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Abstract

In this MSc thesis, high-accuracy strain sensors are developed. The aim of the sensor
package is to perform very accurate, one dimensional strain measurements. Once
the high-accuracy sensor package is fully developed, it can be used in applications
such as force identification or structural health monitoring under ambient loading
conditions.

In a first part of this thesis, the design of a transducer is made. This design
is obtained using the topology optimization technique. Four different topology opti-
mization models are constructed during this thesis. First, a model with very little
constraints is made. Next, the complexity is increased, adding constraints for length
scale control and imposing the optical fibre in the sensor package to be loaded in pure
tension. Combining all models will result in the most complex topology optimization
model. Ultimately, two final designs of the transducers are selected. One design will
perform optimal in compression, the other in tension.

After the designs are finalized, a numerical validation of the transducers is per-
formed. First, the results of the topology optimization are verified. Next, other
properties of the transducers, which are not included in the topology optimization,
are investigated. These properties include the occurring stresses, the eigenfrequencies
and buckling modes of the transducers.

In a last part, an experimental validation is performed. A comparison is made
between the numerically predicted and the measured performance. The upscaling
factors which are obtained during the experiments are lower than the theoretical
values. The difference is explained by the strain loss in the connection between the
transducer and the optical fibre. This connection was not modelled in the numerical
models, which means the loss could not be predicted. Lastly, further steps in the
development of the strain upscaling sensor package are proposed, including some
possible improvements and additional experiments.
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Samenvatting

In deze masterproef worden hoogperformante reksensoren ontwikkeld. Het doel van
de reksensoren is om zeer nauwkeurige, één dimensionale metingen uit te voeren.
Wanneer dit sensor pakket volledig ontwikkeld is, zou het gebruikt kunnen worden
voor toepassingen zoals krachtidentificatie en structurele gezondheidscontroles.

In het eerste deel van deze thesis wordt het ontwerp van de transducer gemaakt. Dit
ontwerp wordt bekomen door gebruik te maken van topologische optimalisatie. Vier
verschillende topologische optimalisatie modellen worden opgesteld in deze thesis.
Het eerste model is vrij eenvoudig en bevat weinig beperkingen. Vervolgens wordt de
complexiteit van het model opgedreven door beperkingen, zoals een minimale lengte-
schaal en zuivere trek in de vezel, toe te voegen. Het meest complexe model wordt
bekomen door de verschillende beperkingen te combineren. Uiteindelijk worden er
twee definitieve ontwerpen geselecteerd voor de transducers. Eén ontwerp is gemaakt
om optimaal te presteren onder druk, het ander ontwerp werkt beter in trek.

Eens de definitieve ontwerpen bekomen zijn, wordt een numerieke validatie uit-
gevoerd. Eerst worden de resultaten bekomen tijdens de topologische optimalisatie
geverifieerd. Vervolgens worden enkele eigenschappen gecontroleerd die niet in de
topologische optimalisatie opgenomen waren. De spanningen in de transducers,
alsook de eigenfrequenties en de knikmodes worden hierbij nagekeken.

In het laatste deel van deze thesis zal ook een experimentele validatie uitgevoerd
worden. Er wordt een vergelijking gemaakt tussen de numeriek voorspelde en de
opgemeten prestaties. De uitvergrotingsfactoren die bekomen worden tijdens de
experimenten blijken lager te zijn dan de voorspelde waardes. Het verschil wordt
verklaard door rekverliezen in de verbinding tussen de transducer en de optische
vezel. Deze verbinding was niet gemodelleerd in de numerieke modellen, waardoor
het verlies in rek niet voorspeld kon worden. Tot slot worden nog enkele toekom-
stige stappen in de ontwikkeling van de hoogperformante reksensoren aangeraden,
waaronder mogelijke verbeteringen en toekomstige experimenten.

vi
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Chapter 1

Introduction

1.1 Problem statement

The measurement of strains in structures is an important aspect when monitoring a
structure. Today optical fibres are getting increasingly popular. They have many
advantages such as their flexibility, their accuracy, their ability to measure over
long distances and their applicability in harsh environments. In the past, they have
mostly been used to measure strain in a quasi-static case. However, it would be very
useful to be able to measure dynamic strains as well. Some interesting applications
of the dynamic strain data would be health monitoring, fatigue analysis and force
identification. In fact, from this data one is able to not only detect damage, but also
localize and quantify it. This could be very useful to be able to investigate older
structures and determine the acceptable load and remaining life span of the structure.

If a structure is damaged, the local and overall stiffness will be lower than ob-
served in an undamaged structure. This decreased stiffness will result in a change in
the eigenfrequencies, mode shapes and damping ratios, which can be calculated from
the dynamic strain data. An easy way to obtain these data would be to measure the
dynamic strain under ambient excitation. The problem with this is the fact that the
ambient excitations, by for example a pedestrian or car on a bridge, only result in
very small strains. Therefore, very accurate strain measurements are required. A
strain accuracy of at least 0.1 µS is required under ambient loading. These accuracies
are hard to obtain using the currently available strain measurement techniques, such
as optical fibre strain sensors with Bragg grating (FBG). The accuracy could be
increased in another way. When dealing with dynamic strains, the average strains
(macrostrains) over a larger length of up to 1 meter are of interest. For this reason,
one could design a mechanical device which concentrates the total deformations
over a long length (up to 1 meter) onto a small measurement section on which the
optical fibre is attached. In this way, as much of the deformations as possible are
concentrated on the FBG, with a gauge length of 2 cm. This results in a local strain
upscaling. In figure 1.1, an example of such a strain upscaling sensor package or
transducer is displayed.

1



1. Introduction

Figure 1.1: Example of a transducer (Design by KU Leuven, Structural Mechanics
section and VUB, B-Phot section).

1.2 State of the art

In light of structural health monitoring using dynamic strain measurements, a lot
of research has already been conducted, including by the Structural Mechanics
section at the KU Leuven. During this research, the eigenfrequencies, mode shapes
and modal curvatures are examined on their applicability when assessing possible
damage on structures. This is done by comparing these characteristics for a damaged
structure and an undamaged theoretical model. By updating the material properties
of the structure in the theoretical model at places where the structure is damaged,
a correspondence of the eigenfrequencies, mode shapes and modal curvatures is
obtained. The updated material properties can be used to assess the health of the
structure. This dynamic analysis proves to be a very powerful tool to investigate
the health of a structure as already confirmed by research conducted in laboratory
conditions, as well as on real-life structures. Interesting research on this subject has
been published by Abdel Wahab et al. [1], Teughels et al. [37], Unger et al. [38],
Reynders et al. [25] and Casas et al. [4], among many others. Research on the
application of fibre optic measurements for structural health monitoring has been
published by for example Glisic and Inaudi [13].

To improve this health monitoring, a higher measurement accuracy could be useful.
The accuracy can be increased by improving the accuracy of the optical fibre itself,
which is outside the scope of this MSc thesis, or by mechanical upscaling of the strain.
This upscaling is already discussed by Suzhen Li and Zhishen Wu.[34] Mechanical
strain upscaling can be obtained by developing a sensor package which concentrates
the strain over a small measurement section. An ideal tool to develop this sensor
package is topology optimization. Using topology optimization, one can find the
optimal distribution of material in order to achieve a strain upscaling which is
maximized. The concept of topology optimization has been meticulously explained
by Sigmund [31] and Andreassen et al. [2]. These papers clarify how the available
material is distributed over the design domain in order to maximize or minimize the
objective function.
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The design of the transducer will be a mechanical system. The design of mechanical
systems using topology optimization has already been researched on a much smaller
scale, namely for the development of MEMS (micro-electro-mechanical systems).
These are compliant mechanisms which try to minimize or maximize the output
displacement, given an input displacement. This is very interesting in light of this
MSc thesis, given that the objective of this thesis is to develop a sensor package
which maximizes the strain over a measurement section. Research on this topic
has been published by Sigmund [30, 33], Pedersen et al. [24] and Maute et al. [23].
Lastly, additional constrains can be implemented in order to obtain a robust design.
This is for example interesting to avoid an infinitely small hinge, which cannot be
manufactured. The implementation of robust topology optimization algorithms have
been previously researched by Wang et al. [39] and Schevenels et al. [27].

1.3 Objective
The objective of this MSc thesis is to design a new strain upscaling sensor package.
This will include the tasks of topologically optimizing the sensor package and testing
it in the laboratory.

In a first stage, the transducer will be designed. This will be done using topol-
ogy optimization. The main goal of this optimization is to achieve a strain upscaling
which is as large as possible. However, other effects will be considered as well in order
to obtain a robust design. These effects include length scale control and loading of
the fibre in pure tension. The design should meet the following requirements:

• The overall length over which strains are measured is equal to 500 mm.

• The length of the measurement section where the optical fibre will measure
must be at least 20 mm.

• The width of the transducer should not be larger than half the length over
which the strains are measured. This means the width should remain smaller
than 250 mm.

• The dimensions of the hinges formed in the design should be larger than the
thickness of the transducer.

• The fibre should be loaded in pure tension.

• The stresses in the transducer should remain below the yield limit, avoiding
plastic deformations.

• All eigenfrequencies of the transducer should remain above 50 Hz.

• The transducer should not be sensitive to buckling.

In a second stage, when the design of the transducer is finalized, the sensor package
will be manufactured by laser cutting and tested in the laboratory. The static and
dynamic performance of the transducer will be validated during experiments.
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Chapter 2

Standard topology optimization

In this chapter, a first design of the transducer will be made, entirely based on the
method discussed by Andreassen et al. [2]. Therefore their 88 lines of MATLAB
code will be used as a basis for the topology optimization of the transducer. The
working principle of that algorithm will be discussed first. Next, some significant
changes will be made in order for the algorithm to be applicable for designing the
transducer. These changes include defining a different objective function, redefining
the design domain and implementing a threshold projection filter based on Wang et
al. [39].

2.1 Introduction to topology optimization

When designing a structure, the design must always meet some specific objectives.
In civil engineering, these objectives are typically the requirement to withstand a
certain load and not to deform too much under this load. Topology optimization is
a technique which distributes a certain amount of material over the design domain
in an optimized way, in order to meet the specified objective.

The topology optimization algorithm used in this thesis, is based on the 88 lines of
MATLAB code presented by Andreassen et al. [2]. This algorithm will be used as a
starting point to which multiple changes and extensions will be added. Therefore
the basic building blocks of the topology optimization algorithm of Andreassen et al.
will be briefly mentioned.

The topology optimization algorithm is an iterative algorithm. Each iteration the
design is improved until an optimal design is reached. During each iteration a finite
element analysis of the design is performed, in order to determine the stiffness and
the displacements of the design. This finite element analysis is based on a four node
element with two degrees of freedom per node: a horizontal and a vertical translation.

Once the finite element analysis is performed, the next step is to determine the
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objective function. Typically an objective function looks as follows:

min
x

: c(x)

subject to : KU = F

: V (x)
V0

6 fv

: 0 6 x 6 1

(2.1)

In this equation, x is the vector with the element densities xe, ranging from 0 (void) to
1 (solid). These element densities will be altered to obtain an optimal objective value
c. K is the global stiffness matrix, U is the global displacement vector containing
the displacements in all degrees of freedom and F is the global force vector. V (x)
is the material volume and V0 is the total volume of the design domain. The ratio
of these parameters must be smaller than a prescribed volume fraction fv. The
optimum of the objective function is determined using the optimality criteria method.

The volume fraction is the maximal value of the ratio of the filled elements to
the void elements. A volume fraction of 0.2 for example means that maximum 20%
of all elements are allowed to be completely filled with material. However, if it turns
out that the use of less material (for example 15%) results in a better objective value
the algorithm will automatically use less material.

The vector x contains the design variables. These values will be optimized in
order to obtain a final design. The element densities xe, which are stored in vector
x, are related to the Young’s modulus Ee of the element. This relation is called the
modified Solid Material with Penalization approach, or modified SIMP approach.
This approach is formulated in equation 2.2.

Ee(xe) = Emin + xp
e(E0 − Emin) (2.2)

Where Emin is a very small stiffness (10−9 MPa) to avoid the stiffness matrix from
becoming singular. E0 is the real Young’s modulus of a solid material. From this
equation one can see that when an element is void (xe = 0) the stiffness of that
element will be nearly zero, when an elements is solid (xe = 1) the stiffness is equal
to the real stiffness of the solid material. A stiffness is also assigned to elements with
a density between 0 and 1. However, these densities must be avoided as much as
possible, as they do not exist in the physical world. For this reason a penalization
factor p is introduced, which will penalize densities between 0 and 1. Typically a
value of p = 3 is used in topology optimization.

A final important building block to mention is the density filter. A common problem
in topology optimization is the existence of checkerboard patterns. A checkerboard
pattern is a distribution of material in which solid and void elements alternate. Ap-
plying a density filter will eliminate checkerboard patterns by averaging the element
densities over a number of elements in a circular filter region (hence filter radius),
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see figure 2.1. However, this will again introduce a number of gray elements at the
edge between the solid and void regions.

Figure 2.1: Principle of the density filter [26].

As previously mentioned the optimum of the objective function is determined
using the optimality criteria method. In the paper of Andreassen et al. [2] it was
already mentioned that this method cannot be applied for topology optimization
problems with more than one constraint. Given that the more robust topology
optimization, which will be used in chapters 3 to 5, requires multiple constraints, a
more versatile optimization algorithm will be implemented. Andreassen suggested
the use of the method of moving asymptotes (MMA) introduced by Svanberg [35].

2.2 Alterations to the model
Some alterations will be made to the standard topology optimization algorithm of
Andreassen et al. [2] which was described previously.

2.2.1 Objective function

The objective of the topology optimization of the transducer is to enlarge the strain
as much as possible and concentrate it over the measurement section. The simplest
way to implement this, is to maximize the displacements in the node where the
optical fibre is attached. This node is displayed in red in figure 2.3. The objective
function of the optimization algorithm is the following:

min
x

: c = lToutU + 100

s.t. : KU = F

: V (x)
V0

6 fv

: 0 6 x 6 1

(2.3)

In this equation, c is the objective value, lout is the vector containing the degree of
freedom (DOF) for which the displacement should be optimized and U is the vector
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containing the displacements in all degrees of freedom.

The optimal value of this objective function will be calculated using the method of
moving asymptotes (MMA), implemented in MATLAB by Svanberg.[35] When using
the MMA algorithm, the objective value in more robust topology optimization is
not allowed to become negative. Hence a constant term of 100 is added in equation
2.3. To be consistent and to be able to compare results, this constant term is also
added for the standard topology optimization method. More explanation on the
importance of this constant term will follow in chapter 3. This constant term will
not have an influence on the obtained design, nor on the upscaling factor.

It is also worth noting that the MMA algorithm is implemented in such a way
that only a minimum can be obtained. This poses a problem, as the goal of the
transducer is to enlarge the displacements as much as possible. There are two possible
solutions for this problem. The first one is to place a minus sign in front of the
objective function. That way a minimum will be transformed into a maximum. This
implementation will work for the standard topology optimization algorithm discussed
in this chapter, however, it will not work for the more robust topology optimization
algorithms from chapters 3 to 5. Therefore, a second solution is preferred: changing
the sign of the input force. When this force is positive (the transducer is loaded in
tension) the optimization algorithm will converge towards a minimal value, meaning
the optical fibre will be in compression. When the input force is negative (the
transducer is loaded in compression) the optimization algorithm will also converge
towards a minimal value, meaning the optical fibre will be in compression. These two
designs will perform differently, both having their advantages. The optical fibre can
only be used in tension, meaning the first design will be very useful at locations where
compression is expected, as compression on the transducer will result in tension in
the fibre. This is for example the case at the top of a simply supported beam. The
second design will be more useful at a location where tension is expected, as tension
on the transducer will result in tension in the optical fibre. This is for example the
case at the bottom of a simply supported beam.

To obtain the optimum of the objective function, the first derivative of this function
with respect to the design variable x, containing element densities xe, must be
calculated. Due to the dependency on the displacements U this derivative is hard
to obtain. The most effective way for calculating the derivative of the objective
function, is to use the adjoint method as suggested by Bendsøe and Sigmund.[3]
This way the derivatives of the displacements are never calculated explicitly. The
technique involves using an altered notation of the objective function:

ĉ = lToutU + 100 + λ(KU − F ) (2.4)

The extra term in equation 2.4 is equal to zero, since the equilibrium equation states
KU = F , where K is the global stiffness matrix, U is the global displacement vector
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and F is the global force vector. The derivative of equation 2.4 with respect to x is:

∂ĉ

∂x
= λT ∂K

∂x
U + (lout + λK)∂U

∂x
(2.5)

In this equation, the term λ can be chosen freely. It is however very interesting to
chose λ ≡ −K−1lout as this will cause the second term in equation 2.5 to be equal to
zero, resulting in the final equation:

∂ĉ

∂x
= λT ∂K

∂x
U (2.6)

This means only the global stiffness matrix K has to be derived with respect to x in
order to obtain the derivative of the objective function. Global stiffness matrix K is
defined as:

K = (Emin + xp
e(E0 − Emin))Ke (2.7)

Where Ke is the element stiffness matrix. The derivative of the global stiffness matrix
K with respect to x is equal to:

∂K

∂xe
= pxp−1

e (E0 − Emin)Ke (2.8)

By calculating the derivative of the objective function as defined in equation 2.6, the
optimum of the objective function is determined and the material is distributed in
an optimized way over the design domain.

2.2.2 Design domain

The goal of the transducer is to concentrate the displacements over a larger length
onto a smaller length, which results in the upscaling of the strains. The decision
has been made to concentrate the displacements over a total length of 500 mm onto
a measurement section of 20 mm. A further decrease in size of the measurement
section would increase the upscaling of the strains. However, due to the nature
of the optical fibre, this further decrease in size is impossible. The optical fibre
contains Fibre Bragg Gratings (FBG), which measure the strain. The FBG’s have
a length of 8 mm. The position of this FBG in the fibre is only known to within
a few millimetres. To ensure the FBG is indeed located within the measurement
section a tolerance must be maintained. For this reason a minimum length of 20 mm
is required for the measurement section. Another limitation to the design is the
width constraint. The width of the transducer should remain smaller than or equal
to half of the length of the transducer. This constraint is reasonable given that the
transducer is designed to measure one dimensional, longitudinal strain. This last
demand is also due to practical and aesthetical reasons. A transducer with a larger
width would be more difficult to attach to for example a bridge. All the restrictions
in dimensions are illustrated in figure 2.2.
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Figure 2.2: Dimension restrictions.

Symmetry of the transducer is a very important aspect to consider when defining
the design domain. The transducer is attached to the structure, which is being
measured, at two locations, one on each end of the transducer. Both connections
exert an equal but opposite force on the transducer. When the measurement section
is constrained to be located in the middle of these two connections, it is clear a
vertical symmetry plane can be implemented for this transducer. This symmetry
plane can be seen in figure 2.3 on the left side. The implementation of a symmetry
plane will reduce the size of the design domain by half. This reduces the computa-
tional effort when optimizing the topology of the transducer, yet it also reduces the
design freedom. A trade-off has to be made between the design freedom and the
computational effort. The restriction in design freedom is considered to be sufficiently
small, justifying the implementation of the vertical symmetry plane. One could
argue that this half structure could be reduced even further to a quarter structure.
However, this would further reduce the design freedom. Furthermore horizontal
symmetry of the transducer is not guaranteed nor required. Although the vertical
position of the measurement section is assumed to be in the middle at the beginning,
this might not be the most optimal position. The influence of this position will be
discussed further in chapter 6. The implementation of a second, horizontal, symmetry
plane would inhibit this analysis.

The implementation of the symmetry plane significantly reduces the size of the
design domain. Initially, a length of 750 mm (displacements measured over 500 mm
plus an over length of 250 mm) was required. This can now be limited to 375 mm due
to symmetry. The width of the design domain remains 250 mm. The design domain
will be divided into square elements, with a size of 2.5 mm by 2.5 mm, resulting in a
grid of 150 by 100 elements. The size of the elements has been chosen based on two
grounds. On the one hand, a smaller element size will result in a better transducer
design, especially taking into account the minimal length scale of solid areas, which
will be discussed in chapter 3. It will be shown that for this minimal length scale
of solid areas, the elements should be smaller than or equal to 2.5 mm by 2.5 mm.
On the other hand, a larger element size will result in a faster calculation time.
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2.2. Alterations to the model

Considering the argument of calculation time, an element size smaller than 2.5 mm
by 2.5 mm is not advisable, especially not for the more robust topology optimization
which will be discussed in chapters 3 to 5.

Figure 2.3: Design domain.

In order to attach the transducer to the structure, as well as the optical fibre
measuring the strain to the transducer, additional constraints must be imposed
to certain elements. First of all, the transducer is attached to the structure it is
monitoring using bolts (see figure 2.4a). This means a hole in the transducer must be
present for the bolt to fit through. The elements surrounding the bolt must be solid
at all time, ensuring the forces can be transferred from the bolt to the transducer.
This is implemented into the topology optimization by defining active and passive
elements, as suggested by Andreassen et al. [2]. The implementation can be found
in lines 56 to 63 in de MATLAB code provided in appendix A.2. An active element
means the element will be solid (a density of 1) at all times. Active elements are
used for the elements around the bolt. A passive element means the exact opposite,
it will be completely empty at all times (a density of 0). These passive elements are
used for the elements at the bolt hole. The same technique is used to implement
the fixation of the optical fibre. The optical fibre is connected using a clamping
bracket, as shown in figure 2.4b. In order for the bracket to be installed, a mounting
platform of 15 mm by 15 mm must be present in the design of the transducer. This
is implemented using active elements in lines 48 to 55 in the MATLAB code in
appendix A.2. The active elements are also visible in figure 2.3 as black elements.

11



2. Standard topology optimization

(a) (b)

Figure 2.4: (a) Bolt connection of the transducer (Design by VUB, B-Phot section,
picture blurred due to patent application) and (b) Clamping bracket of the optical
fibre.

Another important aspect which has to be defined in the design domain are the
boundary conditions. As previously mentioned, there is a symmetry plane present
at the left boundary of the design domain. To define the symmetric boundary
condition, all horizontal displacements in the nodes of this symmetry plane should
be prevented. Vertical displacements are allowed however. This is implemented in
line 42 in the MATLAB code in appendix A.2. Also at the location of the bolt
hole, some boundary conditions are implemented. These boundary conditions are
displayed in figure 2.5. In all nodes of the active elements around the bolt, vertical
displacements are prevented. Horizontal displacements, however, are allowed. This
way, the transducer will be loaded in pure longitudinal tension or compression.

Figure 2.5: Boundary conditions at the bolt connection.

A last aspect of the design domain which is discussed, are the input and output
displacements. In all nodes of the active elements around the bolt, a longitudinal input
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displacement is defined. This input displacement is provided by the structure to which
the transducer is attached. As a result of the way the topology optimization algorithm
is implemented in MATLAB, it is not allowed to define an input displacement
constraint, since it is designed for an input force constraint. An easy way to solve this
problem is suggested by Bendsøe and Sigmund.[3] The implementation of an input
displacement is done by attaching a spring to the input node, on which a force is
applied. If one knows the spring stiffness and the input displacement, one can easily
determine the force that is required to obtain that specific input displacement. To
obtain a realistic value of the spring constant of the input spring, the characteristics
of the structure to which the transducer is attached are of importance. A concrete
beam with a cross section of 300 mm by 300 mm is assumed for this calculation.
The spring stiffness of the beam can be calculated using the following formula:

k = E
A

l

= 30 kN/mm2 300 mm · 300 mm
250 mm

= 10 800 kN/mm

(2.9)

Where E is the Young’s modulus of concrete, A is the area of the cross section of the
beam and l is the length of the spring. Note that, due to this spring stiffness, the
results of the topology optimization will be, in theory, depending on the structure
it is attached to. However, the spring stiffness of the beam is much greater than
the stiffness of the aluminium transducer. Therefore the exact value of this spring
stiffness will not have an influence on the resulting design. The same design would be
obtained when using the spring stiffness of a concrete beam of for example 1000 mm
by 1000 mm. It is also important to note that this is the total spring stiffness of
the concrete beam. When implementing this into the topology optimization algo-
rithm, a spring is implemented in multiple nodes, which results in multiple springs
working in parallel. In order to obtain the spring stiffness of each individual spring,
the total spring stiffness must be divided by the number of springs working in parallel.

During the topology optimization, a strain of 100 µS is assumed in the beam.
This value has been selected to ensure the stability of the optimization algorithm. A
smaller strain would inhibit topology optimization, as the displacements become too
small, destabilizing the algorithm. The exact value of the input displacement does
not have a direct effect on the obtained design, due to the linear elastic formulation
of the topology optimization. The strain in the beam is equal to a displacement at
the bolt connection of:

u = 100 µS · 250 mm
= 0.025 mm

(2.10)
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To obtain this displacement the following input force is required:

F = k · u
= 10 800kN/mm · 0.025 mm
= 270kN

(2.11)

It is again important to note that the exact value of this input force has no influence
on the obtained design. However, a representative value must be defined in order for
the topology optimization to work.

The optical fibre can be modelled as a spring as well. This spring is attached
at the middle of the mounting platform of the fibre. This is displayed in figure 2.3
by the red node. The optical fibre has a Young’s modulus E of 79 GPa, a radius r
of 62.5 µm and a length l of 20 mm. Considering the symmetry plane, the length
reduces to 10 mm. This results in the following spring stiffness:

k = E
A

l

= 79 kN/mm2 π · (0.0625 mm)2

10 mm
= 0.0908 kN/mm

(2.12)

2.2.3 Implementation of the threshold projection filter

A common problem when using the 88 lines of code algorithm is the occurrence of
gray elements after density filtering. Gray elements have a density between 0 (void)
and 1 (solid). However, it is physically impossible to produce such an element, since
a material is either solid or void in real-life. Intermediate values do not exist. To
solve this problem, the paper of Andreassen et al. [2] suggests the implementation
of a black-and-white projection filter. The threshold projection filter suggested
by Wang et al. [39] will be used to obtain this black-and-white projection. The
black-and-white projected densities, called physical densities, are obtained from the
threshold projection filter formulated in equation 2.13.

xe = tanh(βη) + tanh(β(x̃e − η))
tanh(βη) + tanh(β(1− η)) (2.13)

Where xe are the physical densities of the elements, x̃e are the densities after density
filtering called intermediate densities, η is the threshold parameter and β is the
smoothness parameter.

Threshold parameter η determines the threshold above which the densities will
be projected to solid elements. This parameter is set to η = 0.5, which means
intermediate densities below 0.5 will be projected towards void elements, while
intermediate densities above 0.5 will be projected towards solid elements.
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Smoothness parameter β determines how well the heaviside function is approxi-
mated. With β = 1 no filtering will take place, when β approaches infinity the filter
function will converge towards the heaviside function. The smoothness parameter β
will be gradually increased throughout the iterations of the optimization, starting at
1 and increasing by 1% each iteration. This gradual increase ensures the stability of
the iterative process. It also means that the black-and-white filtering will get more
crisp each iteration. The heaviside function and the approximation of the threshold
projection filter are illustrated in figure 2.6, as well as the influence of the β parameter.

Figure 2.6: The heaviside function and the heaviside projection filter used for β = 1,
β = 10 and β = 25.

2.3 Obtained design
In the previous section all changes to the 88 lines of code provided by Andreassen et
al. [2] were discussed. In this section, the adapted standard topology optimization
will be executed.

2.3.1 Parameters

There are four important parameters which have to be chosen for the topology
optimization to work: volume fraction fv, penalization factor p, filter radius rmin

and smoothness parameter β.

Volume fraction fv In the topology optimization of the transducer a volume
fraction fv of 50% is used. The reason for this is that a further increase of the volume
fraction would not significantly increase the upscaling factor of the strains. However,
it would have a negative effect on the eigenfrequencies of the transducer. These
eigenfrequencies are of importance, since the aim of the transducer is to measure
dynamics strains. Therefore the eigenfrequencies of the transducer should remain
outside of the measuring range, for them not to interfere with the measurements.
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The influence of the volume fraction on the upscaling factor is also displayed in figure
2.7.

Analysis of the graph shows two volume fractions fv (0.4 and 0.45) with a sig-
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Figure 2.7: Influence of the value of the volume fraction on the upscaling factor.

nificantly lower upscaling factor. These are two designs for which the topology
optimization algorithm got stuck in a local optimum. Apart from these two values,
the upscaling factor gradually increases until the volume fraction is equal to 0.5.

Penalization factor p Typically a factor p = 3 is used in topology optimization.[2]
A smaller value will not ensure a black and white solution, while a larger value might
cause the algorithm to become less stable. The value of p = 3 will therefore be used
for the topology optimization of the transducer.

Filter radius rmin The exact value of filter radius rmin has to be determined by
trial-and-error. The paper of Andreassen et al. [2] suggests a filter radius of 0.03
times the width of the design domain. Since the design domain is 100 elements
wide, this is equal to 4.5 elements in this case. This value also proves to deliver
good results for the topology optimization of the transducer. Therefore the value of
rmin = 4.5 will be selected.

Smoothness parameter β The value of smoothness parameter β should be
determined by trial-and-error. A maximum value of β = 25 has proven to result
in crisp edges throughout the design of the transducer, with only one or less gray
elements between the void and solid regions. A further increase of smoothness
parameter β will not result in a crisper edge, but will cause the algorithm to become
unstable. Therefore, a maximum value of β = 25 is selected.

2.3.2 Resulting design

After the selection of the values of the parameters, the topology optimization of the
transducer is executed. It takes a total of 382 iterations for the algorithm to converge
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2.3. Obtained design

towards an optimized solution. The calculation requires about 360 s or 6 minutes.
The obtained design is displayed in figure 2.8.

Figure 2.8: Design obtained by the standard topology optimization algorithm.

This design has a very good upscaling factor of 180. The resulting design is a
mechanism containing 10 hinges as is visible in figure 2.9.

2.3.3 Possible improvements

The design obtained by the standard topology optimization algorithm provides a
good starting point. There are however two major problems with this design. The
first and biggest problem is the presence of single node hinges. This problem is
visualised in figure 2.9. The implementation of the topology optimization algorithm
allows for the full transfer of force from one element to another through one node.
In practice, this is of course impossible. The production of a single node hinge is
not possible, as a node has an infinitesimally small dimension. Furthermore, no
force could transfer through this node from one element to the other. The solu-
tion to this problem is to ensure a minimum length scale of the solid areas. This
is achieved by a method suggested by Wang et al. [39] and is implemented in chapter 3

A second problem with the standard topology optimization algorithm is the force
which is applied to the optical fibre. The design displayed in figure 2.8 has a horizon-
tal symmetry plane, meaning the fixation point of the optical fibre will only move
horizontally. No rotation will occur. This results in only axial forces in the optical
fibre, which is what the optical fibre is designed to measure. However, this is never
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2. Standard topology optimization

Figure 2.9: Hinges present in the design. Green circles indicate hinges which are
acceptable in size, red circles indicate hinges which are too small (single node or one
element hinges).

guaranteed by the standard optimization algorithm. For example by changing the
position of the mounting platform in the vertical direction, a lever may be formed
(see figure 2.10), resulting in a horizontal displacement as well as a rotation of the
mounting platform. This rotation of the mounting platform, as well as the bending
of the fibre is visualised in figure 2.11. The rotation will result in an axial force
and a bending moment on the fibre, as displayed in figure 2.12. It would be a great
improvement to the design of the transducer to avoid the occurrence of bending
moments on the fibre. This addition will be implemented in chapter 4. The approach
to obtain this addition is based on the book of Bendsøe and Sigmund.[3]

Figure 2.10: Formation of a lever, which will rotate the mounting platform and cause
bending in the fibre.
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2.4. Conclusions

Figure 2.11: Rotation of the clamping brackets, which results in bending of the fibre.

Figure 2.12: Forces occurring in the optical fibre. At the top tension as well as
bending, at the bottom only tension.

2.4 Conclusions
In this chapter, the most basic algorithm for the design of the transducer was imple-
mented. This algorithm is based on the 88 lines of code suggested by Andreassen et
al. [2]. Some aspects were altered in such a way that the algorithm could be used for
the development of the transducer, for example the design domain and the objective
function. The implementation of the method of moving asymptotes as well as the
threshold projection filter have been introduced to allow the increase of complexity
when making the step towards future, more robust topology optimization algorithms.

By executing the topology optimization algorithm, a first, primitive design was
obtained. This design already showed a high upscaling of the strain, with an up-
scaling factor of 180. Some future improvements were suggested, in order to obtain
a more robust design. The first improvement is the requirement of a minimum
length scale in order to avoid single node hinges. The second improvement is the
requirement of a pure axial tension force in the optical fibre, inhibiting bending from
occurring. These improvements will be implemented in chapters 3 to 5.
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Chapter 3

Length scale control

As suggested in chapter 2 length scale control is an important improvement to the
design obtained by standard topology optimization. By introducing length scale
control, the occurrence of single node hinges can be avoided. This will result in a
design which can be produced and tested. The changes to the model are based on
the paper of Wang et al. [39]. After improving the model a new, more robust design
is obtained, which will be discussed in more detail.

3.1 Improvement of the model

3.1.1 Applicability of the technique

The modifications which will be made in this chapter are based on a methodology
suggested by Wang et al. [39]: Modified robust topology optimization formulation
based on erosion, intermediate and dilation projections. Their paper discusses a
way to optimize a design taking into account possible manufacturing errors. The
result is a design which will still perform as desired even if manufacturing errors
occur. This is accomplished by requiring a minimum length scale, which is larger
than the manufacturing error, for the solid and void areas. This technique can be
applied to the design of the transducer, albeit with some minor modifications. The
manufacturing error when laser cutting the transducer is relatively small (< 1 mm).
The limiting factor is the size of the hinges. As a rule of thumb, the dimensions of the
hinges should not be smaller than the thickness of the transducer. The transducer
has a thickness of 5 mm, meaning a minimum length scale of 5 mm will be required
using the technique suggested by Wang et al.[39]

3.1.2 Alterations to standard topology optimization

The modified robust topology optimization formulation based on erosion, interme-
diate and dilation projections will optimize three different designs. A first design
is the eroded design, based on the assumption a uniform production error is made
along all the edges reducing the solid areas in size and enlarging the void areas. The
second design is the intermediate design, which has no manufacturing errors and

21



3. Length scale control

which is ultimately the design that will be produced. The third and final design
is the dilated design, in which a uniform manufacturing error is assumed along all
edges, enlarging the size of the solid areas and reducing the size of the void regions
between them. As an illustration, figure 3.1 shows the different designs for the force
inverter discussed in the paper of Wang et al. [39].

(a) (b) (c)

Figure 3.1: (a) Eroded (η = 0.7), (b) intermediate (η = 0.5) and (c) dilated (η = 0.3)
designs of the force inverter as discussed in Wand et al. [39].

The three different designs are obtained using the threshold projection filter which
was already briefly mentioned in chapter 2. The threshold parameter η initially was
set to 0.5, meaning all densities smaller than 0.5 would be projected towards 0, other
densities would be projected towards 1. In this chapter, the full potential of the
threshold projection filter will be exploited. By changing the value of the threshold
parameter η the occurrence of manufacturing errors can be simulated: an increase of
the threshold parameter η will mimic the eroded design as more densities will be
projected towards zero, a decrease will do the exact opposite and will resemble the
dilated design. The different thresholds for the different designs of figure 3.1 are
displayed in figure 3.2.
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Figure 3.2: Threshold projection filters used in figure 3.1 for the (a) eroded (η = 0.7),
(b) intermediate (η = 0.5) and (c) dilated (η = 0.3) designs.

The different designs will be optimized simultaneously using a min-max formu-
lation of the optimization problem. Each iteration the least optimal design will be
selected by the MMA algorithm and that design will be optimized. To obtain this,
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3.1. Improvement of the model

the objective function must be modified to include the necessary extra constraints.
This is done in equation 3.1. Due to the extra constraints, the optimality criteria
based optimizer originally implemented by Andreassen et al. [2] cannot be used.
The MMA algorithm by Svanberg [35] has to be used instead. When the min-max
approach is used in combination with the MMA algorithm of Svanberg, the objective
values are not allowed to become negative. Otherwise, the wrong design would be
selected for optimization. To avoid this problem, a constant factor of 100 has been
added to the objective function, as previously mentioned in chapter 2. The selection
of the design to be optimized is also the reason the introduction of a minus sign in
front of the objective function, to convert a minimum into a maximum, was not an
option. If the minus sign would be used, the most optimal design would be selected
for optimization instead of the least optimal design.

min
x

: max {lToutUero + 100; lToutUint + 100; lToutUdil + 100}

s.t. : KUero = F

: KUint = F

: KUdil = F

: fv =

∑
xe,ero+

∑
xe,int+

∑
xe,dil

3
V0

6 V ∗
mean

: 0 6 x 6 1

(3.1)

Where Uero, Uint and Udil are vectors containing the displacements of the eroded,
intermediate and dilated design respectively, xe,ero, xe,dil and xe,del are vectors con-
taining the physical element densities of the eroded, intermediate and dilated design
respectively and V ∗

mean is the maximum value of the volume fraction which is allowed.
Note that the volume constraint fv is imposed on the mean value of physical densities
xe of the three designs. This is different than suggested by Wang et al. [39], where the
volume constrained is imposed on the dilated design. A volume constraint imposed
on the mean of the three designs has proven to result in less gray elements. The paper
of Wang et al. [39] also suggests to update the maximal value of the volume fraction
V ∗

mean every 20 iterations, so the volume fraction of the intermediate design always
approximates the maximal value of the volume fraction. This is not implemented
because it would reduce the stability of the algorithm, resulting in more gray elements.

One last, important remark has to be made on the min-max approach. The inter-
mediate design, which will ultimately be manufactured, is rarely the least optimal
design. This means most of the time the eroded or dilated design will be optimized.
Therefore, performance of the intermediate design will decline. However, one has
to keep in mind the goal of the technique is to ensure a minimum length scale,
making single node hinges impossible. This goal is certainly reached by the min-max
approach.
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3. Length scale control

3.1.3 Implementation in the MATLAB code

The optimization with length scale control requires some alterations to the standard
topology optimization algorithm. The new robust topology optimization algorithm
is given in appendix B.2. The main difference is the fact that three different designs
have to be composed. For each design, a separate finite element analysis has to be
performed. This is done in lines 162-174. The objective function and the derivatives
must be calculated for the three different designs as well. This is done in lines
175-206. The last major change is the way the MMA algorithm works, especially the
implementation of the extra constraints. These constraints and their derivatives are
defined in lines 126-133.

3.1.4 Verification of the implementation

In order to ensure the implementation in MATLAB yields correct results, the force
inverter is optimized as a benchmark case. The resulting designs are displayed in
figure 3.3.

(a) (b) (c)

Figure 3.3: Verification of the implementation of the algorithm by calculating the
(a) eroded (η = 0.7), (b) intermediate (η = 0.5) and (c) dilated (η = 0.3) designs of
the force inverter benchmark.

By comparing figures 3.1 and 3.3, and the objective values in table 3.1, one can
see the paper of Wang et al. [39] and the implementation of this thesis yield almost
the same results. Therefore, one can conclude the implementation works as desired.

Table 3.1: Objective values of the force inverter benchmark case.

Objective values
Design Wang et al. [39] Own implementation

Eroded 97.85 98.01
Intermediate 97.70 97.82
dilated 97.85 98.01
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3.2. Obtained design

3.2 Obtained design
After the alterations to the model are implemented, the more robust topology
optimization algorithm will be executed. In this section the new value of the
threshold parameter η will be discussed. Next, the obtained design will be discussed
and some important remarks will be made.

3.2.1 Parameters

The only parameter which changes compared to the standard topology optimization
algorithm is threshold parameter η. Due to the three different designs, three different
values for η will be used. The η value is determined as discussed by Wang et al. [39]
and Schevenels et al. [27]. They suggest the threshold parameter η is function of the
manufacturing error η and the filter radius rmin. This relation is depicted in figure
3.4.
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Figure 3.4: Relation of threshold parameter η to manufacturing error ε and filter
radius rmin.

Based on this relationship, and given that ε = 2.5 mm (2.5 mm artificial man-
ufacturing error at each side of the hinge) or 1 element and rmin = 4.5 elements,
η is chosen to be equal to 0.31 for the dilated design. This means the threshold
for the eroded design will be at (1− η) = 0.69. The threshold for the intermediate
design is by definition located at η = 0.5. Due to the artificial manufacturing error
of ε = 2.5 mm or 1 element, the element size should be 2.5 mm or smaller.

3.2.2 Resulting design

The optimization of the new, more robust design takes 424 iterations. This is about
11% more iterations compared to the 382 iterations it took for the standard topology
optimization. The calculation time has drastically increased, from 360 s for the
standard topology optimization algorithm to 996 s or 16.6 minutes for the new,
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3. Length scale control

robust algorithm. This is an increase of about 177%. The three obtained designs are
displayed in figure 3.5.

(a) (b) (c)

Figure 3.5: (a) Eroded (η = 0.69), (b) intermediate(η = 0.5) and (c) dilated (η = 0.31)
designs of the transducer obtained by the modified robust topology optimization
formulation based on erosion, intermediate and dilation projections.

Figure 3.6: Hinges present in the intermediate design.

The intermediate design has an upscaling factor of 109, which is a decrease of
about 39% compared to the standard topology optimization. The eroded and dilated
design both have an upscaling factor of 73. Keep in mind the intermediate design
is the one which will ultimately be manufactured. The two other designs are just
artificial designs in order to guarantee the minimum length scale required. The
intermediate design is visible in more detail in figure 3.6. The figure shows that the
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3.3. Conclusions

number of hinges has been reduced from 10 to 4. Furthermore, all hinges are larger
than 5 mm in width, which was the objective of this more robust design.

From figure 3.6 it is visible the number of gray elements has increased. These
elements will not disappear by increasing the smoothness parameter β, but can easily
be removed in a post-processing phase.

3.3 Conclusions
In this chapter a more robust topology optimization algorithm was implemented.
This algorithm, based on the paper of Wang et al. [39], is designed to ensure a
minimum length scale. That way the occurrence of single node hinges is prevented.
The algorithm works as it was intended to, resulting in no single node, or even single
element hinges. This more robust design comes at a cost, with a decrease in upscaling
factor of 39%. The design obtained by the standard topology optimization algorithm
cannot be manufactured due to the small hinges. Therefore the significant decrease
in upscaling factor is acceptable.
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Chapter 4

Fibre in pure tension

As mentioned earlier in chapter 2 it could be of interest to ensure only axial tension
forces are applied to the optical fibre, as it is designed to measure axial strain. This
improvement, which is based on a suggestion made in the book of Bendsøe and
Sigmund [3], will be discussed in this chapter. After the improvements are made,
a new design will again be obtained and discussed. The alterations to the model
discussed in this chapter are in reference to the standard topology optimization
discussed in chapter 2 and not to the robust topology optimization of chapter 3.
The combination of the alterations in chapter 3 and this chapter will be discussed in
chapter 5.

4.1 Improvement of the model

4.1.1 Alterations to standard topology optimization

In order to ensure the fibre is only loaded in tension, prohibiting bending from
occurring, rotation of the mounting platform of the fibre must be prevented. This
means the top of the mounting platform must have the same horizontal translation
as the bottom of the platform. The most efficient and effective way to implement this
is to formulate this as a min-max problem, as suggested by Bendsøe and Sigmund.[3]
This adjustment demands a small change in the design domain. Instead of one node
for which the displacement will be optimized (figure 2.3), the displacements will be
optimized for two nodes, one at the top and one at the bottom of the mounting
platform. This is also visible in figure 4.1. The new objective function of the min-max
problem is given in equation 4.1. Two different output-node selection vectors lout,1
and lout,2 are defined in this objective function.

min
x

: max {lTout,1U + 100; lTout,2U + 100}

s.t. : KU = F

: fv =
∑
xe

V0
6 V ∗

: 0 6 x 6 1

(4.1)
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4. Fibre in pure tension

Figure 4.1: Altered design domain to ensure pure tension in the fibre.

The working principle of the min-max problem statement is very similar to the
min-max problem in chapter 3. This will therefore not be discussed in more detail.
There is however one important difference. Whereas the min-max problem in chapter
3 was used to optimize three different designs, the min-max problem used in this
chapter only optimizes one design. The min-max problem is simply used to select
for which output-node selection vector lout the problem should be optimized.

4.1.2 Implementation in the MATLAB code

Some changes in the MATLAB code of the standard topology optimization are
required in order to realize the proposed improvements in this chapter. The improved
topology optimization algorithm can be found in appendix C.2. The first change
is the definition of not one, but two output-node selection vectors lout,1 and lout,2.
This is done in lines 73-74 of the algorithm. Next the objective function and the
derivative has to be calculated for both output-node selection vectors. These are
determined in lines 147-164. Lastly, the values of the objective function, as well as
their derivatives will be entered in the constraints of the MMA algorithm. This is
done in lines 116-121.
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4.2. Obtained design

4.2 Obtained design

In this section the results obtained by the improved topology optimization algorithm
will be discussed. As all parameters remain the same as was the case for the standard
topology optimization algorithm, no parameters will be discussed like in previous
chapters.

The algorithm takes 377 iterations to converge towards the final design. This is
approximately the same number of iterations as the standard topology optimization
algorithm, with 382 iterations. The time it takes to calculate the design has however
increased from 360 s to 495 s or 8.25 minutes. This is an increase of about 38%,
indicating each iteration takes longer to calculate. The obtained design is displayed
in figure 4.2. The upscaling factor of this design is equal to 198. This is 10% higher

Figure 4.2: Design obtained by the algorithm which ensures pure tension in the
optical fibre.

than the design obtained by the standard topology optimization algorithm. It clearly
indicates the standard topology optimization algorithm was stuck in a local optimum.
One could argue the design in figure 4.2 is also stuck in a local optimum. The fact
is that if the hinges indicated in figure 4.2 are moved more towards the top and
the bottom of the design domain respectively, the levers will increase in size, and
ultimately the upscaling factor will increase.

The main goal is however to ensure the optical fibre is loaded in pure tension.
This is the case in figure 4.2, but this is mainly due to the presence of a horizontal
symmetry plane. When the mounting platform of the fibre is moved upwards to the
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4. Fibre in pure tension

top of the design domain, this symmetry plane is not present any more. Nevertheless,
figure 4.3 clearly shows the fibre is still loaded in pure tension. This is due to the
hinged connection of the mounting platform to the rest of the transducer. This
means the improved model works as it is supposed to. The design displayed in figure
4.3 has an upscaling factor of 149. Notice the difference with figure 2.10, where the
mounting platform was connected rigidly.

Figure 4.3: Design obtained with the mounting platform at the top of the design
domain.

Figures 4.2 and 4.3 show that it is possible for single node or single element
hinges to develop using this algorithm. This is due to the fact that no length scale
control is implemented in this model. This will be solved in chapter 5.

4.3 Conclusions
In this chapter the model was changed to ensure only pure tension could occur in
the optical fibre. It was shown that, by implementing a min-max approach, it was
possible to prevent bending from occurring in the fibre. This is due to the formation
of a hinged connection either at the two corners of the mounting platform for a
symmetric design, or at the middle of the mounting platform for an asymmetric
design, ensuring no rotation occurs. This proves the improved algorithm works as
desired.
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Chapter 5

Combination of length scale
control and fibre in pure tension

In chapter 2 a first standard topology optimization algorithm was discussed and
a couple of problems with the obtained design were raised. In chapter 3 and 4
both problems were addressed individually. In this chapter, the solutions to these
problems will be combined, resulting in a final and most robust topology optimization
algorithm.

5.1 Improvement of the model

To combine the two models developed in the previous chapters, the two min-max
problems will have to be combined. On the one hand there is the min-max problem
of the length scale control algorithm which optimizes one of three different designs.
On the other hand there is the min-max problem of the fibre in pure tension, which
selects one of two output-node selection vectors for which the design will be optimized.
Combining these two min-max problems means that one of the three designs will
be selected to be optimized for one of the two output-node selection vectors. The
design domain displayed in figure 4.1 will be used in the combined algorithm. The
objective function is given in equation 5.1.

min
x

: max {lTout,1Uero + 100; lTout,2Uero + 100; lTout,1Uint + 100;

lTout,2Uint + 100; lTout,1Udil + 100; lTout,2Udil + 100}
s.t. : KUero = F

: KUint = F

: KUdil = F

: fv =

∑
xe,ero+

∑
xe,int+

∑
xe,dil

3
V0

6 V ∗
mean

: 0 6 x 6 1

(5.1)

33



5. Combination of length scale control and fibre in pure tension

The implementation in the MATLAB code is very similar to previous chapters. The
Matlab code can be found in appendix D.2. Due to the fact three designs will
be optimized, the finite element analysis must be performed three times, once for
every design. These calculations are performed in lines 171-183. Next the objective
functions and their derivatives must be calculated. This is done six times per iteration,
one time for each combination of design and output-node selection vector. These
calculations are implemented in lines 184-239. Lastly, the six different values of the
objective functions and their derivatives are implemented in the constraints of the
MMA algorithm in lines 129-142.

5.2 Obtained design

The results of the most complex and robust topology optimization algorithm will be
discussed. All parameters remain the same as in chapter 3.

The designs obtained after 410 iterations are displayed in figure 5.1. This is an
increase of about 7% compared to the 382 iterations needed for the standard topology
optimization. The calculation time has increased from 360 s to 1309 s or 21.8 minutes,
which is an increase of 264%. The upscaling factor of the intermediate design is a
little under 110, which is approximately the same as the upscaling factor obtained in
chapter 3.

(a) (b) (c)

Figure 5.1: (a) Eroded, (b) intermediate and (c) dilated designs of the transducer
obtained by the final, most robust topology optimization formulation.

There is however a drawback to this complex model. Not only does it take a
longer time to calculate, it is also less stable than previous models, increasing the
probability of gray elements and strange designs. This is visible in figure 5.2b, where
a solid area is formed which is not connected to the other solid areas. Furthermore,
the requirement of pure tension in the optical fibre cannot be guaranteed, due to the
optimization of three different designs. This is for example the case in figure 5.2. It
is clear that for the eroded design, the fibre will be loaded in pure tension. However,
the size of the hinge has drastically increased in the intermediate design (see figure
5.3), as is required by the length scale control. This means rotation of the mounting
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platform will occur and the fibre will experience bending.

(a) (b) (c)

Figure 5.2: (a) Eroded, (b) intermediate and (c) dilated designs of the transducer
obtained by the final, most robust topology optimization formulation with the
measuring section positioned at one quarter of the height of the transducer.

Figure 5.3: Detail of the hinged connection of the mounting platform.

It is obvious from these results that, while the algorithm might work in some
cases, it has its limitations. Therefore it is important to always investigate whether
or not the intermediate design meets all requirements. For the design in figure 5.1
this is the case, for the design in figure 5.2, it is not.

5.3 Conclusions
In this chapter the most complex and robust model was discussed. It is the com-
bination of the models discussed in chapter 3 and 4. Although those models both
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5. Combination of length scale control and fibre in pure tension

work fine individually, the combination turned out to be rather difficult. The most
important problem is the requirement of pure tension in the optical fibre not being
guaranteed in all cases. Therefore it is important to always analyse the resulting
design of this algorithm in full detail, as it will not always perform as required. In
some cases this model does work as it should and is very useful.
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Chapter 6

Selection and discussion of the
final designs

In chapters 2 to 5, four different topology optimization algorithms were discussed,
ranging in complexity. No final design was selected however. In this chapter, the
influence of the position of the measurement section will be discussed. Once this
position is fixed, the final designs can be made and discussed.

6.1 Influence of the position of the measurement
section

In the previous chapters, the vertical position of the measurement section was always
defined at the middle of the transducer. It was already mentioned in chapter 2
this might not be the optimal position. In this section, the influence of the vertical
position of the measurement section is discussed and a final decision on the location
will be reached.

In this analysis, the vertical position of the measurement section will range from
(counting from the top) element 5 to element 50 with an increment of 5 elements for
each new optimization. This is from the top to the middle of the design domain. A
measurement section at the bottom half of the design domain will not be discussed,
as the resulting designs will be the same, only mirrored vertically. The design with
the measurement section 5 elements from the bottom, will be the mirror image of
the design with the measurement section 5 elements from the top. The upscaling
factor of both designs will be identical. The result of the calculation for topology
optimization with length scale control is given in figure 6.1.

One can see from this graph that the position of the measurement section has a
significant influence on the obtained upscaling factor, with values ranging from 96 to
125. It can also be observed that only one position results in a smaller upscaling factor
than the value obtained with the measurement section at the middle (represented
by the vertical line). All other designs result in a larger upscaling of the strains.
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Figure 6.1: Influence of the vertical position of the measurement section on the
upscaling factor when using the topology optimization with length scale control.

This result is only valid for the topology optimization algorithm without fibre in
pure tension. When considering the most complex topology optimization algorithm,
combining the length scale control and fibre in pure tension, a different result is
found. This result is visible in figure 6.2.
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Figure 6.2: Influence of the vertical position of the measurement section on the
upscaling factor when using the topology optimization with length scale control and
fibre in pure tension.

This graph leads to a totally different conclusion. The strain upscaling when
the measurement section is at the middle of the design domain (element 50) is large
compared to other positions. Only for the measurement section at position 5 and 25
a larger upscaling factor is found. The values of the upscaling factor range from 56
to 124. A closer inspection of the designs obtained with measurement sections at
position 5 and 25 reveal that these designs do not completely meet the constraint of
pure tension in the fibre. This is visible in figure 6.3. As stated in chapter 5, one must
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6.2. Final designs

always check if this constraint has been met. This is clearly not the case for both
designs. Therefore, the conclusion is reached the best position of the measurement
section is at the middle of the transducer.

(a) (b)

Figure 6.3: Intermediate designs with the measurement section at position (a) 5 and
(b) 25.

6.2 Final designs
In the previous section, the conclusion was reached that the measurement section
should be located in the middle of the design domain. Taking into account this
decision, the final designs can be composed. As mentioned in chapter 2, two different
designs can be made. A first design will result in tension in the fibre when the
transducer itself is loaded in compression. This means the transducer will perform
best when it is (quasi-)statically loaded in compression, as the optical fibre can
only measure strains in tension. This is for example the case at the top of a simply
supported beam. The second design will result in tension in the fibre when the
transducer is loaded in tension as well. This means the transducer will perform best
when it is (quasi-)statically loaded in tension. This is for example the case at the
bottom of a simply supported beam. Both designs will be discussed in the next
sections.

6.2.1 Design optimized in compression

In chapters 2 to 5, each of the four topology optimization algorithms was already
executed for the design optimized in compression, with the measurement section
located at the middle of the design domain. This means all four possible designs
are already displayed in chapters 2 to 5. Two designs can be excluded, namely the
design resulting from the standard topology optimization and the design obtained
by the fibre in pure tension algorithm. Both designs feature single node hinges
which cannot be manufactured. This leaves two designs. As mentioned in chapter
5, the algorithm with length scale control and the fibre in pure tension, results in
approximately the same transducer design as the algorithm with only length scale
control. The upscaling factor is roughly the same. However, calculation time is
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6. Selection and discussion of the final designs

significantly longer and, more importantly, slightly more gray elements occur when
using the most complex algorithm. Therefore, the design obtained in chapter 3 by
the algorithm with length scale control is preferred. The eroded, intermediate and
dilated designs are displayed in figure 6.4. Keep in mind the intermediate design is
the design which will be manufactured.

(a) (b) (c)

Figure 6.4: (a) Eroded, (b) intermediate and (c) dilated designs selected topology
for the transducer optimized in compression.

The upscaling factor of the intermediate design is equal to 109. The design
displayed in figure 6.4 does still require some manual post-processing. First all gray
elements are removed. Secondly some black elements are removed manually. The
elements which are removed contribute very little to the upscaling factor, while having
a negative effect on the eigenfrequencies of the transducer. Therefore it is better
to remove these elements. Lastly, the symmetry of the transducer is implemented,
mirroring the design around the symmetry plane. The result of this post-processing
is visible in figure 6.5.

Figure 6.5: Design for the transducer optimized in compression after post-processing.
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In a last step, the edges of the elements will be partially smoothed, and a CAD
drawing is made. It is from this CAD drawing, the transducer will be produced
by laser cutting. This CAD drawing is also visible in figure 6.6, along with some
important dimensions. Figure 6.7 shows the transducer optimized in compression
after production.

Figure 6.6: CAD drawing of the transducer optimized in compression.

Figure 6.7: Transducer optimized in compression after production.
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6.2.2 Design optimized in tension

The topology optimization algorithms can be slightly altered to calculate a design
which performs optimal in tension. To achieve this, the load should be inverted
to the negative direction. This is done by replacing line 70 (for standard topology
optimization and length scale control) or line 71 (for fibre in pure tension and the
combination) by:

70 F = sparse(inDof,1,−270/length(inDof),2*(nely+1)*(nelx+1),1);

The algorithm for the design in tension is very sensitive to the starting distribution
of material over the design domain. While optimizing the design in compression,
a homogeneous distribution of material over all elements was used (except in the
passive or active elements). This start distribution does not work very well while
optimizing the design in tension, as the optimization will rapidly converge to a local
optimum. To solve this, a good material distribution is used to start the optimization.
The best material distribution at hand is the design obtained while optimizing in
compression. To make the design work in tension, some slight alterations to the
material distributions must be made, flipping the direction of the connection arms of
the mounting platform. This alteration is visible in figure 6.8.

(a) (b)

Figure 6.8: Starting material distribution (a) before and (b) after flipping the
connection arms.

To implement this, the design obtained in compression is imported, the elements of
the connection arms are selected and flipped around. From this material distribution,
the optimization can start. In the MATLAB code, line 11 must be replaced by the
following lines:
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11 inputfile = strcat(savingDirectory,'xPhysCompression.txt');
12 fileID = fopen(inputfile);
13 inputData = fscanf(fileID,'%f');
14 fclose(fileID);
15
16 z = reshape(inputData,nely,nelx);
17 flipMat = z(10:90,4:20);
18 flipMat = fliplr(flipMat);
19 z(10:90,1:17) = flipMat;

From the four different topology optimization algorithms, two of them result in a
design which cannot be manufactured (standard topology optimization and fibre in
pure tension) due to single node hinges. The designs obtained by the length scale
control algorithm are displayed in figure 6.9. The intermediate design contains a lot
of gray elements, which will be removed during post-processing. The intermediate
design has an upscaling factor of 91. This algorithm results once again in a horizon-
tally symmetric design, which ensures the fibre is loaded in pure tension. The most
complex topology optimization algorithm discussed in this thesis results in the same
design.

(a) (b) (c)

Figure 6.9: (a) Eroded, (b) intermediate and (c) dilated designs obtained using the
algorithm with length scale control for the transducer optimized in tension.

Post-processing will be executed in a similar way as for the design in compression.
The final design after post-processing is displayed in figure 6.10. The CAD drawing
of the design optimized in tension is depicted in figure 6.11. Figure 6.12 shows the
transducer optimized in tension after production.
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Figure 6.10: Design for the transducer optimized in tension after post-processing.

Figure 6.11: CAD drawing of the transducer optimized in tension.
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Figure 6.12: Transducer optimized in tension after production.

6.3 Conclusions
In this chapter, the influence of the position of the measurement section was discussed.
The decision was made to place this section at the middle. Afterwards two final
designs were selected, one performs optimal in compression, the other in tension.
These designs will be produced and tested.
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Chapter 7

Numerical validation

In previous chapters, a design was made using topology optimization in MATLAB.
In this chapter, the behaviour of the designs will be checked in a more versatile finite
element program: ANSYS. First the static results from MATLAB will be verified.
Next, other important aspects of the design which are not included in the MATLAB
algorithm will be checked: displacements and stresses in the transducer, dynamic
behaviour and buckling loads. The log files for this numerical validation are available
in appendix E.

7.1 Static analysis

7.1.1 Verification of results

During the topology optimization an optimized distribution of material was obtained
in MATLAB. This distribution is now loaded into ANSYS. During the loading of the
design, some filtering of the densities is already performed. Elements with a density
smaller than 0.5 will be assumed to be void. Elements with a larger density will be
assumed to be solid. This is already a small alteration of the design, as intermediate
values of the densities were still possible in MATLAB, even with the implementation
of the black-and-white filter. Especially for the design optimized in tension this will
change the performance because this design does still contain a significant amount of
gray elements. However, the filtering in ANSYS better approximates the physical
reality, as intermediate values of the densities do not exist.

Another difference between the implementation in ANSYS and MATLAB is the
element used for the analysis. During topology optimization a very basic, four node
element is used as defined in the 88 lines of code by Andreassen et al. [2]. ANSYS is
a more versatile, commercial finite element package, which contains more complex
elements. During the numerical verification SHELL63 elements are used to model the
transducer. It is also worth noting that during the numerical validation a geometrical
non-linear analysis is performed, while during the topology optimization in MATLAB
elastic linear behaviour was assumed.
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(a) (b)

Figure 7.1: Upscaling factor calculated in ANSYS for the design in (a) compression
and (b) tension.

Once the design is imported into ANSYS, the numerical verification of the results
can be performed. Like during topology optimization, the upscaling factors of the
two designs are calculated. In figure 7.1 the upscaling factor is displayed as a function
of the imposed input displacement. One can see the upscaling factors do not remain
completely constant for increasing input displacements. The difference is very small,
with an increase of 0.005% for the design in compression and a decrease of 0.05% for
the design in tension. This change is negligible. A more notable difference is the value
of the upscaling factors. During topology optimization upscaling factors of 109 and 91
were found for the design in compression and tension respectively. The upscaling fac-
tors obtained during numerical validation are 129 for the design in compression, and
94 for the design in tension. This is an increase of 18% and 3%. These differences can
be explained by the difference in complexity of the two models. As mentioned before,
the use of the more complex SHELL63 elements as well as the geometrical non-linear
analysis will have an influence on the performance of the transducer. The fact that
the increase for the transducer optimized in tension (3%) is lower than the increase
for the transducer optimized in compression (18%) can be explained by the larger
percentage of gray elements in this design. These gray elements are filtered out when
the design is imported into ANSYS, thereby influencing the performance of the design.

Although the numerical verification of the transducer yields slightly different upscal-
ing factors, it can be concluded from this analysis that the working principle of the
design remains the same. This numerical verification proves that the transducer does
indeed enlarge the displacements which are imposed, resulting in an upscaling of the
strains.
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7.1.2 Post-processing

As mentioned before in chapter 6, some post-processing of the design is performed.
The reason for this post-processing is the presence of elements which contribute very
little to the upscaling factor, but have a negative effect on the eigenfrequencies of
the transducers. Most of these elements are located on the connection arms of the
mounting platforms, as shown in figure 7.2. The effect on the eigenfrequencies of the
transducer will be discussed in the dynamic analysis of the transducer, further in
this chapter. In this section it is already proven that the deleted elements do indeed
contribute very little to the upscaling factor.

(a) (b)

Figure 7.2: Design optimized in compression, (a) before and (b) after post-processing.

From the graphs in figure 7.3 one can see the upscaling factor is not really affected
by the post-processing of the design. The upscaling factor of the design optimized in
compression remains exactly the same at 129.3. The upscaling factor of the design
optimized in tension does decrease a little from 93.6 to 93.3. This loss in upscaling
factor is not significant, especially as this post-processing does improve the dynamic
behaviour of the transducers.

(a) (b)

Figure 7.3: Upscaling factor after post-processing for the transducer optimized in (a)
compression and (b) tension.
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7.1.3 Displacements

The deformations of the design are of importance for the performance of the trans-
ducer. It is important that the transducer behaves linear elastically, especially at the
location where the optical fibre is fixed. Geometric non-linearities may occur due
to large displacements at the fixation point of the fibre. Particularly for the design
optimized in compression, snap-through of the connection arms of the mounting
platforms might be a problem.

In figures 7.4 and 7.5 the displacements of the design in compression and ten-
sion respectively are displayed. These figures are made with an input displacement
which results in a strain of 2000 µS in the optical fibre. This is the advised max-
imum strain at which measurements can be executed with the fibres. These are
therefore the maximum displacements which will occur under normal operational
conditions. For the transducer optimized in compression, an input displacement of
approximately −0.0038 mm will result in a strain of 2000 µS of tension in the fibre.
For the transducer optimized in tension a strain of 2000 µS is reached by imposing a
displacement of 0.0054 mm at the input nodes.

(a) (b)

Figure 7.4: Displacements (a) in true scale and (b) enlarged 500 times for the design
optimized in compression with 2000 µS in the optical fibre.

In subfigures 7.4a and 7.5a the true scale of the displacements is used. The dis-
placements are very small, meaning the deformations of the transducers are not really
visible on these figures. Therefore subfigures 7.4b and 7.5b are also added, in which
the displacements are enlarged by a factor 500. This clarifies how the transducers
deform under loading. The figures also show that the largest displacements take
place at the mounting platforms. This is the behaviour the transducers are designed
for.
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(a) (b)

Figure 7.5: Displacements (a) in true scale and (b) enlarged 500 times for the design
optimized in tension with 2000 µS in the optical fibre.

The fact that the displacements on true scale are not visible, already indicates
that non-linearity due to large deformations will not be a problem. Due to these
small displacements snap-through of the connection arms will also not be an issue.
This is also confirmed by the graphs in figure 7.6. One can see that the displacement
at the fixation point of the fibre increases linearly with increasing load, until a
displacement of 0.02 mm is reached, which is equal to a strain of 2000 µS in the fibre.
It can therefore be concluded that the transducer performs linearly under normal
operational conditions.

(a) (b)

Figure 7.6: Graph of the displacement at the fixation node of the fibre as function of
time for the design optimized in (a) compression and (b) tension.
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7.1.4 Stresses

A last static check which is performed during the static analysis are the stresses in
the transducers. In figures 7.7 and 7.8 the Von Mises stresses in the transducers
optimized in compression and tension are displayed, again at the moment a strain
of 2000 µS is present in the fibre. It is clear that the largest stress concentrations
occur at the hinges and in the connection arms. This behaviour is as expected, as
these parts have smaller dimensions, resulting in larger stresses. For the transducer
optimized in compression, the highest stress is equal to 3.7 MPa. For the transducer
optimized in tension, the highest stress is a bit higher with a value of 6.9 MPa. These
values are still below the yield limit of aluminium which is equal to 95 MPa.[8] This
means no plastic deformation of the transducer will occur under normal operational
conditions.

Figure 7.7: Von Mises stresses in the transducer optimised in compression with
2000 µS in the optical fibre.
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Figure 7.8: Von mises stresses in the transducer optimised in tension with 2000 µS
in the optical fibre.

7.2 Dynamic analysis
In this section, the dynamic behaviour of the transducer is analysed. Since the
transducer will be used for dynamic measurements as well, it is important that the
eigenfrequencies of the transducer are high enough. Interference of these eigenfrequen-
cies with the measurements, would limit the usability of the transducer. Therefore,
all eigenfrequencies should remain above 50 Hz. If the eigenfrequencies would be
lower than this value, dynamic behaviour of the transducer should be included in
the topology optimization.

As mentioned before, some post-processing of the design was conducted, in or-
der to remove elements which have a very small contribution to the upscaling factor,
while having a negative impact on the eigenfrequencies of the transducer. A compar-
ison is made between the designs before and after post-processing, to confirm the
effect of the removed elements on the transducer. The first five eigenfrequencies in
both cases are listed in tables 7.1 and 7.2.
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Table 7.1: Eigenfrequencies of the design in compression.

Eigenfrequencies [Hz]

Number Topology optimization Post-processed With brackets

1 66.2 69.5 60.7
2 78.3 79.7 79.7
3 268.2 285.2 180.2
4 415.1 414.8 414.8
5 477.3 486.9 461.0

Table 7.2: Eigenfrequencies of the design in tension.

Eigenfrequencies [Hz]

Number Topology optimization Post-processed With brackets

1 70.8 73.7 67.2
2 83.3 85.0 85.0
3 243.2 321.6 221.1
4 255.4 431.0 431.0
5 318.3 470.2 467.7

In order to mount the optical fibre to the transducer, clamping brackets will
be installed on the transducer. The mass of these brackets will also be modelled,
as they have an influence on the eigenfrequencies. Each bracket weighs 20 g and
measures 15 mm by 15 mm by 10 mm. On each mounting platform two of these
brackets will be installed (see figure 7.9). The effect of these brackets on the values
of the first five eigenfrequencies is also listed in tables 7.1 and 7.2. The shapes of
the eigenmodes with clamping brackets are displayed in figures 7.10 and 7.11 for the
design in compression and tension respectively.

The eigenfrequencies are quite high, ranging from 60.7 Hz to 461.0 Hz for the
design in compression and 67.2 Hz to 467.7 Hz for the design in tension. This means
the eigenfrequencies of both designs are above the required 50 Hz. The eigenfrequen-
cies listed in tables 7.1 and 7.2 show that the post-processing of the design does
indeed raise the eigenfrequenties of the transducers. For the lowest eigenfrequencies
this increase is just a few Hz. For the higher eigenfrequencies the increase is even
larger.
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Figure 7.9: Placement of the four clamping brackets on the two mounting platforms
of the transducer: two at the front and two at the back of the transducer.

All eigenmodes in tables 7.1 and 7.2 are symmetric eigenmodes. Asymmetric
eigenmodes cannot be calculated due to the symmetric boundary condition in the
ANSYS model. However, the first asymmetric eigenmode has a larger eigenfrequency
than the first symmetric eigenmode. Therefore, the asymmetric eigenmodes will not
pose a problem.

The order of the different mode shapes is very similar in both cases. Eigenmode one
is in both cases the first bending mode of the transducer, mode two is the first torsion
mode. Mode three is the first bending mode of the connection arms of the mounting
platforms. Mode four is a combination of bending and torsion of the transducer.
Mode five is different for both designs. For the transducer in compression, mode five
is again a bending mode of the transducer. For the transducer in tension mode five
is a combination of bending and torsion.

From the dynamic analysis in this section, it can be concluded that the eigen-
frequencies of the designs are sufficiently high. Therefore, no dynamic behaviour of
the transducer is included in the topology optimization.
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(a) (b)

(c) (d)

(e)

Figure 7.10: Mode shapes of eigenmodes (a) one (60.7 Hz), (b) two (79.7 Hz), (c)
three (180.2 Hz), (d) four (414.8 Hz) and (e) five (461.0 Hz) for the transducer design
in compression.
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(a) (b)

(c) (d)

(e)

Figure 7.11: Mode shapes of eigenmodes (a) one (67.2 Hz), (b) two (85.0 Hz), (c)
three (221.1 Hz), (d) four (431.0 Hz) and (e) five (467.7 Hz) for the transducer design
in tension.
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7.3 Buckling analysis

It is of importance that the transducer will not buckle when a load is applied. To
ensure this does not happen, an eigenvalue or linear buckling analysis is performed
in ANSYS. The calculation will result in a load multiplier which indicates how much
margin is left before the transducer starts to buckle. A load multiplier of 10 for
example indicates that the applied load can be multiplied by a factor ten before
buckling occurs. Note that the linear buckling analysis calculates the theoretical
buckling strength of an ideal linear elastic structure. No imperfections, plastic
behaviour or large displacements are taken into account. This will typically result in
an overestimation of the buckling strength. To incorporate all these effects, a more
complex non-linear buckling analysis is recommended. However, the linear buckling
analysis provides a good first estimation of the buckling loads.

As mentioned before, it is advisable not to load the optical fibre with more than
2000 µS. Therefore, a buckling analysis of both transducers will be performed with
the strain in the fibre equal to this maximal value of 2000 µS. The first five load
multipliers are listed in tables 7.3 and 7.4 for the design in compression and tension
respectively. Note that some load multipliers are negative. This indicates that the
applied force should be inverted in order for the buckling to occur. The analysis has
been performed for the designs obtained using topology optimization and for the
post-processed designs. The load multipliers listed in tables 7.3 and 7.4 show that
post-processing has some influence on the buckling load. This influence is however
small and will not pose a problem.

The design optimized in compression is loaded in compression under normal opera-
tional conditions. One would therefore expect this design to be sensitive to buckling.
Table 7.3 shows however a load multiplier of 75.0 as the smallest (absolute) value.
This buckling mode is the out-of-plane buckling mode of the transducer, which one
would indeed expect to be the lowest buckling mode. This mode is displayed in
figure 7.12b. Since the load multiplier has a very high value, it is clear that buckling
will not pose a problem for the design optimized in compression. Note that one
load multiplier has a negative value. This is the buckling mode of the connection
arms of the mounting platform, visible in figure 7.12a. Since this negative value
indicates that the design has to be loaded in tension for this buckling mode to
occurs, one can conclude that this buckling mode will never occur. In conclusion,
buckling of this transducer design will not occur under normal operational conditions.

The transducer optimized in tension is loaded in tension under normal operational
conditions. For this reason the design will be less sensitive to buckling than the other
design. This suspicion is confirmed by the load multipliers listed in table 7.13. Four
of the five first load multipliers have a negative value, meaning they will not occur
under normal operational conditions. The only positive load multiplier obtained is
equal to 188.0. This is the buckling mode of the connection arms of the mounting
platform, as can be seen in figure 7.13e. This is the only part of the transducer which
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will be sensitive to buckling. The load multiplier is however very high, meaning
buckling will pose no problem.

All buckling modes in tables 7.3 and 7.4 are symmetric modes. Asymmetric buckling
modes cannot be calculated due to the symmetric boundary condition in the ANSYS
model. The first asymmetric buckling mode has however a larger load multiplier
than the first symmetric buckling mode. Therefore, the asymmetric buckling modes
will not pose a problem.

Table 7.3: Load multipliers for buckling of the design in compression.

Load multipliers for buckling

Shape number Topology optimization Post-processed

1 −287.9 −283.8
2 75.5 75.0
3 203.6 193.5
4 471.4 464.7
5 520.4 508.5

Table 7.4: Load multipliers for buckling of the design in tension.

Load multipliers for buckling

Shape number Topology optimization Post-processed

1 −225.4 −222.5
2 −212.3 −212.6
3 −124.9 −115.1
4 −41.7 −42.1
5 181.4 188.0

From the analysis above, it can be concluded that buckling does not pose a
problem for either designs of the transducer. Therefore, no buckling of the transducer
is included in the topology optimization.
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(a) (b)

(c) (d)

(e)

Figure 7.12: Buckling shapes (a) one (−283.8), (b) two (75.0), (c) three (193.5), (d)
four (464.7) and (e) five (508.5) for the transducer design in compression.
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(a) (b)

(c) (d)

(e)

Figure 7.13: Buckling shapes (a) one (−222.5), (b) two (−212.6), (c) three (−115.1),
(d) four (−42.1) and (e) five (188.0) for the transducer design in tension.
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7.4 Conclusions
During this chapter a validation of the designs was performed. First of all the
results from the topology optimization were checked. The upscaling factors obtained
in ANSYS are higher than the ones previously calculated in MATLAB. However,
this was explained by the increase of complexity of the model in ANSYS. Next the
displacements and stresses in the transducers were checked under normal operational
conditions. Both did not present a problem. Thirdly, the dynamic behaviour of the
transducers was checked. The values of the eigenfrequencies did not pose a problem,
which justifies the decision not to include them in the topology optimization. The
same can be said for the decision not to include buckling in the topology optimization,
as the transducers proved not to be sensitive to buckling.

In conclusion it is clear that the performance of the transducer meets all imposed
requirements.
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Chapter 8

Experimental validation

In a final stage of this thesis, the designs of the transducers will be tested in the
structural mechanics laboratory. It will be checked if the transducer performs as
predicted. First the preparation of the strain upscaling sensor package will be
discussed. Next, static and dynamic experiments will be performed. The results
of these experiments will be discussed, in order to draw some conclusions. Lastly,
future experiments in the development of the strain upscaling sensor package will be
proposed.

8.1 Introduction to fibre optic sensing using fibre
Bragg gratings

Measuring strains using optical fibres has increased in popularity. During this thesis
the fibre Bragg grating (FBG) system will be used. This system uses an optical
fibre which, at selected places, contains Bragg gratings. These Bragg gratings will
reflect one specific wavelength spectrum, while other wavelengths will be transmitted.
The fibre optic sensing method utilizes the reflective properties of the FBG. A light
spectrum between 1528 and 1568 nm [10] will be passed through the fibre. When
this light spectrum reaches an FBG, the wavelength of the FBG will be reflected.
The rest of the spectrum will be transmitted and will exit the optical fibre at the end.
This is also visualised in figure 8.1. The reflected spectrum will then be analysed,
as it will contain valuable information about the strain or temperature change in
the fibre. When the optical fibre strains or changes temperature at the location of
the FBG, the wavelength which is reflected by this FBG changes. By tracking the
wavelength of the peak of reflected light, the strain or temperature change of the
FBG can be determined. When the FBG is subjected to a length change of 1 µS, the
peak of the reflected spectrum will shift 1.2 pm. The fibre also reacts to temperature
changes: a change of 1 ◦C is equal to a strain of 0.5 µS or a shift in wavelength of
0.6 pm of the reflected peak.[11]
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Figure 8.1: Working principle of fibre Bragg gratings [13].

Note that the transmitted spectrum can still be used by other FBGs further in
the optical fibre, as long as these FBGs reflect different wavelengths of light. This
makes it possible to incorporate multiple FBGs and therefore to perform multiple
measurements at different locations with just one optical fibre. However, it is
important that the peaks of light reflected by the FBGs do not overlap, as this would
make measurements impossible. An example of a reflected light spectrum for a fibre
with four different FBGs is displayed in figure 8.2.

Figure 8.2: Example of a reflected light spectrum of a fibre containing four FBGs.

8.2 Preparation

Throughout this thesis, the design of the transducer itself was discussed. The total
strain upscaling sensor package consists of other components as well. Apart from the
transducer, the package uses clamping brackets, an optical fibre and an interrogater.
The different components are presented in figure 8.3.
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Figure 8.3: Different components of the strain upscaling sensor package: (1) interro-
gater, (2) optical fibre, (3) transducer and (4) clamping brackets.

The experiments are carried out with an optical fibre with four fibre Bragg
gratings on each transducer. This means four different properties can be measured
by one fibre: one FBG for reference strain, one FBG for temperature measurements
and two FBGs to measure the upscaled strains. Two such optical fibres were used
during the experiments. The wavelength and function of each FBG is listed in tables
8.1 and 8.2. More detailed information on the properties of each fibre can be found
in appendix F.

Table 8.1: Properties of fibre one.

FBG Function Initial wavelength [nm]

1 Reference strain 1535.16
2 Temperature 1543.07
3 Upscaled strain 1551.05
4 Upscaled strain 1558.91
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Table 8.2: Properties of fibre two.

FBG Function Initial wavelength [nm]

1 Reference strain 1535.09
2 Temperature 1543.14
3 Upscaled strain 1551.08
4 Upscaled strain 1559.01

In order to install the fibre, several clamping brackets are glued to the transducer.
The three FBGs used for measuring strain, will be installed using these clamping
brackets. The layout of the FBGs and their corresponding clamping brackets is
visible in figure 8.4.

Figure 8.4: Configuration of the FBGs: (1) reference strain, (3) upscaled strain and
(4) upscaled strain.

In this configuration of FBGs, a total of six clamping brackets are needed: four
for installing the FBGs measuring the upscaled strains and two for installing the
FBG measuring the reference strain.

The reference FBG is used to measure the total strains between the two bolt
connections. In order to do this, the FBG will be placed eccentric from the centreline
of the transducer, with a distance of 500 mm between the two clamping brackets.
The eccentricity of the clamping brackets is visible in figure 8.5. Note that the two
clamping brackets installed for the FBG measuring the reference strain were not
modelled while calculating the eigenfrequencies of the transducer in chapter 7. The
reason for this is that they will only be installed while developing the sensor package
in the laboratory. Once the strain upscaling sensor package is fully developed and
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ready for application in the field, the reference FBG will be redundant and the
clamping brackets will not be installed any more.

Two FBGs will be used to measure the upscaled strains. One FBG is installed
at the front of the transducer, the other at the back. By using this configuration, it
is possible to check if any out-of-plane bending occurs. This could be an indication
of eccentric loads and the presence of bending moments at the bolt connections. The
out-of-plane bending can be recognized by different strain values of the two FBGs
measuring upscaled strains.

The FBG measuring temperature changes will be taped onto the transducer di-
rectly. In order to ensure this FBG only measures temperature changes and no
strains, the FBG will be compressed during installation. The installation of the
temperature FBG is visible in figure 8.6.

Figure 8.5: Eccentricity of the reference
FBG.

Figure 8.6: Temperature FBG.

The configuration as described above was used during the first experiments.
However, the eccentricity of the FBG measuring the reference strains (see figure
8.4) caused the measurements of this FBG to be very noisy, as can be seen from
figure 8.9a. This high noise made it impossible to interpret the results. To solve this
problem, the reference FBG was moved to a new location, removing the eccentricity.
This is visible in figure 8.7. The placement of the clamping bracket is displayed in
figure 8.8. The distance between the two clamping brackets decreases from 500 mm to
405 mm for the transducer optimized in compression and 423 mm for the transducer
optimized in tension, due to the relocation. To compensate this decrease in distance,
a scaling factor is applied for the reference strain.

In order to be able to install the reference FBG at that location, one of the two FBGs
measuring the upscaled strains had to be removed. This means only three of the
four FBGs present in the fibre are used. The last FBG with the highest wavelength
will not be used in this new configuration.
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Figure 8.7: New location of the reference FBG.

Figure 8.8: New location of the clamping brackets of the reference FBG.

It is clear from figure 8.9b that centering the reference FBG does significantly
reduce the noise on the FBG measurements. However, the relocation of the reference
FBG and consequently, the removal of one of the two FBGs measuring upscaled
strain, makes it impossible to check if out-of-plane bending of the transducer occurs.
Initial results of measurements with two FBGs measuring upscaled strain do indicate
this out-of-plane bending does not occur, justifying the decision to remove one of
those FBGs.
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(a) (b)

Figure 8.9: Graph with strains in the reference FBC in (a) eccentric and (b) centered
configuration.

8.3 Discussion of the fibre mounting system

During topology optimization, as well as during the numerical verification, the as-
sumption was made the fibre could be connected rigidly to the mounting platforms.
This is an important simplification. In practice a certain amount of strain will always
be lost in the connection between the fibre and the transducer.

A first possible way to attach the fibre to the transducer is to use glue. The
gluing of a fibre has already been researched in the past. This research has proven
that a portion of the strain is lost by the glued connection. According to Her and
Huang [14] this portion is between 1 and 9 percent depending on the gluing length
and the type of adhesive. A disadvantage of a glued connection is that the con-
nection is permanent. Once the fibre is glued to the transducer, it cannot be removed.

At the structural mechanics section of the KU Leuven, a different system was
developed to install the optical fibre. This system is displayed in figure 8.10. The
system clamps the fibre instead of gluing it. Once the experiment is completed, the
fibre can be removed. It is also possible to alter the pre-strain in the fibre using
this clamping system. This clamping system has already been used in multiple
experiments and has proven to work. In those experiments, a clamping bracket
was placed every 50 cm over a length of 3 to 7 m, depending on the experiment.
A schematic of the distribution of the clamping brackets in those experiments is
displayed in figure 8.11. Given the fact that these clamping brackets have proven to
work, and they allow the fibre to be removed and reused afterwards, the decision has
been made to use these clamping brackets on the transducer.
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(a) (b)

Figure 8.10: Clamping brackets used to install the fibre on the transducer.

Figure 8.11: Fibre clamping system in the configuration it was previously used in
other experiments.

The clamping brackets contain a rubber layer between the brass bracket and the
optical fibre. This rubber layer will deform when subjected to shear forces. The
deformation is also depicted in figure 8.12. The deformation of the rubber will result
is some strain loss. It is important to note that the difference in spacial distribution
of the clamping brackets in, on the one hand, previous experiments at the structural
mechanics section and, on the other hand, the transducer, will have an effect on the
strain loss. During the experiments of the structural mechanics section of the KU
Leuven, the brackets were placed 50 cm apart. In the transducer, a space of only
2 cm is present between the brackets. As a consequence the loss in strain in the fibre
will be 25 times larger in the transducer, when compared to previous experiments
for the same deformation of the rubber. An other important difference is the fact
that, during the experiments at the structural mechanics section, multiple brackets
were placed on the same fibre. This means that the pre-strain on each side of the
bracket will be similar, except for the two brackets at the ends of the fibre. The
only difference in strain will be caused by the deformation of the structure it is
attached to. Therefore, the shear forces on the rubber will be small, resulting in small
deformations of the rubber. When using the clamping brackets on the transducer,
the difference in strain will be much larger. Between the clamping brackets, where
the FBG is located, a strain of up to 2000 µS is present. On the other side of the
brackets no pre-strain is present at all. This is also visualised in figure 8.12.
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Figure 8.12: Deformation of the rubber while subjected to shear forces.

The combination of the small fibre length between the brackets and the large
difference in strain on both sides of the brackets, makes the fibre mounting system
susceptible to strain loss when applied to the transducer. Initial experiments con-
firmed this concern. Therefore the strain loss in de rubber was investigated.

A second rubber was also tested which should deform less under shear loading.
The original rubber is quite flexible and has a thickness of 0.85 mm. The new rubber
is much stiffer and has a thickness of just 0.4 mm. The new rubber is a composite
material. It consists of a reinforcement mesh surrounded by a polymer matrix. The
polymer matrix ensures the rubber has enough friction to clamp the fibre. The
combination of a stiffer and thinner material, should result is smaller deformations
of the rubber and therefore less strain loss.

In order to compare the strain loss of both rubbers, an experiment was executed.
An optical fibre, containing two FBGs, was pre-strained between two weights to a
strain of about 2500 µS. Next, both FBGs were fixed between two clamping brackets.
One FBG was fixed between clamping brackets equipped with the old rubber, the
other was clamped between clamping brackets equipped with the new rubber. Lastly,
the pre-strain of the weights was released. From the strain loss in both FBGs over
time, a comparison of the rubbers can be made. The set-up of the experiment is also
visualised in figure 8.13. By pre-straining the optical fibre using weights, one can be
sure both FBGs experience the same pre-strain. Any difference in strain loss can
therefore not be caused by a different pre-strain. The results of this experiment are
displayed in figure 8.14. It is instantly clear that the new rubber performs much
better than the old rubber. The pre-strain of the weights was released at time
t = 60 s. At this time a loss in pre-strain between the clamping brackets is visible
for both rubbers. However, the loss with the old rubber is much larger than the
loss with the new rubber. The old rubber slowly loses about 1600 µS of pre-strain
over a period of 100 s. After that period the strain loss stabilises. At the end of the
experiment a total of 1634 µS has been lost. The new rubber deforms faster than
the old rubber. Within a period of 8 s, the maximal strain loss of 539 µS is reached.
After the initial strain loss, the strain increases again. At the end of the experiment,
the strain loss has been reduced to 281 µS. No explanation has been found for the
increase in pre-strain after initial losses.
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Figure 8.13: Experiment set-up to compare the performance of both rubbers.

Figure 8.14: Comparison of the strain loss of the old and new rubber.
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A strain loss of 1634 µS is of course not acceptable to perform accurate measure-
ments. However, the displacement in the rubber corresponding to the strain loss is
still pretty small. The displacement is calculated as follows:

ε = ∆
l

⇒ ∆ = ε · l
= 1634 · 10−6 · 20 mm
= 0.01634 mm

(8.1)

Where ε is the strain in the fibre, ∆ is the decrease in length of the fibre and l is the
length of the fibre. The decrease in length of the fibre is equally distributed over the
rubbers at either side of the FBG. From this decrease in length, the angle θ of the
rubber with a thickness t = 0.85 mm can be calculated:

θ = arctan

(∆/2
t

)
= 1.10◦

(8.2)

The angle of deformation of the rubber is small.

The same calculation can be repeated for the new rubber. The obtained angle
is even smaller:

∆ = ε · l
= 539 · 10−6 · 20 mm
= 0.00539 mm

⇒ θ = arctan

(∆/2
t

)
= 0.39◦

(8.3)

8.4 Static experiments

In this section, the results of the static experiments will be discussed. During the
experimental phase of this thesis, many experiments were performed in order to
gain experience and to fine-tune the procedure. The analysis in this report will only
discuss three final experiments on both designs.

While executing the static experiment, the transducer will be loaded by weights.
Every minute, 1 kg will be added, increasing the load on the transducer, until a total
load of 5 kg is applied. Afterwards the weights will be removed again, one by one,
with a one minute interval between the removals of each weight. This procedure will
be repeated three times for each design. A view of the set-up of the static experiment
is given in figure 8.15.
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Figure 8.15: Set-up of the static experiments.

During the static experiments, the transducer will be loaded in tension. In
order to avoid bending moments from being applied to the transducer by eccentric
placement of the weights, a chain link is included between the weights and the
transducer. This way, no in- nor out-of-plane bending moments are applied to the
transducer. A detailed view of this chain link connection is visible in figure 8.16.
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(a) (b)

Figure 8.16: Detailed view of the chain connection of the weights to avoid eccentric
loading and bending of the transducer.

8.4.1 Design optimized in compression

The transducer which is optimized in compression will be tested according to the
previously described procedure. Note that, even though the transducer is designed to
work under compressive loading, a tensile load will be exerted on the transducer dur-
ing the static experiments. However, since the transducer behaves linearly elastically,
this will have no influence on the performance of the transducer. To compensate
for the tensile loading, one must make sure the optical fibre has been sufficiently
pre-strained, as the strain in the FBG measuring upscaled strains will decrease when
the transducer is loaded in tension. This FBG must be pre-strained at all times,
even when the highest loads are applied to the transducer. Otherwise, the obtained
results will not be correct.

The strains measured during a first static experiment are displayed in figure 8.17. In
figure 8.17a reference and upscaled strains are displayed on the same figure. Due
to the small value of the reference strains, they are not that clear. A more detailed
view of the reference strain is given in figure 8.17b. A remark has to be made about
the results of the reference strains. From the numerical model in ANSYS it can be
found that the strain should increase with a value of 2.256 µS for each kg of load
which is added. This is a very small increase, which approximates the accuracy of
the fibre optical measuring technique. Glisic and Inaudi [13] mention an accuracy of
1 µS. This explains the large proportion of noise on the measurements in figure 8.17b.
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(a) (b)

Figure 8.17: Measured strains during a first static test on the design optimized in
compression: (a) all strains and (b) detail of the reference strains.

Another important remark which should be made is that the temperature can
change during the experiment. It was previously mentioned that a change in temper-
ature of 1 ◦C results in a strain of 0.5 µS. Figure 8.18 shows the fluctuations during
the experiments. The variations are not negligible and therefore compensation is
needed while processing the results.

Figure 8.18: Temperature change during the first experiment.

An analysis of the measured upscaled strains, shows the strain decreases with a
value of 144 µS with the application of each kg. A maximum absolute strain value
of 720 µS is reached when all 5 kg are applied. According to the numerical model
in ANSYS each load step should result in a decrease of 291.39 µS meaning that at
a total load of 5kg a strain of −1457 µS should be reached. These values are not
reached during the first static experiment. An explanation of this difference can be
found in the fixation of the optical fibre. As previously mentioned, the deformation
of the rubber in the clamping brackets will mean not all strain is transferred from
the transducer to the optical fibre. The measured strains amount to about 49.4% of
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the theoretically predicted values. An upscaling factor of 64 is reached, instead of
the theoretical 129.

The relation between the reference strain and the upscaled strain is also displayed
in figure 8.19. The slope of the regression line of the upscaled strain as a function
of reference strain is equal to the measured upscaling factor. In figure 8.19a the
measured upscaled strain is displayed as a function of the measured reference strain.
However, as mentioned before, the measurements of the reference strain contain
a large proportion of noise. This noise results in an incorrect upscaling factor of
102. In order to exclude the noisy measurements of the reference strain, the relation
between the theoretical reference strain and the measured upscaled strain is displayed
in figure 8.19b. The upscaling factor which is displayed in this figure is equal to 65.
This is the same value as previously mentioned when analysing figure 8.17a. Note
that some outliers are present in this graph. The outliers can be explained by a
dynamic response while applying the weights.

(a) (b)

Figure 8.19: Relation between the (a) measured and (b) theoretical reference strain
and the upscaled strains.

Next, the second and third experiment will be discussed. Between the first
experiments and the experiments which will be analysed next, the optical fibre was
removed from the transducer and reinstalled. This way, it is possible to check whether
or not the installation of the fibre has an influence on the upscaling factor. The fibre
was not removed and reinstalled between experiments two and three.

The results for experiment two are displayed in figure 8.20. From these graphs,
one can see that the upscaled strain decreases with 164 µS per kg with a maximum
absolute value of 820 µS. This is significantly more than during the first experiment.
However, it is still only 56.3% of the theoretical value. From this data it can be
concluded that the upscaling factor during experiment two is 73, which is 12%
more than during the first experiment. This is also confirmed by the regression line
displayed in figure 8.20.
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(a) (b)

Figure 8.20: Results of a second static test on the design optimized in compression:
(a) all measured strains and (b) relation between the theoretical reference strain and
the upscaled strains.

A third and final static experiment for the design optimized in compression yields
exactly the same results as the second experiment. An upscaled strain of 164 µS per
kg is found resulting in a total strain of 820 µS. The upscaling factor is again equal
to 73, which is confirmed by figure 8.21.

(a) (b)

Figure 8.21: Results of a third static test on the design optimized in compression:
(a) all measured strains and (b) relation between the theoretical reference strain and
the upscaled strains.

The fact that experiments two and three yield exactly the same results, indicates
that once the fibre is mounted, the upscaling factor is very consistent. However,
between experiment one and two, a difference in upscaling factor of 12% was found.
All experiments were performed under exactly the same conditions. The only dif-
ference between experiment one and two is the fact that the fibre was removed and
reinstalled. All other parameters remained the same. The increase in upscaling
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Table 8.3: Summary of the static experiments on the transducer optimized in
compression.

Upscaling factor
Number Theoretical Measured

1
129

65
2 73
3 73

factor suggests that the installation of the fibre has a significant influence on the
performance of the sensor package. A calibration of the strain upscaling sensor
package is therefore recommended every time the fibre is installed.

A summary of the results of the static experiments on the transducer optimized in
compression is given in table 8.3.

8.4.2 Design optimized in tension

The design optimized in tension will be tested using the same procedure as the static
experiments on the transducer optimized in compression. This design is stiffer than
the design optimized in compression. As a result, a weight of 1 kg will result in a
theoretical reference strain of 1 µS and a theoretical upscaled strain of 94.06 µS.
According to the calculation in ANSYS, a maximum upscaled strain of 470 µS should
be reached when a load of 5 kg is applied. Figures 8.22, 8.23 and 8.24 display the
results obtained for the first, second and third static experiment respectively.

(a) (b)

Figure 8.22: Results of a first static test on the design optimized in tension: (a) all
measured strains and (b) relation between the theoretical reference strain and the
upscaled strains.

During the first experiment, a maximal upscaled strain of 294 µS was obtained.
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That is about 62.6% of the numerically predicted value. Therefore, an upscaling
factor of about 59 is found instead of the numerically predicted value of 94. An
upscaling factor of 58.4 is indicated by the regression line, confirming the calculation
above. The second and third experiments give very similar results. During both
experiments the obtained upscaling factor is equal to 59. A summary of the results
of all static experiments on the transducer optimized in tension is given in table 8.4.

(a) (b)

Figure 8.23: Results of a second static test on the design optimized in tension: (a)
all measured strains and (b) relation between the theoretical reference strain and
the upscaled strains.

(a) (b)

Figure 8.24: Results of a third static test on the design optimized in tension: (a) all
measured strains and (b) relation between the theoretical reference strain and the
upscaled strains.

The experiments on the transducer optimized in tension confirm the results from
the design optimized in compression. In both designs, the obtained upscaling factor
is significantly lower than the values predicted with ANSYS. This is due to the fact
that not all strains are transferred from the transducer to the optical fibre using the
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clamping brackets. From the three different experiments on the design optimized in
tension, one can conclude the obtained upscaling factor is pretty consistent over all
experiments.

Table 8.4: Summary of the static experiments on the transducer optimized in tension.

Upscaling factor
Number Theoretical Measured

1
94

58
2 59
3 59

8.5 Dynamic experiments

In the previous section, the transducers were loaded statically. However, the strain
upscaling sensor packages are also designed to measure dynamic strains. To test the
behaviour of the transducers during dynamic loading, they will be connected to an
electromechanical shaker. This is done by replacing the chain link of the static test
with a spring connection to the shaker. In order to know the force which is applied
to the transducer, a load cell is also added. This is necessary in order to calculate
the upscaling factor. The changes to the set-up are visible in figure 8.25.

(a) (b)

Figure 8.25: (a) Connection to the electromechanical shaker and (b) detail of the
load cell.

Using the electromechanical shaker, a sinusoidal load will be applied to the
transducer. Two sine functions will be tested, one with a frequency of 2 Hz and
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one with a frequency of 4 Hz. It is important to remark that the bottom bolt
connection of the transducer is essentially free to move out-of-plane. During the
dynamic experiments, it became clear that this movement would occur if the load
force became too large. To avoid this situation, the applied load was chosen low
enough for the out-of-plane displacements not to occur.

8.5.1 Design optimized in compression

Before analysing the results of the dynamic experiments on the design optimized
in compression, it should be noted that these experiments were executed directly
after the first static test on the transducer optimized in compression. The fibre was
not removed from the transducer in between the static and dynamic experiment.
Consequently, the obtained upscaling factor during these dynamic experiments should
be compared with the upscaling factor calculated from the first static experiment.

First, the design optimized in compression is subjected to a sinusoidal load with a
frequency of 2 Hz and an amplitude of 7.5 N. The sinusoidal signal is also recognisable
in the measured upscaled strains. Both the applied load and the upscaled strains are
displayed in figure 8.26.

(a) (b)

Figure 8.26: (a) Applied force and (b) measured and theoretical upscaled strains
for the dynamic test with a loading frequency of 2 Hz on the design optimized in
compression.

It is clear that the measured upscaled strains are again smaller than predicted
using ANSYS. An amplitude of 122 µS is measured, while a value of 222 µS was
predicted. The measured value is 55.0% of the theoretical value. The upscaling
factor is therefore equal to 70.9. This result is confirmed by the regression line in
figure 8.27, where an upscaling factor of 70.4 is displayed. In figure 8.27, one can also
see some hysteresis between loading and unloading. This is due to the deformations
of the rubber in the clamping brackets.
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The obtained upscaling factor of 70 is about 8% larger than the value obtained
during the first static experiment, where an upscaling factor of 65 was calculated.
The difference might be explained by the fact that the rubber in the clamping bracket
might deform less during the dynamic experiment, as there is less time for the
deformation to occur.

Figure 8.27: Relation between the theoretical reference strains and the measured
upscaled strains for the dynamic test with a loading frequency of 2 Hz on the design
optimized in compression.

A second dynamic experiment on the design optimized in compression is conducted
using a sinusoidal load with a frequency of 4 Hz and an amplitude of 8.8 N. The
applied load, as well as the measured and theoretical upscaled displacements are
displayed in figure 8.28. An upscaled strain of 141 µS is measured which is 53.8% of
the predicted theoretical upscaled strain of 262 µS. The experiment results therefore
in an upscaling factor of 69. The regression line in figure 8.29 suggests a slightly
lower upscaling factor of 67. In figure 8.29 hysteresis is again clearly present, even
more than during the dynamic experiment with an excitation frequency of 2 Hz. The
obtained upscaling factor is again slightly larger than the value obtained during the
first static experiment, yet smaller than the upscaling factor obtained during the
dynamic experiment with an excitation frequency of 2 Hz.
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(a) (b)

Figure 8.28: (a) Applied force and (b) measured and theoretical upscaled strains
for the dynamic test with a loading frequency of 4 Hz on the design optimized in
compression.

Figure 8.29: Relation between the theoretical reference strains and the measured
upscaled strains for the dynamic test with a loading frequency of 4 Hz on the design
optimized in compression.

A summary of the results obtained during the dynamic experiments on the
transducer optimized in compression is given in table 8.5.
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Table 8.5: Summary of the dynamic experiments on the transducer optimized in
compression.

Upscaling factor
Number Loading frequency Theoretical Measured

1 2 Hz 129 70
2 4 Hz 67

8.5.2 Design optimized in tension

The first dynamic experiment on the transducer optimized in tension is conducted
by applying a sinusoidal load with a frequency of 2 Hz and an amplitude of 6.9 N.
The applied load and the measured and theoretical upscaled strains are displayed in
figure 8.30.

(a) (b)

Figure 8.30: (a) Applied force and (b) measured and theoretical upscaled strains
for the dynamic test with a loading frequency of 2 Hz on the design optimized in
tension.

A strain amplitude of 46 µS is found, which is 70% of the theoretical 66 µS. The
strain upscaling factor is therefore 70% of the theoretical 94, which is equal to 66.
The regression line in figure 8.31 has a slightly smaller slope or upscaling factor of 63.
The difference between the two values can be explained by the hysteresis present in
figure 8.31. The upscaling factor obtained during the dynamic experiment is again
larger than the value obtained during the static experiment.
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Figure 8.31: Relation between the theoretical reference strains and the measured
upscaled strains for the dynamic test with a loading frequency of 2 Hz on the design
optimized in tension.

The last dynamic experiment which is conducted exerts a sinusoidal load with a
frequency of 4 Hz and an amplitude of 7.0 N on the transducer optimized in tension.
The applied load and the resulting measured and theoretical upscaled strains are
displayed in figure 8.32.

(a) (b)

Figure 8.32: (a) Applied force and (b) measured and theoretical upscaled strains
for the dynamic test with a loading frequency of 4 Hz on the design optimized in
tension.

During the dynamic experiment with a load frequency of 4 Hz, an upscaled strain
amplitude of 45 µS is measured. The theoretical value is equal to 67 µS, which
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Table 8.6: Summary of the dynamic experiments on the transducer optimized in
tension.

Upscaling factor
Number Loading frequency Theoretical Measured

1 2 Hz 94 63
2 4 Hz 62

means the measured upscaled strain is 67% of the theoretical upscaled strain. The
upscaling factor should therefore be equal to 67% of 94, which is equal to a measured
upscaling factor of 63. The result obtained using the regression line in figure 8.33,
suggests a similar upscaling factor of 62. One can again observe some hysteresis in
figure 8.33. The obtained upscaling factor is again larger than the value calculated
from the static experiment.

Figure 8.33: Relation between the theoretical reference strains and the measured
upscaled strains for the dynamic test with a loading frequency of 4 Hz on the design
optimized in tension.

A summary of the results obtained during the dynamic experiments on the
transducer optimized in tension is given in table 8.6.

8.6 Further research

The previously described experiments give a first indication of the performance of
the transducers. Beside the static and dynamic experiments on the transducer itself,
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a number of different experiments could also be performed on the strain upscaling
sensor package. These experiments were not yet performed due to the time constraint
of this thesis. However, they would be very useful for the further development of the
sensor package.

8.6.1 Research on the fibre mounting system

During the experiments, it was concluded not all strain was transferred from the
transducer to the optical fibre. Depending on the design and the executed test, 50 to
70% of the predicted strain was measured. Furthermore, a difference in upscaling fac-
tor of 12% was found between the first and second static experiment on the transducer
optimized in compression. The difference between both experiments was attributed
to the removal and reinstallation of the optical fibre. Clearly the mounting system
has a large influence on the strain upscaling. It is therefore important to investigate
how the strain transfer from the transducer to the fibre can be increased. The lack of
consistency in the results of identical experiments should be investigated and resolved.

Three different suggestions for further research can be proposed. First of all, one
can investigate if a better suited rubber (or other material) exists. At the beginning
of this chapter it was mentioned that the deformations of the rubber have a big
influence on the strain transfer. A new stiffer rubber was already selected to increase
the transfer. However, it would be of interest to search for even better materials.

Secondly, an alteration to the fibre mounting system can be proposed. In the
current system, the FBG measuring upscaled strains is mounted by two clamping
brackets, one on each side of the FBG. Two additional brackets could be added,
meaning two brackets are placed on either side of the FBG. The additional brackets
should decrease the shear forces on the original brackets. By tensioning a dummy
fibre between the additional and original brackets, the pre-strain at both sides of
the original brackets should be similar and the rubber will deform less. The working
principle of this alteration is displayed in figure 8.34. The dummy fibre will not
contain an FBG and will therefore not measure any strains. The addition of a second
clamping bracket next to the original one, does however require an alteration of the
design of the transducer, as more room has to be provided to place the clamping
brackets.

Figure 8.34: Altered fibre mounting mechanism: the addition of a second clamping
bracket with a dummy fibre between the two brackets.
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A third and final alteration of the fibre mounting which can be executed is to
glue the fibre to the transducer. By gluing the fibre to the transducer directly, less
strain might be lost. Glisic and Inaudi mention a strain loss of 1 to 9% depending
on the type of glue and the gluing length.[13] This loss is significantly lower than the
loss measured when using the clamping system. To implement this different fibre
mounting technique, the design of the transducer should again be altered in order to
ensure a sufficiently large gluing length. The previously mentioned paper suggests a
gluing length of at least 5 cm.[13] By gluing the fibre, the connection is permanent
and the fibre can no longer be removed from the transducer.

8.6.2 Static and dynamic measurements on a beam

During the experiments which were already performed, the behaviour of the trans-
ducer itself was always tested. However, the transducers have not yet been tested
while being attached to a structure. A next step would therefore be to attach multiple
transducers to a beam. This beam would then be statically and dynamically loaded
in the laboratory.

A possible static experiment could be to perform a three or four point bending
test on a concrete beam. The deformation of the beam under a certain load can
easily be calculated. The theoretical deformations can then be compared to the val-
ues measured by the transducers, in order to verify the performance of the transducer.

To test the dynamic performance of the transducers, two possible experiments
can be proposed. A first experiment would be to dynamically excite the beam
using an impact hammer. If the transducers work correctly, they should be able
to identify the eigenfrequencies of the beam. A second experiment would be to
connect an electromechanical shaker to the beam. The shaker will excite the beam.
The transducer should be able to identify the frequency and load applied by the
electromechanical shaker.

8.6.3 Long-term monitoring on a beam

Another interesting experiment would be to monitor a beam over a longer period of
time. This experiment could span several days, weeks or even months. By performing
this experiment, one could check if the performance of the transducer would change
in the long-term. An example of change in long-term performance is the loss of pre-
strain. When pre-strain is lost, incorrect strains would be measured. The incorrect
data would inhibit structural health monitoring, which is the ultimate objective of
the transducers.

8.6.4 Monitoring of a real-life structure

After extensive testing in the laboratory has proven the performance of the trans-
ducers, a final experiment can be performed. The final experiment would be to test
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the strain upscaling sensor package on a real-life structure. During this experiment,
the dynamic response of a bridge to ambient loading will be checked. By identifying
the eigenmodes and locating possible damage to the bridge, a structural health
assessment can be made.

8.7 Conclusions

In this final chapter, an experimental validation of the strain upscaling sensor package
was performed. After a short introduction to the fibre optic sensing method using
FBGs, the different components of the sensor package were discussed. In previous
chapters, solely the design of the transducer was analysed. However, there are other
components as well: the optical fibre, the clamping brackets and the interrogator.
Especially the performance of the clamping brackets proved to a have a significant
influence on the upscaling of the strains. The clamping brackets transfer the dis-
placements in the transducer to the optical fibre. A certain amount of strain is lost
during this transfer, reducing the performance of the strain upscaling sensor package.
In order to decrease the strain loss, the deformations of the rubber component in the
clamping brackets were investigated. A new, stiffer material was introduced which
resulted in a higher strain transfer.

In a next step, the transducers were tested statically as well as dynamically. The
measured upscaling factors were 50 to 70% of the numerically predicted values,
depending on the design and the experiment. The difference between the numerically
predicted and the measured upscaling factors were attributed to the strain loss in
the clamping brackets. The transducer optimized in compression had a measured
upscaling factor of 65 to 73. The transducer optimized in compression resulted in
measured upscaling factors of 58 to 63. A difference in upscaling factor between
static and dynamic experiments was observed. This difference was attributed to the
fact that the rubbers in the clamping brackets had less time to deform during the
dynamic experiments, therefore reducing the strain loss in the rubbers. Another ob-
servation which was made during the static experiments of the transducer optimized
in compression was the fact that the removal and reinstallation of the optical fibre
to the transducer had a significant influence on the measured upscaling factor. A
difference in upscaling factor of 12% was observed before and after the reinstallation
of the fibre. This suggests a calibration of the strain upscaling sensor package is
required every time the fibre is removed. When the fibre was not removed between
experiments, the results proved to be very consistent.

In the last part of this chapter, future research in the development of the strain
upscaling sensor package was proposed. During the experiments, the installation of
the fibre proved to have a large influence on the performance of the sensor package.
Therefore, the first step is to reduce the strain loss and to increase the repeatability.
Three different solutions were suggested: reduction of the deformations in the rub-
ber by searching an even better suited material, doubling the amount of clamping
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brackets to install the FBG and gluing the fibre to the transducer. A second step is
to attach the sensor package to a beam and to test if the package can accurately
measure the deformations in the beam. During these experiments, the beam would
be loaded statically and dynamically. A third step of the further development is to
check if the sensor package measures accurate long-term results. A final step would
be to test the strain upscaling sensor package on a real-life structure, for example a
bridge, in order to perform a structural health assessment.

The future research has not yet been conducted due to the time constraint of
the MSc thesis. However, the performed experiments show some promising results,
and give a clear direction for further development.
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Chapter 9

Conclusions

Throughout this thesis, the development of the strain upscaling sensor package
was discussed, starting from a simplistic design in chapter 2 until the experimental
validation in chapter 8.

In a first part of this thesis, the design was made using topology optimization.
The 88 lines of code algorithm of Andreassen et al. [2] was used as a starting point
for the topology optimization. In chapter 2 a first design was obtained using the
first topology optimization algorithm. However, two problems were observed in the
obtained design. The first problem was the occurrence of single node hinges, the
second problem was the fact that bending of the fibre could occur. To solve both
problems, more robust topology optimization algorithms were developed. In chapter
3 a solution to the single node hinges was implemented, based on the work of Wang
et al. [39]. By applying the more robust optimization algorithm, length scale control
was introduced and single node hinges were eliminated. The problem of the bending
of the fibre was solved in chapter 4. By introducing a min-max formulation the
horizontal displacement at the top and the bottom of the mounting platform became
identical, and no bending of the fibre could occur. In chapter 5, an attempt was
made to combine the models of chapter 3 and 4. This combination was however
difficult, as this algorithm could result in design where bending of the fibre was
possible. The designs obtained by this last, most complex algorithm have to be
analysed carefully to make sure bending of the fibre does not occur. The technique
of topology optimization proved to be very powerful for the design of the transducer.
Using the previously mentioned topology optimization algorithms, two designs were
selected to be produced. The first design was optimized to work in compression, the
second design was optimized in tension.

The selected designs were numerically validated in a second part of this thesis
in chapter 7. First, a verification of the upscaling factors calculated during topology
optimization was performed. The calculations in ANSYS resulted in larger upscaling
factors than the values obtained during topology optimization in MATLAB. During
the numerical validation, upscaling factors of 129 and 94 were obtained for the designs
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in compression and tension respectively. Next, properties of the transducers which
were not included in the topology optimization were investigated. The stresses were
calculated and proved not to be a problem. The eigenfrequencies of the transducer
were also checked. With all eigenfrequencies above 60 and 67 Hz for the design in
compression and tension respectively, the requirement for the eigenfrequencies to be
larger than 50 Hz was met. As a last part of the numerical validation, the buckling
loads of the transducers were calculated. Both designs proved to be insensitive to
buckling under normal operational loading conditions.

In a last part of this thesis, in chapter 8, an experimental validation of the sensors
was performed. By loading the transducers statically and dynamically, the strain
upscaling factors of both designs were determined experimentally. The measured
upscaling factors were significantly lower than the numerically predicted values.
Upscaling factors of 50 to 70% of the predicted values were measured. The difference
between both values was attributed to the strain loss in the connection between the
transducer and the optical fibre, which contains a rubber layer. The experimentally
determined upscaling factor of the design optimized in compression ranged between
65 and 73. For the transducer optimized in tension, values between 58 and 63
were measured. Also the specific mounting condition of the fibre proved to have an
influence on the measured upscaling factor. A difference of 12% was found after
removing and reinstalling the fibre. To conclude this thesis, some future research
was proposed in order to further develop the sensor package. The strain loss in the
connection between the transducer and the optical fibre should be researched. More
extensive experiments should also be performed with the transducer attached to a
beam. Next, long-term accuracy of the sensor package should be investigated. A
final experiment which is suggested is to measure the displacements of a real-life
structure, and to perform a structural health assessment using the strain upscaling
sensor package.
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Appendix A

MATLAB code: Standard
Topology Optimization

A.1 Input Parameters

1 %%%%%
2 % All units in kN and mm
3 %%%%%
4 clear;
5 close all;
6 %% DIMENSIONS SENSOR PACKAGE
7 symmetricLength = 250;
8 width = symmetricLength;
9 rBolt = 2.5;

10 mountingPlatform = 15;
11 gridsize = 2.5;
12 %% POSITION MEASURING GAUGE
13 gaugeLength = 10;
14 relativeWidth = 1/2;
15 %% GRID PROPERTIES
16 nelx = 3/2*symmetricLength/gridsize;
17 nely = width/gridsize;
18 nelBolt = rBolt/gridsize;
19
20 nGaugeX = gaugeLength/gridsize;
21 nGaugeY = ceil(nely*relativeWidth);
22
23 nMount = mountingPlatform/gridsize;
24 springCstIn = 10800/gridsize;
25 springCstOut = 0.0908/gridsize;
26 %% OPTIMIZATION PARAMETERS
27 volfrac = 0.5;
28 penal = 3.0;
29 rmin = 0.03*nelx;
30 threshold = 1/2;
31 %% OUTPUT CONTROL
32 plotFiguresDuring = 'yes';
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33 plotFiguresEnd = 'yes';
34 saveFigures = 'yes';
35 savingDirectory = ''; % Defined a directory to save the results
36 %% TOPOLOGY OPTIMIZATION
37 [xPhys,c,upf,U,inDof,outDof] = topStandard(nelx,nely,nelBolt, ...
38 nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
39 volfrac,penal,rmin,threshold, ...
40 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory);
41 %% SAVE OUTPUT DATA
42 xPhysData = reshape(xPhys,nely*nelx,1);
43 save(strcat(savingDirectory,'xPhys.txt'),'xPhysData','−ascii');
44 save(strcat(savingDirectory,'inDof.txt'),'inDof','−ascii');
45 save(strcat(savingDirectory,'outDof.txt'),'outDof','−ascii');
46 inputData = [nelx;nely;gridsize;length(inDof);length(outDof);c;upf];
47 save(strcat(savingDirectory,'input.txt'),'inputData','−ascii');

A.2 Optimization Code

1 function [xPhys,c,upf,U,inDof,outDof] = topStandard(nelx,nely, ...
2 nelBolt,nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
3 volfrac,penal,rmin,eta, ...
4 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory)
5 %% MATERIAL PROPERTIES
6 E0 = 69;
7 Emin = 1e−9;
8 nu = 0.33;
9

10 %% INITIALIZE MMA
11 x = repmat(volfrac,nely,nelx);
12 nel = nely*nelx;
13
14 m = 1;
15 n = nely*nelx;
16 xmin = zeros(nel,1);
17 xmax = ones(nel,1);
18 xval = reshape(x,nel,1);
19 xold1 = xval;
20 xold2 = xval;
21 u = xval;
22 a0 = 1;
23 a = [ones(m−1,1);0];
24 c_constant = 1000*ones(m,1);
25 d_constant = zeros(m,1);
26 low = xmin;
27 upp = xmax;
28 %% PREPARE FINITE ELEMENT ANALYSIS
29 A11 = [12 3 −6 −3; 3 12 3 0; −6 3 12 −3; −3 0 −3 12];
30 A12 = [−6 −3 0 3; −3 −6 −3 −6; 0 −3 −6 3; 3 −6 3 −6];
31 B11 = [−4 3 −2 9; 3 −4 −9 4; −2 −9 −4 −3; 9 4 −3 −4];
32 B12 = [ 2 −3 4 −9; −3 2 9 −2; 4 9 2 3; −9 −2 3 2];
33 KE = 1/(1−nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
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34 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
35 edofVec = reshape(2*nodenrs(1:end−1,1:end−1)+1,nelx*nely,1);
36 edofMat = repmat(edofVec,1,8) ...
37 +repmat([0 1 2*nely+[2 3 0 1] −2 −1],nelx*nely,1);
38 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
39 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
40 %% DEFINE LOADS AND SUPPORTS (HALF MBB−BEAM) AND ...
41 % PASSIVE AND ACTIVE ELEMENTS
42 fixeddofs = [1:2:2*(nely+1)];
43 passact = sparse(nely,nelx);
44 inDof = [];
45 outDof = [edofMat(nGaugeX*nely+nGaugeY,1)];
46 for i = 1:nelx
47 for j = 1:nely
48 if i <= nGaugeX+nMount && ...
49 j > nGaugeY−nMount/2 && j <= nGaugeY+nMount/2
50 if i > nGaugeX
51 passact(j,i) = 2;
52 else
53 passact(j,i) = 1;
54 end
55 end
56 if sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt
57 passact(j,i) = 1;
58 elseif sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt+2
59 passact(j,i) = 2;
60 inDof = union(inDof,edofMat(nely*i−(nely−j),[1:2:7]));
61 fixeddofs = ...
62 union(fixeddofs,[edofMat(nely*i−(nely−j),[2:2:8])]);
63 end
64 end
65 end
66 KSpringIn = sparse(inDof,inDof,springCstIn/length(inDof), ...
67 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
68 KSpringOut = sparse(outDof,outDof,springCstOut/length(outDof), ...
69 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
70 F = sparse(inDof,1,270/length(inDof),2*(nely+1)*(nelx+1),1);
71 U = zeros(2*(nely+1)*(nelx+1),1);
72 lMat = sparse(outDof,1,1,2*(nely+1)*(nelx+1),1);
73 lambda = sparse(2*(nely+1)*(nelx+1),1);
74 alldofs = [1:2*(nely+1)*(nelx+1)];
75 freedofs = setdiff(alldofs,fixeddofs);
76 %% PREPARE FILTER
77 iH = ones(nelx*nely*(2*(ceil(rmin)−1)+1)^2,1);
78 jH = ones(size(iH));
79 sH = zeros(size(iH));
80 k = 0;
81 for i1 = 1:nelx
82 for j1 = 1:nely
83 e1 = (i1−1)*nely+j1;
84 for i2 = max(i1−(ceil(rmin)−1),1):min(i1+(ceil(rmin)−1),nelx)
85 for j2 = max(j1−(ceil(rmin)−1),1): ...
86 min(j1+(ceil(rmin)−1),nely)
87 e2 = (i2−1)*nely+j2;
88 k = k+1;
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89 iH(k) = e1;
90 jH(k) = e2;
91 sH(k) = max(0,rmin−sqrt((i1−i2)^2+(j1−j2)^2));
92 end
93 end
94 end
95 end
96 H = sparse(iH,jH,sH);
97 Hs = sum(H,2);
98 %% INITIALIZE ITERATION
99 beta = 1;

100 xTilde = x;
101 loop = 0;
102 change = 1;
103 if strcmpi(plotFiguresDuring,'yes')||strcmpi(plotFiguresEnd,'yes')
104 designPlot = figure;
105 designPlot.IntegerHandle = 'off'; designPlot.Name = 'Design';
106 end
107 %% START ITERATION
108 while change > 0.05
109 loop = loop+1;
110 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND ...
111 %PHYSICAL DENSITIES USING MMA
112 if loop ~= 1
113 xval = reshape(x,nel,1);
114 fval = [sum(sum(xPhys))/(volfrac*nely*nelx)−1];
115 dfdx = [ones(1,nel)/(volfrac*nely*nelx)];
116 f0val = c;
117 df0dx = reshape(dc,nel,1);
118 df0dx2 = 0*df0dx;
119 dfdx2 = 0*dfdx;
120 [x,~,~,~,~,~,~,~,~,low,upp,~,~] = ...
121 mmasub(m,n,loop,xval,xmin,xmax,xold1,xold2,f0val, ...
122 df0dx,df0dx2,fval,dfdx,dfdx2,low,upp, ...
123 a0,a,c_constant,d_constant);
124 xold2 = xold1;
125 xold1 = u;
126 u = x;
127 x = reshape(x,nely,nelx);
128 x(passact==1) = 0;
129 x(passact==2) = 1;
130 xTilde(:) = (H*x(:))./Hs;
131 end
132 xPhys = ((tanh(beta*eta)+tanh(beta*(xTilde−eta)))/ ...
133 (tanh(beta*eta)+tanh(beta*(1−eta))));
134 xPhys(passact==1) = 0;
135 xPhys(passact==2) = 1;
136 %% FE−ANALYSIS
137 sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0−Emin)), ...
138 64*nelx*nely,1);
139 K = sparse(iK,jK,sK) + KSpringIn + KSpringOut; K = (K+K')/2;
140 U(freedofs) = K(freedofs,freedofs)\F(freedofs);
141 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
142 lambda(freedofs,1) = − K(freedofs,freedofs)\lMat(freedofs);
143 ce = reshape(sum((lambda(edofMat)*KE).*U(edofMat),2),nely,nelx);
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144 c = lMat(freedofs)'*U(freedofs)+100;
145 dc = penal*(E0−Emin)*xPhys.^(penal−1).*ce;
146 dv = ones(nely,nelx);
147 %% FILTERING/MODIFICATION OF SENSITIVITIES
148 dx = (beta*(1−(tanh(beta*(xTilde−eta))).^2)/ ...
149 (tanh(beta*eta)+tanh(beta*(1−eta))));
150 dc(:) = H*(dc(:).*dx(:)./Hs);
151 dv(:) = H*(dv(:).*dx(:)./Hs);
152 %% CALCULATE OUTPUT
153 change = max(max(abs(x−reshape(xold1,nely,nelx))));
154 upf = −(U(outDof(1))/nGaugeX)/(mean(U(inDof))/(2/3*(nelx)));
155 Mnd = sum(4*reshape(xPhys(:),nel,1).* ...
156 (1−reshape(xPhys(:),nel,1)))/nel*100;
157 %% PRINT RESULTS
158 fprintf(' It.:%5i Obj.:%7.4f Upf.:%7.3f Vol.:%7.3f ...

Mnd.:%7.1f%% Ch.:%7.3f\n', ...
159 loop,c,upf,mean(xPhys(:)),Mnd,change);
160 %% PLOT DENSITIES
161 if strcmpi(plotFiguresDuring,'yes')
162 figure(designPlot);
163 colormap(gray); imagesc(1−xPhys); caxis([0 1]); ...
164 axis equal; axis off; drawnow;
165 end
166 %% UPDATE HEAVISIDE REGULARIZATION PARAMETER
167 if beta < 25
168 beta = 1.01*beta;
169 change = 1;
170 fprintf('Parameter beta increased to %g.\n',beta);
171 end
172 end
173 %% PLOT DEFORMATIONS OF THE DESIGNS
174 if strcmpi(plotFiguresEnd,'yes')
175 if strcmpi(plotFiguresDuring,'no')
176 figure(designPlot);
177 colormap(gray); imagesc(1−xPhys); caxis([0 1]); ...
178 axis equal; axis off; drawnow;
179 end
180 designDeform = figure;
181 designDeform.IntegerHandle = 'off';
182 designDeform.Name = 'Deformation design';
183 colormap(gray); axis equal; axis off;
184 for ely = 1:nely
185 for elx = 1:nelx
186 n1 = (nely+1)*(elx−1)+ely;
187 n2 = (nely+1)* elx +ely;
188 Ue = 1*U([2*n1−1;2*n1; 2*n2−1;2*n2; ...
189 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
190 ly = ely−1; lx = elx−1;
191 xx = [Ue(1,1)+lx Ue(3,1)+lx+1 Ue(5,1)+lx+1 Ue(7,1)+lx ]';
192 yy = [Ue(2,1)−ly Ue(4,1)−ly Ue(6,1)−ly−1 Ue(8,1)−ly−1]';
193 patch(xx,yy,−xPhys(ely,elx),'EdgeColor','none')
194 end
195 end
196 drawnow;
197 if strcmpi(saveFigures,'yes')
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198 saveas(designPlot,strcat(savingDirectory,'designPlot'),'jpeg');
199 saveas(designDeform, ...
200 strcat(savingDirectory,'designDeform'),'jpeg');
201 end
202 end
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MATLAB code: Length scale
control

B.1 Input Parameters

1 %%%%%
2 % All units in kN and mm
3 %%%%%
4 clear;
5 close all;
6 %% DIMENSIONS SENSOR PACKAGE
7 symmetricLength = 250;
8 width = symmetricLength;
9 rBolt = 2.5;

10 mountingPlatform = 15;
11 gridsize = 2.5;
12 %% POSITION MEASURING GAUGE
13 gaugeLength = 10;
14 relativeWidth = 1/2;
15 %% GRID PROPERTIES
16 nelx = 3/2*symmetricLength/gridsize;
17 nely = width/gridsize;
18 nelBolt = rBolt/gridsize;
19
20 nGaugeX = gaugeLength/gridsize;
21 nGaugeY = ceil(nely*relativeWidth);
22
23 nMount = mountingPlatform/gridsize;
24 springCstIn = 10800/gridsize;
25 springCstOut = 0.0908/gridsize;
26 %% OPTIMIZATION PARAMETERS
27 volfrac = 0.5;
28 penal = 3.0;
29 rmin = 0.03*nelx;
30 threshold = 0.31;
31 %% OUTPUT CONTROL
32 plotFiguresDuring = 'yes';
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33 plotFiguresEnd = 'yes';
34 saveFigures = 'yes';
35 savingDirectory = ''; % Defined a directory to save the results
36 %% TOPOLOGY OPTIMIZATION
37 [xPhys,c,upf,U,inDof,outDof] = topEID(nelx,nely,nelBolt, ...
38 nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
39 volfrac,penal,rmin,threshold, ...
40 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory);
41 %% SAVE OUTPUT DATA
42 xPhysData = reshape(xPhys,nely*nelx,1);
43 save(strcat(savingDirectory,'xPhys.txt'),'xPhysData','−ascii');
44 save(strcat(savingDirectory,'inDof.txt'),'inDof','−ascii');
45 save(strcat(savingDirectory,'outDof.txt'),'outDof','−ascii');
46 inputData = [nelx;nely;gridsize;length(inDof);length(outDof);c;upf];
47 save(strcat(savingDirectory,'input.txt'),'inputData','−ascii');

B.2 Optimization Code

1 function [xPhysi,ci,upfi,Ui,inDof,outDof] = topEID(nelx,nely, ...
2 nelBolt,nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
3 volfrac,penal,rmin,eta, ...
4 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory)
5 %% MATERIAL PROPERTIES
6 E0 = 69;
7 Emin = 1e−9;
8 nu = 0.33;
9

10 %% INITIALIZE MMA
11 z = repmat(volfrac,nely,nelx);
12 nel = nely*nelx;
13
14 m = 4;
15 n = nely*nelx;
16 zmin = zeros(nel,1);
17 zmax = ones(nel,1);
18 zval = reshape(z,nel,1);
19 zold1 = zval;
20 zold2 = zval;
21 u = zval;
22 a0 = 1;
23 a = [ones(m−1,1);0];
24 c_constant = 1000*ones(m,1);
25 d_constant = zeros(m,1);
26 low = zmin;
27 upp = zmax;
28 %% PREPARE FINITE ELEMENT ANALYSIS
29 A11 = [12 3 −6 −3; 3 12 3 0; −6 3 12 −3; −3 0 −3 12];
30 A12 = [−6 −3 0 3; −3 −6 −3 −6; 0 −3 −6 3; 3 −6 3 −6];
31 B11 = [−4 3 −2 9; 3 −4 −9 4; −2 −9 −4 −3; 9 4 −3 −4];
32 B12 = [ 2 −3 4 −9; −3 2 9 −2; 4 9 2 3; −9 −2 3 2];
33 KE = 1/(1−nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
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34 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
35 edofVec = reshape(2*nodenrs(1:end−1,1:end−1)+1,nelx*nely,1);
36 edofMat = repmat(edofVec,1,8) ...
37 +repmat([0 1 2*nely+[2 3 0 1] −2 −1],nelx*nely,1);
38 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
39 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
40 %% DEFINE LOADS AND SUPPORTS (HALF MBB−BEAM) AND ...
41 % PASSIVE AND ACTIVE ELEMENTS
42 fixeddofs = [1:2:2*(nely+1)];
43 passact = sparse(nely,nelx);
44 inDof = [];
45 outDof = [edofMat(nGaugeX*nely+nGaugeY,1)];
46 for i = 1:nelx
47 for j = 1:nely
48 if i <= nGaugeX+nMount && ...
49 j > nGaugeY−nMount/2 && j <= nGaugeY+nMount/2
50 if i > nGaugeX
51 passact(j,i) = 2;
52 else
53 passact(j,i) = 1;
54 end
55 end
56 if sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt
57 passact(j,i) = 1;
58 elseif sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt+2
59 passact(j,i) = 2;
60 inDof = union(inDof,edofMat(nely*i−(nely−j),[1:2:7]));
61 fixeddofs = ...
62 union(fixeddofs,[edofMat(nely*i−(nely−j),[2:2:8])]);
63 end
64 end
65 end
66 KSpringIn = sparse(inDof,inDof,springCstIn/length(inDof), ...
67 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
68 KSpringOut = sparse(outDof,outDof,springCstOut/length(outDof), ...
69 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
70 F = sparse(inDof,1,270/length(inDof),2*(nely+1)*(nelx+1),1);
71 Ue = zeros(2*(nely+1)*(nelx+1),1);
72 Ui = zeros(2*(nely+1)*(nelx+1),1);
73 Ud = zeros(2*(nely+1)*(nelx+1),1);
74 lMat = sparse(outDof,1,1,2*(nely+1)*(nelx+1),1);
75 lambdae=sparse(2*(nely+1)*(nelx+1),1);lambdai=lambdae;lambdad=lambdae;
76 alldofs = [1:2*(nely+1)*(nelx+1)];
77 freedofs = setdiff(alldofs,fixeddofs);
78 %% PREPARE FILTER
79 iH = ones(nelx*nely*(2*(ceil(rmin)−1)+1)^2,1);
80 jH = ones(size(iH));
81 sH = zeros(size(iH));
82 k = 0;
83 for i1 = 1:nelx
84 for j1 = 1:nely
85 e1 = (i1−1)*nely+j1;
86 for i2 = max(i1−(ceil(rmin)−1),1):min(i1+(ceil(rmin)−1),nelx)
87 for j2 = max(j1−(ceil(rmin)−1),1): ...
88 min(j1+(ceil(rmin)−1),nely)
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89 e2 = (i2−1)*nely+j2;
90 k = k+1;
91 iH(k) = e1;
92 jH(k) = e2;
93 sH(k) = max(0,rmin−sqrt((i1−i2)^2+(j1−j2)^2));
94 end
95 end
96 end
97 end
98 H = sparse(iH,jH,sH);
99 Hs = sum(H,2);

100 %% INITIALIZE ITERATION
101 VMax = volfrac*nely*nelx;
102 VdMax = volfrac*nely*nelx;
103 beta = 1;
104 zTilde = z;
105 loop = 0;
106 change = 1;
107 if strcmpi(plotFiguresDuring,'yes')||strcmpi(plotFiguresEnd,'yes')
108 erodedPlot = figure;
109 erodedPlot.IntegerHandle = 'off';
110 erodedPlot.Name = 'Eroded design';
111 intermediatePlot = figure;
112 intermediatePlot.IntegerHandle = 'off';
113 intermediatePlot.Name = 'Intermediate design';
114 delatedPlot = figure;
115 delatedPlot.IntegerHandle = 'off';
116 delatedPlot.Name = 'Delated design';
117 end
118 cd = 0;
119 %% START ITERATION
120 while change > 0.05
121 loop = loop+1;
122 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES ...
123 %AND PHYSICAL DENSITIES USING MMA
124 if loop ~= 1
125 zval = reshape(z,nel,1);
126 fval = [ce;
127 ci;
128 cd;
129 sum(sum(xPhysMean))/VdMax−1];
130 dfdx = [reshape(dce,nel,1)';
131 reshape(dci,nel,1)';
132 reshape(dcd,nel,1)';
133 ones(1,nel)/VdMax];
134 f0val = 0;
135 df0dx = 0*reshape(dci,nel,1);
136 df0dx2 = 0*df0dx;
137 dfdx2 = 0*dfdx;
138 [z,~,~,~,~,~,~,~,~,low,upp,~,~] = ...
139 mmasub(m,n,loop,zval,zmin,zmax,zold1,zold2,f0val, ...
140 df0dx,df0dx2,fval,dfdx,dfdx2,low,upp, ...
141 a0,a,c_constant,d_constant);
142 zold2 = zold1;
143 zold1 = u;
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144 u = z;
145 z = reshape(z,nely,nelx);
146 z(passact==1) = 0;
147 z(passact==2) = 1;
148 zTilde(:) = (H*z(:))./Hs;
149 end
150 xPhyse = ((tanh(beta*(1−eta))+tanh(beta*(zTilde−(1−eta))))/ ...
151 (tanh(beta*(1−eta))+tanh(beta*(1−(1−eta)))));
152 xPhysi = ((tanh(beta*1/2)+tanh(beta*(zTilde−1/2)))/ ...
153 (tanh(beta*1/2)+tanh(beta*(1−1/2))));
154 xPhysd = ((tanh(beta*eta)+tanh(beta*(zTilde−eta)))/ ...
155 (tanh(beta*eta)+tanh(beta*(1−eta))));
156 xPhyse(passact==1) = 0;
157 xPhyse(passact==2) = 1;
158 xPhysi(passact==1) = 0;
159 xPhysi(passact==2) = 1;
160 xPhysd(passact==1) = 0;
161 xPhysd(passact==2) = 1;
162 %% FE−ANALYSIS
163 sKe = reshape(KE(:)*(Emin+xPhyse(:)'.^penal*(E0−Emin)), ...
164 64*nelx*nely,1);
165 Ke = sparse(iK,jK,sKe) + KSpringIn + KSpringOut; Ke = (Ke+Ke')/2;
166 Ue(freedofs) = Ke(freedofs,freedofs)\F(freedofs);
167 sKi = reshape(KE(:)*(Emin+xPhysi(:)'.^penal*(E0−Emin)), ...
168 64*nelx*nely,1);
169 Ki = sparse(iK,jK,sKi) + KSpringIn + KSpringOut; Ki = (Ki+Ki')/2;
170 Ui(freedofs) = Ki(freedofs,freedofs)\F(freedofs);
171 sKd = reshape(KE(:)*(Emin+xPhysd(:)'.^penal*(E0−Emin)), ...
172 64*nelx*nely,1);
173 Kd = sparse(iK,jK,sKd) + KSpringIn + KSpringOut; Kd = (Kd+Kd')/2;
174 Ud(freedofs) = Kd(freedofs,freedofs)\F(freedofs);
175 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
176 lambdae(freedofs,1) = − Ke(freedofs,freedofs)\lMat(freedofs);
177 cee = ...
178 reshape(sum((lambdae(edofMat)*KE).*Ue(edofMat),2),nely,nelx);
179 ce = lMat(freedofs)'*Ue(freedofs)+100;
180 dce = penal*(E0−Emin)*xPhyse.^(penal−1).*cee;
181 dve = ones(nely,nelx);
182 lambdai(freedofs,1) = − Ki(freedofs,freedofs)\lMat(freedofs);
183 cei = ...
184 reshape(sum((lambdai(edofMat)*KE).*Ui(edofMat),2),nely,nelx);
185 ci = lMat(freedofs)'*Ui(freedofs)+100;
186 dci = penal*(E0−Emin)*xPhysi.^(penal−1).*cei;
187 dvi = ones(nely,nelx);
188 lambdad(freedofs,1) = − Kd(freedofs,freedofs)\lMat(freedofs);
189 ced = ...
190 reshape(sum((lambdad(edofMat)*KE).*Ud(edofMat),2),nely,nelx);
191 cd = lMat(freedofs)'*Ud(freedofs)+100;
192 dcd = penal*(E0−Emin)*xPhysd.^(penal−1).*ced;
193 dvd = ones(nely,nelx);
194 %% FILTERING/MODIFICATION OF SENSITIVITIES
195 dxe = (beta*(1−(tanh(beta*(zTilde−(1−eta)))).^2)/ ...
196 (tanh(beta*(1−eta))+tanh(beta*(1−(1−eta)))));
197 dce(:) = H*(dce(:).*dxe(:)./Hs);
198 dve(:) = H*(dve(:).*dxe(:)./Hs);
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199 dxi = (beta*(1−(tanh(beta*(zTilde−1/2))).^2)/ ...
200 (tanh(beta*1/2)+tanh(beta*(1−1/2))));
201 dci(:) = H*(dci(:).*dxi(:)./Hs);
202 dvi(:) = H*(dvi(:).*dxi(:)./Hs);
203 dxd = (beta*(1−(tanh(beta*(zTilde−eta))).^2)/ ...
204 (tanh(beta*eta)+tanh(beta*(1−eta))));
205 dcd(:) = H*(dcd(:).*dxd(:)./Hs);
206 dvd(:) = H*(dvd(:).*dxd(:)./Hs);
207 %% CALCULATE OUTPUT
208 change = max(max(abs(z−reshape(zold1,nely,nelx))));
209 upfe = −(Ue(outDof(1))/nGaugeX)/(mean(Ue(inDof))/(2/3*(nelx)));
210 upfi = −(Ui(outDof(1))/nGaugeX)/(mean(Ui(inDof))/(2/3*(nelx)));
211 upfd = −(Ud(outDof(1))/nGaugeX)/(mean(Ud(inDof))/(2/3*(nelx)));
212 Mnde = sum(4*reshape(xPhyse(:),nel,1).* ...
213 (1−reshape(xPhyse(:),nel,1)))/nel*100;
214 Mndi = sum(4*reshape(xPhysi(:),nel,1).* ...
215 (1−reshape(xPhysi(:),nel,1)))/nel*100;
216 Mndd = sum(4*reshape(xPhysd(:),nel,1).* ...
217 (1−reshape(xPhysd(:),nel,1)))/nel*100;
218 %% PRINT RESULTS
219 fprintf(' It.:%5i Obj.:%7.4f Upf.:%7.3f Vol.:%7.3f ...

Mnd.:%7.1f%% Ch.:%7.3f\n', ...
220 loop,ce,upfe,mean(xPhyse(:)),Mnde,change);
221 fprintf('%27.4f %16.3f %16.3f %16.1f%%\n', ...
222 ci,upfi,mean(xPhysi(:)),Mndi);
223 fprintf('%27.4f %16.3f %16.3f %16.1f%%\n', ...
224 cd,upfd,mean(xPhysd(:)),Mndd);
225 %% PLOT DENSITIES
226 if strcmpi(plotFiguresDuring,'yes')
227 figure(erodedPlot);
228 colormap(gray); imagesc(1−xPhyse); caxis([0 1]); ...
229 axis equal; axis off; drawnow;
230 figure(intermediatePlot);
231 colormap(gray); imagesc(1−xPhysi); caxis([0 1]); ...
232 axis equal; axis off; drawnow;
233 figure(delatedPlot);
234 colormap(gray); imagesc(1−xPhysd); caxis([0 1]); ...
235 axis equal; axis off; drawnow;
236 end
237 %% UPDATE VOLUME FRACTION
238 xPhysTotal(:,:,1) = xPhyse;
239 xPhysTotal(:,:,2) = xPhysi;
240 xPhysTotal(:,:,3) = xPhysd;
241 xPhysMean = mean(xPhysTotal,3);
242 %% UPDATE HEAVISIDE REGULARIZATION PARAMETER
243 if beta < 25
244 beta = 1.01*beta;
245 change = 1;
246 fprintf('Parameter beta increased to %g.\n',beta);
247 end
248 end
249 %% PLOT DEFORMATIONS OF THE DESIGNS
250 if strcmpi(plotFiguresEnd,'yes')
251 if strcmpi(plotFiguresDuring,'no')
252 figure(erodedPlot);
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253 colormap(gray); imagesc(1−xPhyse); caxis([0 1]); ...
254 axis equal; axis off; drawnow;
255 figure(intermediatePlot);
256 colormap(gray); imagesc(1−xPhysi); caxis([0 1]); ...
257 axis equal; axis off; drawnow;
258 figure(delatedPlot);
259 colormap(gray); imagesc(1−xPhysd); caxis([0 1]); ...
260 axis equal; axis off; drawnow;
261 end
262 erodedDeform = figure;
263 erodedDeform.IntegerHandle = 'off';
264 erodedDeform.Name = 'Deformation eroded design';
265 colormap(gray); axis equal; axis off;
266 for ely = 1:nely
267 for elx = 1:nelx
268 n1 = (nely+1)*(elx−1)+ely;
269 n2 = (nely+1)* elx +ely;
270 Uee = 1*Ue([2*n1−1;2*n1; 2*n2−1;2*n2; ...
271 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
272 ly = ely−1; lx = elx−1;
273 xx = [Uee(1,1)+lx Uee(3,1)+lx+1 ...
274 Uee(5,1)+lx+1 Uee(7,1)+lx ]';
275 yy = [Uee(2,1)−ly Uee(4,1)−ly ...
276 Uee(6,1)−ly−1 Uee(8,1)−ly−1]';
277 patch(xx,yy,−xPhyse(ely,elx),'EdgeColor','none')
278 end
279 end
280 drawnow;
281 intermediateDeform = figure;
282 intermediateDeform.IntegerHandle = 'off';
283 intermediateDeform.Name = 'Deformation intermediate design';
284 colormap(gray); axis equal; axis off;
285 for ely = 1:nely
286 for elx = 1:nelx
287 n1 = (nely+1)*(elx−1)+ely;
288 n2 = (nely+1)* elx +ely;
289 Uei = 1*Ui([2*n1−1;2*n1; 2*n2−1;2*n2; ...
290 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
291 ly = ely−1; lx = elx−1;
292 xx = [Uei(1,1)+lx Uei(3,1)+lx+1 ...
293 Uei(5,1)+lx+1 Uei(7,1)+lx ]';
294 yy = [Uei(2,1)−ly Uei(4,1)−ly ...
295 Uei(6,1)−ly−1 Uei(8,1)−ly−1]';
296 patch(xx,yy,−xPhysi(ely,elx),'EdgeColor','none')
297 end
298 end
299 drawnow;
300 delatedDeform = figure;
301 delatedDeform.IntegerHandle = 'off';
302 delatedDeform.Name = 'Deformation delated design';
303 colormap(gray); axis equal; axis off;
304 for ely = 1:nely
305 for elx = 1:nelx
306 n1 = (nely+1)*(elx−1)+ely;
307 n2 = (nely+1)* elx +ely;
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308 Ued = 1*Ud([2*n1−1;2*n1; 2*n2−1;2*n2; ...
309 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
310 ly = ely−1; lx = elx−1;
311 xx = [Ued(1,1)+lx Ued(3,1)+lx+1 ...
312 Ued(5,1)+lx+1 Ued(7,1)+lx ]';
313 yy = [Ued(2,1)−ly Ued(4,1)−ly ...
314 Ued(6,1)−ly−1 Ued(8,1)−ly−1]';
315 patch(xx,yy,−xPhysd(ely,elx),'EdgeColor','none')
316 end
317 end
318 drawnow;
319 if strcmpi(saveFigures,'yes')
320 saveas(erodedPlot,strcat(savingDirectory,'erodedPlot'),'jpeg');
321 saveas(intermediatePlot, ...
322 strcat(savingDirectory,'intermediatePlot'),'jpeg');
323 saveas(delatedPlot, ...
324 strcat(savingDirectory,'delatedPlot'),'jpeg');
325 saveas(erodedDeform, ...
326 strcat(savingDirectory,'erodedDeform'),'jpeg');
327 saveas(intermediateDeform, ...
328 strcat(savingDirectory,'intermediateDeform'),'jpeg');
329 saveas(delatedDeform, ...
330 strcat(savingDirectory,'delatedDeform'),'jpeg');
331 end
332 end
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Appendix C

MATLAB code: Fibre in pure
tension

C.1 Input Parameters

1 %%%%%
2 % All units in kN and mm
3 %%%%%
4 clear;
5 close all;
6 %% DIMENSIONS SENSOR PACKAGE
7 symmetricLength = 250;
8 width = symmetricLength;
9 rBolt = 2.5;

10 mountingPlatform = 15;
11 gridsize = 2.5;
12 %% POSITION MEASURING GAUGE
13 gaugeLength = 10;
14 relativeWidth = 1/2;
15 %% GRID PROPERTIES
16 nelx = 3/2*symmetricLength/gridsize;
17 nely = width/gridsize;
18 nelBolt = rBolt/gridsize;
19
20 nGaugeX = gaugeLength/gridsize;
21 nGaugeY = ceil(nely*relativeWidth);
22
23 nMount = mountingPlatform/gridsize;
24 springCstIn = 10800/gridsize;
25 springCstOut = 0.0908/gridsize;
26 %% OPTIMIZATION PARAMETERS
27 volfrac = 0.5;
28 penal = 3.0;
29 rmin = 0.03*nelx;
30 threshold = 1/2;
31 %% OUTPUT CONTROL
32 plotFiguresDuring = 'yes';
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33 plotFiguresEnd = 'yes';
34 saveFigures = 'yes';
35 savingDirectory = ''; % Defined a directory to save the results
36 %% TOPOLOGY OPTIMIZATION
37 [xPhys,c,upf,U,inDof,outDof] = topUniform(nelx,nely,nelBolt, ...
38 nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
39 volfrac,penal,rmin,threshold, ...
40 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory);
41 %% SAVE OUTPUT DATA
42 xPhysData = reshape(xPhys,nely*nelx,1);
43 save(strcat(savingDirectory,'xPhys.txt'),'xPhysData','−ascii');
44 save(strcat(savingDirectory,'inDof.txt'),'inDof','−ascii');
45 save(strcat(savingDirectory,'outDof.txt'),'outDof','−ascii');
46 inputData = [nelx;nely;gridsize;length(inDof);length(outDof);c;upf];
47 save(strcat(savingDirectory,'input.txt'),'inputData','−ascii');

C.2 Optimization Code

1 function [xPhys,c1,upf1,U,inDof,outDof] = topUniform(nelx,nely, ...
2 nelBolt,nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
3 volfrac,penal,rmin,eta, ...
4 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory)
5 %% MATERIAL PROPERTIES
6 E0 = 69;
7 Emin = 1e−9;
8 nu = 0.33;
9

10 %% INITIALIZE MMA
11 z = repmat(volfrac,nely,nelx);
12 nel = nely*nelx;
13
14 m = 3;
15 n = nely*nelx;
16 zmin = zeros(nel,1);
17 zmax = ones(nel,1);
18 zval = reshape(z,nel,1);
19 zold1 = zval;
20 zold2 = zval;
21 u = zval;
22 a0 = 1;
23 a = [ones(m−1,1);0];
24 c_constant = 1000*ones(m,1);
25 d_constant = zeros(m,1);
26 low = zmin;
27 upp = ones(nel,1);
28 %% PREPARE FINITE ELEMENT ANALYSIS
29 A11 = [12 3 −6 −3; 3 12 3 0; −6 3 12 −3; −3 0 −3 12];
30 A12 = [−6 −3 0 3; −3 −6 −3 −6; 0 −3 −6 3; 3 −6 3 −6];
31 B11 = [−4 3 −2 9; 3 −4 −9 4; −2 −9 −4 −3; 9 4 −3 −4];
32 B12 = [ 2 −3 4 −9; −3 2 9 −2; 4 9 2 3; −9 −2 3 2];
33 KE = 1/(1−nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
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34 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
35 edofVec = reshape(2*nodenrs(1:end−1,1:end−1)+1,nelx*nely,1);
36 edofMat = repmat(edofVec,1,8) ...
37 +repmat([0 1 2*nely+[2 3 0 1] −2 −1],nelx*nely,1);
38 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
39 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
40 %% DEFINE LOADS AND SUPPORTS (HALF MBB−BEAM) AND ...
41 % PASSIVE AND ACTIVE ELEMENTS
42 fixeddofs = [1:2:2*(nely+1)];
43 passact = sparse(nely,nelx);
44 inDof = [];
45 outDof = [edofMat(nGaugeX*nely+nGaugeY−3,1) ...
46 edofMat(nGaugeX*nely+nGaugeY+3,1)];
47 for i = 1:nelx
48 for j = 1:nely
49 if i <= nGaugeX+nMount && ...
50 j > nGaugeY−nMount/2 && j <= nGaugeY+nMount/2
51 if i > nGaugeX
52 passact(j,i) = 2;
53 else
54 passact(j,i) = 1;
55 end
56 end
57 if sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt
58 passact(j,i) = 1;
59 elseif sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt+2
60 passact(j,i) = 2;
61 inDof = union(inDof,edofMat(nely*i−(nely−j),[1:2:7]));
62 fixeddofs = ...
63 union(fixeddofs,[edofMat(nely*i−(nely−j),[2:2:8])]);
64 end
65 end
66 end
67 KSpringIn = sparse(inDof,inDof,springCstIn/length(inDof), ...
68 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
69 KSpringOut = sparse(outDof,outDof,springCstOut/length(outDof), ...
70 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
71 F = sparse(inDof,1,270/length(inDof),2*(nely+1)*(nelx+1),1);
72 U = zeros(2*(nely+1)*(nelx+1),1);
73 lMat1 = sparse(outDof,1,[1 0],2*(nely+1)*(nelx+1),1);
74 lMat2 = sparse(outDof,1,[0 1],2*(nely+1)*(nelx+1),1);
75 lambda1 = sparse(2*(nely+1)*(nelx+1),1);
76 lambda2 = sparse(2*(nely+1)*(nelx+1),1);
77 alldofs = [1:2*(nely+1)*(nelx+1)];
78 freedofs = setdiff(alldofs,fixeddofs);
79 %% PREPARE FILTER
80 iH = ones(nelx*nely*(2*(ceil(rmin)−1)+1)^2,1);
81 jH = ones(size(iH));
82 sH = zeros(size(iH));
83 k = 0;
84 for i1 = 1:nelx
85 for j1 = 1:nely
86 e1 = (i1−1)*nely+j1;
87 for i2 = max(i1−(ceil(rmin)−1),1):min(i1+(ceil(rmin)−1),nelx)
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88 for j2 = ...
max(j1−(ceil(rmin)−1),1):min(j1+(ceil(rmin)−1),nely)

89 e2 = (i2−1)*nely+j2;
90 k = k+1;
91 iH(k) = e1;
92 jH(k) = e2;
93 sH(k) = max(0,rmin−sqrt((i1−i2)^2+(j1−j2)^2));
94 end
95 end
96 end
97 end
98 H = sparse(iH,jH,sH);
99 Hs = sum(H,2);

100 %% INITIALIZE ITERATION
101 beta = 1;
102 zTilde = z;
103 loop = 0;
104 change = 1;
105 if strcmpi(plotFiguresDuring,'yes')||strcmpi(plotFiguresEnd,'yes')
106 designPlot = figure;
107 designPlot.IntegerHandle = 'off'; designPlot.Name = 'Design';
108 end
109 %% START ITERATION
110 while change > 0.05
111 loop = loop+1;
112 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND ...
113 % PHYSICAL DENSITIES USING MMA
114 if loop ~= 1
115 zval = reshape(z,nel,1);
116 fval = [c1;
117 c2;
118 sum(sum(xPhys))/(volfrac*nely*nelx)−1];
119 dfdx = [reshape(dc1,nel,1)';
120 reshape(dc2,nel,1)';
121 ones(1,nel)/(volfrac*nely*nelx)];
122 f0val = 0;
123 df0dx = 0*reshape(dc1,nel,1);
124 df0dx2 = 0*df0dx;
125 dfdx2 = 0*dfdx;
126 [z,~,~,~,~,~,~,~,~,low,upp,~,~] = ...
127 mmasub(m,n,loop,zval,zmin,zmax,zold1,zold2,f0val, ...
128 df0dx,df0dx2,fval,dfdx,dfdx2,low,upp, ...
129 a0,a,c_constant,d_constant);
130 zold2 = zold1;
131 zold1 = u;
132 u=z;
133 z = reshape(z,nely,nelx);
134 z(passact==1) = 0;
135 z(passact==2) = 1;
136 zTilde(:) = (H*z(:))./Hs;
137 end
138 xPhys = ((tanh(beta*eta)+tanh(beta*(zTilde−eta)))/ ...
139 (tanh(beta*eta)+tanh(beta*(1−eta))));
140 xPhys(passact==1) = 0;
141 xPhys(passact==2) = 1;
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142 %% FE−ANALYSIS
143 sK = reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0−Emin)), ...
144 64*nelx*nely,1);
145 K = sparse(iK,jK,sK) + KSpringIn + KSpringOut; K = (K+K')/2;
146 U(freedofs) = K(freedofs,freedofs)\F(freedofs);
147 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
148 lambda1(freedofs,1) = − K(freedofs,freedofs)\lMat1(freedofs);
149 ce1 = reshape(sum((lambda1(edofMat)*KE).*U(edofMat),2),nely,nelx);
150 c1 = lMat1(freedofs)'*U(freedofs)+100;
151 dc1 = penal*(E0−Emin)*xPhys.^(penal−1).*ce1;
152 dv1 = ones(nely,nelx);
153 lambda2(freedofs,1) = − K(freedofs,freedofs)\lMat2(freedofs);
154 ce2 = reshape(sum((lambda2(edofMat)*KE).*U(edofMat),2),nely,nelx);
155 c2 = lMat2(freedofs)'*U(freedofs)+100;
156 dc2 = penal*(E0−Emin)*xPhys.^(penal−1).*ce2;
157 dv2 = ones(nely,nelx);
158 %% FILTERING/MODIFICATION OF SENSITIVITIES
159 dx = (beta*(1−(tanh(beta*(zTilde−eta))).^2)/ ...
160 (tanh(beta*eta)+tanh(beta*(1−eta))));
161 dc1(:) = H*(dc1(:).*dx(:)./Hs);
162 dc2(:) = H*(dc2(:).*dx(:)./Hs);
163 dv1(:) = H*(dv1(:).*dx(:)./Hs);
164 dv2(:) = H*(dv2(:).*dx(:)./Hs);
165 %% CALCULATE OUTPUT
166 change = max(max(abs(z−reshape(zold1,nely,nelx))));
167 upf1 = −(U(outDof(1))/nGaugeX)/(mean(U(inDof))/(2/3*(nelx)));
168 upf2 = −(U(outDof(2))/nGaugeX)/(mean(U(inDof))/(2/3*(nelx)));
169 Mnd = sum(4*reshape(xPhys(:),nel,1).* ...
170 (1−reshape(xPhys(:),nel,1)))/nel*100;
171 %% PRINT RESULTS
172 fprintf(' It.:%5i Obj.:%5.4f upf.:%7.3f Vol.:%7.3f ...

Mnd.:%7.1f%% ch.:%7.3f\n', ...
173 loop,c1,upf1,mean(xPhys(:)),Mnd,change);
174 fprintf('%27.4f %16.3f\n',c2,upf2);
175 %% PLOT DENSITIES
176 if strcmpi(plotFiguresDuring,'yes')
177 figure(designPlot);
178 colormap(gray); imagesc(1−xPhys); caxis([0 1]); ...
179 axis equal; axis off; drawnow;
180 end
181 %% UPDATE HEAVISIDE REGULARIZATION PARAMETER
182 if beta < 25
183 beta = 1.01*beta;
184 change = 1;
185 fprintf('Parameter beta increased to %g.\n',beta);
186 end
187 end
188 %% PLOT DEFORMATIONS OF THE DESIGNS
189 if strcmpi(plotFiguresEnd,'yes')
190 if strcmpi(plotFiguresDuring,'no')
191 figure(designPlot);
192 colormap(gray); imagesc(1−xPhys); caxis([0 1]); ...
193 axis equal; axis off; drawnow;
194 end
195 designDeform = figure;
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196 designDeform.IntegerHandle = 'off';
197 designDeform.Name = 'Deformation design';
198 colormap(gray); axis equal; axis off;
199 for ely = 1:nely
200 for elx = 1:nelx
201 n1 = (nely+1)*(elx−1)+ely;
202 n2 = (nely+1)* elx +ely;
203 Ue = 1*U([2*n1−1;2*n1; 2*n2−1;2*n2; ...
204 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
205 ly = ely−1; lx = elx−1;
206 xx = [Ue(1,1)+lx Ue(3,1)+lx+1 Ue(5,1)+lx+1 Ue(7,1)+lx ]';
207 yy = [Ue(2,1)−ly Ue(4,1)−ly Ue(6,1)−ly−1 Ue(8,1)−ly−1]';
208 patch(xx,yy,−xPhys(ely,elx),'EdgeColor','none')
209 end
210 end
211 drawnow;
212 if strcmpi(saveFigures,'yes')
213 saveas(designPlot,strcat(savingDirectory,'designPlot'),'jpeg');
214 saveas(designDeform, ...
215 strcat(savingDirectory,'designDeform'),'jpeg');
216 end
217 end
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Appendix D

MATLAB code: Combination of
length scale control and fibre in
pure tension

D.1 Input Parameters

1 %%%%%
2 % All units in kN and mm
3 %%%%%
4 clear;
5 close all;
6 %% DIMENSIONS SENSOR PACKAGE
7 symmetricLength = 250;
8 width = symmetricLength;
9 rBolt = 2.5;

10 mountingPlatform = 15;
11 gridsize = 2.5;
12 %% POSITION MEASURING GAUGE
13 gaugeLength = 10;
14 relativeWidth = 1/2;
15 %% GRID PROPERTIES
16 nelx = 3/2*symmetricLength/gridsize;
17 nely = width/gridsize;
18 nelBolt = rBolt/gridsize;
19
20 nGaugeX = gaugeLength/gridsize;
21 nGaugeY = ceil(nely*relativeWidth);
22
23 nMount = mountingPlatform/gridsize;
24 springCstIn = 10800/gridsize;
25 springCstOut = 0.0908/gridsize;
26 %% OPTIMIZATION PARAMETERS
27 volfrac = 0.5;
28 penal = 3.0;
29 rmin = 0.03*nelx;
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30 threshold = 0.31;
31 %% OUTPUT CONTROL
32 plotFiguresDuring = 'yes';
33 plotFiguresEnd = 'yes';
34 saveFigures = 'yes';
35 savingDirectory = ''; % Defined a directory to save the results
36 %% TOPOLOGY OPTIMIZATION
37 [xPhys,c,upf,U,inDof,outDof] = topCombination(nelx,nely,nelBolt, ...
38 nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
39 volfrac,penal,rmin,threshold, ...
40 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory);
41 %% SAVE OUTPUT DATA
42 xPhysData = reshape(xPhys,nely*nelx,1);
43 save(strcat(savingDirectory,'xPhys.txt'),'xPhysData','−ascii');
44 save(strcat(savingDirectory,'inDof.txt'),'inDof','−ascii');
45 save(strcat(savingDirectory,'outDof.txt'),'outDof','−ascii');
46 inputData = [nelx;nely;gridsize;length(inDof);length(outDof);c;upf];
47 save(strcat(savingDirectory,'input.txt'),'inputData','−ascii');

D.2 Optimization Code

1 function [xPhysi,ci1,upfi1,Ui,inDof,outDof] = topCombination(nelx, ...
2 nely,nelBolt,nGaugeX,nGaugeY,nMount,springCstIn,springCstOut, ...
3 volfrac,penal,rmin,eta, ...
4 plotFiguresDuring,plotFiguresEnd,saveFigures,savingDirectory)
5 %% MATERIAL PROPERTIES
6 E0 = 69;
7 Emin = 1e−9;
8 nu = 0.33;
9

10 %% INITIALIZE MMA
11 z = repmat(volfrac,nely,nelx);
12 nel = nely*nelx;
13
14 m = 7;
15 n = nely*nelx;
16 zmin = zeros(nel,1);
17 zmax = ones(nel,1);
18 zval = reshape(z,nel,1);
19 zold1 = zval;
20 zold2 = zval;
21 u = zval;
22 a0 = 1;
23 a = [ones(m−1,1);0];
24 c_constant = 1000*ones(m,1);
25 d_constant = zeros(m,1);
26 low = zmin;
27 upp = zmax;
28 %% PREPARE FINITE ELEMENT ANALYSIS
29 A11 = [12 3 −6 −3; 3 12 3 0; −6 3 12 −3; −3 0 −3 12];
30 A12 = [−6 −3 0 3; −3 −6 −3 −6; 0 −3 −6 3; 3 −6 3 −6];
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31 B11 = [−4 3 −2 9; 3 −4 −9 4; −2 −9 −4 −3; 9 4 −3 −4];
32 B12 = [ 2 −3 4 −9; −3 2 9 −2; 4 9 2 3; −9 −2 3 2];
33 KE = 1/(1−nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
34 nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
35 edofVec = reshape(2*nodenrs(1:end−1,1:end−1)+1,nelx*nely,1);
36 edofMat = repmat(edofVec,1,8)...
37 +repmat([0 1 2*nely+[2 3 0 1] −2 −1],nelx*nely,1);
38 iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
39 jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
40 %% DEFINE LOADS AND SUPPORTS (HALF MBB−BEAM) AND ...
41 % PASSIVE AND ACTIVE ELEMENTS
42 fixeddofs = [1:2:2*(nely+1)];
43 passact = sparse(nely,nelx);
44 inDof = [];
45 outDof = [edofMat(nGaugeX*nely+nGaugeY−3,1) ...
46 edofMat(nGaugeX*nely+nGaugeY+3,1)];
47 for i = 1:nelx
48 for j = 1:nely
49 if i <= nGaugeX+nMount && ...
50 j > nGaugeY−nMount/2 && j <= nGaugeY+nMount/2
51 if i > nGaugeX
52 passact(j,i) = 2;
53 else
54 passact(j,i) = 1;
55 end
56 end
57 if sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt
58 passact(j,i) = 1;
59 elseif sqrt((j−nely/2−0.5)^2+(i−nelx*2/3−0.5)^2) < nelBolt+2
60 passact(j,i) = 2;
61 inDof = union(inDof,edofMat(nely*i−(nely−j),[1:2:7]));
62 fixeddofs = ...
63 union(fixeddofs,[edofMat(nely*i−(nely−j),[2:2:8])]);
64 end
65 end
66 end
67 KSpringIn = sparse(inDof,inDof,springCstIn/length(inDof), ...
68 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
69 KSpringOut = sparse(outDof,outDof,springCstOut/length(outDof), ...
70 2*(nely+1)*(nelx+1),2*(nely+1)*(nelx+1));
71 F = sparse(inDof,1,270/length(inDof),2*(nely+1)*(nelx+1),1);
72 Ue = zeros(2*(nely+1)*(nelx+1),1);
73 Ui = zeros(2*(nely+1)*(nelx+1),1);
74 Ud = zeros(2*(nely+1)*(nelx+1),1);
75 lMat1 = sparse(outDof(1),1,1,2*(nely+1)*(nelx+1),1);
76 lMat2 = sparse(outDof(2),1,1,2*(nely+1)*(nelx+1),1);
77 lambdae1 = sparse(2*(nely+1)*(nelx+1),1); lambdai1 = lambdae1;
78 lambdad1 = lambdae1; lambdae2 = lambdae1; lambdai2 = lambdae1;
79 lambdad2 = lambdae1;
80 alldofs = [1:2*(nely+1)*(nelx+1)];
81 freedofs = setdiff(alldofs,fixeddofs);
82 %% PREPARE FILTER
83 iH = ones(nelx*nely*(2*(ceil(rmin)−1)+1)^2,1);
84 jH = ones(size(iH));
85 sH = zeros(size(iH));
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86 k = 0;
87 for i1 = 1:nelx
88 for j1 = 1:nely
89 e1 = (i1−1)*nely+j1;
90 for i2 = max(i1−(ceil(rmin)−1),1):min(i1+(ceil(rmin)−1),nelx)
91 for j2 = max(j1−(ceil(rmin)−1),1): ...
92 min(j1+(ceil(rmin)−1),nely)
93 e2 = (i2−1)*nely+j2;
94 k = k+1;
95 iH(k) = e1;
96 jH(k) = e2;
97 sH(k) = max(0,rmin−sqrt((i1−i2)^2+(j1−j2)^2));
98 end
99 end

100 end
101 end
102 H = sparse(iH,jH,sH);
103 Hs = sum(H,2);
104 %% INITIALIZE ITERATION
105 VMax = volfrac*nely*nelx;
106 VdMax = volfrac*nely*nelx;
107 beta = 1;
108 zTilde = z;
109 loop = 0;
110 change = 1;
111 if strcmpi(plotFiguresDuring,'yes')||strcmpi(plotFiguresEnd,'yes')
112 erodedPlot = figure;
113 erodedPlot.IntegerHandle = 'off';
114 erodedPlot.Name = 'Eroded design';
115 intermediatePlot = figure;
116 intermediatePlot.IntegerHandle = 'off';
117 intermediatePlot.Name = 'Intermediate design';
118 delatedPlot = figure;
119 delatedPlot.IntegerHandle = 'off';
120 delatedPlot.Name = 'Delated design';
121 end
122 %% START ITERATION
123 while change > 0.05
124 loop = loop+1;
125 %% OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND ...
126 % PHYSICAL DENSITIES USING MMA
127 if loop ~= 1
128 zval = reshape(z,nel,1);
129 fval = [ce1;
130 ce2;
131 ci1;
132 ci2;
133 cd1;
134 cd2;
135 sum(sum(xPhysMean))/VdMax−1];
136 dfdx = [reshape(dce1,nel,1)';
137 reshape(dce2,nel,1)';
138 reshape(dci1,nel,1)';
139 reshape(dci2,nel,1)';
140 reshape(dcd1,nel,1)';
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141 reshape(dcd2,nel,1)';
142 ones(1,nel)/VdMax];
143 f0val = 0;
144 df0dx = 0*reshape(dci1,nel,1);
145 df0dx2 = 0*df0dx;
146 dfdx2 = 0*dfdx;
147 [z,~,~,~,~,~,~,~,~,low,upp,~,~] = ...
148 mmasub(m,n,loop,zval,zmin,zmax,zold1,zold2,f0val, ...
149 df0dx,df0dx2,fval,dfdx,dfdx2,low,upp, ...
150 a0,a,c_constant,d_constant);
151 zold2 = zold1;
152 zold1 = u;
153 u = z;
154 z = reshape(z,nely,nelx);
155 z(passact==1) = 0;
156 z(passact==2) = 1;
157 zTilde(:) = (H*z(:))./Hs;
158 end
159 xPhyse = ((tanh(beta*(1−eta))+tanh(beta*(zTilde−(1−eta))))/ ...
160 (tanh(beta*(1−eta))+tanh(beta*(1−(1−eta)))));
161 xPhysi = ((tanh(beta*1/2)+tanh(beta*(zTilde−1/2)))/ ...
162 (tanh(beta*1/2)+tanh(beta*(1−1/2))));
163 xPhysd = ((tanh(beta*eta)+tanh(beta*(zTilde−eta)))/ ...
164 (tanh(beta*eta)+tanh(beta*(1−eta))));
165 xPhyse(passact==1) = 0;
166 xPhyse(passact==2) = 1;
167 xPhysi(passact==1) = 0;
168 xPhysi(passact==2) = 1;
169 xPhysd(passact==1) = 0;
170 xPhysd(passact==2) = 1;
171 %% FE−ANALYSIS
172 sKe = reshape(KE(:)*(Emin+xPhyse(:)'.^penal*(E0−Emin)),...
173 64*nelx*nely,1);
174 Ke = sparse(iK,jK,sKe) + KSpringIn + KSpringOut; Ke = (Ke+Ke')/2;
175 Ue(freedofs) = Ke(freedofs,freedofs)\F(freedofs);
176 sKi = reshape(KE(:)*(Emin+xPhysi(:)'.^penal*(E0−Emin)), ...
177 64*nelx*nely,1);
178 Ki = sparse(iK,jK,sKi) + KSpringIn + KSpringOut; Ki = (Ki+Ki')/2;
179 Ui(freedofs) = Ki(freedofs,freedofs)\F(freedofs);
180 sKd = reshape(KE(:)*(Emin+xPhysd(:)'.^penal*(E0−Emin)), ...
181 64*nelx*nely,1);
182 Kd = sparse(iK,jK,sKd) + KSpringIn + KSpringOut; Kd = (Kd+Kd')/2;
183 Ud(freedofs) = Kd(freedofs,freedofs)\F(freedofs);
184 %% OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS
185 lambdae1(freedofs,1) = − Ke(freedofs,freedofs)\lMat1(freedofs);
186 cee1 = ...
187 reshape(sum((lambdae1(edofMat)*KE).*Ue(edofMat),2),nely,nelx);
188 ce1 = lMat1(freedofs)'*Ue(freedofs)+100;
189 dce1 = penal*(E0−Emin)*xPhyse.^(penal−1).*cee1;
190 dve1 = ones(nely,nelx);
191 lambdae2(freedofs,1) = − Ke(freedofs,freedofs)\lMat2(freedofs);
192 cee2 = ...
193 reshape(sum((lambdae2(edofMat)*KE).*Ue(edofMat),2),nely,nelx);
194 ce2 = lMat2(freedofs)'*Ue(freedofs)+100;
195 dce2 = penal*(E0−Emin)*xPhyse.^(penal−1).*cee2;
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196 dve2 = ones(nely,nelx);
197 lambdai1(freedofs,1) = − Ki(freedofs,freedofs)\lMat1(freedofs);
198 cei1 = ...
199 reshape(sum((lambdai1(edofMat)*KE).*Ui(edofMat),2),nely,nelx);
200 ci1 = lMat1(freedofs)'*Ui(freedofs)+100;
201 dci1 = penal*(E0−Emin)*xPhysi.^(penal−1).*cei1;
202 dvi1 = ones(nely,nelx);
203 lambdai2(freedofs,1) = − Ki(freedofs,freedofs)\lMat2(freedofs);
204 cei2 = ...
205 reshape(sum((lambdai2(edofMat)*KE).*Ui(edofMat),2),nely,nelx);
206 ci2 = lMat2(freedofs)'*Ui(freedofs)+100;
207 dci2 = penal*(E0−Emin)*xPhysi.^(penal−1).*cei2;
208 dvi2 = ones(nely,nelx);
209 lambdad1(freedofs,1) = − Kd(freedofs,freedofs)\lMat1(freedofs);
210 ced1 = ...
211 reshape(sum((lambdad1(edofMat)*KE).*Ud(edofMat),2),nely,nelx);
212 cd1 = lMat1(freedofs)'*Ud(freedofs)+100;
213 dcd1 = penal*(E0−Emin)*xPhysd.^(penal−1).*ced1;
214 dvd1 = ones(nely,nelx);
215 lambdad2(freedofs,1) = − Kd(freedofs,freedofs)\lMat2(freedofs);
216 ced2 = ...
217 reshape(sum((lambdad2(edofMat)*KE).*Ud(edofMat),2),nely,nelx);
218 cd2 = lMat2(freedofs)'*Ud(freedofs)+100;
219 dcd2 = penal*(E0−Emin)*xPhysd.^(penal−1).*ced2;
220 dvd2 = ones(nely,nelx);
221 %% FILTERING/MODIFICATION OF SENSITIVITIES
222 dxe = (beta*(1−(tanh(beta*(zTilde−(1−eta)))).^2)/ ...
223 (tanh(beta*(1−eta))+tanh(beta*(1−(1−eta)))));
224 dce1(:) = H*(dce1(:).*dxe(:)./Hs);
225 dve1(:) = H*(dve1(:).*dxe(:)./Hs);
226 dce2(:) = H*(dce2(:).*dxe(:)./Hs);
227 dve2(:) = H*(dve2(:).*dxe(:)./Hs);
228 dxi = (beta*(1−(tanh(beta*(zTilde−1/2))).^2)/ ...
229 (tanh(beta*1/2)+tanh(beta*(1−1/2))));
230 dci1(:) = H*(dci1(:).*dxi(:)./Hs);
231 dvi1(:) = H*(dvi1(:).*dxi(:)./Hs);
232 dci2(:) = H*(dci2(:).*dxi(:)./Hs);
233 dvi2(:) = H*(dvi2(:).*dxi(:)./Hs);
234 dxd = (beta*(1−(tanh(beta*(zTilde−eta))).^2)/ ...
235 (tanh(beta*eta)+tanh(beta*(1−eta))));
236 dcd1(:) = H*(dcd1(:).*dxd(:)./Hs);
237 dvd1(:) = H*(dvd1(:).*dxd(:)./Hs);
238 dcd2(:) = H*(dcd2(:).*dxd(:)./Hs);
239 dvd2(:) = H*(dvd2(:).*dxd(:)./Hs);
240 %% CALCULATE OUTPUT
241 change = max(max(abs(z−reshape(zold1,nely,nelx))));
242 upfe1 = −(Ue(outDof(1))/nGaugeX)/(mean(Ue(inDof))/(2/3*(nelx)));
243 upfe2 = −(Ue(outDof(2))/nGaugeX)/(mean(Ue(inDof))/(2/3*(nelx)));
244 upfi1 = −(Ui(outDof(1))/nGaugeX)/(mean(Ui(inDof))/(2/3*(nelx)));
245 upfi2 = −(Ui(outDof(2))/nGaugeX)/(mean(Ui(inDof))/(2/3*(nelx)));
246 upfd1 = −(Ud(outDof(1))/nGaugeX)/(mean(Ud(inDof))/(2/3*(nelx)));
247 upfd2 = −(Ud(outDof(2))/nGaugeX)/(mean(Ud(inDof))/(2/3*(nelx)));
248 Mnde = sum(4*reshape(xPhyse(:),nel,1).* ...
249 (1−reshape(xPhyse(:),nel,1)))/nel*100;
250 Mndi = sum(4*reshape(xPhysi(:),nel,1).* ...
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251 (1−reshape(xPhysi(:),nel,1)))/nel*100;
252 Mndd = sum(4*reshape(xPhysd(:),nel,1).* ...
253 (1−reshape(xPhysd(:),nel,1)))/nel*100;
254 %% PRINT RESULTS
255 fprintf(' It.:%5i Obj.:%7.4f Upf.:%7.3f Vol.:%7.3f ...

Mnd.:%7.1f%% Ch.:%7.3f\n', ...
256 loop,ce1,upfe1,mean(xPhyse(:)),Mnde,change);
257 fprintf('%27.4f %16.3f\n',ce2,upfe2);
258 fprintf('%27.4f %16.3f %16.3f %16.1f%%\n', ...
259 ci1,upfi1,mean(xPhysi(:)),Mndi);
260 fprintf('%27.4f %16.3f\n',ci2,upfi2);
261 fprintf('%27.4f %16.3f %16.3f %16.1f%%\n', ...
262 cd1,upfd1,mean(xPhysd(:)),Mndd);
263 fprintf('%27.4f %16.3f\n',cd2,upfd2);
264 %% PLOT DENSITIES
265 if strcmpi(plotFiguresDuring,'yes')
266 figure(erodedPlot);
267 colormap(gray); imagesc(1−xPhyse); caxis([0 1]); ...
268 axis equal; axis off; drawnow;
269 figure(intermediatePlot);
270 colormap(gray); imagesc(1−xPhysi); caxis([0 1]); ...
271 axis equal; axis off; drawnow;
272 figure(delatedPlot);
273 colormap(gray); imagesc(1−xPhysd); caxis([0 1]); ...
274 axis equal; axis off; drawnow;
275 end
276 %% UPDATE VOLUME FRACTION
277 xPhysTotal(:,:,1) = xPhyse;
278 xPhysTotal(:,:,2) = xPhysi;
279 xPhysTotal(:,:,3) = xPhysd;
280 xPhysMean = mean(xPhysTotal,3);
281 %% UPDATE HEAVISIDE REGULARIZATION PARAMETER
282 if beta < 25
283 beta = 1.01*beta;
284 change = 1;
285 fprintf('Parameter beta increased to %g.\n',beta);
286 end
287 end
288 %% PLOT DEFORMATIONS OF THE DESIGNS
289 if strcmpi(plotFiguresEnd,'yes')
290 if strcmpi(plotFiguresDuring,'no')
291 figure(erodedPlot);
292 colormap(gray); imagesc(1−xPhyse); caxis([0 1]); ...
293 axis equal; axis off; drawnow;
294 figure(intermediatePlot);
295 colormap(gray); imagesc(1−xPhysi); caxis([0 1]); ...
296 axis equal; axis off; drawnow;
297 figure(delatedPlot);
298 colormap(gray); imagesc(1−xPhysd); caxis([0 1]); ...
299 axis equal; axis off; drawnow;
300 end
301 erodedDeform = figure;
302 erodedDeform.IntegerHandle = 'off';
303 erodedDeform.Name = 'Deformation eroded design';
304 colormap(gray); axis equal; axis off;
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305 for ely = 1:nely
306 for elx = 1:nelx
307 n1 = (nely+1)*(elx−1)+ely;
308 n2 = (nely+1)* elx +ely;
309 Uee = 1*Ue([2*n1−1;2*n1; 2*n2−1;2*n2; ...
310 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
311 ly = ely−1; lx = elx−1;
312 xx = [Uee(1,1)+lx Uee(3,1)+lx+1 ...
313 Uee(5,1)+lx+1 Uee(7,1)+lx ]';
314 yy = [Uee(2,1)−ly Uee(4,1)−ly ...
315 Uee(6,1)−ly−1 Uee(8,1)−ly−1]';
316 patch(xx,yy,−xPhyse(ely,elx),'EdgeColor','none')
317 end
318 end
319 drawnow;
320 intermediateDeform = figure;
321 intermediateDeform.IntegerHandle = 'off';
322 intermediateDeform.Name = 'Deformation intermediate design';
323 colormap(gray); axis equal; axis off;
324 for ely = 1:nely
325 for elx = 1:nelx
326 n1 = (nely+1)*(elx−1)+ely;
327 n2 = (nely+1)* elx +ely;
328 Uei = 1*Ui([2*n1−1;2*n1; 2*n2−1;2*n2; ...
329 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
330 ly = ely−1; lx = elx−1;
331 xx = [Uei(1,1)+lx Uei(3,1)+lx+1 ...
332 Uei(5,1)+lx+1 Uei(7,1)+lx ]';
333 yy = [Uei(2,1)−ly Uei(4,1)−ly ...
334 Uei(6,1)−ly−1 Uei(8,1)−ly−1]';
335 patch(xx,yy,−xPhysi(ely,elx),'EdgeColor','none')
336 end
337 end
338 drawnow;
339 delatedDeform = figure;
340 delatedDeform.IntegerHandle = 'off';
341 delatedDeform.Name = 'Deformation delated design';
342 colormap(gray); axis equal; axis off;
343 for ely = 1:nely
344 for elx = 1:nelx
345 n1 = (nely+1)*(elx−1)+ely;
346 n2 = (nely+1)* elx +ely;
347 Ued = 1*Ud([2*n1−1;2*n1; 2*n2−1;2*n2; ...
348 2*n2+1;2*n2+2; 2*n1+1;2*n1+2],1);
349 ly = ely−1; lx = elx−1;
350 xx = [Ued(1,1)+lx Ued(3,1)+lx+1 ...
351 Ued(5,1)+lx+1 Ued(7,1)+lx ]';
352 yy = [Ued(2,1)−ly Ued(4,1)−ly ...
353 Ued(6,1)−ly−1 Ued(8,1)−ly−1]';
354 patch(xx,yy,−xPhysd(ely,elx),'EdgeColor','none')
355 end
356 end
357 drawnow;
358 if strcmpi(saveFigures,'yes')
359 saveas(erodedPlot,strcat(savingDirectory,'erodedPlot'),'jpeg');
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360 saveas(intermediatePlot, ...
361 strcat(savingDirectory,'intermediatePlot'),'jpeg');
362 saveas(delatedPlot, ...
363 strcat(savingDirectory,'delatedPlot'),'jpeg');
364 saveas(erodedDeform, ...
365 strcat(savingDirectory,'erodedDeform'),'jpeg');
366 saveas(intermediateDeform, ...
367 strcat(savingDirectory,'intermediateDeform'),'jpeg');
368 saveas(delatedDeform, ...
369 strcat(savingDirectory,'delatedDeform'),'jpeg');
370 end
371 end
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Appendix E

ANSYS input files

E.1 General input file

! SET DIRECTORY OF INPUT FILES
*DIM,directory,STRING,248
directory(1) = ’C:\Users\Tom\Ansys\Compression’

! READ INPUT PARAMETERS
*dim,input,array,7,1 !input (parameters)
*vread,input(1),input,txt,directory(1)
(E26.16)

! GRID PROPERTIES
*SET,nelx,input(1)
*SET,nely,input(2)
*SET,gridsize,input(3)/1000
*SET,t,0.005

! READ MATLAB DESIGN
*dim,xPhys,array,nely*nelx,1 !xPhys (densities)
! ASK USER TO LOAD MATLAB OR POST-PROSSED DENSITIES
*ASK,Density,’Load MATLAB (M) or post-processed (P) densities?’,’P’
Density=UPCASE(Density)
*IF,Density,EQ,’M’,or,Density,EQ,’MATLAB’,THEN
*vread,xPhys(1),xPhys,txt,directory(1)
(E26.16)
*ELSEIF,Density,EQ,’P’,or,Density,EQ,’POST-PROCESSED’,THEN
*vread,xPhys(1),xPhysPost,txt,directory(1)
(E26.16)
*ENDIF
*dim,inDof,array,input(4) !inDof (input nodes for the displacements)
*vread,inDof(1),inDof,txt,directory(1)
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(E26.16)
*dim,outDof,array,input(5) !outDof (output nodes for the displacements)
*vread,outDof(1),inDof,txt,directory(1)
(E26.16)

! MATERIAL PROPERTIES
*SET,E,69e9
*SET,nu,0.33
*SET,rho,2700
*SET,k,0.0908

/prep7
! CREATE NODES
*DO,i,1,2*(nely+1)*(nelx+1),2
*SET,XX,(i-mod(i,2*(nely+1)))/(2*(nely+1))
*SET,YY,-(mod(i,2*(nely+1))-1)/2
N,i,gridsize*XX,gridSize*YY,0
*ENDDO

! DEFINE ELEMENT PROPERTIES
ET,1,SHELL63
ET,2,COMBIN14
R,1,t,t,t,t
R,2,k
MP,EX,1,E
MP,PRXY,1,nu
MP,DENS,1,rho
MP,DENS,2,0

! DEFINE ELEMENTS
elementnumber=0
*DO,i,1,2*(nely+1)*nelx,2
*IF,mod(i+1,2*(nely+1)),NE,0,THEN
elementnumber=elementnumber+1
*IF,xPhys(elementnumber),GE,0.5,THEN
NUMSTR,ELEM,elementnumber
E,i,i+2,i+2*(nely+1)+2,i+2*(nely+1)
*ENDIF
*ENDIF
*ENDDO

! DEFINE FIBRE
TYPE,2
REAL,2
MAT,2
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E,(nely+1),9*(nely+1)
CE,1,0,9*(nely+1),UY,1,(nely+1),UY,-1
CE,2,0,9*(nely+1),UZ,1,(nely+1),UZ,-1

! DELETE UNUSED NODES
NDELE,ALL

! APPLY SYMMETRIC BOUNDARY CONDITIONS
NSEL,,LOC,x,0
DSYM,SYMM,X

! ASK USER IF MASS OF FIBRE MOUNTING BRACKETS IS REQUIRED
*ASK,Mounting,’Add mass of fibre mounting brackets? (yes/no)’,’Yes’
Mounting=UPCASE(Mounting)
*IF,Mounting,EQ,’Y’,or,Mounting,EQ,’YES’,THEN
ET,3,MASS21,,,2
R,3,0.02
TYPE,3
REAL,3
MAT,2
N,2*(nely+1)*(nelx+1)+1,gridsize*7,-gridSize*(nely/2),0.0075
N,2*(nely+1)*(nelx+1)+3,gridsize*7,-gridSize*(nely/2),-0.0075
E,2*(nely+1)*(nelx+1)+1
E,2*(nely+1)*(nelx+1)+3
CE,3,0,2*(nely+1)*(nelx+1)+1,UX,1,15*(nely+1),UX,-1
CE,4,0,2*(nely+1)*(nelx+1)+1,UY,1,15*(nely+1),UY,-1
CE,5,0,2*(nely+1)*(nelx+1)+1,UZ,1,15*(nely+1),UZ,-1
CE,6,0,2*(nely+1)*(nelx+1)+3,UX,1,15*(nely+1),UX,-1
CE,7,0,2*(nely+1)*(nelx+1)+3,UY,1,15*(nely+1),UY,-1
CE,8,0,2*(nely+1)*(nelx+1)+3,UZ,1,15*(nely+1),UZ,-1
*ELSEIF,Mounting,EQ,’N’,or,Mounting,EQ,’NO’,THEN
*MSG,UI,’No mass from fibre’,’mounting bracket added.’
%C %C
*ENDIF

! ASK USER WHICH ANALYSIS TO PERFORM AND EXECUTE THAT LOGFILE
*ASK,Analysis,’S (Static); D (Dynamic) or B (Buckling)’,’Static’
Analysis=UPCASE(Analysis)
*IF,Analysis,EQ,’S’,or,Analysis,EQ,’STATIC’,THEN
/INPUT,logStatic,txt,directory(1)
*ELSEIF,Analysis,EQ,’D’,or,Analysis,EQ,’DYNAMIC’,THEN
/INPUT,logDynamic,txt,directory(1)
*ELSEIF,Analysis,EQ,’B’,or,Analysis,EQ,’BUCKLING’,THEN
/INPUT,logBuckling,txt,directory(1)
*ELSE
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*MSG,UI,’The selected option was ’,’not valid.’,\
’The execution of the ’,’logfile is terminated.’

%C %C %/ %C %C
*ENDIF

E.2 Input file static analysis
! SELECT INPUT DOFS AND APPLY DISPLACEMENTS
NSEL,NONE
*DO,i,1,input(4),1
NSEL,A,NODE,,inDof(i)
*ENDDO
D,ALL,UX,-3.8667e-6
D,ALL,UY,0,,,,UZ
NSEL,ALL

! STATIC ANALYSIS
/SOLUTION

ANTYPE,STATIC
NLGEOM,ON
NSUBST,10
OUTRES,ERASE
OUTRES,ALL,1
AUTOTS,0
TIME,1

SOLVE
FINISH

! TIME HISTORY POST-PROCESSING
/POST26
FILE,’file’,’rst’,’.’
/UI,COLL,1
NUMVAR,200
SOLU,191,NCMIT
STORE,MERGE
FILLDATA,191,,,,1,1
REALVAR,191,191
NSOL,2,909,U,X, UX_2,
STORE,MERGE
NSOL,3,20099,U,X, UX_3,
STORE,MERGE
FILLDATA,192,,,,0,0
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FILLDATA,193,,,,1,0
FILLDATA,194,,,,-1,0
FILLDATA,195,,,,1,1
VARNAME,195,NSET
FILLDATA,199,,,,-10,0
REALVAR,199,199
QUOT,200,2,199
FILLDATA,198,,,,250,0
REALVAR,198,198
QUOT,199,3,198
QUOT,4,200,199,,Upscaling_factor
STORE,MERGE
FILLDATA,191,,,,1,1
REALVAR,191,191
FILLDATA,192,,,,0,0
FILLDATA,193,,,,1,0
FILLDATA,194,,,,-1,0
FILLDATA,195,,,,1,1
VARNAME,195,NSET
FILLDATA,199,,,,3.8667e-6,0
REALVAR,199,199
PROD,5,199,1,,U_Input
STORE,MERGE

E.3 Input file dynamic analysis

! SELECT INPUT DOFS AND APPLY DISPLACEMENTS
NSEL,NONE
*DO,i,1,input(4),1
NSEL,A,NODE,,inDof(i)
*ENDDO
D,ALL,UX,-0e-3
D,ALL,UY,0,,,,UZ
NSEL,ALL

! DYNAMIC ANALYSIS
/SOLUTION
ANTYPE,modal
MODOPT,LANB,5
SOLVE
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E.4 Input file buckling analysis
! SELECT INPUT DOFS AND APPLY DISPLACEMENTS
NSEL,NONE
*DO,i,1,input(4),1
NSEL,A,NODE,,inDof(i)
*ENDDO
D,ALL,UX,-3.8667e-6
D,ALL,UY,0,,,,UZ
NSEL,ALL

! STATIC ANALYSIS
/SOLUTION

ANTYPE,STATIC
PSTRES,ON
NSUBST,10
OUTRES,ERASE
OUTRES,ALL,1
AUTOTS,0
TIME,1

SOLVE
FINISH

! BUCKLING ANALYSIS
/SOLUTION
ANTYPE,1
BUCOPT,LANB,5
SOLVE
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