermore, a
full characterisation of the ADF detector should be carried out in order to achieve true agreement
between simulations and experiment [Grillo, 2011; Findlay and LeBeau, 2013; MacArthur et al., 2014].
This simulations-only based method is very intuitive, but an important drawback of this method is
that there is no way to determine the accuracy and precision of the atom-counts. Any systematic
errors in the image simulations stay undetected, since a match between experimental intensities and
simulated intensities can always be found, even with inaccurate simulations.

The alternative atom-counting method developed recently does provide a measure for the precision of
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the atom-counts. This method is based on statistical parameter estimation theory, which has become
a trusted framework for quantitative analysis of ADF STEM images over the last few years. Unknown
structure parameters are estimated by fitting a physical imaging model to the experimental images
using a criterion of goodness of fit [den Dekker et al., 2005; Van Aert et al., 2005]. This approach allows
one to measure two-dimensional (2D) atomic column positions with subpicometer precision [Van Aert
et al., 2012], to measure compositional changes at interfaces [Van Aert et al., 2009; Boschker et al., 2011;
Huijben et al., 2013], to count atoms with single atom sensitivity [Van Aert et al., 2013; De Backer
et al., 2013, 2015a], and to reconstruct three-dimensional (3D) atomic structures [Van Aert et al.,
2011; Bals et al., 2012]. This statistics-only based method is very reliable and results in atom-counts
with single atom sensitivity [Van Aert et al., 2013], provided the images are well-conditioned and its
conditions do not exceed the limitations of the method [De Backer et al., 2013, 2015a].
Despite the advantages of the STEM imaging mode, the high beam currents used in STEM imaging
make the technique less suitable for the study of beam-sensitive nanostructures. In order to minimise
radiation damage, the electron dose, i.e. the number of incident electrons used to record an electron
microscopy image per unit of area in the material, should be reduced. Comparable to the use of a
dimmed light source in light microscopy, imaging using a low electron dose in electron microscopy will
result in more noisy images. The performance of the statistics-only based atom-counting method is
very sensitive to a low signal-to-noise ratio. Therefore, in order to be able to count the number of
atoms from low dose images of beam-sensitive particles, a new method that suffers less critically from
a low signal-to-noise ratio is required.

The goal of this master’s thesis is to develop a hybrid statistics-simulations based atom-counting
method, in order to count the number of atoms in challenging ADF STEM images of small nano-
structures with low signal-to-noise ratios from which atoms cannot be counted to date. This hybrid
method will be realised by incorporating prior knowledge about the material, obtained through image
simulations, into the well-established statistical parameter estimation theory framework. The outline
of this thesis is as follows. In chapter 2, quantitative electron microscopy and the existing approaches
for atom-counting in experimental annular dark field scanning transmission electron microscopy (ADF
STEM) images are discussed in more detail. Following this discussion, we introduce a hybrid statistics-
simulations based method which directly combines elements from both existing methods in chapter
3. The way of including this prior knowledge from image simulations in the statistical parameter es-
timation theory framework will be discussed, as well as the interpretation and implementation of the
new algorithm. The performance of this novel hybrid atom-counting method is examined in chapter 4,
where it is also compared to the previous statistics-only based atom-counting method. Furthermore, in
this chapter, we examine the accuracy and precision of the atom-counting results. Finally, the hybrid
method is applied to experimental images of a large gold (Au) nanorod and very small platinum-
iridium (Pt/Ir) nanoparticles. The Au nanorod, analysed in chapter 5, is very well-conditioned for
atom-counting and has previously been analysed using the statistics-only based atom-counting method
by Van Aert et al. [2013]. The counting results obtained using this method are reliable, and therefore
this case study serves as a verification of the methodology. An analysis of the Pt/Ir nanoparticles, dis-
cussed in chapter 6, was also previously attempted using the statistics-only based method by De Backer
et al. [2015a]. However, high electron dose images were needed to obtain a reliable analysis. In this
chapter, the analysis of a low electron dose image using the hybrid statistics-simulations based atom-
counting method will be shown. Up until now, atoms could not be counted from this image. This case
study will therefore be used to show the great improvement of the hybrid method for quantitative
analysis of challenging nanomaterials.



Chapter 2

Atom-counting using ADF STEM
images

Nowadays, two different approaches for counting the number of atoms using annular dark field scanning
transmission electron microscopy (ADF STEM) images exist. The first approach is a simulations-only
based approach which is very intuitive and uses image simulations, whereas the second approach is a
statistics-only based approach which regards the images as data planes from which unknown structure
parameters need to be estimated. Both approaches use images obtained with a scanning transmission
electron microscope (STEM). We will therefore start this chapter with a discussion of quantitative
STEM. Next, both existing atom-counting approaches will be discussed in more detail.

2.1 Quantitative scanning transmission electron microscopy

Quantitative electron microscopy refers to the image processing of electron microscopy images in
order to extract quantitative information about the sample’s structure and composition, whereas in
qualitative electron microscopy the images are interpreted visually, without extracting any numerical
data. In order to predict properties of materials using ab initio calculations, positions of the atoms
need to be known with a high precision [Koli et al., 2014]. Therefore, an essential step towards
materials design is the quantitative, instead of qualitative, interpretation of high resolution electron
microscopy images of nanomaterials.

An excellent technique for the imaging of nanostructures is atomic resolution (scanning) transmission
electron microscopy (STEM) because of the strong interaction of electrons with small volumes of
matter [Fujita and Sumida, 1994; Henderson, 1995; Spence, 1999]. This imaging technique has become
a popular technique, because it has some advantages over conventional parallel beam TEM. Examples
are the high chemical sensitivity and relative ease of the image interpretability [Nellist and Pennycook,
2000]. Remarkable high-technology developments in the lens design have greatly improved the image
resolution [Haider et al., 1998]. Nowadays, state-of-the-art instruments are available with a resolution
of the order of 50 pm [Erni et al., 2009; Takayanagi et al., 2011]. For most atom types, this exceeds the
point where the electrostatic potential of the atoms is the limiting factor [Van Dyck et al., 2003]. In
addition, detectors behave more and more like ideal quantum detectors [Ruskin et al., 2013], making
the microscope itself less restricting. Therefore, the quality of experimental images is mainly set by
the unavoidable presence of electron counting noise and environmental disturbances [Jones and Nellist,
2013; Jones et al., 2015].

High-angle annular dark field (HAADF) STEM is especially suited for quantitative analysis, owing
to the excellent dependence of the image intensities on the atomic number Z of the atoms in the
sample and the number of atoms in the sample [Anderson et al., 1997; Nellist and Pennycook, 2000].
In HAADF STEM, only electrons that have scattered incoherently over angles much larger than the
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6 CHAPTER 2. ATOM-COUNTING USING ADF STEM IMAGES

probe convergence angle (α in figure 1.3) are detected [Nellist and Pennycook, 2000; Hawkes et al.,
2007]. Depending on the collection range of the detector, the dependence of the image contrast on
the atomic number Z will be different, as well as the pixel signal-to-noise ratio. Different STEM
detector geometries are nowadays available [Cowley et al., 1995; Shibata et al., 2010; Yang et al.,
2015]. In annular dark field (ADF) STEM, the detector inner angle (β1 in figure 1.3) exceeds the
probe convergence angle (α in figure 1.3). Depending on the detector inner angle, imaging modes
are called low angle (LA), medium angle (MA) or high angle (HA) ADF STEM. Traditionally, high
angle annular dark field (HAADF) STEM is used to extract quantitative information, but it has
been shown that the HAADF STEM regime is not necessarily optimal for atom-counting [De Backer
et al., 2015b]. The optimal detector inner angle increases for increasing thickness when deriving
the optimal STEM detector design for atom-counting. For thin samples, the LAADF STEM regime
exhibits optimal atom-counting properties, even though visual interpretation in this imaging mode is
less straightforward. Optimal imaging modes can be derived, in order to extract more quantitative
information using the same electron dose [De Backer et al., 2015b].

ADF STEM images contain useful information for quantitative analysis, and are therefore used as
starting point for both existing atom-counting approaches discussed in the remainder of this chapter.
In the next section we will discuss how simulations of ADF STEM images can be used to count the
number of atoms based on an experimental ADF STEM image of a nanomaterial.

2.2 Simulations-only based atom-counting method

By simulating the image formation of a scanning transmission electron microscope, the resulting images
for a certain nanomaterial under specific experimental conditions can be simulated. The intensities
from such simulated images can then be used to count atoms by direct comparison to the experimental
image intensities.

Advanced image simulations packages exist that can accurately simulate the images formed in different
imaging modes for samples under study, based on multislice or Bloch wave algorithms [Cowley and
Moodie, 1959; Bollig et al., 1996; Kirkland, 1998; Ishizuka, 2002; Allen et al., 2003; Findlay et al., 2003;
Croitoru et al., 2006], or on frozen phonon or frozen lattice calculations [Loane et al., 1991; Muller
et al., 2001; Koch, 2002; Rosenauer and Schowalter, 2007; Rosenauer et al., 2008]. Image simulations
can accurately describe experimental image contrast up to at least 100 nm thickness [LeBeau et al.,
2008, 2010]. Image simulations are performed using experimental parameters such as the accelerating-
voltage, convergence angle, spherical aberration constant, defocus value and detector angles as an
input. The experimental set-up is matched accurately in order for the simulations to agree with the
experiment [Findlay and LeBeau, 2013; Martinez et al., 2015; Jones, 2016].

Quantitative agreement between experiment and simulations is achieved by placing intensity variations
in the experimental image on an absolute scale by normalising the measured image intensities with
respect to the incident beam [Rosenauer and Schowalter, 2007; LeBeau et al., 2008]. Furthermore,
to achieve true quantitative agreement between simulated intensities and experimental intensities, a
full characterisation of the ADF detector should be performed [Grillo, 2011]. The detector response is
mapped by scanning the STEM probe over the ADF detector [Findlay and LeBeau, 2013; MacArthur
et al., 2014]. This detector map has an important influence on the agreement between simulation and
experiment, since ADF detectors of different manufacturers were found to respond both inhomoge-
neously and asymmetrically. In order to correct for the detector map, a detector sensitivity profile can
be included in the image simulations [Grieb et al., 2012; Mehrtens et al., 2013; Martinez et al., 2015].

Image intensities corresponding to the atomic columns determined from the experimental image can
now be compared to those determined from the simulated image in order to count the number of atoms
per column. However, due to channelling of the electrons when propagating through the material,
the intensity of a column with two atoms does not simply equal two times the intensity of a column
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Figure 2.1: Schematic representation of the effect of channelling [Geuens and Van Dyck, 2005]. Each atom can
be considered as a lens. The incoming electron wave is focussed at periodic distances, resulting in a non-linear
increase of the intensities in an ADF STEM image with the number of atoms in a column.

with only one atom. Channelling causes a non-linear increase of the intensities with increasing thick-
ness. Image simulations are therefore performed for a range of thicknesses to construct the so-called
“library”. For a monatomic nanostructure, the different thicknesses are directly related to different
numbers of atoms in an atomic column. Channelling theory describes the quantum mechanical inter-
action of the incident electrons with the object. Intuitively, this effect can be understood as a lensing
effect of the electron beam incident on an atomic column orientated along a crystallographic zone
axis, as shown in figure 2.1. It causes the intensity of the scattered electrons from this atomic column
to differ from the simple sum of scattered intensities caused by each individual atom. A detailed
description is given by Geuens and Van Dyck [2005].

Different measures exist for the quantification of the total intensity of the scattered electrons for
the individual atomic columns, such as average intensities within squares [LeBeau et al., 2010], peak
intensities [LeBeau et al., 2010; E et al., 2013] and scattering cross sections calculated using circles [E
et al., 2013] or Voronoi cells [Rosenauer et al., 2011; Jones et al., 2014; Nguyen et al., 2014]. Using
statistical parameter estimation based on an empirical model of an ADF STEM image, an alternative
definition to calculate the cross section exists [Van Aert et al., 2011], which will be discussed later
on in section 2.3. Cross sections have been shown to have the best performance for atom-counting,
because they are robust to changes in the probe such as a change in defocus, convergence angle or
source size, and even to very small amounts of sample tilt [E et al., 2013; Jones and Nellist, 2013;
Martinez et al., 2013; De Backer et al., 2015b; MacArthur et al., 2015].

A direct comparison between the experimental and the simulated image intensities corresponding
to the atomic columns can be performed by determining the intensities with the same quantitative
measure. Next, these experimental intensities are compared directly to the so-called “library values”,
i.e. the simulated intensities corresponding to atomic columns with different thicknesses. Using linear
interpolation, the number of atoms in each column is determined. Since the number of atoms in
a column is discrete, these numbers are then rounded to the nearest integer value [LeBeau et al.,
2010]. An example of a counting result obtained using this method is shown in figure 2.2. In this
example, atom-counts were obtained for a wedge-shaped gold film, imaged along the [110]-direction.
Atom-counts are indicated in the experimental image, and columns are represented into a histogram
according to the atom-counts. In this example, a nice agreement is found between experimental
columns assigned to a certain number of atoms and the corresponding simulated columns. Visual
discrimination between one atom differences is difficult, whereas columns with two atoms difference
are already clearly distinct. However, using this simulations-only based method, a match with the
experiment can always be forced, without knowing the accuracy and precision of the counting result.
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Figure 2.2: Example of atom-counting in ADF STEM images using the simulations-only based method
[LeBeau et al., 2010]. Left: HAADF-STEM image of a wedge-shaped gold film viewed along [110]. The intensity
maxima correspond to gold atom columns and the white labels near the lower right of each atom column indicate
the number of atoms contained in that column. The image intensities are shown on an absolute scale relative
to the incident beam intensity (see scale bar). Right: (a) Histogram of all the columns in the figure on the
left, binned by the number of atoms they contain. (b) Atomic column images extracted from simulations (top
row underneath the histogram) and experiments (bottom row underneath the histogram) after averaging all the
experimental columns in each bin shown in (a).

This first approach for atom-counting is very intuitive. However, small mismatches between the actual
and the simulated experimental set-up, such as a different detector inner angle or sample tilt, can
influence the simulated image intensities significantly. These systematic errors remain undetected and
the reliability of the quantitative analysis therefore depends solely on the accuracy of the simulations to
match the experiment [Van Aert et al., 2013; Jones, 2016]. Alternatively, atoms can be counted using
a statistical parameter estimation theory framework. In this statistics-only based method, simulations
are no longer needed, and such undetected systematic errors can be avoided, as will be discussed in
the next section.

2.3 Statistics-only based atom-counting method

Statistical parameter estimation theory has become a recognised framework for the quantitative ana-
lysis of electron microscopy images [den Dekker et al., 2005; Van Aert et al., 2005], and since sev-
eral years, statistical parameter estimation theory is used for atom-counting in ADF STEM images
[Van Aert et al., 2011; De Backer et al., 2013; Van Aert et al., 2013]. Unknown structure parameters
are determined from the observations, by formulating a physical model for the expectation value of
the observations and estimating the unknown parameters of the model using statistical parameter
estimation theory. Contrary to the previous simulations-only based approach for atom-counting, this
approach does allow for a quantification of the precision of the atom-counts. In this section, the
methodology of this method will be explained, and a practical example will be shown. First of all, a
model which describes the image contrast of ADF STEM images is formulated.

Model-based parameter estimation

A parametric incoherent imaging model to describe the expectation values of the image intensities is
formulated by a function that is sharply peaked at the positions of the atomic columns, modelled as
a superposition of Gaussian peaks. The expectation value of the image intensity at pixel (k, l) in the
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image is given by the following object function:

O(rk,l; θ) = ζ +
N∑
n=1

ηn exp

(
−(xk − βxn)2 + (yl − βyn)2

2ρ2

)
. (2.1)

In this expression, ζ is a constant background present in the image, ρ is the width of the two-
dimensional Gaussian peaks, ηn is the height of the nth Gaussian peak, βxn and βyn are the x- and
y-coordinate of the nth atomic column, and N is the total number of atomic columns in the image.
The unknown parameters are summarised in the parameter vector:

θ = (βx1 , ..., βxN , βy1 , ..., βyN , ρ, η1, ..., ηN , ζ)T . (2.2)

Figure 2.3b shows such a model calculated based on the experimental HAADF STEM image of a
lead (Pb) nanoparticle, embedded in crystalline silicon (Si), shown in figure 2.3a. The intensities
belonging to the different atomic columns can be quantified in two ways. Either the maximum value
of the Gaussian peak is used, or the volume under the peak, which equals the total intensity of the
scattered electrons. The volume under an estimated Gaussian peak expresses the so-called scattering
cross section:

V̂n = 2πη̂nρ̂
2, (2.3)

with η̂n and ρ̂ the least squares estimates of the parameters ηn and ρ from equation (2.1). The scatter-
ing cross sections have been shown to outperform the peak intensities for atom-counting [De Backer
et al., 2015a]. Therefore, in the remainder of the description of this statistics-only based method the
scattering cross sections will be used as the measure to quantify the column intensities.

Probability distribution of the scattering cross sections

Due to the unavoidable presence of noise in the experimental image, the scattering cross sections are
inherently random in nature. Therefore, when represented in a histogram, we do not see isolated
peaks corresponding to the different thicknesses, but overlapping broadened components, as can be
seen in the example in figure 2.3c. A distribution on the values of the cross sections corresponding to
a number of atoms in a column around the expectation value will be present, causing the components
to have a finite width σ around its location µ. This distribution will be modelled as a Gaussian
distribution. The probability distribution of the scattering cross sections is therefore described by a
so-called “Gaussian mixture model”, a superposition of Gaussian components1:

fmix

(
V̂n; ΨG

)
=

G∑
g=1

πgφg

(
V̂n;µg, σ

)
, (2.4)

with

φg

(
V̂n;µg, σ

)
=

1√
2πσ2

exp

(
−(V̂n − µg)2

2σ2

)
, (2.5)

the Gaussian components. The mixing proportion πg of the gth component indicates which fraction
of the columns in the image have a specific number of atoms corresponding to the gth component, i.e.
the weight of the gth component in the Gaussian mixture model. Furthermore, in this expression µg
represents the location of the gth component in the mixture model and σ the width of the components,
while V̂n represents the least squares estimate for the nth scattering cross section, expressed by equation

1Note that these 1D Gaussian components are different from the 2D Gaussian peaks previously used in the description
of the model for the image intensities.
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Figure 2.3: Example of atom-counting in ADF STEM images using the statistics-only based method
[Van Aert et al., 2013]. (a) Experimental HAADF STEM image of a Pb nanoparticle embedded in crystalline
Si. (b) Refined model. (c) Histogram of scattering cross sections of the Pb columns. The black solid curve shows
the estimated mixture model; the individual components are shown as red dashed curves. (d) The Integrated
Classification Likelihood criterion evaluated as a function of the number of Gaussian components in a mixture
model. (e) Number of Pb atoms per column.

(2.3). The vector ΨG is the parameter vector containing all unknown parameters to be estimated in
a Gaussian mixture model with G components:

ΨG = (π1, ..., πG−1, µ1, ..., µG, σ)T . (2.6)

Notice that πG is not estimated, since the sum of all G mixing proportions must equal one, and
therefore πG = 1−

∑G−1
g=1 πg. This means that 2G parameters need to be estimated to determine the

mixture model completely, and therefore be able to count atoms. It is common practice to assume
homoscedastic components, i.e. a constant width σ for all components.

The goodness of fit of a Gaussian mixture model to the collection of scattering cross sections obtained
from the experimental ADF STEM image, is expressed by the likelihood function L(ΨG):

L(ΨG) =

N∏
n=1

fmix

(
V̂n; ΨG

)
, (2.7)

where experimental scattering cross sections were regarded as independent statistical draws from
the Gaussian mixture model. The assumption of independent statistical draws from the underlying
Gaussian mixture model implies that the so-called cross talk between neighbouring columns is assumed
insignificant [Fertig and Rose, 1981; Nellist and Pennycook, 1999; Allen et al., 2003; De Backer et al.,
2013].

Estimates of the parameters ΨG are computed by maximising the likelihood function. The parameter
updates are iteratively calculated using the expectation maximisation (EM) algorithm, in two steps,
the E-step and the M-step [Dempster et al., 1977]. In the E-step, the posterior probability that the
estimated scattering cross section of the nth column V̂n belongs to the gth component is calculated:

τg

(
V̂n; Ψ

(k)
G

)
=

π
(k)
g φg(V̂n;µ

(k)
g , σ(k))∑G

h=1 π
(k)
h φh(V̂n;µ

(k)
h , σ(k))

, (2.8)
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where G represents the total number of components in the Gaussian mixture model, φg the Gaussian
components expressed by equation (2.5), and k the iteration step. The updates of the parameters that
maximise the log likelihood are calculated in the M-step using the following expressions:

π(k+1)
g =

1

N

N∑
n=1

τg

(
V̂n; Ψ

(k)
G

)
, (2.9)

µ(k+1)
g =

∑N
n=1 τg

(
V̂n; Ψ

(k)
G

)
V̂n∑N

n=1 τg

(
V̂n; Ψ

(k)
G

) , (2.10)

and

σ(k+1) =

√√√√ 1

N

G∑
g=1

N∑
n=1

τg

(
V̂n; Ψ

(k)
G

)(
V̂n − µg

)2
. (2.11)

The iterative EM-algorithm stops when convergence of the likelihood is reached. A more detailed
description of this algorithm can be found in appendix A.
By means of simulations, the following input values for the algorithm were found to result in unbiased
estimates for the parameters of the mixture model:

π(0)g =
1

G
, (2.12)

for the mixing proportions, and

σ(0) =
max(V̂)−min(V̂)

2G
, (2.13)

for the width of the components. Different sets of starting values are used for the locations, ranging
between the minimum and maximum value of the dataset [De Backer et al., 2013]. For each different
set of starting values, the algorithm is iterated until convergence is reached. The estimates ΨG of the
parameters in the mixture model are then given by the set of estimated parameters corresponding to
the maximal likelihood value.
So far, we have only considered the estimation of the probability distribution of the scattered intensities
presuming a specific number of components G. The next part deals with determining the number of
components in a mixture model using order selection criteria.

Assessing the number of components in the mixture model using an order selection
criterion

In order to estimate the unknown parameters of the Gaussian mixture model, the number of compo-
nents has to be known. Unfortunately, determining the number of components is not very straight-
forward, which is a disadvantage of this statistics-only based atom-counting method. The number
of components in the Gaussian mixture model, i.e. the model order, is determined through the use
of an order selection criterion which takes into account the likelihood of the model on the one hand,
and penalises the complexity of the model on the other hand. In this manner, a model with the right
balance between complexity and likelihood can be chosen corresponding to a minimum in the order
selection criterion evaluated as a function of the number of components. Many different information
criteria exist [McLachlan and Peel, 2000], but the Integrated Classification Likelihood (ICL) criterion
[Biernacki et al., 2000] has been proven to have the best performance for atom-counting [De Backer
et al., 2013]. The ICL criterion is expressed as follows:

ICL(G) = −2 logL(Ψ̂G) + 2EN(τ̂) + d logN, (2.14)
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with −2 logL(Ψ̂G) the likelihood term depending on the estimated parameters Ψ̂G and 2EN(τ̂) +
d logN the penalty term depending on the number of parameters d, the sample size N and an entropy
term:

EN(τ̂) = −
G∑
g=1

N∑
n=1

τg

(
V̂n; Ψ̂G

)
log τg

(
V̂n; Ψ̂G

)
, (2.15)

which favours mixture models with well-separated components, in order to estimate physically mean-
ingful mixture models.

An example of this procedure to count the number of atoms using statistical parameter estimation the-
ory is shown in figure 2.3. Atoms were counted in a Pb nanoparticle, embedded in crystalline Si. The
experimental HAADF STEM image is summarised in the example shown in figure 2.3a. Figure 2.3b
shows the estimated model, expressed by equation (2.1). From this estimated model, the scattering
cross sections are calculated as the volumes under the estimated Gaussian peaks (equation (2.3)) and
shown in the histogram in figure 2.3c. Next, the ICL criterion is calculated for the most likely Gaus-
sian mixture model out of the different sets of starting values at each different number of components,
and evaluated as a function of the number of components. The estimated mixture model correspond-
ing to the minimum of interest in the ICL criterion is shown overlapping the histogram of scattering
cross sections in figure 2.3c. For each column, the probability that its scattering cross section be-
longs to each component is determined. Next the columns are assigned atom-counts corresponding to
the component with the highest probability. The atom-counts for this example are shown in figure 2.3e.

Using the statistical parameter estimation theory framework, atoms can be counted with single atom
sensitivity [Van Aert et al., 2013; De Backer et al., 2013]. However, when the overlap between the
components of the Gaussian mixture model is large or the average number of atomic columns per
component is small, the atom-counting performance is strongly reduced [De Backer et al., 2013]. In
practice, these challenging conditions correspond to noisy images of small nanoparticles.

2.4 Discussion

In this chapter, we have discussed the two existing atom-counting approaches. Ideally, both approaches
should result in the same atom-counts. The direct comparison with image simulations is very intuitive
and straightforward. However, a match with the experimental results can always be forced. Systematic
errors in the measurement of the experimental set-up used as an input for the image simulations cannot
be recognised, and determine the (unknown) accuracy of the atom-counts.
The atom-counting procedure based on statistical parameter estimation theory is simulations-free, and
therefore does not suffer from undetectable systematic errors in the simulations’ input. Furthermore,
through the use of statistical parameter estimation theory, the precision on the atom-counting results
can be quantified, using the estimated relative width of the components of the Gaussian mixture
model. This was not possible using simulations only, and makes this atom-counting method more
reliable. Atom-counts with single atom sensitivity can be obtained in this manner, provided the image
of the nanoparticle is well-conditioned, which in this context means a high signal-to-noise ratio and/or
a large number of atomic columns in the ADF STEM image.
The statistics-only based atom-counting approach fails under conditions which correspond to low
dose images of small nanoparticles. Since beam-sensitive materials need to be imaged using a low
electron dose, a method that enables atom-counting from images with a lower signal-to-noise ratio
is required. By incorporating prior knowledge from image simulations into a statistical parameter
estimation theory framework, we aim to overcome these limitations. This will be realised in a novel
hybrid method, introduced in the next chapter.



Chapter 3

Hybrid method: methodology

Two different approaches for atom-counting have been introduced in the previous chapter, based res-
pectively on image simulations [LeBeau et al., 2010; Jones et al., 2014] or on statistical parameter
estimation theory [Van Aert et al., 2011, 2013; De Backer et al., 2013]. Counting the number of atoms
through direct comparison with image simulations is a very straightforward approach. An important
disadvantage of this approach however is that systematic errors, caused by small mismatches between
the actual and simulated experimental set-up, are very difficult to detect, but can nonetheless influence
the simulated image intensities significantly. Therefore, the reliability of this image simulations-only
based atom-counting approach depends solely on the unknown accuracy of the simulations [Van Aert
et al., 2013; Jones, 2016]. At present, the most reliable atom-counts from ADF STEM images of
nanoparticles are obtained through analysis using statistical parameter estimation theory, indepen-
dent from image simulations. However, caution is needed when analysing small nanoparticles. Such
particles are very beam-sensitive and therefore need to be imaged using a low electron dose, which
leads to a poor signal-to-noise ratio in the images and may result in inaccurate atom-counts. By inde-
pendently performing image simulations, the counting results obtained using the statistics-only based
method can be verified. If no agreement is found between results from the independent statistical
analysis and the image simulation, we conclude that atom-counts are inaccurate. This was for exam-
ple the case for a platinum-iridium nanoparticle imaged using a very low electron dose, in order to
avoid radiation damage, discussed in [De Backer et al., 2015a]. Atoms could not be counted from the
low dose images of such a nanoparticle. In chapter 6, we will experimentally show that atom-counting
does become possible in the low dose image using the hybrid method, introduced in this chapter.

In an ideal situation, the results obtained by the statistics-only based method and the simulations-only
based method agree perfectly. In other words, ideally the locations of the Gaussian mixture model
are estimated equal to the scattering cross sections, i.e. the image intensities corresponding to the
atomic columns, determined from very accurate image simulations. The hybrid method is introduced
to enforce this necessity of finding the same results using either statistical parameter estimation
theory or image simulations, and therefore combines elements of both existing methods. Since some
inaccuracies may be present in the experimental input parameters needed for the image simulations,
we cannot simply force the locations of the estimated Gaussian mixture models to exactly equal the
scattering cross sections calculated from image simulations. However, we can propose a function that
relates the experimental scattering cross sections to those determined from image simulations, with a
parameter that can be estimated to take into account possible inaccuracies.

We therefore start the description of the hybrid method by proposing a relation between the experi-
mental scattering cross sections and the simulated scattering cross sections, based on some examples
of common calibration errors during experimental acquisition. This proposed function is then used
to incorporate prior knowledge from image simulation into the estimates of the locations of the com-

13
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Figure 3.1: Simulated scattering cross sections for different detector settings for Au in [100] zone axis. In
full lines, the scaled library for 57-170 mrad is shown, in nice agreement with libraries with different detector
settings. Increasing detector inner angle causes a linear scaling of a < 1. Figure adjusted from [Martinez, 2014].

ponents of the Gaussian mixture model. This implies that locations are no longer freely estimated.
Instead, the parameter describing the relationship between experimental and simulated intensities is
estimated to determine the locations. Analytical updates for the new parameters are calculated by
maximising the likelihood. Next, the likelihood of the estimated models is evaluated to examine the
interpretation of the results obtained by the hybrid method. Finally, we introduce an order selection
criterion and define its new interpretation in the context of the hybrid method.

3.1 Relationship between experimental and simulated scattering
cross sections

When performing image simulations with the purpose of quantitative comparison to experimental re-
sults, it is of the utmost importance that all experimental parameters are measured correctly. The use
of inaccurate parameters can cause the simulated scattering cross sections to deviate from the actual
experimental scattering cross sections. However, since some inaccuracies can always be present, the
goal of this section is to propose a relationship that describes this deviation due to common calibration
errors of the experimental set-up. This relation can then be included in the hybrid method, in order
to enable atom-counting even when some parameters may have been measured inaccurately.

In order to determine the relationship, we will look at two examples of parameters that are often
measured slightly inaccurate during the experiment. The annular dark field detector inner angle (β1 in
figure 1.3) is a first example of the parameters used as input for the image simulations. Figure 3.1 shows
the effect of detector angles that differ very little from each other (order of magnitude milliradians)
on the atomic column intensities, quantified by the scattering cross sections. An increasing detector
inner angle results in a global decrease of the scattering cross sections, which can be quite accurately
approximated using a linear scaling relationship, as is shown by the full lines in figure 3.1. Assume for
instance that the actual detector inner angle equals 57 mrad (blue in figure 3.1), while simulations were
performed using a detector inner angle of 60 mrad (red in figure 3.1). In this case, a scaling parameter
of 0.96 results in a nice agreement between the actual intensities and the simulated scattering cross
sections and would allow us to compensate for the deviation of the scattering cross sections in the
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Figure 3.2: Simulated scattering cross sections for different values of the sample tilt. On the left, simulated
images with 5 mrad and 20 mrad sample tilt are shown. On the right, in full lines, the scaled library for the
sample in zone axis (no sample tilt) is shown, in nice agreement with libraries different tilt values, indicated by
dots. Increasing sample tilt causes an (approximately) linear scaling of a < 1. Figure adjusted from [Martinez,
2014].

estimates for the locations of the Gaussian components in the mixture model.

Another example of a parameter which is often measured slightly inaccurately is sample tilt. Figure
3.2 shows image simulations for different values of the sample tilt and the effect on the scattering cross
sections. Increasing sample tilt results in a decrease of the intensity belonging to an atomic column,
again quantified by the scattering cross sections. This decrease can also be approximated as a linear
scaling, as indicated in figure 3.2.

The previous analysis suggests that a linear scaling relationship can be incorporated into the sta-
tistical parameter estimation theory framework to account for the effects shown in these examples,
together with other possible calibration errors. Therefore the key expression relating the existing
image simulations-only based and statistics-only based atom-counting procedures is expressed by the
following linear relationship:

µg = aMg, (3.1)

where µg represents the location of the gth component, and Mg represents the simulated scattering
cross section for a column with g atoms. The scaling parameter a determines the relationship between
experimental and simulated intensities, and will be treated as a parameter that needs to be estimated
along with the other parameters that determine the probability distribution of the scattering cross
sections. The introduction of this linear scaling parameter opens up possibilities to correctly count
atoms despite possible inaccuracies in the image simulations.

In the next section, the probability distribution of the scattering cross sections, and the way of incor-
porating the prior knowledge from the image simulations into the model will be discussed.

3.2 Probability distribution of the scattering cross sections

As mentioned before in section 2.3, the unavoidable presence of noise in the experimental images
causes a probability distribution on the scattering cross sections. Represented in a histogram, we do
not see isolated peaks corresponding to the different numbers of atoms in a column, but broadened
components, often overlapping each other, as shown in figure 2.3c. Ideally, the average scattering
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cross sections, in other words the locations of the components, coincide with the simulated scattering
cross sections, called the library values since a set of simulated cross sections for different thicknesses is
often called a library. Due to inaccuracies, the simulated scattering cross sections can deviate from the
experimental scattering cross sections. This deviation was modelled as a linear scaling in the previous
section, and will be incorporated into the expression for the locations of the components. Rather than
freely estimating the locations, they will now be restricted to a linear scaling factor multiplied with
the library values following from simulations.

The distribution of the scattering cross sections is modelled as a Gaussian distribution, analogous to
the description given in section 2.3, but with the substitution µg = aMg to incorporate the library
values Mg into the model. As compared to the statistics-only based method, where all the locations
needed to be estimated, the number of parameters is now reduced by only estimating one scaling
parameter to determine the locations. Instead of 2G parameters, only G + 1 parameters need to be
estimated, summarised in the parameter vector:

ΨG = (π1, ..., πG−1, a, σ)T . (3.2)

The updates of the parameters, previously expressed by equations (2.9), (2.10) and (2.11), are now
calculated for the parameters of equation (3.2) using the following expressions:

π(k+1)
g =

1

N

N∑
n=1

τg

(
V̂n;ψ

(k)
G

)
, (3.3)

a(k+1) =

∑N
n=1

∑G
g=1 τg

(
V̂n;ψ

(k)
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G
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g

, (3.4)

and

σ(k+1) =

√√√√ 1

N

G∑
g=1

N∑
n=1

τg

(
V̂n;ψ

(k)
G

)(
V̂n − a(k)Mg

)2
. (3.5)

Elaborate derivations for these updates of the parameter estimates are presented in appendix A. Re-
liable starting values for the mixing proportions πg and the width of the components σ are again
expressed by equations (2.12) and (2.13). For the starting values of the scaling parameter, different
values are used, ranging between a minimum and maximum expected scaling value. For each different
set of starting values, the algorithm is iterated until convergence is reached. By evaluating the log
likelihood as a function of the scaling value, as described in the next section, it will become clear
that many starting values for the scaling parameters are in fact necessary in order for the algorithm
to estimate the correct model. The estimates ΨG of the parameters in the mixture model are then
given by the set of estimated parameters corresponding to the maximum likelihood. In chapter 4,
simulations will be performed, showing that these starting values indeed result in accurate and precise
parameter estimates.

An example of an estimated probability distribution of scattering cross sections obtained using the
hybrid method is shown in figure 3.3. The scattering cross sections were created by performing random
draws from a Gaussian mixture model with equal mixing proportions assigned to the first, second and
fourth component, while the mixing proportion of the third component is equal to zero. This Gaussian
mixture model is well-conditioned, with well-separated components and a large number of observations
per component. Visually, it is clear that we are dealing with only 3 components in the mixture model.
Due to the restrictions imposed on the locations by the hybrid method, a library length of 4 will be
needed, as can be seen explicitly from 3.3, where the estimated Gaussian mixture models at library
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Figure 3.3: Simulated scattering cross sections with scaling value a = 1, relative width of components σ = 0.2,
N/G = 100 observations per component, mixing proportions π1 = π2 = π4 = 1/3 and the third component
missing π3 = 0, and a linear library. In red, the estimated mixture model by the hybrid method at library
length 3 is shown. The estimated mixture model in blue corresponds to the model estimated at library length
4.

lengths 3 and 4 are shown in red and blue respectively. Therefore, we will speak of library length in
the context of the hybrid method, since this is intuitively not necessarily the same as the number of
components.

The fact that mixing proportions can be estimated equal to zero, which did not occur before because
of the freedom in the estimation of the locations, means that this model with three effective, non-zero
components at 1, 2 and 4 atoms thick can also be estimated using a library length larger than 4, by
putting all mixing proportions from the fifth component onwards equal to zero. This will be used in
the next section to evaluate the likelihood as a function of the scaling value on the one hand and as
a function of the library length on the other hand. Ideally, based on the selection of the maximum
likelihood, or equivalently the minimum negative log likelihood, the correct model is estimated.

Figure 3.4: Simulated scattering cross sections created by performing random draws from a well-conditioned
Gaussian mixture model, with a = 1, σ = 0.2, 5 uniform mixing proportions, N = 500 and a linear library. The
imposed well-conditioned Gaussian mixture model is shown in black. The dots indicate the locations of the 5
imposed components, equal to the scaled library values.
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3.3 Evaluation of the log likelihood

In order to examine the negative log likelihood, we will study an academic example, shown in figure 3.4.
A set of scattering cross sections was simulated by performing random draws from a well-conditioned
Gaussian mixture model with well-separated components and a large number of observations per com-
ponent, with a linear library determining its locations. The negative log likelihood for the estimated
models at library length 20 for the data shown in figure 3.4 is evaluated as a function of the scaling
value in figure 3.5. The negative log likelihood was calculated by keeping the scaling value fixed
throughout the estimation procedure, in order to really understand the behaviour of the negative log
likelihood as a function of the scaling value. Estimates of the scaling parameter will converge to the
nearest of the many local minima in the negative log likelihood as a function of the scaling parameter,
because of the analytical implementation of the updates introduced in section 3.2. Therefore, many
starting values for the scaling parameter are needed, in order to ensure convergence towards the cor-
rect model. After estimating models with many different starting values, the model with the highest
likelihood (lowest negative log likelihood) is chosen.

Figure 3.5: Negative log likelihood evaluated as a function of the scaling parameter for the estimated models
at library length 20 for the data shown in figure 3.4. A lot of local minima occur, with a significant local
minimum at a = 0.9972, and the global minimum at a = 0.2510.

A clear minimum in the negative log likelihood evaluated as a function of the scaling parameter in
figure 3.5 occurs at a = 0.9972. The estimated Gaussian mixture model at this scaling value has only
5 mixing proportions estimated differently from zero. As predicted based on the example in figure
3.3, even though all library values upto 20 atoms thickness are used during the estimation procedure,
the correct model can be found, because the mixing proportions can be estimated equal to zero. This
model is shown in figure 3.6a.

The mixture model with five effective, non-zero components does however not result in the global
minimum negative log likelihood as a function of the scaling parameter. The global minimum occurs
at a scaling value of a = 0.2510. The model estimated at this scaling value is shown in figure 3.6b.
More components are used, improving the fit to the data slightly, resulting in a higher likelihood, or
equivalently a lower negative log likelihood, although this estimated model does not agree with the
imposed mixture model. The dataset is overfitted by this model with 20 non-zero components.
Remarkably, the global minimum in the negative log likelihood as a function of the scaling value occurs
at a quarter of the imposed scaling value, while using 4 times as many components to fit to the data.
Furthermore, a local minimum occurs at a = 0.4995, using 10 effective non-zero components in the
Gaussian mixture model. Because in this academic example the mixing proportions are uniform and
the library is exactly linear, these models estimated at a ≈ 0.25, a ≈ 0.5 and a ≈ 1, corresponding
to 20, 10 and 5 components respectively, are equivalent in the sense that they can be regarded as
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(a) (b)

Figure 3.6: Estimated Gaussian mixture models at (a) the local minimum at a = 0.9972 and (b) the global
minimum at a = 0.2510 occurring in the negative log likelihood evaluated as a function of scaling parameter a
for library length 20, as shown in figure 3.5. The model at a = 0.9972 only has 5 effective, non-zero components
contributing to the mixture model, shown in (a), whereas all 20 components contribute to the mixture model
in case a equals 0.2510 as can be seen from (b). The individual Gaussian components are shown in colours
indicating the number of estimated atoms in an atomic column.

multiples of each other, where instead of one component, two or four were estimated with a similar
likelihood. However, physically, only one of those models is significant. When all experimental set-up
parameters used to perform image simulations were measured accurately, the scaling value is expected
to be close to 1: experiment and simulations agree perfectly in the ideal case of a = 1. Therefore, out
of all multiples of a = 0.25 corresponding to the global minimum, the value closest to the expected
value of 1 should be chosen.

Figure 3.7: Negative log likelihood evaluated as a function of the scaling parameter for the estimated models
at library lengths 1 upto 20 (red to blue) for the scattering cross sections from figure 3.4.

Figure 3.7 shows the negative log likelihood evaluated as a function of the scaling value for library
lengths ranging from 1 to 20. It is clear that the local minima depend strongly on the library length.
More minima appear when the library length increases, corresponding to the new possibilities that
arise from having more components to fit to the data.
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As mentioned earlier in section 2.1, experimental libraries are non-linear, due to channelling of the
electrons when they propagate through the material [Fertig and Rose, 1981; Geuens and Van Dyck,
2005; Hawkes et al., 2007]. Therefore, a more realistic example will result in less likely combinations
of a different number of scaled components in the mixture model, as compared to the academic
example from figure 3.4. An example, with scattering cross sections simulated based on the estimated
Gaussian mixture model of an actual Pt/Ir particle, with a non-linear library, is shown in figure 3.8.
The minimum negative log likelihood around the expected value of a = 1, which was imposed on the
Gaussian mixture model from which the scattering cross sections were simulated, is more difficult to
interpret as the correct physically meaningful minimum based on this evaluation of the negative log
likelihood as a function of the scaling value, calculated for a library length of 20, as compared to the
previous academic example.

(a) (b)

Figure 3.8: (a) Simulated scattering cross sections based on an estimated Gaussian mixture of a Pt/Ir nanopar-
ticle. The imposed Gaussian mixture model is shown as a full black curve, whereas its individual components
are black dashed lines. The dots on the x-axis indicate locations of the imposed components, in agreement
with the (non-linearly increasing) library values, since a scaling value of a = 1 was imposed. (b) Negative log
likelihood evaluated as a function of the scaling value, calculated at library length 20.

The negative log likelihood can also be evaluated as a function of the library length, as shown in figure
3.9, rather than as a function of the scaling parameter. The minimum negative log likelihood occurs
at the largest library length, corresponding to the model where all components are used to form a
mathematically likely fit to the data. At the true library length, the estimated model is indeed the
same model that was estimated previously at the true scaling value, shown in figure 3.6a. However,
the selection of the correct library length to determine the physically meaningful physical model based
on the negative log likelihood is not possible. To facilitate the choice for the correct model, a selection
criterion is introduced in the next section, that will penalise models with a high complexity and will
therefore make it possible to choose the correct library length.

3.4 Assessing the maximum number of atoms in a column

The global minimum in the negative log likelihood will always occur at a small scaling value and a
large library length, such that more components are used to produce a mathematically better fit to
the data. A selection criterion can be used to determine the actual library length required to estimate
a model with the correct balance between the goodness of fit, i.e. the likelihood of the model, and
the complexity of the model. The selection criterion includes a likelihood term, as well as a penalty
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(a) (b)

Figure 3.9: Negative log likelihood evaluated as a function of the library length used to estimate the models,
for the simulated scattering cross sections based on (a) a linear library, as displayed in figure 3.4 and on (b) a
non-linear library, as displayed in figure 3.8a.

term which increases with the number of parameters in the Gaussian mixture model, in order to
obtain a good trade off between the goodness of fit and the complexity of the model. Many different
information criteria exist, accounting for the complexity of the model in different ways, for which an
overview of relevant criteria is given by McLachlan and Peel [2000].
The Integrated Classification Likelihood (ICL) criterion (equation (2.14)) was shown to have the
best performance for atom-counting for the statistics-only based method by De Backer et al. [2013].
The ICL criterion consists of a likelihood term −2 logL(Ψ̂), and a penalty term 2EN(τ̂) + d logN
depending on the complexity of the model. The parameter d represents the number of parameters to
be estimated, equal to the length of library + 1. This means that increasing library length is penalised,
while a higher likelihood is favoured. The reason for the good performance of the ICL criterion is the
entropy term EN(τ̂), defined earlier in equation (2.15). The functional dependence on G represents
the dependence of the library length for the hybrid method, instead of the number of components
previously used in the statistics-only based atom-counting method from section 2.3.
The ICL criterion forms the ideal combination of the Bayesian Information Criterion (BIC) and
the Classification Likelihood information Criterion (CLC), expressed by equations (3.6) and (3.7)
respectively, which tend to respectively underestimate and overestimate the number of components of
the probability distribution.

BIC(G) = −2 logL(Ψ̂G) + d logN (3.6)

CLC(G) = −2 logL(Ψ̂G) + 2EN(τ̂) (3.7)

The evaluation of the BIC, CLC and ICL selection criteria as a function of the library length for a
simulated set of cross sections with actual library length 51 is shown in figure 3.10. Indeed, the BIC
underestimates the library length drastically, as indicated by the blue arrows in figures 3.10a and
3.10b. The CLC on the other hand slightly overestimates the correct library length as indicated in
figure 3.10b by the red arrow. The extra d logN term depending on the number of estimated para-
meters present in the ICL criterion as compared to the CLC criterion, explains its optimal properties.
Therefore, the ICL criterion will be used as an order selection criterion in the hybrid method.

The ICL criterion evaluated as a function of library length for the example from figure 3.4 with the
linear library is shown in figure 3.11. The minimum of interest occurs at the global minimum at library
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(a) (b)

Figure 3.10: Evaluation of the Bayesian Information Criterion (BIC), the Classification Likelihood information
Criterion (CLC) and the Integrated Classification Likelihood (ICL) criterion as a function of the library length
for a simulated set of cross sections with actual library length (a) 51 and (b) 10 respectively. Arrows indicate the
minima selected from the different selection criteria. The top axis evaluates the estimated scaling values. The
BIC underestimates the library length drastically, whereas the CLC tends to overestimate the library length.

length 5, corresponding to an estimated scaling value of a = 0.9972, resulting in the correct choice
of estimated Gaussian mixture model. In this example, the minimum of interest in the ICL criterion
as a function of the library length coincides with the global minimum, thanks to the well-conditioned
nature of the set of simulated scattering cross sections from figure 3.4. Notice that the estimated
scaling values, shown at the upper axis in figure 3.4, remain constant from library lengths 5 upto 9.
This implies the models estimated at these library lengths are effectively the same, while components
with a mixing proportion equal to zero are added in the end. The ICL values from library lengths 5
upto 9 increase linearly with a slope equal to logN , indicated by the grey lines in figure 3.11. At these
library lengths, adding an extra component results in a model with the same likelihood, because the
mixing proportion of this extra component is estimated equal to zero. The likelihood and entropy for
these library lengths remain approximately constant, and only the number of parameters that need to
be estimated d changes with increasing library length, since d equals the library length + 1. Therefore,
these lines correspond to effectively the same models with the same scaling value, indicating the high
likelihood of the model.

The minimum of interest chosen from figure 3.11 corresponds to the global minimum. This is however
not a general property. Figure 3.12 shows the ICL criterion evaluated as a function of the library
length for the more realistic example based on a non-linear library from figure 3.8. The interpretation
of the ICL criterion evaluated as a function of the library length for the hybrid method to determine
the correct library length can therefore be described by three guidelines. First of all, the minimum
of interest usually is not the global minimum. Second, when image simulations are performed very
carefully, the minimum can be chosen such that the estimated scaling value is close to the expected
value of 1, which corresponds to perfect image simulations. Finally, in case one or more lines with
slope logN occur in the ICL criterion, the equivalent models estimated at these library lengths have
a very high likelihood. The extent of these lines can be used as an indication of the likelihood of the
model, and will therefore aid the interpretation of the ICL criterion. In such cases, we choose the
beginning of a line with slope logN as the minimum of interest.
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Figure 3.11: Integrated Classification Likelihood criterion evaluated as a function of library length (bottom
axis) with corresponding estimated scaling values (top axis) for the scattering cross sections simulated by
performing random draws from a well-conditioned Gaussian mixture model with a linear library from
figure 3.4. The minimum of interest occurs at the global minimum at library length 5, corresponding to an
estimated scaling value of a = 1, which corresponds to the correct imposed values.

Figure 3.12: Integrated Classification Likelihood criterion evaluated as a function of library length (bottom
axis) with corresponding estimated scaling values (top axis) for the scattering cross sections simulated by
performing random draws from a realistic Gaussian mixture model with a non-linear library from
figure 3.8. The minimum of interest occurs at a local minimum, at library length 10, corresponding to an
estimated scaling value of a = 0.99, in good agreement with the imposed values.
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3.5 Conclusion

In this chapter, the methodology of the hybrid statistics-simulations based atom-counting method for
ADF STEM images of monatomic crystalline nanostructures was described. Image simulations were
incorporated directly into the statistical parameter estimation theory framework by restricting the
locations estimated in the Gaussian mixture model. In order to account for possible calibration errors
during the measurements of parameters such as sample tilt and detector inner angle, the locations
are expressed as a function of the simulated intensities. We have shown that such deviations result in
a change of the intensities which can be approximated quite accurately by a linear scaling relation-
ship. Therefore, a linear scaling relationship was used to incorporate the prior knowledge. Using this
relationship, we derived new update formulas to be calculated during the Expectation-Maximisation
algorithm in order to estimate the parameters of the Gaussian mixture model including the prior
knowledge.

Next, we have shown that mixing proportions can be estimated equal to zero, whereas previously
locations would have been shifted to compensate for missing components. This simplifies the interpre-
tation of the atom-counts, since the gth component used in the hybrid method will always correspond
to g atoms in a column. Using the statistics-only based method, the relation between the number of
the component and the number of atoms in a column corresponding to it had to be derived based
on the distances between subsequent locations. An advantage of the hybrid method is therefore that
missing components can more easily be detected.

The ability to estimate mixing proportions equal to zero also allows the correct model to be estimated
at a larger library length. However, the negative log likelihood evaluated as a function of the scaling
value, calculated at such a larger library length, exhibits a lot of local minima. For the academic
example using a linear library, these local minima occur at fractions of the actual scaling value, de-
termined by the library length. However for a more realistic example based on a non-linear library,
we see that less minima occur and that the local minimum around the correct scaling value is less
pronounced. Since more components in general result in a better fit to the data, with a slightly better
likelihood than the correct model, the global minimum of the negative log likelihood occurs at a very
small scaling value corresponding to a model with many components. Increasing the library length
allows for overfitting of the dataset using a lot of components, as could clearly be seen by evaluating
the negative log likelihood as a function of the library length.

To facilitate the selection of the correct model, a selection criterion evaluated as a function of the
library length was introduced, in order to assess the maximum number of atoms in an atomic column.
A selection criterion benefits from a high likelihood, but also penalises the complexity of the estimated
models. The ICL criterion was chosen over other selection criteria, resulting in the best assessment of
the model order. The minimum of interest from this criterion is selected based on three guidelines for
its interpretation:

1. the minimum of interest is usually a local minimum,

2. the minimum is expected to correspond to an estimated scaling value close to the expected value
of 1, and

3. the beginning of a long line with slope logN represents a model with a very high likelihood.

In the next chapter, the accuracy and precision of the estimated parameters of the Gaussian mixture
model is studied. Furthermore, we look at the performance of the ICL criterion, and the percentage
of correctly counted atomic columns for different conditions for the Gaussian mixture model.



Chapter 4

Possibilities and inherent limitations

In this chapter, the possibilities and inherent limitations of the hybrid statistics-simulations based
method for atom-counting using ADF STEM images of monatomic crystalline nanostructures, devel-
oped in the previous chapter, will be discussed and compared to the performance of the statistics-only
based method, introduced in chapter 2. We describe the precision of the estimated parameters using
the so-called Cramér-Rao lower bound and validate the accuracy of the estimated parameters. Next,
we study the atom-counting performance of the hybrid method. By performing simulations with
known input parameters for the Gaussian mixture model, the percentage of correctly chosen minima
in the ICL criterion evaluated as a function of library length and the percentage of correctly counted
atomic columns will be studied as a function of the relative width of the components and the average
number of observations per component. This will allow us to determine the new possibilities of the
hybrid method, as well as its limitations.

4.1 Accuracy and precision of estimated parameters

We start this chapter by evaluating the accuracy and precision with which parameters can be estimated
using the hybrid statistics-simulations based atom-counting method. The accuracy of the estimated
parameters is validated by performing simulations. An analytical expression exists for the so-called
Cramér-Rao lower bound on the variance of the estimated parameters. This lower bound expresses the
highest possible attainable precision. Using the same set of simulations used to validate the accuracy,
we determine the attainability of the Cramér-Rao lower bound.

4.1.1 Accuracy

A statistical estimator θ̂ is accurate when the expectation value of the estimator Eθ(θ̂) equals the actual
value of the corresponding parameter θ: Eθ(θ̂) = θ. Such an estimator is referred to as unbiased. In this
section, we will validate the accuracy of the parameters estimated from the Gaussian mixture model
in the hybrid method introduced in the previous chapter. To this purpose, 100 noise realisations were
created by performing random draws from an imposed Gaussian mixture model with 5 components.
The imposed Gaussian mixture model has a scaling value of a = 1, mixing proportions determined
by multinomially distributed random draws from uniform proportions, a linear library in which the
library value corresponds to the number of atoms in a column, and a width of the components equal to
σ = 0.25. The average number of observations per component equals N/G = 20. Table 4.1 summarises
the imposed values of the parameters πg, a and σ. The parameters were estimated using the hybrid
method with the starting values for the mixing proportions πg and the width of the components σ
formulated by equations (2.12) and (2.13) respectively. As discussed in the previous chapter, many
starting values for the scaling parameter a are needed, with small increments. Therefore, the starting

25
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Parameter Expectation value Sample mean 95% confidence interval

π1 0.2 0.2024 [0.1943; 0.2105]
π2 0.2 0.2022 [0.1953; 0.2091]
π3 0.2 0.1957 [0.1883; 0.2031]
π4 0.2 0.1969 [0.1889; 0.2049]
π5 0.2 0.2028 [0.1943; 0.2113]
a 1 0.9979 [0.9979; 1.0024]
σ 0.25 0.2488 [0.2446; 0.2530]

Table 4.1: Parameter estimates of the unknown parameters that determine a Gaussian mixture model with
5 components were calculated for 100 noise realisations. The expectation values as well as the average of
the estimated values, the sample mean, for each parameter with its 95% confidence intervals are summarised.
Parameter estimates are determined using the correct library length.

values used to estimate these models ranged from a = 0.01 to a = 2 in increments of 0.01. The results
of the estimated parameters at the correct library length are summarised in table 4.1. Notice that the
sample means, i.e. the average of the estimated values of the parameters, deviate only slightly from
the expectation values. Furthermore, all expectation values fall within the 95% confidence interval of
the sample mean. We conclude that the parameter estimates for this Gaussian mixture model using
the starting values mentioned above are indeed accurate.

(a) (b)

Figure 4.1: Estimates of σ values for different values of N/G, estimated by (a) the statistics-only based method
and (b) the hybrid statistics-simulations based method. The diagonal grey line indicates the correctly estimated
σ values. Parameter estimates are determined after evaluation of the ICL criterion.

The sample means presented in table 4.1 are calculated using the correct library length, and are
therefore more accurate than the estimated parameters would be in case we still had to select the
library length, because this is generally not known a priori. Therefore, the mean estimated width of
the components after an evaluation of the ICL criterion is evaluated as a function of the true width
of the components in figure 4.1. Error bars show 95% confidence intervals on the estimated mean σ
values. The minimum in the ICL criterion was automatically selected between 8 and 12, a range of ±2
around the actual library length of 10. For a small number of columns per component N/G, the value
of σ is heavily underestimated by the statistics-only based method, as shown in figure 4.1a. This is an
important disadvantage of the statistics-only based method, which is overcome by using the hybrid
method. As shown in figure 4.1b, the value of σ estimated by the hybrid method stays closer to the
correct value up until a higher amount of overlap between the Gaussian components. Furthermore,
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when N/G is increased, the accuracy of the estimates of σ improves faster using the hybrid method
as compared to using the statistical method. This implies that the hybrid method allows for a more
accurate estimate of the overlap between Gaussian components.

4.1.2 Precision

For unbiased estimators, a lower bound on the variance, i.e. a maximum attainable precision, exists. In
this section, we will study the attainability of this lower bound for the different parameters estimated
from the Gaussian mixture model using the hybrid method. The lower bound on the variance is
defined by the Cramér-Rao lower bound:

cov(ΨG) ≥ F−1ΨG
, (4.1)

with ΨG the vector containing the estimators, and FΨG
the Fisher information matrix, which is defined

as follows:

FΨG
= −E

∂2 ln p(V; ΨG)

∂ΨG∂ΨT
G

∣∣∣∣∣
ΨG=Ψ0

 , (4.2)

where E expresses the expectation value. In this expression, p(V; ΨG) represents the joint probability
density function, here determined by the Gaussian mixture model fmix(V; ΨG), defined in equation
(2.4), which describes the probability distribution of the set of scattering cross sections V, and is
determined by the unknown parameters expressed by the parameter vector ΨG. The vector Ψ0

contains the actual values of the parameters to be estimated. In practice, the following integral is
numerically integrated:

FΨG
= −N

∫ ∞
−∞

∂2 ln fmix(V ; ΨG)

∂ΨG∂ΨT
G

∣∣∣∣∣
ΨG=Ψ0

fmix(V ; ΨG)dV , (4.3)

where N represents the total number of columns in the image. A derivation of the Cramér-Rao lower
bound for the parameters of the Gaussian mixture model, is given in appendix B.
As shown in section 4.1.1, the estimators for the unknown parameters that determine the Gaussian
mixture model are unbiased. To determine the precision of these estimators, the same 100 noise
realisations used to determine the accuracy of the estimators were used. The average parameter
estimates obtained at the correct library length by the hybrid method from these 100 noise realisations
were already summarised in table 4.1. Table 4.2 summarises the variances of these parameter estimates,
together with a 95% confidence interval and the Cramér-Rao lower bound for each parameter. We
conclude that the Cramér-Rao lower bound is attained, since the 95% confidence interval on the sample
variances include the Cramér-Rao lower bound.
As a consequence of its attainability, combined with the improved accuracy of the estimate for the
width of the components shown in section 4.1.1, the Cramér-Rao lower bound can now be used
to predict the expected precision of estimated parameters from unknown datasets. This is a very
interesting advantage of the hybrid statistics-simulations based method.

4.2 Atom-counting performance

The atom-counting performance of the hybrid method can be examined in two ways. We can either
evaluate the percentage of the correct selection of the model order based on the ICL criterion, or
the percentage of correctly assigned atom-counts to specific atomic columns. These performance
measures will be studied as a function of the conditions of the Gaussian mixture model, determined
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Parameter CRLB Sample variance 95% confidence interval

π1 0.0017 0.0017 [0.0013; 0.0023]
π2 0.0018 0.0012 [0.00094; 0.0016]
π3 0.0018 0.0014 [0.0011; 0.0019]
π4 0.0018 0.0016 [0.0013; 0.0022]
π5 0.0017 0.0018 [0.0014; 0.0025]
a 0.000098 0.00013 [0.000098; 0.00017]
σ 0.00044 0.00045 [0.00035; 0.00060]

Table 4.2: Attainability of the Cramér-Rao lower bound on the estimated parameters of a Gaussian mixture
model with 5 components. The sample variances are computed from parameter estimates obtained from 100
well-conditioned noise realisations of the Gaussian mixture model. The Cramér-Rao lower bound (CRLB) is
attained when its value is included in the 95% confidence interval on the sample variance.

Figure 4.2: Percentage of correctly chosen minima in the ICL criterion between library lengths 8 and
12 for 100 noise realisations per Gaussian mixture model with a σ/δ and N/G combination, with an actual
length of library equal to 10.

by the relative width of the components σ/δ and the average number of columns per component N/G.
Furthermore, a direct comparison with the performance of the statistics-only based atom-counting
method will be performed, in order to verify whether the hybrid method does indeed outperform this
existing method at conditions corresponding to images of small nanoparticles recorded with a very
low electron dose.

4.2.1 Performance of the ICL criterion for model order selection

In order to study the performance of the ICL criterion, scattering cross sections are simulated by
performing random draws from Gaussian mixture models with 10 components, mixing proportions
determined by multinomially distributed draws from uniform proportions, a scaling value equal to
a = 1, and a linear library with library values equal to the number of atoms in a column. These
scattering cross sections are analysed using both the hybrid method and the statistics-only based
method. The values of σ and N , which determine the conditions for atom-counting, are varied. The
percentage of correctly chosen minima from the ICL criterion from a 100 noise realisations for each
N and σ combination, after evaluation of the ICL criterion between library lengths of ±2 around the
true model order, is displayed in figure 4.2. Here, the average number of columns per component N/G
required to reach 50%, 85% and 95% correct selection of the ICL minimum is evaluated as a function
of the relative width of the components σ/δ. The percentage of correctly determined ICL minima
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can be increased by increasing the average number of columns per component and by decreasing the
relative width of the components. However, the required N/G to reach a given percentage with the
hybrid method is lower than the N/G needed to reach the same percentage using the statistics-only
based method for constant σ/δ.

In other words, the hybrid method does indeed outperform the statistics-only based method, and
the most significant improvement is achieved at high values for σ/δ. This suggests the possibility of
counting atoms in samples where counting was previously impossible, especially for images of small,
beam-sensitive particles recorded using a low electron dose.

4.2.2 Percentage of correctly counted atomic columns

Figure 4.3 shows the results of a similar analysis to the one performed above to obtain figure 4.2.
This time, the required values of N/G to reach 50%, 85% and 95% correctly counted atomic columns
is evaluated as a function of σ/δ. Using the hybrid method, rather than the statistics-only based
method, an increase in the percentage of correctly counted atomic columns is achieved. This increased
percentage is most significant at high values for σ/δ, as was also the case for the percentages of
correctly chosen minima from the ICL criterion.

Figure 4.3: Percentage of correctly counted atomic columns, after choosing minima in the ICL criterion
between library lengths 8 and 12 for 100 noise realisations per Gaussian mixture model with a σ/δ and N/G
combination, with an actual length of library equal to 10.

It is worth mentioning that 100% correctly chosen minima from the ICL criterion, does not imply
that every single atomic column is counted correctly. For example, at N/G = 5 and σ/δ = 0.2,
the percentage of correct minima selected from the ICL criterion already equals 100%, whereas the
percentage of correctly counted atomic columns equals 98.82% under the same conditions. This is
an inherent property of the Gaussian mixture model, caused by the overlap between neighbouring
Gaussian components. The value at which two Gaussian components, weighed by mixing proportions
π1 and π2, with equal widths σ1 = σ2 = σ intersect is given by:

x1,2 =
µ1 + µ2

2
− σ2

µ2 − µ1
ln

(
π2
π1

)
, (4.4)

or in general

xj,j+1 =
µj + µj+1

2
− σ2

µj+1 − µj
ln

(
πj+1

πj

)
, (4.5)
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Figure 4.4: Overlapping Gaussian components cause an inherent upper bound on the percentage of correctly
counted atomic columns. Columns with a scattering cross section in the green areas are correctly assigned to
the second component in this example. Columns with scattering cross sections in the red regions on the other
hand are counted wrongly by ±1 atom.

indicated by the grey vertical lines in figure 4.4. The probability F2 of falsely assigning an atom-count
of 1 or 3 to a column that belongs to the second component can therefore be expressed as follows:

F2 = π2 [P (x ≤ x1,2;µ2, σ) + P (x ≥ x2,3;µ2, σ)] , (4.6)

or in general

Fj = πj [P (x ≤ xj−1,j ;µj , σ) + P (x ≥ xj,j+1;µj , σ)] , (4.7)

with j ranging from 2 to G − 1. The first and last component need to be treated slightly different,
since they only overlap with one component. The total probability of miscounting an atomic column,
i.e. the total overlap area between the subsequent components of the Gaussian mixture model, can
be expressed as follows:

F =
G−1∑
j=2

Fj + π1P (x ≥ x1,2;µ1, σ) + πGP (x ≤ xG−1,G;µG, σ) . (4.8)

The probability of correctly counting atoms from a Gaussian mixture model equals 1 - the total overlap
area:

U = 1−
G−1∑
j=2

Fj − π1P (x ≥ x1,2;µ1, σ)− πGP (x ≤ xG−1,G;µG, σ) , (4.9)

where µj = aMj in the specific case of the hybrid method, with Mj the library values. For uniform
mixing proportions, the expression for the upper bound simplifies further, because

xj,j+1 =
µj + µj+1

2
, (4.10)

since ln
(
πj+1
πj

)
= ln (1) = 0. Equation (4.9) determines the theoretical upper bound on the percentage

of correctly counted atomic columns. Figure 4.5 shows this theoretical upper bound, together with
the calculated percentages from simulations. For a small relative width of components σ/δ, the upper
bound of correctly counted atomic columns is attained, regardless of the average number of columns
per component N/G. However, at higher σ/δ values, the theoretical upper bound is only reached
for datasets with high values of N/G, i.e. large nanoparticles. The upper bound can therefore be
used to predict the expected percentage of correctly counted atomic columns in large particles using
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Figure 4.5: Theoretical upper bound of the percentage of correctly counted atomic columns, and calculated
percentages for 100 noise realisations of Gaussian mixture models with different N/G values as a function of
σ/δ, with uniform mixing proportions, a = 1, a linear library and 10 uniform components.

the estimated width of the components. This is possible thanks to the more accurate estimates for
the width of the components, as shown in section 4.1.1, and will be applied in chapter 5 to a large
gold nanorod. Since the percentages of correctly counted columns differ more strongly from the upper
bound when using the statistics-based method as compared to the hybrid method, predicting the
percentage using the upper bound is most reliable when using the hybrid method.

When the average number of columns per components N/G is smaller, the upper bound is no longer
reached. At low N/G and high σ/δ values, the number of components/library length is underesti-
mated and a wrong model is estimated to the scattering cross sections. The expected percentages
of correctly counted columns can be determined for such smaller particles, by using simulated cross
sections in the same way that lead to the results in figure 4.3, rather than with the upper bound, as
will be applied in chapter 6 for small platinum-iridium nanoparticles.

So far, we have studied simulated scattering cross sections that were created by performing random
draws from Gaussian mixture models with locations determined by a linear library. However, experi-
mental libraries are not exactly linear, due to channelling of the electrons when propagating through
the sample [Fertig and Rose, 1981; Geuens and Van Dyck, 2005; Hawkes et al., 2007]. We have seen
in chapter 3 that many local minima exist in the negative log likelihood evaluated as a function of
the scaling value, at 3/2, 1/2, 1/4,... of the true scaling value, directly related to the number of
effective components used in the estimated models. We have also shown that less such minima exist
when working with a non-linear library, reducing the number of likely models to be estimated. Hence,
higher percentages of correct model order selection and atom-counts are expected when the library is
non-linear. The results of simulations for Gaussian mixture models with σ/δ = 0.36 and N/G = 14
using a non-linear platinum library are summarised in table 4.3. The percentage of correctly chosen
minima from the ICL criterion to determine the model order using the statistics-only based method
decreases significantly when a non-linear library is used instead of a linear library, whereas this per-
centage increases using the hybrid method. The entropy term in the expression for the ICL criterion
(equation (2.14)) prefers evenly separated components, which is only possible when locations are esti-
mated freely, but also results more often in a wrong model based on the minimum in the ICL criterion.
The percentage of correctly counted atomic columns increases for both methods.

As can be seen from table 4.3, this increase is not enormous, such that the results obtained in this
chapter using a linear library can be regarded as a reasonable lower limit on the expected perfor-
mance of the hybrid method using a non-linear library. A more detailed prediction of the percentages
to be expected given a specific library can be obtained by simulating scattering cross sections and
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Method Percentage based on Linear library Non-linear library (Pt)

Statistics-only based ICL minimum 29 15
Hybrid ICL minimum 36 42

Statistics-only based Atom-counts 48 52
Hybrid Atom-counts 53 60

Table 4.3: The effect of a non-linear library on the percentages of correct model order selection based on
the selection of the minimum from the ICL criterion and percentages of correctly counted atomic columns is
summarised for both the hybrid method and the statistics-only based method for atom-counting, calculated for
100 noise realisations from Gaussian mixture models with σ/δ = 0.36 and N/G = 14.

constructing analogous figures to figure 4.3.
The number of likely models that can be estimated to a dataset is further reduced when there are
missing components, for which mixing proportions are estimated equal to zero as shown in chapter 3.
Therefore, percentages for such mixture models are also expected to be higher than those achieved in
figure 4.3.

4.3 Conclusion

In this chapter, we have studied the limitations and the new possibilities for atom-counting using
the hybrid statistics-simulations based method. We have shown that the estimates of the unknown
parameters are unbiased and in particular that the width of the components is estimated much more
accurately using the hybrid method as compared to using the statistics-only based method. Fur-
thermore, the estimates are found to be most precise, because the Cramér-Rao lower bound on the
variance is attained. Thanks to the improved accuracy of the parameter estimates, the Cramér-Rao
lower bound can be used to reliably predict the precision of the estimated parameters.
We have also studied the performance of the hybrid method for atom-counting. The percentage of
correctly chosen minima from the ICL criterion as well as the percentage of correctly counted atomic
columns were examined. For very well-conditioned datasets, i.e. a large average number of components
per column N/G and a small relative width of the components σ/δ, the atom-counting performance
of the purely statistics-only based atom-counting method is matched by the hybrid method. However,
at high σ/δ values and low N/G values, corresponding to small particles imaged with a low electron
dose, the performance of the hybrid method far exceeds that of the statistics-only based method.
Finally, we calculated the inherent theoretical upper bound on the percentage of correctly counted
atomic columns, caused by the overlap between the Gaussian components, determined by σ/δ. For
small relative widths of the components σ/δ, the upper bound is attained. For models with more over-
lap, a higher average number of columns per component N/G is required to reach this upper bound.
An advantage of the hybrid statistics-simulations based method is that less N/G is required for the
hybrid method to reach the upper bound at such high overlap values as compared to the statistics-only
based method.

In conclusion, the hybrid method for atom-counting developed in this thesis not only offers great
possibilities for atom-counting in challenging low dose ADF STEM images of small nanoparticles, but
also allows one to predict the precision of the estimated parameters as well as the expected percentage
of correctly counted atomic columns.
We will apply the hybrid method to a very well-conditioned experimental example in chapter 5 on
the one hand, and to a very challenging experimental example with conditions in the range where the
most significant improvement by the hybrid method is expected in chapter 6 on the other hand.



Chapter 5

Case study: Au nanorod

Noble metal nanoparticles have size-dependent properties that make them very interesting for a va-
riety of electronic, optical, and biomedical applications. Gold nanorods display two surface plasmon
resonance bands thanks to their anisotropic shape, one due to light absorbed along the short axis
(transverse) and the other due to absorption along the long axis (longitudinal). As the rod length
increases, the absorption of the longitudinal band can be shifted towards (near) infrared light. This
ability to absorb near infrared light, makes the gold nanorods particularly useful for biomedical appli-
cations, such as drug delivery. Gold nanorods are useful materials for sensing, photothermal therapy,
and imaging, thanks to the size-dependent properties [Vigderman et al., 2012; Stone et al., 2011]. In
other words, the exact size of the rod determines its properties. In this chapter, a gold (Au) nanorod
imaged along the [100] zone axis using a double aberration-corrected FEI TITAN operated at 300 kV
is analysed using the statistics-only based atom-counting method and the hybrid statistics-simulations
based method. The experimental image of this Au nanorod is shown in figure 5.1a. The histogram of
scattering cross sections, calculated from the refined model of the experimental image as explained in
section 2.3, is shown in figure 5.1b. The atoms in this Au nanorod could already be counted reliably
using the statistics-only based atom-counting method by Van Aert et al. [2013]. Therefore, this well-
conditioned experimental example will be used to compare the results obtained by both atom-counting
methods.

(a) (b)

Figure 5.1: (a) Experimental image of a gold nanorod imaged along the [100] zone axis using a double
aberration-corrected FEI TITAN operated at 300 kV. (b) Histogram of calculated scattering cross sections.

The analysis using the statistics-only based method is shown in figure 5.2. The ICL criterion in figure
5.2b reveals the presence of 47 components. The histogram of scattering cross sections is shown in
figure 5.2c, together with the estimated probability distribution with 47 Gaussian components, shown
as a full curve in black. The individual components are indicated in colours ranging from blue to red,
on the same scale as the atom-counts, shown in figure 5.2a for each atomic column, overlaying the
observations.
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Figure 5.2: Analysis of the Au nanorod using the statistics-only based method. (a) Atom-counts overlaying
the observations. (b) ICL criterion evaluated as a function of the number of components. The minimum of
interest occurs at 47 components. (c) Estimated Gaussian mixture model overlaying the histogram of scattering
cross sections. The full black line indicates the estimated Gaussian mixture model, whereas the individual
components are plotted in colours, on the same scale as the colour bar of the atom-counts. The dots on the
cross sections axis indicate the estimated locations.

The analysis performed with the hybrid statistics-simulations based method, developed in this thesis,
is shown in figure 5.3. The ICL criterion is evaluated as a function of the library length in figure
5.3b, with a top axis indicating the estimated scaling parameters. In chapter 3, the interpretation of
the ICL criterion obtained with the hybrid method was discussed. We concluded that the minimum
of interest from the ICL criterion need not be the global minimum and preferably coincides with a
scaling parameter close to the expected value of 1. Furthermore, a feature specific to the hybrid
ICL criterion was discussed, namely the lines that increase with a slope of logN when the library
length increases. The meaning of these lines was revealed by examining the expression of the ICL
criterion, and we concluded that these lines indicate a very likely model, since adding components
with zero mixing proportions is preferred over changing the model by shifting all components and
adding an extra component with a non-zero mixing proportion. The ICL criterion calculated for
this Au nanorod contains two such lines with slope logN , starting at library lengths 34 and 51. The
corresponding scaling parameters are a = 1.44 and a = 0.99 respectively. Notice that the ratio between
the library lengths approximately equals the inverse ratio between the estimated scaling parameters:
34
51 = 0.67 ≈ 0.99

1.44 = 0.69, which was also a feature that can aid the interpretation of the ICL criterion, as
discussed in chapter 3. Considering all these interpretation guidelines, we conclude that the minimum
of interest in the ICL criterion corresponds to library length 51. The estimated Gaussian mixture
model is shown in figure 5.3c overlaying the histogram of scattering cross sections. The individual
Gaussian components are indicated in different colours, again ranging from blue to red, on the same
colour scale as previously used for the statistics-only based analysis. The atom-counts corresponding
to the model are also shown on this colour scale, in figure 5.3a.
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Figure 5.3: Analysis of the Au nanorod using the hybrid statistics-simulations based method. (a)
Atom-counts overlaying the observations. (b) ICL criterion evaluated as a function of the library length, with
a second axis indicating the estimated scaling values. In light grey, the lines with slope logN are indicated to
facilitate interpretation (see chapter 3). The minimum of interest occurs at library length 51, at the beginning of
the longest line with slope logN . (c) Estimated Gaussian mixture model overlaying the histogram of scattering
cross sections. The full black line indicates the estimated Gaussian mixture model, whereas the individual
components are plotted in colours, on the same scale as the colour bar of the atom-counts. The dots on the
cross sections axis indicate the estimated locations, equal to the scaled library values.

There is a noticeable difference between the Gaussian mixture models estimated by both methods.
Table 5.1 summarises the N/G, σ/δ, negative log likelihood values and total number of atoms counted
from the image for both methods. The negative log likelihood of the Gaussian mixture model estimated
by the statistics-only based method is lower than the negative log likelihood corresponding to the model
estimated by the hybrid method. In other words, the model estimated with 47 components with free
locations represents a mathematically better fit to the data than the model with 51 components with
restricted locations. However, the mathematically more likely model is not necessarily the most correct
model. Using the library to incorporate prior knowledge about the material, less freedom is allowed
in the model, keeping it closer to the physically correct model. This effect can also be observed from
the intensity/thickness graph from figure 5.4a. The estimated locations by the statistics-only based
method, as well as the scaled library values estimated by the hybrid method are evaluated as a function
of the number of atoms in an atomic column. The origin of the difference between both methods lies
in channelling theory which is explicitly incorporated in the hybrid method through the use of image
simulations, but is not incorporated into freely estimated locations.

Notice also the significant difference in estimated σ/δ by both methods, as listed in table 5.1. As
shown in section 4.1.1, the statistics-only based method underestimates the width of the components
σ at large actual widths. The sensitivity of the atom-counting procedure was therefore previously
overestimated. In section 4.1.2 it was shown that thanks to the increased accuracy of the estimated
width of the components by the hybrid method, the percentage of correctly counted atomic columns
can be predicted in large particles. The predicted percentage of correctly counted atomic columns in
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Parameter Statistics-only based method Hybrid method

N/G 87 80
σ/δ 0.38 0.49

− logL(ΨG) -4690 -4670
total number of atoms 125968 128802

Table 5.1: Comparison between the analysis of the Au nanorod from figure 5.1 with the statistics-only based
and the hybrid statistics-simulations based atom-counting.

(a) (b)

Figure 5.4: Comparison between the statistics-only based and the hybrid statistics-simulations based analysis
of the Au nanorod. (a) Intensity/thickness graph calculated using both methods. (b) Difference in atom-counts
between the hybrid and the statistics-only based method.

this Au nanorod based on the parameter estimates obtained by the hybrid method, calculated as the
theoretical upper bound expressed by equation (4.9), equals 67%.
The difference between the estimated Gaussian mixture models evidently results in a difference between
the atom-counts as well. Figure 5.4b displays the difference between the atom-counts obtained by the
hybrid method and the statistics-only based method for each atomic column. The total number of
atoms counted from the image of the Au nanorod by the hybrid method exceeds the total number of
atoms counted by the statistics-only based method by 2834 atoms, an increase of only 2.2%. A different
atom-count is found for 77% of the atomic columns, but only 24% of the columns were counted by
more than 1 atom difference. Only one column was counted by more than 2 atoms difference, in the
middle of this particle, and can be regarded as a statistical outlier. The models estimated using both
methods are therefore in good agreement.
Another benefit of the hybrid method, discussed in chapter 3, was the possibility to estimate mixing
proportions equal to zero. From this example it becomes clear that this facilitates the interpretation
of the atom-counts. The first mixing proportion is estimated equal to zero, implying the absence of
atomic columns with only one atom in them. This can now be observed directly through analysis of
the mixing proportions.

We conclude that the hybrid method puts atom-counts on an absolute scale. From a mathematical
point of view, the estimated mixture model forms a slightly worse fit to the data, but by directly
imposing results from image simulations that include channelling theory onto the estimated average
cross sections for each thickness, the resulting model is physically more correct. The Au nanorod
discussed in this chapter was a well-conditioned example, which explains the good agreement with the
statistics-only based method. In the next chapter, we will discuss a more challenging experimental
example, which will show the advantage of the hybrid method more clearly.



Chapter 6

Case study: Pt/Ir nanoparticles

Nanoparticles composed of two different metal elements technologically excel their monometallic coun-
terparts. Such bimetallic nanoparticles can have entirely new properties, exceeding the simple com-
bination of properties from both metals. These new properties depend on the precise ratio between
the two metals and the structure of the nanoparticle [Toshima and Yonezawa, 1998; Shah et al., 2012;
Zaleska-Medynska et al., 2016]. Platinum-based bimetallic nanoparticles in particular can be used as a
catalyst for carbon monoxide oxidation in fuel cells [Ralph and Hogarth, 2002]. The platinum-iridium
(Pt/Ir) particle which will be analysed in this chapter, was supported on a 3-dimensional carbon black
support and received in powder form dusted onto a carbon coated copper grid. Images were taken at
the QuAntEM, a double corrected FEI Titan3 working at 300 kV. The experimental settings that were
used are summarised in table 6.1. Images were recorded with different electron doses. Atom-counting
was previously impossible from images with a low electron dose [De Backer et al., 2015a]. In order
to verify the results obtained by the statistics-only based atom-counting method, image simulations
were performed. The difference in atomic number between iridium (Z=77) and platinum (Z=78) is
only one, causing a difference of less than 3% up to 15 atoms in a projected atomic column [De Backer
et al., 2015a]. Therefore the assumption of a pure platinum particle is reasonable. The treatment of
bimetallic particles with a bimetallic library will become possible, thanks to recent progress made in
calculating the bimetallic libraries in an efficient manner [van den Bos and Van Aert, 2014; van den
Bos et al., 2016].

Parameter Value

Acceleration voltage 300 kV
Convergence angle α 20.2 mrad
Inner angle β1 35 mrad
Outer angle β2 190 mrad

Dwell time τ (6.1a) 30 µs
Pixel size dx (6.1a) 0.12 Å
Electron dose d (6.1a) 5.2 · 105 e−/Å2

Dwell time τ (6.2a) 15 µs
Pixel size dx (6.2a) 0.24 Å
Electron dose d (6.2a) 0.62 · 105 e−/Å2

Table 6.1: Experimental settings used for the high and low dose images of Pt/Ir nanoparticles in figures 6.1a
and 6.2a.

The high dose image is shown in figure 6.1a and its refined model in figure 6.1b. An excellent match
between the estimated locations and the scattering cross sections obtained from image simulations was
achieved using the statistics-only based method [De Backer et al., 2015a], as shown in figure 6.3. As
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Figure 6.1: (a) Experimental high dose image of a Pt/Ir nanoparticle also analysed by De Backer et al.
[2015a]. (b) Model of the experimental image. (c) Histogram of scattering cross sections calculated from the
model. The full black curve shows the estimated Gaussian mixture model, whereas the coloured curves indicate
the separate components. (d) Atom-counts for the Pt/Ir nanoparticle, using the same colour scale as the
individual components in the Gaussian mixture model. (e) ICL criterion, with two axes, indicating library
length and estimated value of the scaling parameter a.

Figure 6.2: (a) Experimental low dose image of a Pt/Ir nanoparticle also analysed by De Backer et al.
[2015a]. (b) Model of the experimental image. (c) Histogram of scattering cross sections calculated from the
model. The full black curve shows the estimated Gaussian mixture model, whereas the coloured curves indicate
the separate components. (d) Atom-counts for the Pt/Ir nanoparticle, using the same colour scale as the
individual components in the Gaussian mixture model. (e) ICL criterion, with two axes, indicating library
length and estimated value of the scaling parameter a.
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can be seen from the ICL criterion evaluated as a function of the library length, with a second x-axis
indicating the estimated scaling values, the model order chosen by the statistics-only based method
by De Backer et al. [2015a] is confirmed by the hybrid method. As indicated by the arrow in figure
6.1e, the minimum of interest is chosen at library length 10, since the estimated scaling value is very
close to 1 and this value corresponds to the beginning of a line with slope logN , implying a very high
likelihood of the model, as discussed in chapter 3. The estimated Gaussian mixture model is shown as
a full black curve overlaying the histogram of scattering cross sections in figure 6.1d. The individual
components are shown in colours ranging from blue to red, indicating the corresponding number of
atoms per atomic column. The atom-counts for each column of the particle are shown in figure 6.1c,
using the same colour scale to indicate the thickness of the columns.

Figure 6.3: Estimated locations for the high dose (6.1) and the low dose (6.2) images obtained with the hybrid
and the statistics-only based method are evaluated as a function of the number of atoms in a column. A good
agreement is achieved between the results obtained from the high dose image with both the hybrid and the
statistics-only based method. However, using the statistics-only based method, estimated locations from the
low dose image do not match the simulations, whereas a match can be found using the hybrid method, making
atom-counting from the low dose image possible for the first time.

A higher electron dose ensures a higher signal-to-noise ratio in the image, allowing for a more reliable
quantitative analysis. However, high electron doses can also cause beam-induced structural changes,
specifically in beam-sensitive materials such as small nanoparticles [Meyer et al., 2014]. Reducing the
electron dose limits the radiation damage, but also reduces the signal-to-noise ratio, making atom-
counting more difficult. The results obtained in chapter 4 suggested that the hybrid method offers
the most room for improvement under precisely these circumstances: small particles, imaged with a
considerable amount of noise.

The low dose image is shown in figure 6.2a with its refined model in figure 6.2b. Using the statistics-
only based method, atoms could not be counted reliably from this image, because the low electron
dose results in an underestimation of the model order. A strong deviation between the estimated
locations and the simulated scattering cross sections was found by De Backer et al. [2015a], as shown
in figure 6.3. Using the hybrid statistics-simulations based atom-counting method, the model order is
no longer underestimated. The minimum of interest in the ICL evaluated as a function of the library
length, shown in figure 6.2e, occurs at library length 13, corresponding to a scaling parameter close
to 1. A good agreement with the simulations is achieved, as can also be seen from figure 6.3. The
estimated Gaussian mixture model is shown in figure 6.2d, and the resulting atom-counts for this low
dose image are shown in figure 6.2c.
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Figure 6.4: The average number of columns per component N/G needed to attain 50%, 85% and 95% correctly
counted atomic columns is evaluated as a function of the relative width of the components σ/δ. In black, the
conditions of the high dose image from figure 6.1 are indicated together with the uncertainty on the σ/δ value
calculated with the Cramér-Rao lower bound. In pink, the conditions of the low dose image, shown in figure
6.2, are indicated, also with the corresponding interval around its σ/δ value.

Until now, the number of atoms per atomic column could not be counted from this low dose image.
This can be understood by comparing the conditions for atom-counting, determined by the estimated
relative width of the components σ/δ and the average number of atomic columns per component N/G,
to the analysis performed in chapter 4. For the high dose image, σ/δ = 0.3558±0.0450 and N/G = 14,
whereas for the low dose image σ/δ = 0.3960 ± 0.0584 and N/G = 10.77. The uncertainty on the
estimated relative width was calculated using the Cramér-Rao lower bounds (equation (4.1)) on the
variance of the estimated width and scaling value:
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The σ/δ and N/G values for the high and low dose images are indicated in black and pink respec-
tively in figure 6.4, together with the percentages of correctly counted atomic columns for different
conditions, as obtained in chapter 4. From figure 6.4, it is clear that the advantage of the hybrid
method is more significant for the low dose image than for the high dose image. In case of this low
electron dose, an N/G value of 80 is needed in order to reach 50% correctly counted atomic columns
using the statistics-only based method, whereas the required N/G value to reach this percentage us-
ing the hybrid method only equals 20. This explains why atoms could not be counted from the low
dose image before, whereas this has now become possible for the first time, by using the hybrid method.

In conclusion, we have shown that the hybrid method enables us to count the number of atoms per
column in an experimental image from which counting was previously impossible, due to the low
electron dose. The hybrid method for atom-counting therefore holds great promise for quantitative
analysis of challenging, beam-sensitive nanoparticles, thanks to its ability to overcome challenges
presented due to low electron doses.



Chapter 7

Conclusion

A novel method for atom-counting was introduced. This so-called hybrid statistics-simulations based
method for atom-counting from ADF STEM images of monatomic crystalline nanostructures directly
combines the principles of the two existing methods for atom-counting, based on image simulations on
the one hand and on statistical parameter estimation theory on the other hand. The key to the direct
combination of both approaches is to use the information obtained from image simulations as a prior
knowledge that can be incorporated into the statistical parameter estimation theory framework. In the
statistics-only based method, the probability distribution of the estimated scattering cross sections,
i.e. the total intensity of scattered electrons per atomic column, is described by a Gaussian mixture
model. The estimated locations of these Gaussian components correspond to the scattering cross
sections of atomic columns with different thicknesses. Image simulations allow one to determine the
scattering cross sections for each different thickness. Using this knowledge, the estimated locations
in the Gaussian mixture model are no longer free parameters, but are determined by the simulated
scattering cross sections. However, small calibration errors have an effect on the scattering cross
sections which can not be neglected. Previously, in the simulations-only based method, such systematic
errors would remain undetected, causing the accuracy of the obtained atom-counts to depend solely on
the unknown accuracy of the image simulations. This disadvantage can be overcome by proposing a
relationship between scattering cross sections calculated from experimental images and from simulated
images that describes the deviation of the scattering cross sections caused by common calibration
errors. The scattering cross sections resulting from image simulations using different annular dark
field detector inner angles were compared, as well as the scattering cross sections obtained from
image simulations with different amounts of sample tilt. Both effects can to a good approximation be
described by a linear scaling relationship. Therefore, the imposed relationship to relate the estimated
locations in the Gaussian mixture model to the prior knowledge obtained from image simulations used
in the description of the hybrid method is a linear scaling. This scaling relationship, together with
the prior knowledge resulting from image simulations, was incorporated in the statistical parameter
estimation theory framework to obtain a new algorithm for atom-counting.

The implementation and interpretation of this hybrid method was studied by evaluating the negative
log likelihood. However, it was clear that this negative log likelihood evaluated as a function of the
scaling parameter exhibits many local minima. Due to the analytical implementation of the parame-
ter updates, the parameters evolve towards the nearest local minimum in the negative log likelihood.
This means that many starting values are needed in order for the correct model to be estimated. The
local minima occur at the true scaling value, and at fractions of this value determined by the more
components used in the estimated mixture model. Mixing proportions can be estimated equal to
zero. Therefore, at the true scaling value, the correct model can be obtained by estimating all mixing
proportions of components corresponding to atomic columns with a higher number of atoms equal to
zero. The values of the estimated scaling parameters at the most apparent local minima can aid the
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interpretation and lead to the correct choice of scaling value in well-conditioned academic examples.
However, this interpretation becomes more challenging when more complex experimental examples are
considered, and a mathematically better fit will always be obtained when more components can be
used. The negative log likelihood evaluated as a function of the library length keeps decreasing with
increasing library length. We conclude that an order selection criterion, evaluated as a function of the
library length, is needed to select the correct Gaussian mixture model. The Integrated Classification
Likelihood (ICL) criterion, used successfully in the statistics-only based method, is introduced, and is
shown successful for model order selection in the hybrid method as well. The ICL criterion evaluated
as a function of the library length is studied, and three guidelines for its interpretation are constructed:
the minimum of interest is a local minimum, it corresponds to an estimated scaling parameter close
to the expected scaling value of 1, and when lines with slope logN occur, the minimum of interest is
chosen at the beginning of such a line. The latter lines correspond to effectively the same models with
the same scaling value, indicating the likelihood of the model. Adding components with zero mixing
proportions is here preferred over changing the scaling value and changing the model by using more
components.

Next, the performance of the newly introduced hybrid method for atom-counting was examined.
Simulations lead to the conclusion that the parameters of the Gaussian mixture model with locations
restricted to the scaled library values are estimated accurately. Whereas the statistics-only based
method tends to underestimate the width of the components when the actual width is large, the hybrid
method is able to estimate the width of the components more accurately, even for sets of scattering
cross sections with few observations per component. One of the great advantages of working in a
statistical parameter estimation theory framework is that an analytical expression for the precision
can be determined. The Cramér-Rao lower bound expresses the lower bound on the variance of
unbiased estimators, and is attained by the parameter estimates obtained by the hybrid method.
Since the estimate of the width of the components obtained with the hybrid method is accurate,
we now have a way of reliably predicting the precision of the estimated parameters of the Gaussian
mixture models, using the Cramér-Rao lower bound.

The performance of the hybrid method for atom-counting is examined and compared to the statistics-
only based method. The percentage of correctly selected minima from the ICL criterion evaluated as
a function of library length and the percentage of correctly counted atomic columns was calculated for
different values of the average number of columns per component N/G and the relative width of the
components of the Gaussian mixture model σ/δ. The required number of columns per component N/G
to reach a given percentage is smaller for the hybrid method, as compared to the statistics-only based
method at a given relative width of the components σ/δ. This effect becomes even more pronounced
at high σ/δ values. In practice, these conditions correspond to small nanoparticles imaged with a low
electron dose, which causes a low signal-to-noise ratio in the experimental image.

A theoretical upper bound of the percentage of correctly counted atomic columns can be calculated,
based on the overlap between the Gaussian components. For small values of σ/δ, the upper bound is
easily achieved, contrary to the results at high values of σ/δ. Large overlap between the components
makes it harder to estimate the correct model. This effect is most significant for the statistics-only
based method. The hybrid method is shown to be able to stay closer to the upper bound under
challenging conditions for atom-counting.

To conclude this master’s thesis, two case studies of experimental images were performed. A gold
nanorod, for which an analysis was already successfully conducted by Van Aert et al. [2013] using the
statistics-only based method, was analysed using the hybrid method. A high number of columns of the
gold nanorod were imaged, making it easier to count atoms from this experimental image, and a good
agreement between the results obtained with both methods was found. The small difference between
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the results obtained with the statistics-only based method and the hybrid statistics-simulations based
method can be explained by the restriction imposed on the estimated locations obtained by the hybrid
method. Using the statistics-only based method, freely estimated locations can be shifted to result
in a mathematically slightly better fit, but a physically less accurately estimated Gaussian mixture
model.
Finally, more challenging experimental images were analysed. Images were recorded of small platinum-
iridium nanoparticles using different electron doses. Atoms have already been counted from the high
dose image by De Backer et al. [2015a], but could not be counted from the low dose image when
using the statistics-only based method. The low electron dose resulted in an underestimation of the
number of components in the mixture model, causing the estimated locations to differ strongly from
the image simulations. Detailed research already showed that the underestimation of the number of
components was a direct consequence of the low electron dose. Using the hybrid method, atom-counts
were obtained in nice agreement with the image simulations, despite the low electron dose. It is shown
that the hybrid method enables us to count atoms in challenging low dose images from which atom-
counting was impossible up until now.

To summarise, in this thesis we presented a new method for atom-counting from ADF STEM images
of monatomic crystalline nanostructures that allows one to exceed the limitations of the atom-counting
methods that exist today. It was shown that this method holds great promise for counting the number
of atoms in beam-sensitive materials. Such materials need to be imaged using a low electron dose in
order to avoid radiation damage, which makes the images more noisy and more difficult to analyse.
The hybrid method developed in this master’s thesis enables atom-counting under more challenging
conditions and therefore takes an important step towards the reliable analysis of this kind of nanoma-
terials.

Future work to further improve this method will include increasing its speed and exploring the route
towards automatic selection of the model order. Furthermore, the results obtained about the perfor-
mance for atom-counting in this thesis are based on the assumption that the linear scaling relationship
between simulated scattering cross sections and experimental scattering cross sections accurately de-
scribes the combined effect of all calibration errors. However, not all parameters used to perform the
image simulations affect the scattering cross sections in a purely linear way. Another possible improve-
ment needed for this hybrid method for atom-counting is therefore the refinement of this relationship.
Ultimately, it is expected that the analysis of bimetallic particles using a bimetallic library will become
possible by extending the hybrid method. Another interesting extension worthy of further research
would be to directly combine information obtained from ADF STEM images with results from electron
energy loss spectroscopy (EELS) or energy dispersive X-ray (EDX) spectroscopy.
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Appendix A

Expectation-Maximisation algorithm

In general, a Gaussian mixture model is expressed by equation (A.1).

fmix

(
V̂n; ΨG

)
=

G∑
g=1

πgφg

(
V̂n;µg, σ

)

=

G∑
g=1

πg
1√

2πσ2
exp

(
−(V̂n − µg)2

2σ2

)
, (A.1)

with G the number of components, πg the mixing proportions, µg the locations and σ the width of the
components. V̂n represents the least squares estimate for the nth scattering cross section, estimated
equal to the volume under the nth Gaussian peak. The vector ΨG is the parameter vector containing
all unknown parameters to be estimated ΨG = (π1, ..., πG−1, µ1, ..., µG, σ)T .
We start by deriving update formulas for the estimation of the parameters of the Gaussian mix-
ture model in the purely statistics-only based atom-counting method. Afterwards, the substitution
µg = aMg is introduced in order to derive the parameter updates of the Gaussian mixture model
incorporating the library values expressed by equation (A.2).

fmix

(
V̂n; ΨG

)
=

G∑
g=1

πgφg

(
V̂n; a, σ

)

=
G∑
g=1

πg
1√

2πσ2
exp

(
−(V̂n − aMg)

2

2σ2

)
, (A.2)

with G the library length, with a the scaling parameter and Mg the library values. The parameter
vector ΨG is in this case expressed as ΨG = (π1, ..., πG−1, a, σ)T .
Parameters are estimated using the Expectation-Maximisation Algorithm, for a constant number of
components G, which calculates iterative updates that maximise the likelihood. Each iteration of the
algorithm consists of two steps, the E-step and the M-step. In the E-step, the probability that a
volume V̂n belongs to the gth component is calculated:

τg

(
V̂n; Ψ

(k)
G

)
=

π
(k)
g φg

(
V̂n;µ

(k)
g , σ(k)

)
∑G

h=1 π
(k)
h φh

(
V̂n;µ

(k)
h , σ(k)

) , (A.3)

with k the index of the iteration. The update of the parameters is calculated in the M-step in order
to maximise the log likelihood. The updates for the maximum likelihood estimates of πg, µg and σ
are expressed by equation (A.4), (A.5) and (A.6).
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π(k+1)
g =

1

N

N∑
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, (A.4)
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and

σ(k+1) =

√√√√ 1

N

G∑
g=1

N∑
n=1

τg

(
V̂n; Ψ

(k)
G

)(
V̂n − µ(k+1)

g

)2
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This iterative algorithm stops when convergence of the log likelihood is reached.
Updates are calculated in the M-step in order to maximise the likelihood function, or equivalently,
maximise the log likelihood function, as derived in equation (A.7).
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= 0,

where τh

(
V̂n; Ψ

(k)
G

)
is calculated in the E-step. This general expression can be used to determine the

updates for the different parameters.
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A.1 Update for the mixing proportions πg

∂ logL(ΨG)
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with
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since
∑G

h=1 πh = 1, and πG is therefore not estimated, but determined as πG = 1−
∑G−1

h=1 πh.
Setting equation (A.9) equal to zero yields
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since
∑N

n=1 τG

(
V̂n; Ψ

(k)
G

)
represents the number of columns that belong to component G.

This expression stays the same for both the statistics-only based method and the hybrid method.
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A.2 Update for the variance σ2
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with
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Setting equation (A.11) equal to zero yields
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The expression for the update for the hybrid method therefore becomes
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1
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where we have substituted µg = aMg.
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A.3 Update for the locations µg
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with
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Setting equation (A.15) equal to zero yields
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A.4 Update for the scaling parameter a
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with
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with Mg the library value corresponding to the gth component.

Setting equation (A.18) equal to zero yields
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Appendix B

Cramér-Rao lower bound

In this appendix, the Cramér-Rao lower bound will be derived for the hybrid statistics-simulations
based atom-counting method. The likelihood function is expressed by equation (B.1).

p(V̂; ΨG) = ΠN
n=1fmix(V̂n; ΨG), (B.1)

with the Gaussian mixture model expressed by equation (B.3):
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exp
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2

2σ2

)
. (B.3)

The Fisher information matrix is defined by equation (B.5).

FΨG
= −E
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fmix(V ; ΨG)dV , (B.5)

where Ψ0 is the vector with the actual values of the parameters to be estimated. Equation (B.5) is
written in full matrix form of equation (B.6).
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where L and U are the finite boundaries of the integration in order to implement the symmetric Fisher
information matrix, chosen equal to

L = min(aM)− 3σ, (B.7)

U = max(aM) + 3σ, (B.8)

59



60 APPENDIX B. CRAMÉR-RAO LOWER BOUND

with M the library. The Cramér-Rao lower bound is defined by (B.9).

cov(ΨG) ≥ F−1ΨG
, (B.9)

or

var([ΨG]k] ≥ [F−1ΨG
]kk, (B.10)

for the separate parameters. Notation is simplified as follows:

φg(V̂n; a, σ) = φg, (B.11)

fmix(V̂n; ΨG) = fmix, (B.12)

p(V̂; ΨG) = p. (B.13)

The vector of parameters to be estimated in this specific case equals

ΨG = (π1, ..., πG−1, a, σ) , (B.14)

because of the normalisation condition for the mixing proportions

G∑
g=1

πg = 1⇒ πG =

1−
G−1∑
g=1

πg

 . (B.15)

The first derivatives of the likelihood function to the parameters are expressed by equations (B.16),
(B.18) and (B.17).

∂ ln p

∂πi
=

∂

∂πi

(
N∑
n=1

ln fmix

)

=
N∑
n=1

1

fmix

∂fmix

∂πi

=
N∑
n=1

1

fmix

∂

∂πi

G−1∑
g=1

(πgφg) +

(
1−

G∑
h=1

πh

)
φG


=

N∑
n=1

1

fmix
(φi + (−1)φG)

=

N∑
n=1

φi − φG
fmix

, (B.16)
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∂ ln p

∂a
=

∂

∂a

(
N∑
n=1

ln fmix

)

=
N∑
n=1

1

fmix

∂fmix

∂a

=

N∑
n=1

1

fmix

∂

∂a

G−1∑
g=1

(πgφg) +

(
1−

G−1∑
h=1

πh

)
φG


=

N∑
n=1

1

fmix

[
G−1∑
g=1

πg
1√
2πσ

(
−2(Vn − aMg)

2σ2
(−Mg)

)
exp

(
−(Vn − aMg)

2

2σ2

)

+

(
1−

G−1∑
h=1

πh

)
1√
2πσ

(
−2(Vn − aMG)

2σ2
(−MG)

)
exp

(
−(Vn − aMG)2

2σ2

)]

=

N∑
n=1

1

fmix

[
G−1∑
g=1

πgφg
(Vn − aMg)Mg

σ2
+

(
1−

G−1∑
h=1

πh

)
φG

(Vn − aMG)MG

σ2

]

=

N∑
n=1

1

fmix

G∑
g=1

πgφg
(Vn − aMg)Mg

σ2
, (B.17)

∂ ln p

∂σ
=

∂

∂σ

(
N∑
n=1

ln fmix

)

=

N∑
n=1

1

fmix

∂fmix

∂σ

=
N∑
n=1

1

fmix

∂

∂σ

G−1∑
g=1

(πgφg) +

(
1−

G−1∑
h=1

πh

)
φG


=

N∑
n=1

1

fmix

[
G−1∑
g=1

πg

(
1√
2π

−1

σ2
exp

(
−(Vn − aMg)

2

2σ2

)

+
1√
2πσ

(
−(Vn − aMg)

2

2

(
−2

σ3

))
exp

(
−(Vn − aMg)

2

2σ2

))

+

(
1−
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h=1

πh

)(
1√
2π

−1

σ2
exp

(
−(Vn − aMG)2

2σ2

)

+
1√
2πσ

(
−(Vn − aMG)2

2

(
−2

σ3

))
exp

(
−(Vn − aMG)2

2σ2

))]

=

N∑
n=1

1

fmix

[
G−1∑
g=1

πgφg

(
(Vn − aMg)

2

σ3
− 1

σ

)
+

(
1−

G−1∑
h=1

πh

)
φG

(
(Vn − aMG)2

σ3
− 1

σ

)]

=

N∑
n=1

1

fmix

G∑
g=1

πgφg

(
(Vn − aMg)

2

σ3
− 1

σ

)
. (B.18)
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Second derivatives are derived in the following and finally expressed by equations (B.19)-(B.24).

∂2 ln p

∂πi∂πk
=

∂

∂πk

(
∂ ln p

∂πi

)
=

∂

∂πk

(
N∑
n=1

φi − φG
fmix

)

=

N∑
n=1

(φi − φG)

(
−1

f2mix

)
∂fmix

∂πk

= −
N∑
n=1

(φi − φG)(φk − φG)

f2mix

, (B.19)

∂2 ln p

∂πi∂a
=

∂

∂a

(
∂ ln p

∂πi

)
=

∂

∂a

(
N∑
n=1

φi − φG
fmix

)

=
N∑
n=1

[
1

fmix

(
∂φi
∂a
− ∂φG

∂a

)
− φi − φG

f2mix

∂fmix

∂a

]

=
N∑
n=1

[
1

fmix

(
φi

(Vn − aMi)Mi

σ2
− φG

(Vn − aMG)MG

σ2

)

−φi − φG
f2mix

G∑
g=1

πgφg
(Vn − aMg)Mg

σ2

]
, (B.20)

∂2 ln p

∂πi∂σ
=

∂

∂σ

(
∂ ln p

∂πi

)
=

∂

∂σ

(
N∑
n=1

φi − φG
fmix

)

=
N∑
n=1

[
1

fmix

(
∂φi
∂σ
− ∂φG

∂σ

)
− φi − φG

f2mix

∂fmix

∂σ

]

=
N∑
n=1

[
1

fmix

(
φi

(
(Vn − aMi)

2

σ3
− 1

σ

)
− φG

(
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σ3
− 1

σ

))

−φi − φG
f2mix
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g=1

πgφg

(
(Vn − aMg)

2

σ3
− 1

σ

)]
, (B.21)
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∂2 ln p

∂a∂σ
=

∂

∂σ

(
∂ ln p

∂a

)

=
∂

∂σ

 N∑
n=1

1

fmix
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πgφg
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− 1
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2
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, (B.22)

∂2 ln p

∂a2
=

∂

∂a

(
∂ ln p

∂a
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=
∂
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=
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(B.23)

∂2 ln p
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=
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∂σ
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=
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Finally, the lower bound on a function of estimated parameters is determined by equation (B.25).

cov(γ̂) ≥ ∂γ(θ)

∂θT
F−1θ

∂γ(θ)T

∂θ
(B.25)

Since πG = πG(π1, π2, ..., πG−1) = 1 −
∑G−1

g=1 πg, the lower bound on the variance of πG is expressed
as follows:

var(πG) ≥ ∂πG(θ)

∂θT
F−1(π1π2...πG−1)

∂πG(θ)T

∂θ
, (B.26)

with
∂πG(θ)

∂θT
=
(
∂πG
∂π1

∂πG
∂π2

... ∂πG
∂πG−1

)
, (B.27)

and

∂πG
∂πi

=
∂

∂πi

1−
G−1∑
g=1

πg

 = −1. (B.28)

Therefore the explicit expression of the lower bound in matrix expression equals:

var(πG) ≥
(
−1 · · · −1

)
−N

∫ U

L


∂2 ln p
∂π2

1

∂2 ln p
∂π1∂π2

∂2 ln p
∂π1∂π3

∂2 ln p
∂π1∂π4

∂2 ln p
∂π2∂π1

∂2 ln p
∂π2

2

∂2 ln p
∂π2∂π3

∂2 ln p
∂π2∂π4

∂2 ln p
∂π3∂π1

∂2 ln p
∂π3∂π2

∂2 ln p
∂π2

3

∂2 ln p
∂π3∂π4

∂2 ln p
∂π4∂π1

∂2 ln p
∂π4∂π2

∂2 ln p
∂π4∂π3

∂2 ln p
∂π2

4



∣∣∣∣∣∣∣∣∣∣∣
ΨG=Ψ0

fmix(V ; ΨG)dV



−1−1
...
−1
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