
UNIVERSITEIT ANTWERPEN
departement Wiskunde-Informatica

Sinusoidal Modelling
of Polyphonic Audio

Sinusöıdale Modellering

van Polyfone Audio

Joachim Ganseman

Proefschrift ter verkrijging van de graad van Licentiaat in de Wetenschappen
richting: Informatica

Promotor:
Prof. Dr. Chris Blondia
PATS Research Group - Universiteit Antwerpen

Begeleiding:
Dr. Wim D’haes
Visielab - Universiteit Antwerpen

Academiejaar:
2006-2007

UNIVERSITEIT ANTWERPEN
departement Wiskunde-Informatica

Sinusoidal Modelling
of Polyphonic Audio

Sinusöıdale Modellering

van Polyfone Audio

Joachim Ganseman

Proefschrift ter verkrijging van de graad van Licentiaat in de Wetenschappen
richting: Informatica

Promotor:
Prof. Dr. Chris Blondia
PATS Research Group - Universiteit Antwerpen

Begeleiding:
Dr. Wim D’haes
Visielab - Universiteit Antwerpen

Academiejaar:
2006-2007

Copyright c© 2007, Joachim Ganseman and University of Antwerp.
All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording, broadcasting or by any other
information storage and retrieval system without written permission from
the copyright owners.

Copyright c© 2007, Joachim Ganseman en Universiteit Antwerpen.
Alle rechten voorbehouden. Niets van het materiaal beschermd door deze
clausule mag verveelvuldigd of gebruikt worden, in eender welke vorm of door
eender welke middelen, elektronisch of mechanisch, inclusief fotokopiëren, op-
nemen, uitzenden, of door elk ander informatieopslag en -weergavesysteem,
zonder de schriftelijke toestemming van de rechthebbenden.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio i

Preamble

As a computer scientist student and a passionate amateur musician, I sought
out a thesis subject that related my ’job’, computer science, with my ’hobby’,
music. I went searching for people at the University of Antwerp that did re-
search on computer audio, a field on the crossroad of science and arts. About
2 years ago, I was very lucky to find Wim D’haes, working at the VisionLab
of the Physics Department of the University of Antwerp, doing his postdoc-
toral research on audio and music.

The first collaboration that we set up was in the 3rd year of my studies,
for that year’s large obligatory project work. We investigated alignment al-
gorithms for synchronization of symbolic musical notation and normal audio
data [1], and planned an implementation using VST technology [2]. The
project was quite ambitious given the limited amount of time, and never
really got out of pre-alpha phase. But it did learn me a whole lot of things
about digital signal processing, the enormous amount of tricky issues when
doing real-time audio computations, the MusicXML [3] and MIDI [4] file for-
mats, C programming, and using VST [2].

This knowledge was further expanded during the work on this thesis. The
subject however, is quite different. Where the 3rd year’s project was mainly
concerned about manipulation of symbolic notation of music (the partition),
this time I worked more on the digital signal processing side, and all the
complexities that come with it.

A sinusoidal model is one of the preferred techniques to represent an audio
segment in a computer. The audio segment is represented in the frequency
domain, as a finite sum of sines and cosines (or, more theoretically, complex
exponentials). Sinusoidal modelling tries to solve the problem of converting
an audio signal to such a signal model, and back again. The model of one
single harmonic note is very easy: it contains one fundamental frequency,
and a limited number of harmonics. It can be precisely calculated by fitting
the model onto the Fourier transform of the real signal, using least-squares
methods.

The Ph.D. dissertation of Wim D’haes [5] introduces several important
improvements on the calculation of a sinusoidal model of a sound source.
These improvements significantly reduce the computational cost that is in-
volved. In this thesis, these improvements are investigated and thoroughly
mathematically analyzed. Some tricky issues arise when multiple harmonic

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio ii

sound sources (several notes played at once) and polyphonic sound sources
(several inter-related notes played at once, or chords) are involved, requiring
extensions to the algorithms. The properties of an efficient implementation
in C will be presented.

The nature of the subject and the used technology requires a significant
amount of knowledge that is not always standard in computer science cur-
riculum. Digital signal processing, numerical techniques and optimization,
computational complexity theory, concurrency and real-time computation,
artificial intelligence, but also elements of music theory and harmony, physics
of sound, etc.: all come together when working on a subject like this (or, in
general, on any subject involving multimedia processing or encoding).

Detailed information on all of these topics would fill an entire bookshelf.
Since there is not too much room here, I will limit myself to an abundant
use of references to scientific articles, theses and books. The reader needing
some more background information on any of those topics, can certainly find
most of the necessary information in there. Several websites are referenced
too, and since the internet is a highly dynamic medium, I am obliged to
inform that all those websites were checked for the last time on correctness
in august 2007.

I have chosen to split this thesis up into 2 large chapters. The first chapter
will explain the theory. It presents the theoretical foundations of sinusoidal
modelling, the methods developed by Wim D’haes in his dissertation [5], and
the extensions needed when working with polyphonic audio sources. The sec-
ond chapter will present an implementation: an overview of the technologies
that have been used, the problems that arise when programming audio pro-
cessing systems, and some interesting details of an implementation of the
algorithms described in the first section.

I hope very much that the reader will enjoy reading this thesis as much
as I enjoyed writing it and working on it. At times it has given me severe
headaches, but nevertheless it has always been great fun to work on a subject
like this.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio iii

Acknowledgements

First I wish to thank my supervisor and tutor, Wim D’haes, for willing to
guide me in this project. His knowledge of the subject still keeps impressing
me, and his patience with me - not the most regular and steadfast student
- is priceless. He gave me a clear view on how research in computer audio
really works and what it looks like. He often provided me with a place in
his office to work on my thesis. He gave me the chance to attend some very
interesting conferences and activities. And last but not least, his Ph.D. dis-
sertation forms the basis of this master thesis.

Together with Wim D’haes, I owe the VisionLab at the University of
Antwerp and its members my gratitude. They let me use their coffee machine
when I was working at Wim’s office, and that represents quite an amount
of coffee in my case. We had funny and interesting talks during coffee and
lunch breaks.

I also wish to thank Prof. Dr. Chris Blondia from the PATS Research
Group, who is so kind to be the promotor for this thesis, and granted me
total freedom.

Most of my friends, both inside and outside the University of Antwerp,
declared me officially crazy for starting a master thesis with a topic like this.
But in some stressful periods I couldn’t have wished for more comprehensive
surroundings. I promise to pay them a round of beers after this work has
been finished, for their unconditional support and for the interesting links,
references, discussions and ideas they provided me with.

And last but not least I have had the best of support from my parents
and my family. They’ve always believed in me and gave me ample of freedom
during the last few years at the university. This thesis is the closing piece of
what have been the best years of my life.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio iv

Abstract

The Fourier transform of a limited frame of a discrete audio signal is itself a
discrete signal, with a limited resolution depending on the frame length. On
top of that, the Fourier domain representation suffers from spectral leakage.
This master thesis investigates sinusoidal modelling. First we assume that
the signal can be described using a model - a set of frequencies and their
corresponding amplitudes. This model is optimized from an initial guess
to find the exact model parameters which minimize the square difference
with the original signal. Building upon the work by D’haes [5], a lot of
attention will go to the effects of windowing, the mathematical foundation of
the frequency optimization and amplitude estimation algorithms themselves,
and the observations that make several orders of speedup possible. The
technologies that were used for implementing these algorithms are reviewed,
several speed-up improvements on the implementation level are explained,
and several concerns for audio application programmers are addressed. The
conclusion presents a broad range of unexplored knowledge that waits to be
discovered and developed.

Nederlandstalige samenvatting

De discrete Fourier transformatie van een frame van een discreet audiosignaal
is zelf discreet, en heeft een beperkte resolutie die afhangt van de framelengte.
Bovendien heeft de Fourier domein representatie last van het fenomeen ’spec-
tral leakage’. Dit heeft als gevolg dat de energie van enkele frequentiecom-
ponenten verspreid raakt over het gehele discrete spectrum. Spectral leakage
kan aan banden gelegd worden door het toepassen van een vensterfunctie
alvorens de Fourier transformatie te berekenen. Er bestaan vele van deze
vensterfuncties, elk met hun eigenschappen, en voor de toepassing in de al-
goritmes in deze thesis zal de Blackman-Harris window functie de meest voor
de hand liggende blijken te zijn.

Deze licentiaatsthesis behandelt sinusöıdale modellering. Aangenomen
dat een signaal volledig beschreven kan worden als een model - een verzamel-
ing frequenties en hun corresponderende amplitudes - gaan we een initiele
ruwe benadering van zo’n model optimaliseren om de exacte parameters te
vinden voor het model waardoor het kwadratisch verschil met het oorspronke-
lijk signaal minimaal wordt. Op deze manier bekomen we een model dat het
signaal het best mogelijk beschrijft, en alleszins veel nauwkeuriger is dan de
discrete Fourier transformatie. De modelparameters zijn reel in plaats van
discreet, en hebben dus geen last van een gebrek aan spectrale resolutie.

De algoritmes zijn ontwikkeld door Wim D’haes [5] in zijn doctoraats-
thesis, en hierop wordt voortgewerkt. Veel aandacht gaat naar de effecten
van het gebruik van een vensterfunctie, want het meenemen van deze func-
tie in de algoritmes laat significante en fundamentele verbeteringen van de
tijdscomplexiteit toe. De wiskundige basis van de algoritmes en de verbe-
teringen erop wordt uitgebreid uit de doeken gedaan. Er wordt ook ingegaan
op de problemen die opduiken wanneer men verschillende harmonische sig-
nalen of polyfone audio gaat gebruiken, waarvan de frequentiecomponenten
elkaar overlappen.

Om deze algoritmes te implementeren werd gebruik gemaakt van verschil-
lende technologien die kort besproken worden. Er zijn verschillende zaken die
men in het achterhoofd moet houden wanneer men (real-time) audio appli-
caties ontwikkeld, de een al wat venijniger dan de andere - een paar worden
eruit gelicht. De uiteindelijke implementatie van de algoritmes in C maakt
gebruik van enkele optimalisaties op implementatieniveau die ook een wo-
ordje waard zijn.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio i

Ter conclusie is er nog een breed veld aan onderzoek en ontwikkeling mo-
gelijk, niet enkel op het gebied van sinusöıdale modellering maar ook daar-
rond. Een sinusöıdaal model van een audiosignaal is zeer gemakkelijk om te
manipuleren en te verwerken. De reden dat het nog maar weinig gebruikt
wordt is de relatief hoge tijdscomplexiteit. Nu die sterk gereduceerd is in de
algoritmes hierin besproken, staat er niets nog een snelle ontwikkeling van
nieuwe toepassingen die van sinusöıdale modellering gebruikmaken in de weg.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio ii

Contents

0.1 Introduction . 1
0.1.1 What is sinusoidal modelling? 1
0.1.2 Uses of sinusoidal modelling 2
0.1.3 Pros and Contras . 2
0.1.4 The aim of this thesis 3

1 Sinusoidal Modelling of Polyphonic Audio 4
1.1 A Digital Signal Processing Crash Course 4

1.1.1 Signal Representation 4
1.1.2 The Fourier transform 5
1.1.3 Spectral Leakage . 7
1.1.4 Window Functions . 14

1.2 Polyphonic Audio . 20
1.2.1 Terminology . 20
1.2.2 Classical Western Music Theory 21
1.2.3 Musical Harmony and Mathematics 22
1.2.4 Harmony? Polyphony? 24

1.3 Sinusoidal Modelling . 25
1.3.1 A sinusoidal model . 25
1.3.2 Amplitude Estimation 28
1.3.3 Frequency Optimization 39

2 Implementation of a Sinusoidal Modeler 50
2.1 Useful Technologies . 50

2.1.1 The VST framework 50
2.1.2 VSTGUI . 53
2.1.3 SSE . 56
2.1.4 Matlab Mex Functions 58

2.2 Implementation . 61
2.2.1 Audio Processing Difficulties 61
2.2.2 Oversampled Lookup Tables 64
2.2.3 Shifted Matrix Storage 67

iii

CONTENTS

3 Conclusions and Future 69
3.1 On the theorical level . 69

3.1.1 Windowing . 69
3.1.2 The Model . 70

3.2 On the practical level . 71
3.2.1 Deployment . 71
3.2.2 A broader perspective 72

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio iv

0.1. INTRODUCTION

0.1 Introduction

0.1.1 What is sinusoidal modelling?

A sound source, whether monophonic, polyphonic, noisy or not, is most of-
ten represented as a function of time. For treatment by computers or other
digital equipment, the timeline and the range of possible values is finite and
discrete. Today’s compact discs use a sampling frequency of 44100 Hz, and
have a resolution of 16 bit. Professional recording equipment often uses mul-
tiples of these values, to provide even more accuracy in the recordings.

The Fourier transform converts a signal in the time domain to its equiv-
alent in the frequency domain. The equivalence is exact when using contin-
uous, infinite signals and continuous algorithms. In the discrete computer
world, the Fourier transform produces a discrete frequency domain represen-
tation, and on top of that, artefacts like spectral leakage tend to occur. This
might have large influence on the results when the signal is a sound source:
humans hear pitch on a quasi-logarithmical scale.

A sinusoidal model of a single harmonic sound signal consists of one funda-
mental frequency and a number of harmonics, each with their own amplitude
and phase. The fundamental frequency need not be one of the frequencies
that is present in the discrete spectrum of the signal, but can lie somewhere
in between of the measured values. To estimate the correct fundamental
frequency, optimization routines need to be implemented. The amplitude of
that frequency can afterwards be calculated.

Rather than representing a sound by its entire time or frequency rep-
resentation, we can accurately represent it by a model containing only the
frequencies, amplitudes and phases of the fundamental frequency and the
harmonics. This sinusoidal model is much easier to process further on in any
application that needs knowledge of these basic sound properties. It fully
defines a single sound and is on top of that more clear and accurate than a
complete discrete frequency representation of a sound.

Using a finite set of parameters to describe a sound source is certainly not
a new idea. The first attempts at encoding sound in such a way were made
with the telephone system in mind. Around 1980, one sought for ways to
encode speech in an economical way, to reduce bandwidth and at the same
time keep as much of the quality as possible (see for example Flanagan [6]).
From 1984 on, the term ’sinusoidal model’ as used in this thesis, appears

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 1

0.1. INTRODUCTION

more and more in publications, (see for example the papers of McAulay and
Quatieri, of which especially [7] has been very influential). A short history of
the further developments of sinusoidal models with a focus on speech systems
can be found in a paper by Bailly [8].

Sinusoidal modelling, as a process, is concerned with fitting a predefined
model to a given sound, using parameters like frequency, amplitude and
phase. This thesis will analyze and implement the improvements to the sinu-
soidal modelling algorithm, developed by Wim D’haes in his Ph.D. thesis [5],
and also investigate whether this solution for a single harmonic sound source
is extensible to multiple sound sources, both non-polyphonic and polyphonic.

0.1.2 Uses of sinusoidal modelling

Sinusoidal modelling has been succesfully used in audio applications like
speech analysis and encoding [7], text to speech systems [9], matching al-
gorithms [10], source separation [11], voice effects and resynthesis [12], and
so on. In fact, once the sinusoidal model of a sound has been constructed,
the parameters can be changed at will. A vast range of sound effects can
be developed easily with a sinusoidal model. The manipulated sound can be
resynthesized from the model using an inverse Fourier transform.

0.1.3 Pros and Contras

The paper by Syrdal [9] makes an excellent comparison between 2 differ-
ent approaches for speech encoding: the ’popular’ TD-PSOLA (short for
Time-Domain Pitch-Synchronous Overlap-Add), and the ’new’ Harmonic
plus Noise model, which corresponds to a sinusoidal model plus a noise com-
ponent. The conclusion is that a harmonic model is superior to the other
one in all cases, except for computational complexity.

Computational complexity is a large problem in sinusoidal modelling, but
with current computer power it is perfectly possible to develop a real-time
performing modelling system on an ordinary home PC. As will be shown
later on in this thesis, the computational load of the algorithm can be signif-
icantly reduced by optimizing the used data fitting algorithm for its task, as
developed by D’haes [5]. On top of that, the use of lookup tables and special
purpose microprocessor instruction sets like SSE, leads to optimization on

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 2

0.1. INTRODUCTION

the implementation level.

0.1.4 The aim of this thesis

This thesis investigates the sinusoidal modelling algorithms developed by
D’haes in [5]. A first section will elaborate on why these algorithms are
needed. The algorithms will be described in detail, and will - where ap-
propriate - also be extended for use with multiple harmonic sounds, and
interrelated multiple harmonic sounds (polyphony).

In parallel, an implementation of these algorithms has been made, which
is described in the second part of this thesis. The chosen technologies and
their properties, assets and drawbacks will be explained. A few implemen-
tation level optimizations will be explained in detail. I will also shortly
elaborate on the many questions and issues that pop up when developing
real-time signal processing applications.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 3

Chapter 1

Sinusoidal Modelling of
Polyphonic Audio

1.1 A Digital Signal Processing Crash Course

Any sound wave, when digitized and stored in a computer, has the form of
a finite digital signal. It is therefore only logical to give a quick introduction
to digital signal processing, before moving on to the real work.

1.1.1 Signal Representation

Time domain representation

Time domain representation of signals is very common and easy to under-
stand. When measuring the local pressure of the medium excited by the
signal at the measuring point at any time, a wave propagating through a
medium can be described as a function of time.

To encode an analog, real world signal like a sound signal into a com-
puter, the signal has to pass through an analog-to-digital converter (ADC).
This device does 2 things. First it performs a sample-and-hold operation, to
measure the signal’s value at a certain discrete time. Afterwards, this sam-
ple gets quantized, that is: the exact analog value is converted (and possibly
rounded) to a digital form. This way, any analog continuous-valued signal
can be converted to a sampled discrete-valued signal that is fit for storage
and processing by computers.

4

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Frequency domain representation

Next to the time domain representation, we can represent signals in the fre-
quency domain. Fourier proved that any periodic signal can be described
as a sum of sinusoids (or cosinusoids, which is equivalent), and that this
description is unique. The relation between the time domain and frequency
domain representation is then given by the Fourier transform.

This Fourier transform has the drawback that it is actually defined for
continuous, infinite signals. When handling finite, digital data, some as-
sumptions have to be made for the Fourier transform to be applicable. These
assumptions introduce the artefacts that are inherently part of the discrete
Fourier transform.

A first assumption that has to be made is that the signal that we wish to
transform is infinite or periodical. When our signal only consists of a limited
range of measured values, say a frame of 256 samples, the Fourier transform
needs to assume that these 256 samples are the period of a conceptually in-
finite, periodical signal. Probably this is not the case at all, but there is no
way around: the computed transform will be that of an infinite signal with
the chosen frame as period. The artefact that this assumption introduces is
spectral leakage.

A second assumption that has to be made is that the signal is sufficiently
sampled. Luckily, the Nyquist-Shannon sampling theorem provides us with
a guideline: if a signal contains a maximal frequency f , then the sampling
rate must have a frequency of at least 2f in order to have the Fourier trans-
form calculate frequency f correctly. If a signal does contain frequencies that
are higher than half the sample rate, these will lead to the artefact of aliasing.

1.1.2 The Fourier transform

CFT: the Continuous Fourier Transform

The continuous Fourier transform is defined as:

X(f) =

∫ +∞

−∞
x(t)e−2πiftdt (1.1)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 5

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Its inverse is:

x(t) =

∫ +∞

−∞
X(f)e2πiftdf (1.2)

Note that the signal represented in the Fourier domain, X(f), is generally
complex: it has a real and an imaginary part. Most people are familiar with
a signal in the Fourier domain being a sum of sines and cosines, but that
version is equivalent with this complex exponential version. Both are linked
by Euler’s famous equation:

eiφ = cos(φ) + isin(φ) (1.3)

Thus, each component of X(f) is a sinusoid with an amplitude A(f) =
|X(f)| and phase φ(f) = ∠X(f). Because complex numbers allow for faster
calculations and easier reasoning than sines and cosines, the complex number
representation is the most common in today’s signal processing applications.
For each frequency, a single complex number can represent both amplitude
and phase of the sinusoid of that frequency, and thus fully defines that com-
ponent of the spectrum.

DFT: the Discrete Fourier Transform

The Discrete Fourier Transform of a discrete signal of N samples is defined
as:

X[k] =
1√
N

N−1∑
n=0

x[n]e
−2πikn

N (1.4)

with k = 0, 1, 2, ... N-1.

Its inverse is:

x[n] =
1√
N

N−1∑
k=0

X[k]e
2πikn

N (1.5)

1√
N

is a normalization factor, making the transform what is called uni-
tary. It depends on convention whether you want to use it or not - after all,
it is only a multiplication of the result with a scalar. The only requirement
is that the product of the normalization factors of both the DFT and inverse

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 6

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

DFT is 1/N .

If the input signal to a DFT is real, then the DFT of that signal is
symmetric as follows:

X[k] = X[N − k]∗ (1.6)

The second half of the transform is the mirrored complex conjugate of
the first half of the transform. Therefore, when taking the Fourier Transform
of 44100 samples (one second of cd quality sound), we obtain a sequence of
which only the first half is useful (the other half is redundant), representing
the frequencies from 0 to 22050.

The latter shows the most significant drawback of the Discrete Fourier
Transform of a discrete signal: it computes a discrete representation in the
frequency domain. Each discrete frequency could be said to form a ’channel’,
representing also the real frequencies around it. These channels are called
’frequency bins’. A frequency bin describes a frequency range. When hav-
ing the 22050 resulting numbers of the Fourier representation of our signal,
the first number of that resulting sequence corresponds to frequency 0 Hz, a
constant. The second number represents frequency 1 Hz, but also the sur-
roundings, so actually [0.5 , 1.5 [, and so up to discrete frequency 22049 Hz
or its real counterpart, the bin [22048.5, 22049.5[.

FFT: the Fast Fourier Transform

The Fast Fourier transform is an algorithmic implementation of the discrete
Fourier transform. Several FFT algorithms exist, but by far the most popu-
lar is the one that was developed by Cooley and Tukey in 1965 [13]. Another
is for example the prime factor algorithm by Good and Thomas [14]. Several
improvements to FFT algorithms are still being developed and proposed to-
day, see for example [15]. The most used ones are probably those that are
currently available through the FFTW library.

1.1.3 Spectral Leakage

In this section I will give a short overview of the phenomenon of spectral
leakage. We always work with finite, discrete signals and thus with discrete

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 7

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Fourier transforms. Spectral Leakage and the subsequent necessity for win-
dowing is very well explained on pp. 536-570 of [16] and on pp. 555-563
of [17].

Problematic Properties of the DFT

The DFT calculates from a given signal of N samples, its frequency domain
representation consisting of N/2 discrete frequencies. Those frequencies are
equally spaced among the bandwidth of the sampled signal (this bandwidth
goes from 0 to the Nyquist frequency). The space between the discrete fre-
quencies depends on the length of the input window. That length also forms
the period of the first frequency component of the discrete spectrum. Each
component of the spectrum calculated by the DFT therefore does not ac-
tually represent one single frequency, but can be seen as a small range of
frequencies: a frequency channel. The unit of frequency channels is called
’bin’ or ’frequency bin’.

The DFT of a discrete signal thus produces a discrete spectrum. The
spectrum consists of a finite number of discrete frequencies, each of which
is a multiple of the frequency with a period length the size of the signal.
Then, what happens if the frequency of a component of the signal does not
nicely coincide with one of the frequencies that is represented in the spec-
trum? This is illustrated on the next pages, both on one-dimensional and
two-dimensional signals.

Spectral leakage in 1D signals

When an input signal f has a frequency that haphazardly coincides with the
center of one of the frequency channels, all the energy of that frequency in
the signal will concentrate into that one channel. So, the strength of the
frequency of the signal is accurately measured. An example is shown here:
a signal of 250Hz at a sample rate of 8000 Hz, has exactly 32 periods per
second. Taking a 256-point DFT, we compute the strength of a series of
frequency bins that are each 4000/128 = 31.25 Hz wide. The 8th frequency
bin is thus centered around the frequency of 8∗31.25 = 250 Hz, so it matches
exactly the frequency that is present in the input signal.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 8

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Figure 1.1: 256 samples of a 250Hz signal sampled at 8000Hz

When we lower the frequency of the input signal a little bit, the signal
will not coincide anymore with one of the analysis channel centers. Energy
of this signal is spread out across all other frequencies, but the largest con-
centration is still in the neighborhood of the closest channel. The spectrum
as we calculate it is less reliable: we see all kinds of frequencies emerge at
different strengths, while in reality there is only one frequency present. This
phenomenon is called spectral leakage.

Spectral leakage is still manageable when the input signal only contains
a few frequencies. But in real life applications, this is rarely the case: most
signals consist of an abundance of frequencies, and most of those will not
nicely coincide with the center of the analysis channels. The DFT of such a
signal is polluted with spectral leakage for almost every occurring frequency.
Spectral leakage tends to spread very wide, across the whole spectrum even,
and so interferes with other parts of the spectrum.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 9

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Figure 1.2: The 256-point DFT of Fig. 1.1

Figure 1.3: 256 samples of a 240Hz signal sampled at 8000Hz

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 10

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Figure 1.4: The 256-point DFT of Fig. 1.3

Spectral leakage in 2D signals

An image can be viewed as a two-dimensional finite signal. Reworking the
previously presented digital signal processing methods to more dimensions
would bring us too far here, but a light introduction on the DFT of images
and filtering can be found in [18].

In image processing, a clear Fourier transform with as few leakage as
possible is also advantageous: it focuses the attention on those spectral com-
ponents that are really important in the image, and thus can be of use when
designing filters for the frequency domain, or even editing the frequency do-
main.

Figure 1.5 consists of a series of black and white bands, rotated 45 degrees.
It can be proved that the Fourier transform of a rotated image corresponds
to the rotated Fourier transform of the original non-rotated image. So we
expect the Fourier transform (figure 1.6) to consist of a periodic series of
points perpendicular on the band direction. The points are equally spaced
and seem to go on infinitely. However, when computing this Fourier trans-
form, the resulting spectrum is a true work of art (figure 1.7).

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 11

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Figure 1.5: Test image

Figure 1.6: The expected FFT of Fig. 1.5

In figure 1.7, we can still distinguish the most important components
of the signal: the clear white points on the diagonal. The spectral leakage
formed is visible as the geometric patterns emanating from these points. But
in bad lighting, unclearly printed, or with a bad monitor, it could be difficult
to point out the diagonal band of white points as the most significant data
in the calculated spectrum. Also, software that would rely on this computed
spectrum for further processing could be fooled into thinking that the other
geometric patterns are of more importance.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 12

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Figure 1.7: The calculated FFT of Fig. 1.5

The cause of spectral leakage

If we still want to make a trustworthy analysis of a spectrum of such a signal,
we have to devise methods to reduce the spectral leakage. Therefore we must
first analyse the cause of the leakage. The cause is that the DFT assumes
that the input signal is infinite and periodic. That is, it will not calculate
the spectrum of only the finite input signal, but rather the spectrum of the
input signal that is repeated eternally. This assumption is inherited from
the definition of the continuous Fourier transform: the continuous Fourier
transform is defined on infinite signals.

In practical terms: the perfect transform, like in figure 1.2 , can only be
computed if the finite input signal only consists of components with a positive
integer number of complete periods. In our example one-dimensional signal
this would be 8 complete periods. In Figure 1.3 the only signal component
that is present does not contain an integer number of periods. The transform
calculated will actually be the transform of an endless stream of these short
signals.

As the beginning and the end of the signal do not coincide (as is the case
when a positive integer number of periods is reached), there will be glitches
at those points where the signal is glued together. These glitches, where the
signal restarts before being able to complete its component’s periods, are
responsible for the leakage: to make up for the glitches, energy is added to
lower and higher frequencies around the component’s real frequency.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 13

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

In the 2-dimensional case, this can easily be visualized. Consider figure
1.8, where this assumption of infinity has been worked out. It is clearly
visible that the image is not continued through the horizontal and vertical
bands, but is just tiled. The tiles introduce irregularities in the image that
are visible in the spectrum as leakage.

Figure 1.8: The reason of leakage: glitches when repeating

1.1.4 Window Functions

The solution is quite simple: if the problem lies with the beginning and the
end of the finite signal not fitting neatly together, just make them fit neatly
together. We can apply several window functions (also called apodization
functions) to a signal, to make sure that the signal converges to 0 at the
beginning and the endpoints, thus making the ends fit nicely together when
the signal is repeated. This reduces most spectral leakage, but unfortunately
also has side effects: by multiplying the signal with a window function, we
are actually computing the DFT of another function than the real signal. A
very recent and comprehensive starter text on windowing is [19].

What are window functions?

Window functions are special functions that a signal has to be multiplied
with prior to the calculation of the DFT. They can have any form or shape,

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 14

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

as long as they are defined within the borders of the signal. Several types
of window functions exist, and most of them are very well explained in the
very significant papers by Harris [20] and Nuttall [21]. Multiplying a signal
with a window function has the effect that the signal is ”squeezed” into the
frame defined by the window function.

When a signal is Fourier transformed without a window function having
been applied, actually, a rectangular window function has been applied. It is
bordered at the left and right hand sides by the starting point and endpoint
of the signal, and has a constant value of 1.

Properties and examples

Multiplication by a window function in the time domain, corresponds to con-
volution with the Fourier transform of the window in the frequency domain.
In order to view the actual spectrum of the signal, we want a convolution with
another function that resembles as much as possible the Dirac delta function
(a single peak with value 1 at the origin, the other values 0). Convolution
with that function is an identity operation of the convolution operator.

And immediately, it becomes clear why a rectangular window (or ’no
window’) is not so good a choice for a window function. A rectangular
window has as its Fourier transform a sinc function, which does not resemble
the Dirac delta function at all:

sinc(x) =
sin(x)

x
(1.7)

And even worse, this function has a very slow asymptotical behaviour on
the sides (in this context also called the sidelobes), so that even far away from
the origin, the function still has relatively significant values. In 2-dimensional
signal processing, this gives rise to the effect of ringing.

The situation is much better for the 3-term Blackman function, which is
defined as :

w(n) = 0.42− 0.5cos(
2πn

N − 1
) + 0.08cos(

4πn

N − 1
) (1.8)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 15

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Figure 1.9: The rectangular window and its FFT

Figure 1.10: The Blackman window and its FFT

The result of multiplying our 240Hz example with this window function
is shown in Fig. 1.11. The DFT of the windowed signal is shown in Fig.
1.12. Compared to the DFT of the non-windowed (or rectangular-windowed)
function, this one is much cleaner, and only contains a significant amount of
spectral energy very close around the real frequency.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 16

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

Figure 1.11: Fig. 1.3 with a Blackman window applied

Figure 1.12: The 256-point DFT of Fig. 1.11

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 17

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

The difficult trade-off

Applying a window function has its implications, though. The original sig-
nal, at the endpoints of the time frame, is being reduced to nearly 0. This
means that a whole lot of information on the signal is lost. In the DFT of
the windowed signal, this results in a loss of spectral resolution: an error is
introduced in the input for the DFT calculations and the resulting spectrum
is ”blurred”. For well windowed signals, the spectrum will contain almost
no leakage, but the spectral peaks that are present will be broader and more
spread out to the nearest frequency bins.

In general there is always a trade-off to make when choosing a window
function, between making the spectrum peaks as narrow as possible, and
making the outer sides of the leakage fall off as fast as possible. There exists
a whole range of windows functions, each with their own properties. The
most important ones that are still used today are listed in [20] and [21].

Which one is best to use really depends on the situation: the signal and
the user. For one application, one might want to use a Kaiser window with a
low or high coefficient, while for a really large signal, a Blackman window is
computationally much more interesting, and yields nearly the same results.
Depending on the signal, a Bartlett window might give an excellent result,
while a Gaussian window really messes up the spectrum. In most professional
applications, it is customary to offer the user a choice between different win-
dows, so that he can compare the differences him/herself and choose the one
that provides him/her with the most satisfactory results.

The Blackman-Harris window function

Nuttall, Blackman-Harris and Blackman-Nuttall windows are all variations
on the same theme: they are the same function but they differ in constants.
This function is:

w(n) = a0 − a1cos
2πn

N − 1
+ a2cos

4πn

N − 1
− a3cos

6πn

N − 1
; (1.9)

The coefficients are:

For Nuttall: a0 = 0.355768, a1 = 0.487396, a2 = 0.144232, a3 = 0.012604.
For Blackman-Harris: a0 = 0.35875, a1 = 0.48829, a2 = 0.14128, a3 =
0.01168.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 18

1.1. A DIGITAL SIGNAL PROCESSING CRASH COURSE

For Blackman-Nuttall: a0 = 0.3635819, a1 = 0.4891775, a2 = 0.1365995,
a3 = 0.0106411.

As such they form an extension to the Blackman window that we have
seen earlier. The constants are different for each of these windows. The
differences are minimal, but the effects are quite large. I won’t elaborate on
them, though, since that would bring us too far outside the scope of this
thesis.

Further in this thesis, especially the Blackman-Harris window will be
used very often. The reason for that is that of all windows that are currently
known, it has the best spectral leakage suppression properties (as also de-
scribed in [20]. This property will be of extreme importance when reviewing
the algorithms of D’haes from [5]. The loss of spectral resolution is an ac-
ceptable disadvantage, because optimization algorithms are used for finding
the real frequencies anyway.

Figure 1.13: The Blackman-Harris window and its FFT

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 19

1.2. POLYPHONIC AUDIO

1.2 Polyphonic Audio

To better understand what will come, it is necessary to introduce the basics
of classical western music theory.

1.2.1 Terminology

When a musical instrument like a piano makes a sound, it makes the air
vibrate with a certain frequency. The human ear is able to sense these vi-
brations and perceive the tone height of the sound, which is called a pitch.
When placing the note in its musical context (a tonality), it is called a tone.
When written down on paper, it is called a note.

Instruments may produce a sound at the same pitch, but it may sound
completely different: the timbre of all musical instruments differs. The rea-
son for this is that the generated sound consists of not only one fundamental
frequency but also of a series of harmonics: multiples of that fundamental
frequency. Differences in how the amplitudes of the harmonics relate to each
other can make us tell the instruments apart.

A generated sound need not be pitched. Percussion instruments like
drums, generate sounds that will appear as consisting of a vast range of
frequencies, however, none of these frequencies relate to eachother in a dis-
tinguishable way, or pop out as special. These sounds are unpitched or noisy.
As with pitched sounds, also different kinds of noise exist. Often they are
named like colors: white noise for example has equal power at all frequencies
of the spectrum - a uniform spread.

The distance between two distinct pitches is an interval. In western music
the basic interval is a semitone. More than 2 pitches that function together,
form a chord. A scale is an ordered sequence of notes serving as the basis for
any musical piece. Scales come in different modes depending on the intervals
between the notes. Eastern music often works with pentatonic scales, con-
sisting of only 5 notes. Indian raga music or arabian maqamat music uses
scales that have intervals smaller than the traditional western semitone. Also
in modern western music, large scales that work with microtones have been
developed.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 20

1.2. POLYPHONIC AUDIO

1.2.2 Classical Western Music Theory

Several musical theories exist that define rules on how the notes and chords
should relate to each other in music. This is very much a matter of taste,
more than physics or math. For a western ear, arabic music sounds very much
out of tune, and vice versa. To keep things simple, I will only explain the
basics of classical western music theory here, as developed and used around
the years 1600-1900. The fact that western people are so used to it and
that it is relatively simple, makes also popular western music mostly adhere
to this classical system - albeit with a little more freedom, like jazz influences.

Classical western music uses a 7 note so-called diatonic scale as basis.
Each note of this scale gets a functional name, the most important ones be-
ing the tonic (1st note), the subdominant (4th note) and the dominant (5th
note). On top of every note, one can build a triad chord consisting of 2 thirds
(a third is an interval consisting of 3 - a minor third - or 4 - a major third
- semitones). These chords are designated with a roman number, indicating
the position of the note on which the chord is built in the scale: the triad on
the tonic, subdominant and dominant are designated as I, IV, V respectively.

Each classical western piece of music has an underlying harmonic struc-
ture that progresses with time, which is traditionally described in the form
of chord progressions: sequences like I - IV - I - IV - V - I . At any time, the
notes of the current chord serve as guide notes for the music that has been
built upon it. These notes will often occupy the most important places in
the music, like the beginning of a measure or the bass line. There are rules
for connecting the different chords together, but the composer is of course
free to make variations, additions, elaborations, omissions, decorations, per-
mutations and combinations of several elements, at his own taste.

As long as the underlying harmonic structure is distinguishable, every-
thing still sounds correct to our ears. But there is a lot of overlap: different
chords can have several notes in common (I and IV have the tonic in common,
I and V have the dominant in common). So, seeing a tonic, is the underlying
chord a I or a IV? The next note, is it part of a real basic chord or is it just a
decoration of the composer to fill up an empty space? This must be derived
from the context, and this context can take many forms. As can be seen, in
even the simplest examples of western music theory, lots of ambiguities exist.
Also, each composer has his own style, which makes developing automated
harmonical analysis algorithm a daunting task - though sometimes attempts
are being made, like [22].

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 21

1.2. POLYPHONIC AUDIO

1.2.3 Musical Harmony and Mathematics

Traditional western music is very much related to mathematics. Pythagoras
is credited with the discovery that, when the string length of a stringed
instrument is halved, the resulting note sounds exactly one octave (one full
scale span) higher. Also, the string length ratio between tonic and dominant
was found to be 3/2, producing a perfect fifth interval, and between the tonic
and subdominant 4/3, producing a perfect fourth interval. By artificially
stacking 3/2 string ratio’s on top of each other, the so-called circle of fifths,
a 12-tone scale can be constructed. When reordered into one octave, a scale
consisting of 12 semitones appears. The circle of fifths forms the basis of
classical harmony, as can be seen in our example: the chords IV - I - V each
have an interval of a perfect fifth between them.

Figure 1.14: The Circle of Fifths

There is a good reason to choose the 3/2 interval as basis. As seen ear-
lier, each instrument that plays a note, does not only produce a fundamental
frequency but also harmonics: frequencies that are an integer multiple of
the fundamental frequency. The first, and often most powerful, harmonics
of a 100 Hz tone are tones of 200 Hz (mark the ratio 2:1, an octave), 300
Hz (mark the ratio 3:2, a fifth), and 400 Hz (mark the ratio 4:3, a fourth).

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 22

1.2. POLYPHONIC AUDIO

When playing a note of 100Hz and the note 3/2 above it, 150 Hz, several har-
monics of these notes coincide with each other and reinforce each other: the
300 Hz harmonics and their multiples. This appears to humans as pleasingly
consonant. In general, when the mathematical relationship between physical
frequencies is a very simple ratio, so a lot of harmonics coincide, these tones
are regarded as consonant or well sounding.

There is one problem however: stacking 3/2 ratios on top of each other,
does not lead us back to the beginning. The whole cycle of fifths, 12 in-
tervals in total, should encompass exactly 7 full octaves. Suppose we start
from a frequency of 1 Hz, or 20, we expect to come out at 128 Hz, or 27.
But, (3/2)12 = 129.7463... Result: a reordered cycle of fifths creates a nice
approximation to the 12-semitone octave, but is far from exact. To solve the
problem, in a Pythagorean tuning, the last frequency of 129.7463 Hz is quite
brutely replaced with what it should be ideally: 128 Hz.

If every fifth interval is in perfect tune except the last one (the so called
wolf interval), this exception can of course be heard by the audience. Ancient
composers simply did not use it, but by the end of the Renaissance this rude
’patch’ was no longer satisfiable. Several new tunings for the 12-semitone
were developed, among others by Johannes Kepler. Nowadays, a so called
equal tempered tuning is used: the distances between the 12 semitones are
taken to be equal, each with a factor 21/12 different from the previous semi-
tone.

The equal tempered tuning however, breaks the Pythagorean string ra-
tios. A perfect fifth interval, 7 semitones wide, does not have a ratio of 3/2
but one of 27/12/2 = 2.9966.../2 . However, this difference is so small that
it is only distinguishable for the well trained ear, or for people with a good
absolute hearing. The other perfect interval, the forth, has the same prob-
lem. For the fundamental frequency, this discrepancy is still small, but in the
harmonics of each tone, which are multiples of the fundamental frequencies,
these small inexactnesses are also multiplied and become stronger.

On certain instruments which produce lots of strong harmonics, like some
kinds of flutes, the increasing differences in harmonics between two sounding
tones can give rise to an effect known as phantom fundamentals: at a certain
point, the divergence between harmonics is so large that the brain cannot
tell any more which harmonic belongs to which fundamental frequency, and
so it assumes that another, more fitting fundamental should be present to
explain these harmonic ratios: we hear notes that are not there.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 23

1.2. POLYPHONIC AUDIO

The classical western harmony has firm roots in mathematics, but also
on a higher level, classical musical structures often have a very strict defini-
tion that could be seen as mathematically. Mathematics has often been of
inspiration to composers that were developing musical structures, sometimes
even providing in raw material like melodies. The introduction of comput-
ers allowed calculation-intensive mathematics to be used in compositions,
pioneered by, amongst others, Xenakis. The correspondences between math-
ematics and music can also be analyzed from a more philosophical point of
view, the most known work probably being the popular-scientific book by
Hofstadter on Gödel, Escher and Bach [23].

1.2.4 Harmony? Polyphony?

The frame in which we will work further in this thesis still needs to be
sketched. Therefore, we need some more definitions and assumptions.

The very fact that a sinusoidal model will be used, implies that the de-
scribed system is only useful for sounds that are harmonic. That is, every
tone that is present must be pitched, which means that every tone has a
fundamental frequency and a series of harmonics. We will assume that any
frequencies that are present in the sound and are not directly related to one
of the tones, are just noise components.

Polyphony is attained when the tones that are present in the sound, are
interrelated in a consonant way. The definition of consonance is very subjec-
tive, and so is actually polyphony. A relatively reliable metric of consonance
could be the number of coinciding harmonics in the sounding tones, give or
take a certain error induced by well-tempered tuning.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 24

1.3. SINUSOIDAL MODELLING

1.3 Sinusoidal Modelling

1.3.1 A sinusoidal model

For a signal containing one or more tones with a limited number of frequencies
and corresponding amplitudes, storing the signal using all time information
or frequency information is overkill. Instead, we can reconstruct the whole
signal if we only store those few frequencies and their amplitudes, that are
actually present in the signal. There is hardly any use in storing the 0 parts
of the spectrum, they do not contribute to the signal in any way.

A signal is composed of a sum of sinusoids (or cosinusoids, which is esen-
tially the same), each with their own frequency, amplitude and phase. Then
we can approximate any real signal xn of length N with K components, by
defining a sinusoidal model x̃n as follows:

x̃n =
K−1∑
k=0

ak cos

(
2πωkn

N
+ φk

)
(1.10)

The window that is applied to the signal has its center at the origin of
the timescale. Also, to compute the DFT of a signal, we need to center the
signal around the origin of the timescale. This will ensure that the computed
spectrum is not phase shifted. Centering the signal happens by substituting
n− n0 for n, where n0 = N−1

2
.

So, the windowed and centered sinusoidal model of a signal can be written
as:

x̃n = wn

K−1∑
k=0

(
akcos

(
2πωk

n− n0

N
+ φk

))
(1.11)

We are mainly concerned with finding the best frequencies ωk and corre-
sponding amplitudes ak, so that x̃n approximates xn the best.

Using Euler’s Formula

eiφ = cosφ + isinφ (1.12)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 25

1.3. SINUSOIDAL MODELLING

we can reformulate the model using complex exponentials. These com-
plex exponentials are what is actually computed by most FFT routines, and
they allow for more elegant reasoning in the Fourier domain.

The cosine translates to complex exponentials as:

cos(x) =
eix + e−ix

2
(1.13)

This is directly derivable from Euler’s Formula. Substituting this in eq.
1.11 yields:

x̃n = wn

K−1∑
k=0

(
ak

ei(2πωk
n−n0

N
+φk) + e−i(2πωk

n−n0
N

+φk)

2

)

=
1

2
wn

K−1∑
k=0

(
ake

(
2πiωk(n−n0)

N
+iφk

)
+ ake

(
−2πiωk(n−n0)

N
−iφk

))

=
1

2
wn

K−1∑
k=0

(
ake

2πiωk(n−n0)

N eiφk + ake
−2πiωk(n−n0)

N e−iφk

)
(1.14)

The complex amplitude of a sinusoid is defined as: Al = ale
iφl . It con-

tains information about both the amplitude and the phase of a sinusoid.
Substitution in the last equation yields:

x̃n =
1

2
wn

K−1∑
k=0

(
Ake

2πiωk(n−n0)

N + A∗
ke

−2πiωk(n−n0)

N

)
(1.15)

where A∗
k denotes the complex conjugate of Ak.

Every complex amplitude Al can be split up into its real and imaginary
components: Al = Ar

l + iAi
l. Using Euler’s Formula, the real and imagi-

nary components of the complex amplitude relate to the amplitudes of the
sinusoidal representation as:

Ar
l = alcos(φl)

Ai
l = alsin(φl)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 26

1.3. SINUSOIDAL MODELLING

It is now easy to go back to the first definition of our model in Eq 1.10,
taking the complex amplitude with us. Also remind that cos(−x) = cos(x)
and sin(−x) = −sin(x). Starting from Eq 1.15, we find:

x̃n =
1

2
wn

K−1∑
k=0

(
(Ar

k + iAi
k)e

2πiωk(n−n0)

N + (Ar
k − iAi

k)e
−2πiωk(n−n0)

N

)
=

1

2
wn

K−1∑
k=0

(
(Ar

k + iAi
k)

(
cos

(
2πωk

n− n0

N

)
+ isin

(
2πωk

n− n0

N

))
+(Ar

k − iAi
k)

(
cos

(
−2πωk(n− n0)

N

)
+ isin

(
−2πωk(n− n0)

N

)))
=

1

2
wn

K−1∑
k=0

(
2Ar

kcos

(
2πωk

n− n0

N

)
− 2Ai

ksin

(
2πωk

n− n0

N

))

= wn

K−1∑
k=0

(
Ar

kcos

(
2πωk

n− n0

N

)
− Ai

ksin

(
2πωk

n− n0

N

))
(1.16)

Minimizing the error

The eventual goal is to make the model resemble the real input as good as
possible. To express this, we define an error function χ(A; ω), as the square
difference between the real signal and its model. Given a set of frequencies,
which are obtained by an iterative algorithm, the error function is defined
with a vector of complex amplitudes as variables. This error needs to be min-
imized. This involves calculating the partial derivatives and putting them to
zero.

χ(A; ω) =
N−1∑
n=0

(xn − x̃n)2 (1.17)

Calculating the frequencies must happen through an optimization pro-
cess. Since we only have a discrete spectrum at our disposal using the DFT,
we have no knowledge of the real frequencies that are around. We have to

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 27

1.3. SINUSOIDAL MODELLING

start with a crude sinusoidal model containing some estimate of the frequen-
cies that are present, which can be chosen either manually by peak picking,
or automatically by some kind of spectrum analysis. We can calculate the
amplitudes and phases (taken together in the complex amplitude) that make
this crude model resemble the signal the best way possible, through a process
of amplitude estimation.

Afterwards, we can perform an optimization of the chosen frequencies, to
make the sinusoidal model converge to the real situation. At every optimiza-
tion step, the amplitudes need to be re-estimated, so we can see whether we
are optimizing in the correct direction. In the next sections of this thesis,
we will view in detail how both amplitude estimation and frequency opti-
mization can be carried out, making full use of theoretical results involving
windowing, that allow for significant speedup.

The reason to choose for an iterative optimization method instead of
a quadratic interpolation of the spectrum in order to find the correct fre-
quencies, is that we wish to handle overlapping frequency responses: several
frequencies very close together influence each other in the discrete spectrum,
making quadratic interpolation yielding useless results. Several optimization
methods can be used for this kind of task, among others gradient descent,
Newton’s method, or Gauss-Newton optimization.

1.3.2 Amplitude Estimation

Once a new set of frequencies has been calculated in a next iteration of the
frequency optimization routine, we have to calculate the amplitudes of all
those frequencies, in order to make the model resemble the input as good as
possible.

The mathematical workout

Since our amplitudes are complex numbers which can be separated into their
real and imaginary parts (see eq. 1.16), we can view those parts as separate
variables. Thus, we can minimize the error by putting all partial derivatives
with respect to one of the unknown complex amplitude components to 0:

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 28

1.3. SINUSOIDAL MODELLING

∂χ(A; ω)

∂Ar
l

= 0

∂χ(A; ω)

∂Ai
l

= 0 (1.18)

Working out the first equation from the previous formulas 1.17 and 1.16,
this comes down to calculating the following partial derivative with respect
to Ai

l:

∂

∂Ar
l

N−1∑
n=0

(
xn − wn

K−1∑
k=0

(
Ar

kcos

(
2πωk

n− n0

N

)
− Ai

ksin

(
2πωk

n− n0

N

)))2

(1.19)

Working out the inner brackets gives:

∂

∂Ar
l

N−1∑
n=0

(
xn − wn

K−1∑
k=0

Ar
kcos

(
2πωk

n− n0

N

)
+ wn

K−1∑
k=0

Ai
ksin

(
2πωk

n− n0

N

))2

(1.20)

And putting all summations in front, we get the following to solve:

∂

∂Ar
l

N−1∑
n=0

K−1∑
k=0

(
xn − wnA

r
kcos

(
2πωk

n− n0

N

)
+ wnA

i
ksin

(
2πωk

n− n0

N

))2

(1.21)

Using the well known chain rule, we first work out the exponent, and then
multiply by the derivative of the base:

∂χ

∂Ar
l

= 2
N−1∑
n=0

K−1∑
k=0

(
xn − wnA

r
kcos

(
2πωk

n− n0

N

)
+ wnA

i
ksin

(
2πωk

n− n0

N

))
wncos

(
2πωl

n− n0

N

)
(1.22)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 29

1.3. SINUSOIDAL MODELLING

The reason that the derivative of the base is only a cosine function, is that
the term wnA

r
kcos

(
2πωk

n−n0

N

)
can be regarded as a constant for all k 6= l,

and thus it can be discarded in derivation. The same goes for all Ai, since
we are deriving with respect to Ar

l . For k = l, Ar
l is just a normal variable,

thus wnA
r
l cos

(
2πωl

n−n0

N

)
can be regarded as a linear function, the derivative

to Ar
l being wncos

(
2πωl

n−n0

N

)
.

This partial derivative needs to be put to 0. We can do away with the
factor 2 in front, since this is only a constant. The multiplication that resulted
from the chain rule can be worked out and put inside the summation:

0 =
N−1∑
n=0

K−1∑
k=0

(
xnwncos

(
2πωl

n− n0

N

)
−w2

nA
r
kcos

(
2πωk

n− n0

N

)
cos

(
2πωl

n− n0

N

)
+w2

nA
i
ksin

(
2πωk

n− n0

N

)
cos

(
2πωl

n− n0

N

))
(1.23)

Note that this yields that in some terms, the window function wn gets
squared. This will be a useful property in the future. Splitting up the sum-
mations and reordering the terms, the requirement that the partial derivative
be 0 comes down to the following result:

K−1∑
k=0

(
Ar

k

N−1∑
n=0

(
w2

ncos

(
2πωk

n− n0

N

)
cos

(
2πωl

n− n0

N

)))

−
K−1∑
k=0

(
Ai

k

N−1∑
n=0

(
w2

nsin

(
2πωk

n− n0

N

)
cos

(
2πωl

n− n0

N

)))

=
N−1∑
n=0

(
xnwncos

(
2πωl

n− n0

N

))
(1.24)

For the partial derivatives with respect to the imaginary parts of the
complex amplitudes, the calculations are analog, yielding the following result:

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 30

1.3. SINUSOIDAL MODELLING

−
K−1∑
k=0

(
Ar

k

N−1∑
n=0

(
w2

ncos

(
2πωk

n− n0

N

)
sin

(
2πωl

n− n0

N

)))

+
K−1∑
k=0

(
Ai

k

N−1∑
n=0

(
w2

nsin

(
2πωk

n− n0

N

)
sin

(
2πωl

n− n0

N

)))

= −
N−1∑
n=0

(
xnwnsin

(
2πωl

n− n0

N

))
(1.25)

For a model with K components, we have for each of those components
these 2 equations to solve: one for the real and one for the imaginary part
of the complex amplitude of that component. Having 2K equations in 2K
unknowns, this can be written in matrix form: a 2K by 2K matrix with 2K
unknowns. We define the following K by K submatrices B, the vector of
unknowns A and the constant terms C as follows:

B1,1
l,k =

N−1∑
n=0

(
w2

ncos

(
2πωk

n− n0

N

)
cos

(
2πωl

n− n0

N

))

B1,2
l,k = −

N−1∑
n=0

(
w2

nsin

(
2πωk

n− n0

N

)
cos

(
2πωl

n− n0

N

))

B2,1
l,k = −

N−1∑
n=0

(
w2

ncos

(
2πωk

n− n0

N

)
sin

(
2πωl

n− n0

N

))

B2,2
l,k =

N−1∑
n=0

(
w2

nsin

(
2πωk

n− n0

N

)
sin

(
2πωl

n− n0

N

))

C1
l =

N−1∑
n=0

(
xnwncos

(
2πωl

n− n0

N

))

C2
l = −

N−1∑
n=0

(
xnwnsin

(
2πωl

n− n0

N

))
(1.26)

Here, k is the index of the component (the row index in B), and l the index
of the component with respect to which the partial derivative was taken (the
column index in B, and therefore also the row index in A and C). Hence, the
problem of finding the amplitudes of the given frequencies now comes down
to solving the 2K by 2K matrix equation:

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 31

1.3. SINUSOIDAL MODELLING

[
B1,1

l,k B1,2
l,k

B2,1
l,k B2,2

l,k

] [
Ar

l

Ai
l

]
=

[
C1

l

C2
l

]
(1.27)

The D’haes Optimization

In order to show how this matrix can be set up quickly, the behavior of the
sinusoidal model in Fourier space must be investigated. Recall the definition
of a sinusoidal model in equation 1.15 . Taking the Fourier transform of this
model, gives us the spectrum of the model:

X̃m =
1

2

N−1∑
n=0

(
wn

[
K−1∑
k=0

(
Ake

2πiωk
n−n0

N + A∗
ke
−2πiωk

n−n0
N

)]
e2πim

n−n0
N

)
(1.28)

Working out the inner brackets and the multiplication of exponentials:

X̃m =
1

2

(
K−1∑
k=0

(
Ak

N−1∑
n=0

(
wne

−2πi(m−ωk)
n−n0

N

))
+

K−1∑
k=0

(
A∗

k

N−1∑
n=0

(
wne

−2πi(m+ωk)
n−n0

N

)))
(1.29)

Which, for ease of use, we can rewrite as:

X̃m =
1

2

(
K−1∑
k=0

(AkW (m− ωk) + A∗
kW (m + ωk))

)
(1.30)

with

W (m) =
N−1∑
n=0

(
wne

−2πim
n−n0

N

)
(1.31)

This last substitution comes in very handy: W(m) is the definition of the
Fourier transform of the window w(n). Thus, it is proved that the DFT of
a sinusoidal model is actually a linear combination of DFTs of the window

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 32

1.3. SINUSOIDAL MODELLING

function that is used, shifted over ωk and weighted by complex amplitude Ak.
This is a major advantage: the Fourier transform of the Blackman-Harris
window function is very strongly bandlimited, as can be seen in figure 1.13,
with the sidelobes having an attenuation of -92dB [20]. Though squaring
the window function enlarges the bandwidth of the main lobe, the squared
window also still is bandlimited. We can define the Fourier transform of the
squared window as follows:

Y (m) =
N−1∑
n=0

(
w2

ne
−2πim

n−n0
N

)
(1.32)

The normal and squared window functions and their DFTs are known be-
forehand and can be implemented in software using scaled and oversampled
lookup tables, so these values can be regarded as constants in calculations.

Figure 1.15: The squared Blackman-Harris window and its FFT

Going back to matrix equation 1.27, we can further simplify its compo-
nents that were written out in 1.26. For example, B1,1

l,k can be written in
function of W (m), using the Simpson formulas of trigonometry:

B1,1
l,k =

1

2

N−1∑
n=0

(
w2

n

(
cos

(
2π(ωk + ωl)

n− n0

N

)
+ cos

(
2π(ωk − ωl)

n− n0

N

)))
=

1

2
(< (Y (ωk + ωl)) + < (Y (ωk − ωl))) (1.33)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 33

1.3. SINUSOIDAL MODELLING

And the same goes for the other components of matrix B:

B1,2
l,k = −1

2
(= (Y (ωk + ωl)) + = (Y (ωk − ωl)))

B2,1
l,k = −1

2
(= (Y (ωk + ωl))−= (Y (ωk − ωl)))

B2,2
l,k = −1

2
(< (Y (ωk + ωl))−< (Y (ωk − ωl))) (1.34)

Though these results were developed using complex arithmetic, we are
handling in practice a symmetric window. The squared Blackman-Harris
window is also symmetric. Thus, the Fourier transform of the squared
Blackman-Harris window is real, meaning that the imaginary components
in the matrix equations are 0. This means that submatrices B1,2

l,k and B2,1
l,k ,

consisting only of imaginary components, are both 0.

It is then possible to split up the large 2K by 2K matrix equation in
2 separate K by K matrix equations, that we can solve separately using a
standard Gaussian elimination solver. More details on some implementation
issues will be provided in the second part of this thesis.

Ar = SOLV E(B1,1, C1)

Ai = SOLV E(B2,2, C2) (1.35)

Taking a closer look at the structure of the matrix B1,1, we see that
its computation requires elements from 2 other matrices: one formed by
Y (ωk + ωl), denoted Y + for short, and one formed by Y (ωk − ωl), or Y −.
Those matrices have a fixed structure, for example, given a model with 4
frequencies:

Y − =


Y (0) Y (ω1 − ω0) Y (ω2 − ω0) Y (ω3 − ω0)

Y (ω0 − ω1) Y (0) Y (ω2 − ω1) Y (ω3 − ω1)
Y (ω0 − ω2) Y (ω1 − ω2) Y (0) Y (ω3 − ω2)
Y (ω0 − ω3) Y (ω1 − ω3) Y (ω2 − ω3) Y (0)

 (1.36)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 34

1.3. SINUSOIDAL MODELLING

The DFT of the squared window is bandlimited and has its maximal
value at the center, so, Y (0) is maximal. Now, if the 2 frequencies ωk and
ωk lie close to eachother, their difference will be close to 0. In the squared
window DFT, this will correspond to a value that is close to the center, thus
a large value. If those 2 frequencies are far away from eachother, their dif-
ference yields a value far from 0, which, filled in in Y , returns a very low value.

Since the squared window is also bandlimited, these low values will oc-
cur everywhere in the matrix where the frequencies ωk and ωl are far from
eachother. We can even calculate how far they have to be from eachother
to yield a small value: the width of the main lobe is our criterium. Recall
that the spectrum of our model is a linear combination of shifted DFTs of
the window function. The window function has a broad main lobe, and in-
significant sidelobes. If a frequency is present that ends up in the main lobe
of one of the other frequencies, this will lead to a large value in the matrices
Y + and Y −.

The other way round, if the difference between 2 frequencies is large
enough, they fall in each other’s sidelobes. Since the sidelobes of the Blackman-
Harris function attain an attenuation of -92dB , the squared Blackman-Harris
reaches at least that amount of attenuation - though the main lobe is wider.
Values that small can be discarded and replaced by 0 without any noticeable
effect.

If the frequencies are ordered, the matrices B1,1 and B2,2 thus tend to
become band diagonal, which allows much faster solving. If all frequencies
are very well separated, the matrices are purely diagonal. If some frequencies
are close together, small squares of larger values tend to grow alongside the
main diagonal, indicating that the main lobes of their frequency responses
in Fourier space overlap.

The fact that the resulting matrix equations are band diagonal, is a key
element of this optimization of amplitude estimation and can only be de-
rived by explicitly including a window function with a very good sidelobe
behaviour.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 35

1.3. SINUSOIDAL MODELLING

Figure 1.16: Structure of the band diagonal matrix B and storage as a shifted
matrix. Image c© Wim D’haes.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 36

1.3. SINUSOIDAL MODELLING

The elements of B, which only depend on the known DFT of the window
function, can be computed in constant time. We can do approximately the
same for the elements of C, using another trick. The signal xn can be seen
as the inverse Fourier transform of the model Xm. Thus, in the formula
for C that has been developed in equation 1.26, we can substitute. First
we rewrite both C1 and C2, that are parts for calculation of the real and
imaginary components of the complex amplitude, together, using a complex
exponential notation:

Cl =
N−1∑
n=0

(
xnwne

2πiωl
n−n0

N

)
=

N−1∑
n=0

([
1

N

N−1∑
m=0

(
Xme2πim

n−n0
N

)]
wne

(2πiωl
n−n0

N)

)

=
1

N

N−1∑
m=0

(XmW (m + ωl))

=
1

N

mmax∑
m=mmin

(XmW (m + ωl)) (1.37)

The last step is possible since, for every frequency ωl in the spectrum,
represented by a Fourier transform of the window (since the spectrum is a
linear combination of FTs of the window), only the main lobe is important.
Any factors m+ωl that fall outside the main lobe generate an insignificantly
small value and can thus be ignored. This allows us to restrict the summa-
tion only to that part of the spectrum that is around the main lobe of the
frequency under consideration. This main lobe width is a constant factor.
Thus, calculating C does not take a complexity of O(NK), K being the num-
ber of partials, but only of O(K). Taking the real and imaginary parts of
the last formula gives us C1

l and C2
l back, respectively.

All these results add up to a very efficient algorithm to estimate ampli-
tudes that calculates all amplitudes at once, is capable of handling overlap-
ping frequency responses, and has a very low time and space complexity.
Setting up matrix B has a computational time complexity of O(K), since
only a limited set of diagonals has to be calculated, which is maximally as
wide as the width of the main lobe of the DFT of the window function. Solv-
ing an equation set like that, with a band diagonal matrix, through Gaussian
elimination also takes O(K) as time complexity. Which leaves only Xm as
nonlinear calculation cost: calculating this spectrum takes a time complexity

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 37

1.3. SINUSOIDAL MODELLING

of O(Nlog(N)).

Application to a single harmonic sound

Applying this to a single harmonic sound makes the matrices Y even simpler:
all frequencies are multiples of the fundamental frequencies, so all elements
Y (ωl−ωk) can be rewritten as Y ((l−k)ω), with ω the fundamental frequency.
Matrix Y − then looks like this:

Y − =


Y (0) Y (ω) Y (2ω) Y (3ω)

Y (−ω) Y (0) Y (ω) Y (2ω)
Y (−2ω) Y (−ω) Y (0) Y (ω)
Y (−3ω) Y (−2ω) Y (−ω) Y (0)

 (1.38)

Multiple harmonic sounds and polyphony

When multiple harmonic sounds are played together, especially when they
are polyphonic and thus very strongly related in the harmonics, the system of
equations can not always be solved: harmonics of different frequencies might
coincide. This leads to multiple occurrences of a single frequency component
in the model. The matrix B becomes singular, the solving routine creates
rows of zeroes, and the system of equations has no single solution.

These components that occur more than once must then first be recog-
nized and filtered out by preprocessing routines, before the amplitudes are
calculated. All occurences of the same frequency are summed together and
the sum of the amplitudes is calculated. There is no telling afterwards which
part of that amplitude then belongs to the harmonic with this or that fun-
damental frequency, much the same as when the only thing you know is that
result of a calculation is 6, you cannot tell whether it comes from 3+3 or 2+4.

That kind of information could eventually be derived from the past, or
when it is known what instruments are being played and what the spectral
envelope of these instruments looks like. But that is a very difficult and far
from exact exercise, since even these envelopes can vary a lot with frequency
and dynamics, and accomplished players can often produce sounds with dif-
ferent timbres on the same instrument. It would be a nice experiment to try
how accurate it can get anyway, with an instrument like a piano, which does
not produce too much timbre variation.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 38

1.3. SINUSOIDAL MODELLING

1.3.3 Frequency Optimization

Due to the Discrete Fourier transform being applied instead of its continuous
counterpart, the frequencies are rounded to the nearest frequency bin cen-
ters. Also, spectral leakage always occurs when there are sinusoids present
in the signal that do not coincide with the calculated discrete frequencies -
and for real world signals, this is almost always the case. Spectral leakage
introduces positive amplitude values for frequency components that are, in
fact, not at all present in the signal.

As discussed earlier, windowing the signal helps to reduce the leakage
significantly. But, regarding the accuracy of the calculated frequencies, it
does not help a bit. The frequencies that are calculated are already rounded
to the nearest frequency bins, and windowing causes even these results to be
’blurred’, due to the wide main lobe of the frequency response of the win-
dowing function.

So, when trying to approximate our signal with a sinusoidal model, we
cannot start with the correct frequencies either - these are unknown. The
initial frequencies ω of our model x̃n therefore can only be crude estimates,
and have to be optimized too.

There are several difficulties that arise. First of all, frequencies that are
present in the signal may be close together, therefore having overlapping fre-
quency responses, therefore being difficult to detect in the spectrum itself.
This is most notably the case when using small windows that result in a
limited frequency resolution in the spectrum. Also at low frequencies, there
is a need for better resolution, since the human ear can very well distinguish
between low frequencies, and any inaccuracy will be strikingly audible for
the user.

Three optimization methods will be described here that are widely used
for problems of this kind, and that are fit for solving problems like this: lo-
cal quadratic approximation or Newton optimization, gradient descent, and
model linearization, or Gauss-Newton optimization. The theoretical results
have been presented in [5]. An implementation is described and discussed in
the second part of this thesis.

Frequency optimization makes use of the same error function that we have
defined in equation 1.17, but now not the frequencies but the amplitudes are
kept constant. For an optimization, we need a first guess of the frequencies

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 39

1.3. SINUSOIDAL MODELLING

that are present. This first guess can be derived using pitch estimators. A
good overview of several techniques for pitch estimation can be found on pp.
504-520 of [16].

Initial pitch estimation

Several simple techniques exist to estimate the pitch of a single harmonic sig-
nal, but not all are reliable when lots of harmonics or noise are present. Track-
ing Phase Vocoders, one of the more fastest and easiest to implement, com-
bines spectral information with phase information from consecutive frames,
to calculate the value of the fundamental period. They are well explained
in [24] and thoroughly analyzed in [25].

Autocorrelation or cepstrum based methods, both very similar in nature,
estimate pitch by calculating an autocorrelation (in the time domain) or
cepstrum (in the frequency domain) of the given signal. This detects pe-
riodicities in time or frequency space, and thus allows for detection of the
fundamental period of the signal, which is the period of the fundamental
frequency. A smooth and recent introduction to the cepstrum can be found
in [26].

For multiple harmonic signals or polyphonic signals, there exist multi-
pitch estimators which can compute a set of starting frequencies [27]. Other
methods that are recently being developed make use of heavy heuristics to
eliminate potential errors [28]. In other cases, a first guess can be made by
the user, who can pick out the peaks he wants to start with from the spec-
trum (peak picking). Sometimes (a part of) the necessary information can
also be extracted from a previously computed file or a music partition. For
the purpose of this thesis, peak picking works just fine.

Gradient Descent

The error function χ(ω,A) is multidimensional. A second order Taylor ex-
pansion of this function, around a vector ν is defined as:

χ(ω,A) ≈ C + (ω + ν)T∇νχ +
1

2!
(ω + ν)T Hν(ω + ν) (1.39)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 40

1.3. SINUSOIDAL MODELLING

where ∇ν represents the gradient of the function χ, evaluated at the
vector of frequencies ν . ν is chosen to be the estimate of the frequencies,
and has to be optimized. The square of the gradient, Hν is called the Hessian.

The standard quick-and-dirty solution to any optimization problem is
gradient descent or steepest descent. Here, we optimize the values by calcu-
lating the gradient of the function, and updating the current vector in the
indicated direction with a stepsize that can be chosen (the learning rate).
The algorithm can require a lot of steps to complete and choosing the op-
timal learning rate is a difficult task which is also decisive for the speed of
convergence.

Using η as the learning rate, the iteration step of the gradient descent
method looks like

ωr+1 = ωr − η∇ωr (1.40)

The gradient ∇ of a multidimensional function is defined as the vector
of its first partial derivatives in every direction. So, for any frequency vector
ω, the gradient of the function χ is the a vector of first derivatives. The
elements of the vector corresponding to the frequencies ωk are then:

∇ωk
=

∂χ(ω,A)

∂ωk

(1.41)

Local quadratic approximation

Newton optimization optimizes the initial guess iteratively using the gradient
and the Hessian, using the following scheme:

ωr+1 = ωr −H−1
ωr ∇ωr (1.42)

The Hessian is the gradient of the gradient. It is a matrix with on each
row the gradient of the corresponding first partial derivative of the original
function. Its elements are:

Hωk,ωl
=

∂χ(ω,A)

∂ωk∂ωl

(1.43)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 41

1.3. SINUSOIDAL MODELLING

Note that the Hessian H is symmetric, due to the second order par-
tial derivatives of the error function being continuous (Clairaut’s theorem).
When the Taylor expansion is developed at the minimum of the cost function,
we know that the gradient of that function must be zero:

∇ω = 0 (1.44)

Calculating the Hessian matrix is normally a very costly computation.
Quasi-Newton methods exist that approximate the Hessian in an easier and
faster way, though they introduce a slower convergence rate. Conjugate
gradient methods or the Levenberg-Marquardt algorithm are also possible
alternatives. A good overview can be found in chapter 7 of [29].

However, as we shall see, calculating gradient and Hessian in this case
can be done in a proverbial instant. Using the same trick used for amplitude
estimation, we can limit the Hessian to a band diagonal form, of which each
element can be computed using a constant number of additions. The same
goes for the gradient, leading to both gradient and Hessian able to be cal-
culated in O(k) time, with k being the number of frequencies, given that all
terms of which the elements are composed can be accessed or calculated in
constant time.

Model Linearization

Another possibility, Gauss-Newton optimization, is actually a modified New-
ton optimization algorithm, but then without the second order derivatives.
It uses a first order Tailor expansion as starting point. D’haes shows in [5]
that the workout of this model actually comes down to the same gradient
and matrix as Newton optimization, only the elements of the main diagonal
of the matrix are different. No significant difference in convergence speed
was noted though.

For the sake of brevity, we will concentrate on the Newton optimization
method. All methods use the same gradient, and Newton optimization re-
quires a Hessian. The difference between Gauss-Newton and Newton seems
to be insignificant. At the moment it is not worth the trouble of further
mathematically working out the model linearization theory here, since an

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 42

1.3. SINUSOIDAL MODELLING

investigation of whether the Gauss-Newton method is any useful in this con-
text, needs to happen by a thorough set of practical experiments first.

The mathematical workout

Starting with the gradient, we need to take the partial derivatives with re-
spect to each of the frequency components. This is largely analogous to
taking the partial derivatives with respect to the amplitudes, as seen in equa-
tions 1.18 and further. For the model, we now use the complex exponential
notation from equation 1.15, instead of equation 1.16 that was used in the
amplitude estimation calculations.

∂χ(A; ω)

∂ωl

=
∂

∂ωl

N−1∑
n=0

(
xn − wn

1

2

K−1∑
k=0

(
Ake

2πiωk
n−n0

N + A∗
ke
−2πiωk

n−n0
N

))2

(1.45)

Applying the rules of differentiation for powers and exponentials, con-
catenated using the chain rule, we arrive at the following:

∂χ(A; ω)

∂ωl

= 2
N−1∑
n=0

(
xn − wn

1

2

K−1∑
k=0

(
Ake

2πiωk
n−n0

N + A∗
ke
−2πiωk

n−n0
N

))
(
−wn

1

2
Ale

2πiωl
n−n0

N 2πi
n− n0

N
− wn

1

2
A∗

l e
−2πiωl

n−n0
N

(
−2πi

n− n0

N

))
(1.46)

The first part of the multiplication is still the original signal minus the
model. In practice, this corresponds to the error on the model, in the form
of a residue signal. The residue signal rn, like any other signal, has a Fourier
transform Rm. So, the first part of the multiplication can just as well be
written as the inverse Fourier transform of the residue spectrum. At the
same time working out some constants and signs, the following equation
holds:

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 43

1.3. SINUSOIDAL MODELLING

∂χ(A; ω)

∂ωl

=
N−1∑
n=0

[
1

N

N−1∑
m=0

(
Rme2πim

n−n0
N

)]
(
−wnAle

2πiωl
n−n0

N 2πi
n− n0

N
+ wnA

∗
l e
−2πiωl

n−n0
N 2πi

n− n0

N

)
(1.47)

The indices m and n are different indices but are iterating over the same
amount of values. We can reorder summations and work out the multiplica-
tion of the exponentials, yielding the following result:

∂χ(A; ω)

∂ωl

=
1

N

N−1∑
m=0

Rm

[
−Al

N−1∑
n=0

(
wn2πi

n− n0

N
e2πi(m+ωl)

n−n0
N

)

+A∗
l

N−1∑
n=0

(
wn2πi

n− n0

N
e2πi(m−ωl)

n−n0
N

)]
(1.48)

Looking in detail to the two terms inside the inner summation, observe the
striking similarity to the window frequency response, presented in equation
1.31. In fact, we can extract the first derivative of that function. Denoted as
W ′, it is defined as:

W ′(m) =
N−1∑
n=0

(
−2πi

n− n0

N
wne

−2πim
n−n0

N

)
(1.49)

This can be implemented, just like wn and Wm earlier, using a lookup
table, thus making the calculations in which these elements are needed run
in constant time. The gradient of the error function then, in turn, now looks
like

∂χ(A; ω)

∂ωl

=
1

N

N−1∑
m=0

Rm (A∗
l W

′(m− ωl)− AlW
′(m + ωl)) (1.50)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 44

1.3. SINUSOIDAL MODELLING

Figure 1.17: on the left, top-down: functions W, W’ and W”; on the right,
top-down: functions Y, Y’ and Y”, all oversampled with a factor 10000

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 45

1.3. SINUSOIDAL MODELLING

To construct the elements of the Hessian, we need to take second order
partial derivatives:

∂χ(A; ω)

∂ωp∂ωl

=
∂

∂ωp

∂

∂ωl

N−1∑
n=0

(
xn − wn

1

2

K−1∑
k=0

(
Ake

2πiωk
n−n0

N + A∗
ke
−2πiωk

n−n0
N

))2

(1.51)

The order in which the partial derivatives are taken does not matter,
since the second order partial derivatives are continuous. Working out the
innermost of the partial derivatives, we get:

∂χ(A; ω)

∂ωp∂ωl

=
∂

∂ωp

2
N−1∑
n=0

(
xn − wn

1

2

K−1∑
k=0

(
Ake

2πiωk
n−n0

N + A∗
ke
−2πiωk

n−n0
N

))
(
−wn

1

2
Ale

2πiωl
n−n0

N 2πi
n− n0

N
− wn

1

2
A∗

l e
−2πiωl

n−n0
N

(
−2πi

n− n0

N

))
(1.52)

This is a partial derivative of a product of functions. Taking a derivative
of a product of functions yields a sum of 2 terms in the following way: (f ·
g)′(x) = f(x)g′(x) + f ′(x)g(x). We work out the 2 terms separately, for the
sake of clarity. The first term equals

2
N−1∑
n=0

(
xn − wn

1

2

K−1∑
k=0

(
Ake

2πiωk
n−n0

N + A∗
ke
−2πiωk

n−n0
N

))
∂

∂ωp

(
−wn

1

2
Ale

2πiωl
n−n0

N 2πi
n− n0

N
− wn

1

2
A∗

l e
−2πiωl

n−n0
N

(
−2πi

n− n0

N

))
(1.53)

Taking the partial derivative with respect to ωp of a summation of func-
tions of ωl only has a result different than 0 when p equals l. At the same
time, just as in equation 1.47 of the gradient derivation, we can use the
residue spectrum Rm to express the difference between the signal and the
model. So we can rewrite the result as:

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 46

1.3. SINUSOIDAL MODELLING

N−1∑
n=0

[
1

N

N−1∑
m=0

(
Rme2πim

n−n0
N

)]

δlp

(
−wnApe

2πiωp
n−n0

N

(
2πi

n− n0

N

)2

− wnA
∗
pe
−2πiωp

n−n0
N

(
−2πi

n− n0

N

)2
)
(1.54)

Reordering terms and merging the exponential functions then brings us
to:

−δlp
1

N

N−1∑
m=0

Rm

[
Ap

N−1∑
n=0

(
wn

(
2πi

n− n0

N

)2

e2πi(m+ωp)
n−n0

N

)

+A∗
p

N−1∑
n=0

(
wn

(
2πi

n− n0

N

)2

e2πi(m−ωp)
n−n0

N

)]
(1.55)

Remind that after equation 1.48 it was possible to extract the first deriva-
tive of the Fourier transform of the window function from the result. Here
we can do the same for the second derivative of the Fourier transform of the
window function. Analogous to the first derivative counterpart in equation
1.49, it is defined as:

W ′′(m) =
N−1∑
n=0

((
−2πi

n− n0

N

)2

wne
−2πim

n−n0
N

)
(1.56)

and thus the first term of each Hessian element becomes:

−δlp
1

N

N−1∑
m=0

Rm

(
ApW

′′(m + ωp) + A∗
pW

′′(m− ωp)
)

(1.57)

In practice, δlp makes that this term only contributes to the elements of
the Hessian on the main diagonal. Also, W ′′ can be implemented using a
lookup table. Given Rm is also precalculated, this makes that this contribu-
tion to the Hessian only needs constant time.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 47

1.3. SINUSOIDAL MODELLING

The second term of each Hessian element is:

N−1∑
n=0

(
−wn

1

2
Ale

2πiωl
n−n0

N 2πi
n− n0

N
− wn

1

2
A∗

l e
−2πiωl

n−n0
N

(
−2πi

n− n0

N

))
∂

∂ωp

2

(
xn − wn

1

2

K−1∑
k=0

(
Ake

2πiωk
n−n0

N + A∗
ke
−2πiωk

n−n0
N

))
(1.58)

The second derivative with respect to ωp only has nonzero results here
when k equals p. We can do away with the sum over k and use the chain
rule to work out the partial derivative, which results in

N−1∑
n=0

(
−wn

1

2
Ale

2πiωl
n−n0

N 2πi
n− n0

N
− wn

1

2
A∗

l e
−2πiωl

n−n0
N

(
−2πi

n− n0

N

))
(
−wnApe

2πiωp
n−n0

N 2πi
n− n0

N
− wnA

∗
pe
−2πiωp

n−n0
N

(
−2πi

n− n0

N

))
(1.59)

Here, too, it is possible to merge the exponential functions, resulting in
4 terms inside the summation over n. There is clearly a distinguishable
structure to be noted in each of these terms:

1

2

N−1∑
n=0

AlApw
2
n

(
2πi

n− n0

N

)2

e2πi(ωl+ωp)
n−n0

N

−1

2

N−1∑
n=0

AlA
∗
pw

2
n

(
2πi

n− n0

N

)2

e2πi(ωl−ωp)
n−n0

N

−1

2

N−1∑
n=0

A∗
l Apw

2
n

(
2πi

n− n0

N

)2

e−2πi(ωl−ωp)
n−n0

N

+
1

2

N−1∑
n=0

A∗
l A

∗
pw

2
n

(
2πi

n− n0

N

)2

e−2πi(ωl+ωp)
n−n0

N (1.60)

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 48

1.3. SINUSOIDAL MODELLING

The structure that we can observe is the second derivative of the Fourier
transform of the square window. The Fourier transform of the square window
was given in equation 1.32, and its second derivative is:

Y ′′(m) =
N−1∑
n=0

((
−2πi

n− n0

N

)2

w2
ne
−2πim

n−n0
N

)
(1.61)

As a result, the second term of the Hessian becomes

1

2

[
AlApY

′′(ωl + ωp)− AlA
∗
pY

′′(ωl − ωp)

−A∗
l ApY

′′(−ωl + ωp) + A∗
l A

∗
pY

′′(−ωl − ωp)
]

(1.62)

This term of each Hessian element only produces values around the main
diagonal, since Y ′′ is also bandlimited. Just as matrix B in the amplitude
calculation, this Hessian is band diagonal, too. Solving the system of equa-
tions formed by the gradient and the Hessian, we can obtain a new, better
estimate of the frequencies of our model, using equation 1.42.

Multiple harmonic sounds and polyphony

When the input signal consists of a harmonic sound, we only have to optimize
the fundamental frequency, since we know that the harmonics are integer
multiples of that frequency and will get optimized correctly together with
the fundamental. The sinusoidal model can be split up into a summation
of a summation: one over the fundamentals, and one over each’s harmonics.
Hessian and gradient become significantly smaller, but calculation of each
element of them requires an extra summation over all the harmonics of the
specific frequency.

D’haes notes in [5] that the Hessian for multiple harmonic sounds is not
band diagonal any more, but the fact that it is usually very small - only a few
sound sources present - compensates for that. Without going through the
trouble of making another long mathematical derivation, we can also note
that the cross products of all harmonics with eachother that appear in the
Hessian when using a harmonic model, can be optimized and linearized.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 49

Chapter 2

Implementation of a Sinusoidal
Modeler

2.1 Useful Technologies

2.1.1 The VST framework

VST stands for Virtual Studio Technology, and is a proprietary technology
from the Germany-based company Steinberg Media Technologies GmbH [2].
It is a plugin framework: it enables a programmer to write audio processing
plugins (like filters, analyzers, etc.) that can be loaded into a host program
and then be used by that host program. Popular hosts that support VST
plugins are Cubase, Wavelab, Nuendo (all by Steinberg), Ableton Live, Bid-
ule (by Plogue), ... Recently, also some important open source players have
included support for the framework: Audacity, CLAM, RoseGarden, Ardour,
...

The VST SDK (Software Development Kit) [30] is a cross-platform set of
classes, written in C++ - albeit with a lot of C-style programming constructs,
like use of malloc(), free() and structs. The SDK is downloadable free of
charge from the Steinberg website. The license makes integration into open
source software difficult. It does not allow redistribution of the SDK and as
such it is not compatible with most open source licenses. All users willing to
integrate the VST SDK in a software product must manually register at the
Steinberg website and download the framework for themselves. The reason
for this is that Steinberg wishes to assure that is only one version of the VST
framework around, and that forks become impossible. This has been and
still is a topic of major discussion among VST plugin developers, certainly
because of the lack of documentation, the frequent changes in the interface,

50

2.1. USEFUL TECHNOLOGIES

and the messy coding style of the current framework.

The core of the framework is very simple: it provides a developer with the
possibility to implement and/or extend the standard plugin class
AudioEffectX, using inheritance. The main task is to implement a function
virtual void processReplacing (float** inputs, float** outputs,

VstInt32 sampleFrames) , that accepts an input buffer and an output
buffer of audio samples (possibly multichannel). The developer, in the body
of the processReplacing() function, can read the input buffer, do whatever
he wants to do with the audio data, and write the results back to the output
buffer.

This gets compiled into a DLL (Dynamic Linked Library). When copied
to some specific folder, the host scans the folder for valid plugin files, and
then can load the plugin and use its processReplacing() function. In the
host program, the user is enabled to link the plugin to an audio stream (pos-
sibly a real-time one). The audio stream gets divided into different buffers,
that are iteratively fed to the plugin, and the host then copies the pro-
cessed data from the plugin output buffer back into the audio stream. Call-
backs are used for communication between host and plugins: the constructor
of the AudioEffectX class looks like AudioEffectX(audioMasterCallback

audioMaster, VstInt32 numPrograms, VstInt32 numParams).

Next to audio handling, VST provides functions for receiving and sending
MIDI [4] events, setting the properties of the plugin, requesting information
about the host, saving and loading plugin settings, etc. The host must of
course support all these functions, and this is certainly not always the case.
The VST framework gets updated sometimes, unfortunately breaking the
interface of previous versions, and thus backward compatibility. It can be
important for plugins to be written in the same VST version as the host sup-
ports. Very often one finds out by trial and error: a plugin has been developed
using host X, but uses functions that seem not yet to be supported by host Y.

With this range of functionality, it is for example possible to make virtual
instruments, often abbreviated as VSTi: a plugin that accepts MIDI mes-
sages and outputs audio buffers only. When the input audio is processed and
outputted as audio, one often speaks of an effect, or VSTfx. Plugins that
analyze incoming audio and output MIDI are often called triggers. The input
and output buffers are arrays of 32-bit floats, regardless the capabilities of
the host. From version 2.4 on, support for 64-bit systems is provided, in the
form of a special function for handling double precision audio buffers, and

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 51

2.1. USEFUL TECHNOLOGIES

the introduction of the VstInt32 datatype that assures 32-bit width of an
integer (previously long).

This change of datatype, and some other changes, make that any code
written on top of the 2.3 version of the SDK, needs rewriting in order to com-
pile with version 2.4. From version 2.4 forth, the interface of the framework
is properly separated from the actual code. To make an eventual upgrade
from version 2.3 to 2.4, the latter version still includes deprecated functions
from the former, which can be activated by setting a compile time flag.

Figure 2.1: A Cubase SX3 session with some VST plugins loaded

The greatest strength of the VST framework is that it allows the user to
code anything he wants in a VST plugin - it needn’t even be audio related.
Full control is handed over to the plugin, that can make any calls to the
operating system that it wants. In theory, it is very well possible to imple-
ment a card game in a VST plugin - the sky is the proverbial limit. It is

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 52

2.1. USEFUL TECHNOLOGIES

possible to attach an own GUI to the plugin so that it interfaces with the
user graphically. If no GUI is attached, most hosts create a generic GUI for
the plugin, allowing to set the different kinds of parameters.

This absolute freedom forms at the same time the greatest risk. Though
no examples are known (yet), it is theoretically possible to write a VST plu-
gin that installs a trojan or computer virus on the computer. The plugin is
granted complete control over the system, and any code can be run in the
processReplacing() function. For reasons of performance, no host imple-
ments a sandbox for plugins. End-users do therefore good only to accept and
use plugins that were obtained from a reliable source. Currently, a good deal
of the audio plugin developing world and general resources on VST can for
example be found on the website of KVR audio [31].

VST is not the only framework around for audio processing plugins. Pop-
ular alternatives are AU (Audio Units) by Apple Computer [32], RTAS (Real
Time Audio Suite) by Digidesign, a subdivision of Avid [33], for the Windows
platform DirectX [34], or for the Linux platform LADSPA (Linux Audio De-
veloper’s Simple Plugin API) [35]. Wrapper technologies exist to integrate
these frameworks and enable a VST plugin to be used in RTAS or AU envi-
ronments [36]. Ports to other languages than C++ also exist for VST, most
notably to Delphi [37] and Java [38].

2.1.2 VSTGUI

As mentioned earlier, a GUI (Graphical User Interface) can be attached to
a VST plugin. VSTGUI [39] was developed to facilitate making plugins for
VST plugins. It is a set of platform independent classes that provide basic
GUI components and the necessary coding for interacting with them - mouse
clicking, typing etc. The VSTGUI project was released open source by Stein-
berg in september 2003. Since then it is a community project managed by
Steinberg but contributed to by many users, and hosted on SourceForge.
VSTGUI suffers from the same major drawback as the VST SDK: it is a
pain to upgrade from older to newer versions due to interface changes.

The VST SDK distributed by Steinberg comes with an old version of VST-
GUI, but more recent versions can be obtained through [39]. An own GUI
to a plugin can be made using multiple inheritance: class MyGuiEditor:

public AEffGUIEditor, public CControlListener { } . In the construc-
tor of the plugin then, its GUI is initialized:

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 53

2.1. USEFUL TECHNOLOGIES

editor = new MyGuiEditor(this); . If no own GUI is provided, the host
of the plugin creates a default GUI of its own, to allow plugin parameter set-
ting. Using VSTGUI, much more visual appeal can be conjured up, though.

The constructor of the GUI class is in charge of initializing the GUI and
drawing all components on the screen. VSTGUI provides standard controls
to draw knobs, sliders, handles, buttons, switches, textboxes etc. At the
moment of writing, the latest version of the development branch has some
basic support for tabs and scrollbars. The plugin programmer just has to
pick a few of the offered components (or write his/her own), position them
on the screen as wanted, and connect them to their corresponding plugin
parameters.

The possibility to provide own graphics can lead to some very spectacular
GUI designs. A knob can be drawn using virtually any normal bitmap. Lots
of synthesizer plugins have GUIs that look just like an analog synthesizer
- it requires a little drawing talent to fit the right knob and slider bitmaps
onto the right background. When compiled for Windows operating systems,
VSTGUI translates its drawing functions to GDI+ [40] commands, on Unix
based systems Motif [41] is used. Both are relatively low level APIs that
enable using graphics on the computer display.

Each VSTGUI component implements a method draw(CDrawContext

*pContext) so that it can be drawn on the screen. Each component can
be setDirty() in order to signal that the specific component needs to be
redrawn. This way, only the changed components are redrawn, which saves
a lot of precious time. Each component can, but not necessarily has to,
implement a function that can handle mouse events: mouse(CDrawContext

*pContext, CPoint& where, long buttons), where it should be noted that
the last parameter is currently only present in VSTGUI version 3.5. When
the mouse is clicked on that component, this function can consist of routines
to change some GUI parameters.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 54

2.1. USEFUL TECHNOLOGIES

Figure 2.2: A Bidule session showing a plugin with the default host GUI,
and one that has its 3D GUI [42]

When the user changes something in the GUI, it might be necessary
for the GUI to relay some of the changes to the plugin itself, and possi-
bly redraw itself on the screen. This is done by the function valueChanged

(CDrawContext* pContext, CControl* pControl) in the GUI main class.
Note here, too, that the first parameter has been removed in the latest de-
velopment versions of VSTGUI. The valueChanged() function consists of
a huge case construct, iterating over all GUI components. When the com-
ponent that has changed is encountered, this is the place where the GUI
forwards the parameter change to the plugin itself, and eventually sets the
component dirty, forcing a redraw.

On certain times, the host redraws the plugin. The GUI is somewhat con-
structed as a tree of components - a background with controls on top of that

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 55

2.1. USEFUL TECHNOLOGIES

- and the draw() function just walks the tree. Whenever a component that
has been set dirty is encountered, the draw() function of that component is
called and the component redraws itself on the screen. Other components
are left alone and are not redrawn.

Extending VSTGUI with own controls is easy. Every control, and thus
your own too, needs to extend the CControl class and (re-)implement the
constructor, the draw() and mouse() functions. The constructor can of
course be overloaded if it needs any more parameters. The recent VSTGUI
development versions also require a copy constructor in the form of a function
virtual CPlot* newCopy (). For the rest, a control class can be equipped
with as much members and methods as required. When finished, it can be
used as any other control in the plugin GUI.

Since the GUI just needs to be constructed from the plugin constructor,
any GUI framework can be used to develop GUIs for VST plugins. The
VSTGUI framework is just one of the numerous graphics frameworks that
are around. VSTGUI is just a small set of a very basic GUI classes, but it
is fast and platform independent. Users wishing a larger set of functionality
to begin with, might consider using the also platform independent Qt [43] or
even a 3D framework like DirectX [34] or OpenGL [44]. A very funny free-
ware plugin using the latter is the Delay Lama plugin by AudioNerdz [42].

2.1.3 SSE

SSE stands for Streaming SIMD Extensions, SIMD being an abbreviation of
Single Instruction, Multiple Data. It was introduced in 1999 in the Pentium
III line of microprocessors by Intel [45], as an extension on MMX technol-
ogy and as response to competitor AMD’s 3DNow! technology. It is a large
instruction set that can be used on some special purpose 128-bit registers,
allowing for parallellization of calculations on arrays of data. SSE is mostly
used in environments where performance matters, or where large amounts
of calculation time are involved - multimedia applications being the stan-
dard example. SSE has seen many extensions itself: SSE2 and SSE3 were
introduced in the Pentium IV processor, SSSE3 is an extension for the Core
processor, and SSE4 is expected to be available in 2008.

SSE is specific to fairly recent processors. Due to its popularity, AMD
was obliged to include SSE in their processors too, and it was from 2001
available on the Athlon XP processor. Using SSE in multimedia applications

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 56

2.1. USEFUL TECHNOLOGIES

also limits the usage of the application to recent processors. Therefore most
applications implement multiple versions of routines in which SSE could be
used: one with and one without SSE, and perhaps some more for different
versions of processors that support later additions to SSE.

SSE can be used using inline assembly mnemonics, but a far more inter-
esting approach is the use of intrinsics. Intrinsics can be seen as ’wrappers’
around one or more assembly commands. Assembly language is substituted
for the intrinsics at compile time. The advantages of intrinsics are a better
readability of the code, and better optimization possibilities for the compiler
(especially in register allocation and instruction scheduling). The enhanced
readability also reduces the chances on mistakes and errors, often a major
problem when coding in an assembly language.

To use SSE intrinsics in a Windows based environment, one has to include
the header <xmmintrin.h> in the source code. SSE2 requires the header
<emmintrin.h> and MMX, the predecessor of SSE, the header <mmintrin.h>.
I will demonstrate the use of SSE intrinsics using this simple example: the
calculation of a dot product of 2 arrays of single precision (32-bit) floating
point numbers. Encoding this in normal C or C++ would look something
along the lines of:

for(int i=0; i<N; ++i)

c[i] = a[i]*b[i];

In order to use the arrays as inputs to SSE registers, they need to be
16bit aligned in the memory. A requirement that is absolutely necessary to
avoid random code crashes, but that is almost always forgotten - a lot of
the documentation on SSE fails to mention it. On a Windows platform, the
arrays thus need to be declared as declspec(align(16)) float a[N] .
Then, it is possible to cast the array to the datatype m128 , which is used
by the SSE intrinsics. SSE code for the array multiplication would look like:

__m128 *a_sse = (__m128*) a;

__m128 *b_sse = (__m128*) b;

__m128 *c_sse = (__m128*) c;

for(int i=0; i<(N/4); ++i)

c_sse[i] = _mm_mul_ps(a_sse[i], b_sse[i]);

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 57

2.1. USEFUL TECHNOLOGIES

By parallellizing the multiplication using SSE, we actually perform 4 float-
ing point multiplications at the same time, thus significantly improving per-
formance. If the arrays are not really small, then the few extra instructions
for conversion and eventual boundary checks are well worth the trouble.

Multiplication is of course not the only intrinsic around. Several logical
and arithmetic intrinsics are provided to perform on all 4 floats at once, or on
only 1 of the floats. Load, set and store operations for the registers, compar-
ison operators, rounding and casting functions, shuffle and swap functions
are all available. SSE2 expands this functionality with the support of double
precision floating point numbers: 2 of those fit in a 128-bit register, and 2
operations on doubles can be done at the same time.

When it comes down to programming with SSE the way that benefits
most to Intel processors, the information provided by Intel itself is of course
the best. Have a special look at their Optimization Reference Manual [46],
available online and updated regularly, for information on the best practices
and habits regarding SSE and other Intel technologies. Using SSE remains
one of the most popular ways to speed up even well-established algorithms
like FFT [47].

2.1.4 Matlab Mex Functions

Matlab [48] is one of the most popular environments for numerical comput-
ing, built around an own language (M-language) and containing a myriad of
functionality. It is especially useful for linear algebra - and thus matrix and
vector processing - and contains numerous possibilities for creating plots. It
is a proprietary product by a company called The MathWorks, and is in
widespread use among scientists.

Not all functionality that one wants in Matlab can be provided, though.
It is possible to write your own functions in the M-language, but a commer-
cially more interesting method is using Mex functions. This allows Fortran
or C to be compiled as some kind of dynamic linked library, a Mex file, which
can be used by Matlab like a VST plugin DLL can be used by a VST host.
The major advantage is that C++ code is independent from Matlab and can
thus easily be reused in other projects, and that the routines are compiled
natively for the system and can thus be made as efficient as one can get them.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 58

2.1. USEFUL TECHNOLOGIES

Suppose we have a function, written in C, that we wish to make available
in Matlab. After including the <mex.h> library, the only thing that needs to
be done is wrap the function in a so-called Mex function, that looks like void
mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray

*prhs[]) . The parameters of the function represent from left to right:
the number of left hand side parameters, the left hand side parameters, the
number of right hand side parameters, and the right hand side parameters.
This is because a function in Matlab does not only accept multiple argu-
ments, but can also output multiple results.

An mxArray is used by Matlab to store all data. The input of
mexFunction is a const array of pointers to mxArrays. To use the data in
C, they need to be extracted to the correct datatype. The <mex.h> header
provides some functions to extract data from mxArrays to pointers of arrays
(mxGetPr(prhs[i])), scalar values (mxGetScalar(prhs[i])), strings...
The whole list of functions for data extraction can be found in the Matlab
help files. It is possible to do range and data type checks on the input.

When in the mexFunction body the inputs are translated to their correct
C counterparts, the only thing left to do is to call all C functions you want
to use. Afterwards you convert the outputs back to mxArrays, using similar
functions provided in the <mex.h> header like the data extraction functions.

In order to have <mex.h> included and mexFunction compiled only when
used in Matlab, it can be conveniently wrapped in a preprocessor directive
#IF MEX . The M-language mex -setup command will configure Matlab to
select a C or Fortran compiler to use - it will even search for compilers on
your system and offer a choice. After that, a simple mex -DMEX myfile.c

command will compile the C function into a Matlab Mex library. The C
function can now be called inside Matlab as if it were a normal Matlab func-
tion. The name of the function is the filename of the C source file.

The mex command will run the selected compiler on the C source file,
and afterwards provide the correct linking with Matlab functions defined
in the <mex.h> header. Calls to printf() for example are rerouted to the
Matlab command prompt. When using Mex functions, special care must be
taken that the arguments have the correct data types. The standard Mat-
lab datatype is the 64-bit double but when the C code uses SSE1, only the
32-bit float types can be used. Passing an array of floats to a Mex function
requires that the array in Matlab be explicitly created as an array of 32-bit
floats.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 59

2.1. USEFUL TECHNOLOGIES

Figure 2.3: Using Mex functions in Matlab to test parts of the sinusoidal
modelling implementation

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 60

2.2. IMPLEMENTATION

The requirement for SSE to use 16-bit aligned arrays of data is not a
problem for Matlab arrays. The fact that during implementation no random
crashes occurred when using single precision floating point mxArrays in Mex
files, strongly suggests that Matlab internally also uses 16-bit aligned arrays,
possibly using SSE too. Since Matlab is closed source, this is however not
verifiable.

2.2 Implementation

After this technology overview, it is probably already clear what the goal of
an implementation is. We can implement the sinusoidal modelling routines
in C and test them thoroughly in Matlab. Once they work fine, they can be
seamlessly integrated into a VST plugin, and a GUI can be attached so that
it is directly usable in practice. I will not go into detail about how to code all
the theory in C - it is, after all, not much more than filling in the elements of
the vectors and matrices and running a Gaussian elimination solver routine
on them. But some of the implementation details are very much worth a
closer look: some general notes that have to be taken into account when
programming audio software, and some implementation constructs that save
speed and space.

2.2.1 Audio Processing Difficulties

Latency

When used in real-time applications, an audio plugin causes a delay that is at
minimum the size of the buffers that it is being given, called latency. Before
the host program can send audio data to the output (which can be speakers
or another plugin or piece of software), it must first fill up an input buffer,
then let the plugin do its work and only after that it can start sending the
first of the samples of what is now the output buffer to the output. Thus,
for real-time applications, it is desirable to make the size of the input and
output buffers as small as possible.

Latency is a drawback in real-time performance, because the delay, if
large enough, could be heard as an echo-like effect. There are very different
figures around on what delays are hearable for humans. Experiments show
that the human ear tends to eliminate delays up to 40-50 ms (the so called

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 61

2.2. IMPLEMENTATION

Haas limit) [49], other measurements indicate that users are very quickly
fatigued when hearing delays of 30 ms and more [50]. Recent experiments
show that musicians playing in ensemble are able to automatically compen-
sate for small delays introduced by, for instance, large distance between the
performers. Even more than that: an imposed delay of 11.5 ms seems to lead
to the best synchronization [51] .

Discrete Fourier transforms are calculated on a buffer of samples. The
length of the buffer is a measure for the spectral accuracy that can be ob-
tained. Suppose the sample rate is 44100 Hz, a normal cd sampling rate.
When choosing a buffer size of 2048 samples, which is extremely large, the
DFT frequencies will be interspaced by 44100/2048, which is approximately
21.5, Hz. This also leads to a delay of 2048/44100 seconds, which is approx-
imately 46.5 milliseconds. That is about the maximum that is bearable, if
sticking to the Haas limit.

Since the human ear can distinguish frequencies starting from about 20
Hz, it is relatively important that a good spectral resolution is obtained. Us-
ing buffers of 1024 samples, the lowest distinguishable frequency in the FFT
is only approximately 43 Hz. Though the delay will be only little more than
23 ms, the loss of accuracy in low frequencies is hardly tolerable for musical
applications.

Using the methods in this thesis, a loss in frequency resolution also results
in broader spectral peaks in the absolute sense: the width of the window FFT
is a constant number of frequency bins. Even if those bins are more widely
interspaced, the number of necessary bins remains the same. For applica-
tions like the one developed here, that try to obtain an exact spectrum of
the sound wave, a larger buffer size is better. For reasons of real-time usage,
we cannot ignore the Haas limit, and a buffer size of 2048 at a sample rate
of 44100 Hz seems the best compromise.

Thread Scheduling

The smaller the buffer sizes are, the more times the plugin must call its
processReplacing() routine to process the buffer. If the
processReplacing() routine takes a lot of time, this can eventually lead
to the plugin being fed data buffers more quickly than it can handle them.
The resulting audio stream will suffer from data loss: gaps and clicks. Au-
dio data are in general very large: one second of cd quality audio contains

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 62

2.2. IMPLEMENTATION

44100 samples. If each of these samples would have to be processed sepa-
rately, a process routine would have to be called every 2.268 ∗ 10−5 seconds
,which is not attainable, so buffers are used - most often sized as a power of 2.

The thread scheduling system of the operating system can start to in-
terfere with the process calls. To assure fluent continuation of the audio,
the audio process must be active enough times every second to be able
to handle all buffers. Smaller buffers mean more processing calls that are
needed, resulting in a need for tighter scheduling. Most thread schedulers
switch threads at rates from 250 Hz (server) to 1000 Hz (desktop), so when
another thread running in the operating system gets processor time, some
input buffers might already have been missed (and consequently dropped)
when the audio processing thread gets back to run on the processor.

On systems that are heavily loaded, a large buffer size is needed so as
to process more samples in just one process call, and relax the scheduling
constraints. Audio systems that work with very small buffers need a system
with a low load and an excellent response time in order to avoid buffers get-
ting dropped.

Denormalized floating point numbers

A reoccurring question on many multimedia newsgroups and mailing lists on
the internet is: ”There is hardly any input signal present, yet I experience
an immense CPU load. What is the cause?” The cause is an effect that is
sometimes known as the Denormal Bug.

Floating point units of processors are very well capable of doing float-
ing point operations very quickly, except when a denormalized floating point
number is involved. Calculating with denormalized floats can be up to 30
times slower than calculations without them, depending on the processor. A
good description of the problem, its cause and some possible workarounds
can be found in [52].

There are 2 workarounds for this problem. A first one is curing: to
try to detect denormalized floating point numbers, and just replace them
by 0 - since they are very small anyway. This implies however that all
data must be tested. Though the test is very simple, it could be a bur-
den if a lot of data or a lot of intermediate results are involved. Using
SSE, there is a simple workaround: setting the 15th bit of the control

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 63

2.2. IMPLEMENTATION

register, we can make SSE registers automatically flush denormalized re-
sults to 0, thus eliminating the problem. The SSE intrinsic to be used is
MM SET FLUSH ZERO MODE(MM FLUSH ZERO ON); .

A second method is prevention: to try and avoid having any denormal-
ized floating point numbers as result. If a calculation would yield a very low
value, the result can be automatically set to 0. Whether this is possible,
depends on the the calculations involved. The most popular way is probably
testing operands on size, using constants for very large and very small values.
For example, when the nominator of a fraction is a great deal smaller than
the denominator, the result will probably be so small that without too much
trouble it can be rounded to 0 before even making the division.

memory allocation

There is just one rule for memory allocation in real-time processing routines:
don’t. A call to malloc() or a new operator relay their request for a chunk
of memory to the operating system, which can take an unspecified amount
of time to actually process the request. Response time of the operating sys-
tem can vary from just a few milliseconds to several seconds, depending on
system load, structure of the main memory, etc.

Since dependency on the memory allocation facilities of the operating
system completely wrecks run-time stability, it is common in every real-time
signal processing application to allocate all possible memory that should be
needed during processing, before the processing starts - for a VST plugin,
the constructor or a special initialization function are ideal places. The pro-
cessing routine itself then just has to use the reserved space.

2.2.2 Oversampled Lookup Tables

In the first section of this thesis, it became clear that for amplitude cal-
culation and frequency estimation, several functions can be provided that
can be precomputed. All are based upon the window function, for which a
Blackman-Harris function was chosen, as defined in equation 1.9 and which
will be denoted as w further on. Its Fourier transform, W , was defined in
equation 1.31. Of importance are also its first and second derivatives W ′ and
W ′′, defined in equations 1.49 and 1.56 respectively. The Fourier transform
of the squared window function was defined in equation 1.32 and will be de-

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 64

2.2. IMPLEMENTATION

noted Y . Its second derivative Y ′′ is needed too, as defined in equation 1.61.

All of these functions are either even or uneven, thus requiring that only
half of it is precomputed. The main problem is that the functions are contin-
uous: they can have any real argument. Precomputation of those functions
over the whole range of floating point numbers is not feasible, instead we
can use without too many problems a small approximation: the functions
are clearly all very smooth, continuous, and have a very limited range, so an
oversampling factor of say, 10000, is more than enough to obtain a sufficient
degree of precision.

Each element of W consists of a summation over the elements of w, mul-

tiplied by an complex exponential factor e−2πim
n−n0

N . Since the window func-
tion w is real and symmetric, its Fourier transform is also real and symmetric.
Using Eulers formula as seen in equation 1.3, we can only retain the real part
of the complex exponential, which is cos(−2πmn−n0

N
). Also, since the cosine

is an even function, we can omit the − sign inside.

The entire computation of W’ can then be done in a single routine. The
window is supposed to be stored in an array of 2048 samples wide, equally
spread among 1 period of the window - that is between −π and π, since it is
a sum of cosines. When calculating the Fourier transform, we apply the same
trick: n−n0

N
and nStep are calculated such that n iterates over 2048 samples

equally spaced between almost −0.5 and 0.5. The multiplication with 2π in
the cosine then yields a range between −π and π.

Since the Fourier transform of the window is also bandlimited, the values
outside the main lobe are insignificant. The width of the main lobe is no more
than 8 frequency bins as can be calculated from figure 1.13, and since W is a
symmetric function too, W has only significant values between 0 and 4. To
obtain the oversampling, we calculate the value of W not for integer samples
between 0 and 4, but for floating point samples between 0.0000 and 3.9999
by increments of 0.0001, so we can store only the main lobe of W in an array
of 40000 floating point numbers. The result can be clearly seen in figure 1.17.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 65

2.2. IMPLEMENTATION

float nStep = 1.0f / ((float)N);

for (int m=0; m < 40000; ++m) {

float n = -((((float)N)-1)/2)/N;

for (j=0; j<2048 ; ++j) {

W[m] += w[j]*((float) cos(2*pi*m*n/10000));

n += nStep;

}

}

The derivatives of the window can also be calculated in a similar way -
but make sure to oversample the derivative of W , and not to take the deriva-
tive of the oversampled W . Both are very different: the oversampling factor
10000 does not need to be taken into account in the derivation. The deriva-
tive of W is also tricky to use because of its antisymmetry. It is just fine to
store only half of the function, but one has to keep in mind that when using
it, a negative argument also yields multiplying by −1.

As can be seen from equation 1.49, W ′ is the same as W , apart from
the multiplication with an imaginary line −2πin. Working out the complex
exponential just like before using equation 1.3, and noting that the derivative
of a real function must also be real, we arrive at the following equality:

< [−2πinwn (cos(−2πmn) + isin(−2πmn))] = 2πnwnsin(−2πmn) (2.1)

which can be coded exactly like the previous code listing, but then with
the calculation

Wd[m] += 2*pi*n * w[j]*((float) sin(-2*pi*m*n/10000));

For the second derivative, we can follow the same logic. The equality

<
[
4π2i2n2wn (cos(−2πmn) + isin(−2πmn))

]
= −4π2n2wncos(2πmn)

(2.2)
leads to the calculation

Wdd[m] += -4*pi*pi*n*n * w[j]*((float) cos(2*pi*m*n/10000));

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 66

2.2. IMPLEMENTATION

For Y , the Fourier transform of the squared window and its derivatives,
the code is analogous. As can be calculated from figure 1.15, the width of the
main lobe of Y and its derivatives is 16 frequency bins. Exploiting symmetry
or antisymmetry of the function here leads us to the requirement that, when
using an oversampling factor of 10000, an array of 80000 elements is needed
to store the complete oversampled main lobes. The resulting functions can
be seen in figure 1.17.

2.2.3 Shifted Matrix Storage

The matrices used in the amplitude calculation and frequency optimization
routines are band diagonal. It is known beforehand that the elements in the
upper right and lower left corners are all zero. Imagine storing the matrix
in memory, instead of as a square, just as a thick diagonal line. That way
we can get rid of the zeroes. The main diagonal of the matrix translates
to the middle column of the shifted matrix. The diagonals underneath the
main diagonal translate to columns on the left side in the shifted matrix, and
diagonals above the main diagonal translate to columns on the right side of
the shifted matrix. It could be seen as just turning the normal matrix by 45
degrees to the right, and cutting away all zeroes.

The first thing we need to know then is how wide this shifted matrix needs
to be, that is, how many diagonals are there in the band diagonal matrix.
This value can be calculated from the model. In the matrices, we need the
values of the functions Y or Y ′′. When the argument to these functions is
inside their main lobe, this yields a non-zero value. This is the case when the
argument, of the form ωk ± ωl, is small enough - no larger than the width of
the main lobe, which is 8 frequency bins to the positive side and 8 frequency
bins to the negative side.

We can calculate how many diagonal bands the matrices will have, start-
ing from the model. Iterating over all frequencies, we can count how many
other frequencies are within a distance of 8 frequency bins of the current
frequency. Those frequencies will have a difference that falls inside the main
lobe. If frequencies ωa and ωb lie close together, then the diagonal matrices
will have 3 diagonals: the leftmost one for the values ωa−ωb, the middle one
for the values 0, the rightmost one for the values ωb − ωa. All yield non-zero
values.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 67

2.2. IMPLEMENTATION

In general, for N frequencies lying close enough together, the band diago-
nal matrix will contain a square non-zero submatrix on the main diagonal of
width and height N . The maximum number of diagonals is then proportional
to the number of elements of the largest frequency cluster that we can find.
Clusters of N frequencies give rise to 2N − 1 diagonals, including the main
diagonal. This number of diagonals of the normal matrix forms the width of
the shifted matrix. The height of this matrix stays the same, and equals the
number of frequencies that are under consideration.

When accessing the elements of the matrix, the coordinates of the ele-
ments of the old diagonal matrix must be translated to coordinates of the
new shifted matrix. Suppose that we access an element on row k, then this
row k stays the same in the shifted matrix. Column l in the old matrix trans-
lates to column l +D−k, D being half the number of diagonals (rounded up
when column enumeration starts from 1, rounded down when it starts from
0). An element on the main diagonal has l = k, and thus will be positioned
in column D, the middle column of the shifted matrix.

If a matrix is symmetric, the element on position k, l has the same value
as the element on position l, k, and thus it needs to be computed only once
and filled in in the 2 positions. The symmetry of arguments does not hold
any more in the shifted matrix. An element k, l + D − k in a shifted matrix
has its symmetric counterpart in the element l, k + D − l. In its own coor-
dinates, say m, n, an element on that position has a symmetric element on
position n + m−D, 2D − n.

Special care must be taken when accessing elements of a matrix when it
is stored in a shifted matrix form: if the accessed element is zero valued and
is not stored, one shouldn’t try to retrieve it from the shifted matrix - which
gives öut of boundërrors. As with every data structure, the necessary bound-
ary checks have to be implemented to assure that nothing of the sort happens.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 68

Chapter 3

Conclusions and Future

3.1 On the theorical level

Sinusoidal modelling is a very powerful technique for audio analysis, con-
cerned with finding the real frequencies and their corresponding amplitudes
in a signal. The inherently large complexity of the methods used has been
fundamentally reduced by the optimizations developed by D’Haes [5]. In-
corporating the window function into the modelling allows for a significant
speedup that can even run in real-time. The presented sinusoidal model al-
lows for any set of frequencies and amplitudes, but eventually features of
harmonic sounds and polyphonic audio can be incorporated relatively easy.

3.1.1 Windowing

The techniques described here are very powerful, but nevertheless they can
fail. A lot depends on the initial estimate of the sinusoidal model. If the
initial model estimate differs too much from the real signal, convergence to
the optimal model will fail because no optimization is possible. The elements
of the model must all be within the main lobe of one of the real frequencies,
if gradient and Hessian calculation are to work. A window with a very wide
main lobe will allow for more relaxation on the initial model.

The other way round, when the signal contains frequencies that are so
close to eachother that their frequency responses almost overlap, the spec-
tral peaks of the responses are not distinguishable any more and the opti-
mizer cannot distinguish the 2 separate frequencies. The frequencies that
are present in the signal, must thus be spaced enough from eachother so that
each frequency still corresponds to a local maximum in the spectrum. This

69

3.1. ON THE THEORICAL LEVEL

is also due to the window: a window with a very narrow frequency response
will perform much better in this respect.

In every respect, we are thus prisoner of the chosen window function. It
might be interesting to investigate whether this could be exploited in any
way: start the optimization using a window with a wide main lobe, and after
a few iterations, switch to a window with a small main lobe. The window
could also be adapted to the pitch that is most likely present in the signal.
Instead of changing the window, changing the frame size might also be in-
teresting. These so-called multiresolutional approaches often require heavy
calculations, but are frequently used in audio encoding ([53], [54]).

3.1.2 The Model

The sinusoidal model as has been used here, assumes that amplitudes are
independent of frequencies. The frequencies have to be optimized, the am-
plitudes only have to be calculated. Alternatively doing both can, in a worst
case scenario, converge very slowly.

But actually, the amplitudes could be seen as a function of the frequency.
In the Fourier domain, each frequency is linked to exactly one amplitude.
When adapting the model in such way that the amplitudes are considered
as dependent on the frequency (take equation 1.10 and replace ak by aωk

), it
might be possible to devise an optimization method in which both amplitudes
and frequencies can be optimized in a single step. The partial derivatives of
the error function, to begin with, would look entirely different.

The model as set up here works for any series of frequencies, but does not
exploit eventual internal relations (yet). For instance, Coinciding frequencies
have to be filtered out first by preprocessing to avoid crashes in the optimiza-
tion routines. Investigating the special cases that arise when working with
harmonic sounds and polyphonic music, might lead to the development of
special cases of the model that are better suited for working with sounds that
are comprised of different interrelated components.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 70

3.2. ON THE PRACTICAL LEVEL

3.2 On the practical level

When implementing audio routines for real-time usage, speed and efficiency
is all that matters. Developing audio applications require from the program-
mer that some specific concerns are kept in mind that one often finds out
the hard way. Mathematically complicated and thus error-prone algorithms
like the ones here can be implemented in C, tested in Matlab using Mex
functions, and afterwards seamlessly incorporated into other productions -
for example VST plugins.

3.2.1 Deployment

The implementations made here only form a framework that can be used by
projects in other contexts. Just analyzing incoming audio is not really useful
if one is not going to do anything with the analysis. A sinusoidal model is
much more interesting to use than a normal signal spectrum, because the
model contains the real frequencies and amplitudes, and a spectrum is only
a leaky approximation of those.

To remain in the sound analysis and synthesis world, a possible usage
could be multipitch tracking and/or correcting [27]. The model allows for
independent manipulation of frequencies and their amplitudes, so one can
also easily resynthesize a changed frequency. When using harmonic sounds,
a whole set of frequencies might be adapted at once: one fundamental fre-
quency and its harmonics, without interfering with other frequencies inde-
pendent from that sound. Polyphonic audio is here a special challenge too,
because of the great amount of overlap in present frequencies.

On a more ambitious path, it might be possible to attach a pitch tracker
to a learning algorithm, thereby learning a sinusoidal model to detect dif-
ferent instruments or behave like different instruments ([55], [56]). If the
model can be trained to take specific information on the acoustic properties
of the present instruments into account, pitch tracking and polyphonic audio
handling become much easier - it is also the way humans distinguish different
instruments playing together: each instrument has other harmonical ’model’
characteristics. This might also free up the path to advanced sound source
separation [11].

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 71

3.2. ON THE PRACTICAL LEVEL

The quasi-exact pitch tracking capabilities of a sinusoidal model can be
used to make advances in score following, performance error analysis, or com-
paring an audio recording to a musical partition - so called score-performance
matching ([57], [58]). Applications in automatic accompaniment are also
possible ([59], [60]).

Sinusoidal modelling can be seen as a form of feature extraction from an
audio source. The frequencies and amplitudes of the signal are features, much
more accurate and compact than a spectrum. This allows much better for all
kinds of analysis of musical collections, in the fields of music theory, struc-
ture, etc. The extracted features can be stored and thus form a description
of the audio, which can be used later in data mining applications ([61], [55]).

3.2.2 A broader perspective

The model and algorithms described here were developed with specifically
sound applications in mind. But they are so general that they could be used
in any environment where signal processing is used. It might be worthwile to
search for other uses of sinusoidal modelling and try a valorization in other
domains.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 72

List of Figures

1.1 256 samples of a 250Hz signal sampled at 8000Hz 9
1.2 The 256-point DFT of Fig. 1.1 10
1.3 256 samples of a 240Hz signal sampled at 8000Hz 10
1.4 The 256-point DFT of Fig. 1.3 11
1.5 Test image . 12
1.6 The expected FFT of Fig. 1.5 12
1.7 The calculated FFT of Fig. 1.5 13
1.8 The reason of leakage: glitches when repeating 14
1.9 The rectangular window and its FFT 16
1.10 The Blackman window and its FFT 16
1.11 Fig. 1.3 with a Blackman window applied 17
1.12 The 256-point DFT of Fig. 1.11 17
1.13 The Blackman-Harris window and its FFT 19
1.14 The Circle of Fifths . 22
1.15 The squared Blackman-Harris window and its FFT 33
1.16 Structure of the band diagonal matrix B and storage as a

shifted matrix. Image c© Wim D’haes. 36
1.17 on the left, top-down: functions W, W’ and W”; on the right,

top-down: functions Y, Y’ and Y”, all oversampled with a
factor 10000 . 45

2.1 A Cubase SX3 session with some VST plugins loaded 52
2.2 A Bidule session showing a plugin with the default host GUI,

and one that has its 3D GUI [42] 55
2.3 Using Mex functions in Matlab to test parts of the sinusoidal

modelling implementation . 60

73

Bibliography

[1] J. Ganseman and W. D’haes, “Score-performance matching in practice:
Problems encountered and solutions proposed,” 2006, presented at RMA
Research Students’ Conference 2006.

[2] Steinberg Media Technologies GmbH, “VST (Virtual Studio Technol-
ogy).” [Online]. Available: http://www.steinberg.net/325 1.html

[3] Recordare LLC, “MusicXML.” [Online]. Available: http://www.
musicxml.org/xml.html

[4] MIDI Manufacturers Association, Complete MIDI 1.0 Detailed Specifi-
cation, MIDI Manufacturers Association Std., Rev. 96.1, november 2001.

[5] W. D’haes, “Automatic estimation of control parameters for musical
synthesis algorithms,” Ph.D. dissertation, University of Antwerp, june
2004.

[6] J. L. Flanagan, “Parametric coding of speech spectra,” in Journal of the
Acoustical Society of America, vol. 68, no. 2, august 1980, pp. 412–419.

[7] R. J. McAulay and T. F. Quatieri, “Speech analysis/synthesis based on a
sinusoidal representation,” in IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 34, no. 4, august 1986, pp. 744–754.

[8] G. Bailly, E. Bernard, and P. Coisnon, “Sinusoidal modelling,” 1998.

[9] A. Syrdal, Y. Stylianou, L. Garrison, A. Conkie, and J. Schroeter, “TD-
PSOLA versus harmonic plus noise model in diphone based speech syn-
thesis,” in Proceedings of the 1998 IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 1, may 1998, pp. 273–276.

[10] J. Paulus and A. Klapuri, “Measuring the similarity of rhytmic pat-
terns,” in Proceedings of the 3rd International Conference on Music In-
formation Retrieval, october 2002, pp. 150–156.

74

BIBLIOGRAPHY

[11] T. Virtanen and A. Klapuri, “Separation of harmonic sound sources
using sinusoidal modeling,” in Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, vol. 2, may 2000,
pp. 765–768.

[12] H. Ye and S. Young, “High quality voice morphing,” in Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 1, may 2004, pp. 9–12.

[13] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcula-
tion of complex fourier series,” in Mathematics of Computation, vol. 19,
april 1965, pp. 297–301.

[14] I. J. Good, “The interaction algorithm and practical fourier analysis,”
in Journal of the Royal Statistical Society. Series B (Methodological),
vol. 20, no. 2, 1958, pp. 361–372.

[15] S. G. Johnson and M. Frigo, “A modified split-radix fft with fewer arith-
metic operations,” in Mathematics of Computation, vol. 55, no. 1, jan-
uary 2007, pp. 111–119.

[16] C. Roads, The computer music tutorial. MIT Press, 1996.

[17] W. H. Press, W. T. Vetterling, S. A. Teukolsky, and B. P. Flannery,
Numerical Recipes in C++: the art of scientific computing, 2nd ed.
Cambridge University Press, 2002.

[18] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Prentice Hall, 2002.

[19] H. A. Gaberson, “A comprehensive windows tutorial,” Sound and Vi-
bration, pp. 14–23, march 2006.

[20] F. J. Harris, “On the use of windows for harmonic analysis with the
discrete fourier transform,” in Proceedings of the IEEE, vol. 66, no. 1,
january 1978, p. 5183.

[21] A. H. Nuttall, “Some windows with very good sidelobe behavior,” in
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
no. 1, february 1981, p. 8491.

[22] H. Taube, “Automatic tonal analysis: Toward the implementation of a
music theory workbench,” Computer Music Journal, vol. 23, no. 4, pp.
18–32, 1999.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 75

BIBLIOGRAPHY

[23] D. R. Hofstadter, Gödel, Escher, Bach: an Eternal Golden Braid. Basic
Books, 1979.

[24] M. R. Portnoff, “Implementation of the digital phase vocoder using the
fast fourier transform,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 24, no. 3, pp. 243– 248, june 1976.

[25] M. S. Puckette and J. C. Brown, “Accuracy of frequency estimates using
the phase vocoder,” IEEE Transactions on Speech and Audio Processing,
vol. 6, no. 2, pp. 166–176, march 1998.

[26] A. V. Oppenheim and R. W. Schafer, “From frequency to quefrency:
A history of the cepstrum,” IEEE Signal Processing Magazine, vol. 21,
no. 5, pp. 95–106, september 2004.

[27] T. Tolonen and M. Karjalainen, “A computationally efficient multipitch
analysis model,” IEEE Transactions on Speech and Audio Processing,
vol. 8, no. 6, pp. 708–716, november 2000.

[28] C. Yeh, A. Röbel, and X. Rodet, “Multiple fundamental frequency esti-
mation of polyphonic music signals,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing, vol. 3,
march 2005, pp. 225–228.

[29] C. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, 1995.

[30] Steinberg Media Technologies GmbH, “VST Software Development
Kit version 2.4 rev. 2,” november 2006. [Online]. Available:
http://www.steinberg.de/324 1.html

[31] Muse Research, Inc., “KVR Audio Plugin Resources.” [Online].
Available: http://www.kvraudio.com

[32] Apple Computer, Inc., “Audio Units.” [Online]. Available: http:
//developer.apple.com/audio/audiounits.html

[33] Avid Technology, Inc., “Real Time Audio Suite.” [Online]. Available:
http://www.digidesign.com/

[34] Microsoft Corporation, “DirectX.” [Online]. Available: http://msdn.
microsoft.com/directx/

[35] R. Furse, “LADSPA.” [Online]. Available: http://www.ladpsa.org

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 76

BIBLIOGRAPHY

[36] FXpansion, “VST to AU and VST to RTAS adapters.” [Online].
Available: http://www.fxpansion.com/index.php?page=31

[37] F. Vanmol, “Cubase VST SDK for Delphi v2.4.2.1.” [Online]. Available:
http://www.axiworld.be/vst.html

[38] D. Martin, “jVSTwrapper.” [Online]. Available: http://jvstwrapper.
sourceforge.net/

[39] Steinberg Media Technologies GmbH, “VSTGUI: Graphical User
Interface Framework for VST plugins, version 3.5,” february 2007.
[Online]. Available: http://vstgui.sourceforge.net/

[40] Microsoft Corporation, “GDI+.” [Online]. Available: http://msdn2.
microsoft.com/en-us/library/ms533798.aspx

[41] The Open Group, “Motif 2.1.” [Online]. Available: http://www.
opengroup.org/motif/

[42] AudioNerdz, “Delay Lama,” may 2002. [Online]. Available: http:
//www.audionerdz.com

[43] TrollTech, “Qt: Cross-Platform Rich Client Development Framework.”
[Online]. Available: http://trolltech.com/products/qt

[44] OpenGL Working Group, “OpenGL version 2.1,” august 2006. [Online].
Available: http://www.opengl.org/

[45] S. Thakkar and T. Huff, “The Internet Streaming SIMD Extensions,”
Intel Technology Journal, vol. Q2, pp. 1–8, may 1999.

[46] Intel Corporation, “Intel 64 and IA-32 Architectures Optimization
Reference Manual,” may 2007. [Online]. Available: http://developer.
intel.com/products/processor/manuals/index.htm

[47] F. Franchetti and M. Püschel, “SIMD Vectorization of non-two-powered
sized FFTs,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 2, april 2007, pp. 17–20.

[48] The MathWorks, “Matlab 7 for Windows,” 2006. [Online]. Available:
http://www.mathworks.com/products/matlab/

[49] H. Haas, “The influence of a single echo on the audibility of speech,”
Journal of the Audio Engineering Society, vol. 20, no. 2, pp. 146–159,
march 1972.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 77

BIBLIOGRAPHY

[50] J. R. Ashley, “Echoes, reverberation, speech intelligibility and musical
performance,” in Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 6, april 1981, pp. 770–772.

[51] C. Chafe, M. Gurevich, G. Leslie, and S. Tyan, “Effect of time delay on
ensemble accuracy,” in Proceedings of the International Symposium on
Musical Acoustics, april 2004.

[52] L. de Soras, “Denormal numbers in floating point signal processing
applications,” april 2004. [Online]. Available: http://ldesoras.free.fr/

[53] S. N. Levine, T. S. Verma, and J. O. Smith III, “Multiresolution sinu-
soidal modeling for wideband audio with modifications,” in Proceedings
of the International Conference on Acoustics, Speech, and Signal Pro-
cessing, may 1998.

[54] K.-H. Kim and I.-H. Hwang, “A multi-resolution sinusoidal model using
adaptive analysis frame,” in Proceedings of the 12th European Signal
Processing Conference (EUSIPCO 2004), september 2004, pp. 2267–
2270.

[55] P. Herrera-Boyer, G. Peeters, and S. Dubnov, “Automatic classification
of musical instrument sounds,” Journal of New Music Research, vol. 32,
no. 1, pp. 3–21, 2003.

[56] P. Herrera, A. Yeterian, and F. Gouyon, “Automatic classification of
drum sounds: a comparison of feature selection methods and classifi-
cation techniques,” in International Conference on Music and Artificial
Intelligence, september 2002.

[57] H. Heijink, L. Windsor, and P. Desain, “Data processing in music
performance research: Using structural information to improve score-
performance matching,” Behavior Research Methods, Instruments &
Computers, vol. 32, no. 4, pp. 546–554, august 2000.

[58] H. Heijink, P. Desain, H. Honing, and L. Windsor, “Make me a match:
an evaluation of different approaches to score-performance matching,”
Computer Music Journal, vol. 24, no. 1, pp. 43–56, april 2000.

[59] R. B. Dannenberg, “An on-line algorithm for real-time accompaniment,”
in Proceedings of the International Computer Music Conference, 1984,
pp. 193–198.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 78

BIBLIOGRAPHY

[60] M. Puckette and C. Lippe, “Score following in practice,” in Proceedings
of the International Computer Music Conference, 1992, pp. 182–185.

[61] A. Lerch, G. Eisenberg, and K. Tanghe, “Feapi: A low level feature
extraction plugin api,” Proceedings of the 8th International Conference
on Digital Audio Effects, Madrid, Spain, September 2005.

Joachim Ganseman Sinusoidal Modelling of Polyphonic Audio 79

