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Abstract

Free Viewpoint Video (FVV) is a revolutionary technique that allows a spectator to freely
choose a custom camera viewpoint. Based on information of several �xed-point cameras,
the requested intermediate viewpoint is synthesized without the need of a physical came-
ra. These calculations heavily rely on stereo matching algorithms, which extract depth
information out of a pair of available input cameras. However, these algorithms cannot
process the live feed instantly and therefore require the feed to be preprocessed adequate-
ly. The preprocessing mainly involves correcting barrel distortion that occurs by the use
of practical camera lenses, and rectifying the stereo vision, i.e. aligning object features to
the same scan line between the two images. This enables image-based rendering systems
to synthesize any viewpoint in real-time from a practical stereo camera setup.

The core topic of this thesis book focuses on advanced video preprocessing, imple-
mented on graphics hardware. We have expanded an existing imaged-based rendering
framework � codenamed aLive � , that originally takes in ideal images with no regards
to practical imperfections whatsoever. To correct these imperfections, the �xed-point
cameras are also used in a self-calibration process, exposing the cameras' relative pose
and speci�c camera properties. Using the obtained calibration data, an adequate amount
of pincushion can be applied to the images, to restore the barrel distortion caused by
practical camera lenses. The acquired geometrical information is then used to rectify the
self-calibrated stereo pair. Since the recti�cation causes the object features to align on
the same scan line of the images, the stereo matching process can e�ciently compute
the depth information needed to synthesize the requested viewpoint. Moreover, real-time
performance is still maintained by o�oading the high amount of computations from CPU
to the Graphics Processing Unit (GPU).

The advanced preprocessing is implemented by developing additional modules in the
existing framework that use the same environment, resulting in a stand-alone performance
of 3691 fps for 450 × 375 image resolutions. The full functionality thereby only su�ers
from a minor frame rate drop of 1.32% , to a total speed of 43.9 fps.
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Abstract

Free Viewpoint Video (FVV) is een revolutionaire techniek die een kijker toelaat om vrij
zijn eigen camerastandpunt te kiezen. De gevraagde kijkhoek wordt berekend op basis van
de informatie van een aantal vaste camera's, zonder dat daarvoor extra camera's nodig
zijn. De berekeningen hiervoor zijn grotendeels gebaseerd op stereo matching algoritmes,
die diepte informatie uit een koppel beschikbare camera's kunnen halen. Deze algorit-
mes kunnen echter geen rechtstreekse berekeningen op live beelden uitvoeren, daarvoor
moeten de opgenomen beelden eerst voldoende bewerkt worden. Deze voorbewerkingen
omvatten hoofdzakelijk het corrigeren van radiale distortie op de beelden, die ontstaat
door het gebruik van echte cameralenzen, en het recti�ëren van de stereo visie, wat wil
zeggen dat er moet voor gezorgd worden dat karakteristieke punten op dezelfde horizontale
scanlijn komen te liggen. Dit zorgt ervoor dat beeldgebaseerde verwerkingssystemen van-
uit een praktische stereo camera opstelling zo goed als elke kijkhoek in real-time kunnen
synthetiseren.

De essentie van dit thesisboek focust op geavanceerde videovoorbewerking, geimple-
menteerd op de gra�sche kaart. Wij hebben een reeds bestaand beeldgebaseerd verwer-
kingssysteem � genaamd aLive� uitgebreid. Dit verwacht zich enkel aan ideale beelden,
zonder rekening te houden met enige praktische onvolkomenheden. Om zulke onvolkomen-
heden weg te werken worden de vaste camera's ook gebruikt in een zelfkalibratieproces,
waarbij de intrinsieke eigenschappen en de relatieve positie van de camera's wordt be-
paald. Gebruikmakend van deze kalibratiedata, kan de benodigde hoeveelheid pincushion
distortie op de beelden aangebracht worden, die de radiale of barrel distortie, veroor-
zaakt door praktische cameralenzen, corrigeert. De verworven geometrische informatie
kan dan gebruikt worden om de recti�catie van het zelf-gekalibreerde paar camera's te
bekomen. Aangezien recti�catie van de beelden ervoor zorgt dat de karakteristieke punten
op dezelfde scanlijn komen te liggen, kan een stereo matching proces de diepte informatie,
die nodig is om de gevraagde kijkhoek te synthetiseren, accuraat bepalen. Bovendien
wordt de real-time performantie behouden door het hoge aantal berekeningen over te
zetten van de CPU naar de GPU.

Het geavanceerde voorverwerkingssysteem is in het bestaande framework geimplemen-
teerd door de ontwikkeling van aanvullende modules die dezelfde programmeeromgeving
gebruiken, wat resulteert in een alleenstaande performantie van 3691 fps voor beelden met
een resolutie van 450 × 375 . De volledige functionaliteit wordt hierdoor maar een klein
snelheidsverlies van 1.32% toebedeeld, wat de totale snelheid herleidt tot 43.9 fps.
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Nederlandse samenvatting

Free Viewpoint Video (FVV) is een techniek die het mogelijk maakt voor een digitale
kijker om het camerastandpunt vrij te kiezen in een digitale video toepassing. De op-
names worden gemaakt met een beperkt aantal vaste, fysische cameras, en de gevraagde
camerastandpunten of kijkhoeken worden dan berekend aan de hand van die informa-
tie, zonder dat we daarvoor nood hebben aan een extra camera. De verwerking van de
binnenkomende informatie gebeurt door beeldverwerkingsalgoritmes die zich baseren op
dieptebeelden. Uit een paar beelden kan namelijk diepte-informatie gehaald worden met
behulp van een proces dat we stereocorresponderen noemen. Aan de hand van de diepte-
beelden die hiermee bepaald worden, kan het tussenliggende camerastandpunt, dat door
de kijker was aangevraagd, berekend worden.

Diepte-informatie zit in beeldenparen vervat door de verplaatsing die de objecten ma-
ken tussen de twee beelden. Voorwerpen die korter bij de camera gelegen zijn, zullen een
grotere verschuiving maken dan voorwerpen die veraf gelegen zijn. Door deze verschui-
ving te bepalen voor elke pixel van een beeld kan er een dieptebeeld gecreëerd worden.
Als dan een camerastandpunt wordt aangevraagd dat niet samenvalt met de positie van
een fysische camera, kan het dieptebeeld eenvoudigweg geschaald worden om te bepalen
hoeveel de voorwerpen zullen verschuiven als er vanuit de virtuele positie wordt gekeken,
zodat een realistisch beeld wordt gesynthetiseerd. Mogelijke praktische toepassingen van
deze techniek zijn 3D cinema zoals `Beowulf' of vrije keuze van camerastandpunt bij het
bekijken van een voetbalwedstrijd via digitale televisie.

Deze stereocorrespondentie algoritmes zijn er echter op voorzien om ideale beelden te
verwerken, zonder rekening te houden met eventuele afwijkingen door gebruik van niet
gemodelleerde objecten. Zo zal er hoofdzakelijk radiale beelddistortie optreden doordat
er met echte lenzen wordt gewerkt die afwijken van het theoretische model. Om ste-
reocorrespondentie mogelijk te maken, wordt ook verondersteld dat de camera's parallel
uitgelijnd zijn bij het maken van de beelden. Aangezien in realiteit geen garantie kan
gegeven worden dat dit altijd zo is, moeten de ge�lmde beelden dus eerst nog getransfor-
meerd worden zodat het lijkt alsof ze van een parallelle cameraopstelling afkomstig zijn.
Deze operatie noemen we het recti�ëren van beelden. Deze voorverwerkingen vormen het
hoofdonderwerp van dit werk en zijn essentieel voor het ontwikkelen van een reële FVV
applicatie, aangezien stereocorresponderen op echte beelden niet mogelijk is zonder de
nodige voorverwerking.

Om zulke afwijkingen van de modellen te kunnen corrigeren, hebben we nood aan
de eigenschappen van de camera's en hun relatieve posities. Deze eigenschappen worden
de intrinsieke en de extrinsieke parameters van de camera's genoemd en kunnen gegroe-
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peerd worden in een matrix, de perspectief projectiematrix (PPM). De parameters kunnen
bepaald worden door middel van camerakalibratie, waarbij enkel aan de hand een paar
beelden, deze parameters berekend worden. Wij hebben geopteerd voor fotometrische
zelf-kalibratie, waarbij met een makkelijk herkenbaar object in de beelden wordt gewerkt,
om ze eenvoudiger met elkaar te kunnen linken.

De eerste stap in het bepalen van de perspectief projectiematrix en dus ook de came-
ra parameters, is het detecteren van karakteristieke punten in de verschillende beelden.
Omdat we niet elk beeld pixel per pixel kunnen gaan vergelijken om eventuele overeenkom-
stigheden te vinden, wordt er gewerkt met karakteristieke punten, bijvoorbeeld hoeken,
die gemakkelijk herkenbaar zijn in verscheidene beelden. Voor de detectie hiervan maken
we gebruik van karakteristieke puntsdetectie of ook wel hoekdetectie. Wij hebben geop-
teerd voor de Harris hoekdetector, die aan de ene kant heel wat rekenkracht vraagt, maar
aan de andere kant ook heel robuust en nauwkeurig blijkt te zijn. Deze hoekdetector
maakt gebruik van metingen van de intensiteitsvariatie in de buurt van een punt en de�-
nieert karakteristieke punten dus als plaatsen met een grote variatie in de intensiteit. Om
de vereiste rekenkracht op te vangen die bij zulke beeldverwerkingstoepassingen hoort,
wordt er gewerkt met de Graphical Processing Unit (GPU) oftewel de gra�sche kaart.

De gra�sche kaart was een van de eerste hardware onderdelen die een groot aantal
betaalbare parallelle processoren in huis had, en is wegens zijn grote mogelijkheid tot pa-
rallelisatie een zeer nuttige bron van rekenkracht voor beeldverwerking. In vele gevallen is
het voor een beeldverwerkingsapplicatie noodzakelijk om operaties op iedere pixel apart
uit te voeren, zodat een parallelle verwerking enorm veel snelheidswinst kan opleveren.
De GPU is eigenlijk een pijplijn met verschillende tussenstations, waar dan op elk tus-
senstation het werk in parallel wordt uitgevoerd. Naargelang het type GPU dat wordt
gebruikt zijn twee of meer van zulke tussenstations programmeerbaar, wat wil zeggen
dat je je eigen code kan laten uitvoeren op de gra�sche kaart. Wij hebben gewerkt met
een gra�sche kaart (Nvidia GeForce 7900 GTX) die twee programmeerbare tussenstations
bezit, namelijk de vertex processor en de fragment processor. Door gebruik te maken
van de Direct3D programmeerbare interface van Microsoft, kunnen we onze stukken code
omzetten naar laag-niveau assembly-code die dan in de GPU kan worden uitgevoerd.

Omdat niet elk stuk code geschikt is voor de parallelle structuur van de GPU, wordt
er ook steeds meer gezocht naar manieren om sequentiële code om te zetten naar paral-
lelle code om ze zo toch te kunnen inladen in de gra�sche kaart. We noemen dit principe
General Purpose computations on the GPU (GPGPU) en dit is een belangrijk onderzoeks-
gebied omdat grote snelheidswinsten kunnen geboekt worden als bepaalde algoritmes van
het manusje-van-alles, de CPU, naar de gespecializeerde GPU kunnen worden overgedra-
gen. Zo hebben wij ook de Harris hoekdetector volledig op de GPU geprogrammeerd,
hoewel lang niet alle berekeningen `echte' gra�sche berekeningen zijn zoals het opslaan
van een berekende correlatie waarde in een textuur. De verdere camerakalibratie heb-
ben we echter niet geimplementeerd aangezien dit teveel onwikkeltijd zou innemen en dit
voor onze vaste cameraopstelling niet strikt noodzakelijk was. Ons hoofddoel ligt bij de
voorverwerking van echte beelden.

Nadat de cameraparameters zijn bepaald, kunnen we ons toespitsen op de eerste voor-
verwerkingsstap, de correctie van radiale distortie (ook `barrel' distortie). Dit fenomeen
is makkelijk zichtbaar in bijvoorbeeld foto's van groothoeklenzen, waarbij het beeld meer
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en meer vervormt naarmate de afstand tot het centrum van de distortie groter wordt,
vandaar dat het radiale distortie heet. Maar ook bij gewone cameralenzen is dit e�ect
al zo goed zichtbaar dat we in vele gevallen niet verder kunnen zonder het weg te wer-
ken. Die correctie kan gezien worden als de inverse operatie toepassen op het vervormde
beeld waardoor er een gecorrigeerd beeld wordt gecreëerd. Wij hebben deze correctie
geïmplementeerd met de architectuur van de gra�sche kaart in ons achterhoofd. Daarom
berekenen we niet de transformatie van het vervormde naar het ideale beeld, maar net
andersom. Omdat in de GPU altijd eerst een textuur moet geladen worden om kleur te
geven aan de beelden, berekenen wij een omzetting van het niet-gekleurde, ideale beeld
naar het vervormde en gekleurde beeld. Door de ideale pixel de kleur te geven die bij zijn
vervormde waarde hoort, wordt uiteindelijk dezelfde correctie doorgevoerd.

De laatste stap voordat de verkregen beelden kunnen gebruikt worden voor stereo-
correspondentie, is recti�catie van de beelden. De bedoeling is om het zo te laten lijken
alsof de beelden opgenomen zijn met twee parallel uitgelijnde camera's, want dit zorgt er-
voor dat alle overeenkomstige karakteristieke punten in de twee beelden op gelijke hoogte
komen te liggen zodat het zoeken naar corresponderende punten in de stereocorrespon-
dentie algoritmes wordt beperkt tot het zoeken op een lijn in plaats van het hele beeld.
De transformatie wordt gerealiseerd door de berekende perspectief projectiematrix van
elke camera, om te zetten naar een nieuwe PPM die de camerapositie voorstelt in een
parallelle opstelling. Dit betekent dat, eens de nieuwe PPM's voor beide camera's bekend
zijn, dat we enkel nog de transformatie moeten zoeken die pixels van op het cameravlak
dat bij de oude PPM hoort, afbeeldt op het nieuwe cameravlak dat bij de nieuwe PPM
hoort. Dit is een per-pixel transformatie die in een matrix kan gebundeld worden, zodat
deze omzetting maar een matrixvermenigvuldiging vereist, eens de nieuwe PPM's gekend
zijn. Alle andere beelden die door dezelfde camera's worden gemaakt kunnen nu met
diezelfde transformatie worden omgezet, aangezien we veronderstellen dat de camera's
vast staan. Dit wil zeggen dat de berekening van een nieuw paar PPM's slechts eenmalig
is als het om een ge�xeerde cameraopstelling gaat. Eens de omzetting gedaan is, zijn de
beelden nu de best mogelijke benadering van de gevraagde ideale beelden en kan er aan
de stereocorrespondentie begonnen worden.

Aangezien wij enkel de voorverwerking van de camerabeelden uitvoeren, en niet de ach-
terliggende correspondentie, moeten deze operaties zo snel en e�ciënt mogelijk verlopen
zodat de eindtoepassing er zo weinig mogelijk hinder van ondervindt. Onze ontwikkelin-
gen hebben geleid tot een applicatie die de beelden voorverwerkt aan een snelheid van
3691 beelden per seconde (fps). Dit zorgt slechts voor een snelheidsdaling in de eindappli-
catie van zo'n 1.32%, wat de eindsnelheid herleidt tot 43.9 fps, nog steeds ruim voldoende
voor een live video verwerking, die minimum 25 fps moet bedragen.





Chapter 1

Introduction

3D is a booming business in a very broad range of sectors, from the industry over the
medical sector to the entertainment sector, everybody is talking about 3D nowadays,
and that is also one of the motivations of this work, trying to set the pace in a yet
relatively unexplored domain. Right now, the possibilities are unlimited, numerous new
applications, goods, merchandizing stu� and many more see the light of day. Thanks
to strong evolution in silicon technology, the average Joe can take part in this as well,
because the desktop PCs we buy for gaming or other joyful purposes contain graphics
cards, that are the supercomputers of the future. In this work we want to introduce the
reader to this new world and try to make a di�erence ourselves, developing a customizable
viewpoint application on commodity hardware.

1.1 Background information

1.1.1 The related company

The �Inter-university Micro Electronics Center�, IMEC abbreviated [2], has been my home
base for the past six months to develop a Master's thesis. Here, in Leuven, resides the
largest independent European research center in the �eld of microelectronics, nanotech-
nology, design methods and technologies for ICT systems. IMEC's research bridges the
gap between fundamental research at universities and technology development in industry.

Figure 1.1: The new IMEC corporate logo

Since its foundation in 1984, IMEC has evolved into a corporation that employs an
international group of over 1500 people, mainly researchers, PhD students, industrial
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residents and interns. Because of its physical location close to the univerity campus of
the Catholic University of Leuven, it o�ers a lot of opportunities and serious motivation
for several academic essays. This wide variety of people contributes to IMEC's main
mission statement: �To perform Research and Design, ahead of industrial needs by 3 to
10 years.�

In the meantime, IMEC can count itself among the top research centers in the world
concerning semiconductor production and it maintains healthy relationships with big in-
ternational corporations such as Intel, Samsung, Texas Instruments and TSMC. This
global network of clientele results in several headquarters located abroad, with the recent
opening of an IMEC representative o�ce in Taiwan as the latest newcomer.

1.1.2 Personal motivation

I have always had a fascination for 3D and cinematography in general, so when this thesis
topic came along, combining both my interest in three dimensional media and the ICT
sector, I felt suited for the job. As a Master's thesis researcher I have been brough under
the Nomadic Embedded Systems (NES) division, in the MultiMedia (MM) group, to be
more precisely. Being part of such an internationally recognized environment did also
contribute a great deal to my personal motivation to produce a high standard Master's
thesis.

My predecessor's (Mr. Sammy Rogmans) Master's thesis was a big inspiration to me
as well, since he proved that since the Bologna declaration of June 19th, 1999, college
students could, just as university students, get their hands on a project of academic level
and quality. Knowing that he would be my corporate promotor gave me faith that I too,
with his and his colleagues help, would be able to accomplish the task that was set.

1.1.3 Starting point

I was given a slight head start in my Master's thesis as I would not be working on an
entirely new project, but I would be delivering some of the necessary pieces to complete
a project started in 2006 (see chapter 1.2). I was handed over a framework that had been
build the past year and I was expected to expand this existing framework while also creat-
ing some new elements from ground zero. I believe that this reuse of intellectual property
came in real handy, because it took me immediately one step in the right direction. I
could use it as a stepping stone, something to rely on.

1.2 Thesis objectives

1.2.1 Free Viewpoint Video

This Master's thesis classi�es under the umbrella concept of Free Viewpoint Video (FVV).
The global approach of this concept is to allow any live stream spectator to customize its
viewpoint according to his desire. For example, FVV will make it possible for a digital
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television customer to choose the angle of incidence at which he wants to witness e.g. a
game of soccer.

Figure 1.2: The interpolated view sits mid-court

With the information that is captured from a couple of physical cameras on the pitch,
for instance one in each corner, a virtual intermediate view will be constructed to allow the
spectator to experience the game as if he is sitting mid-court. This e�ect can be applied
on a live stream without the need of an extra physical courtside camera. Considering
that every digital spectator might request a di�erent angle of incidence, it is essential
that we can create these intermediate viewpoints without additional cameras. There are
several techniques and possibilities to create this custom intermediate viewpoint, but the
technique we use is known under the name of Depth Image Based Rendering (DIBR)
and has been the subject of the Master's thesis of Rogmans [3]. In this technique, depth
information is used together with available imagery to obtain the requested viewpoint.

However, these algorithms cannot process the live feed instantly and therefore require
the feed to be preprocessed adequately. This involves correcting barrel distortion that
occurs by the use of practical camera lenses, and rectifying the stereo vision, i.e. align-
ing object features to the same scan line between the two images. That is why image
preprocessing is one of the key objectives of this thesis.

1.2.2 High speed adaptive preprocessing system

The preprocessing system that we want to construct has to be able to �t into a live
streaming application, so it will have to exceed the limitations of live video feed as a
minimum requirement. Since we can only speak of moving images or video applications
when the achieved frame rate tops 25 frames per second, also referred to as genuine
real-time, we could demand nothing less of our preprocessing system. As the necessary
preprocessing steps may vary depending on the quality and speci�cations of the camera
itself, the need arose for a �exible system that would easily adapt to the needs of the
user. For instance, not every camera shoots with serious lens distortion and most camera
setups will not need constant recalibration, so depending on the situation, certain steps
can and will be skipped.

1.2.3 Contribution to GPU parallelization

With the rise of the Graphics Processing Units (GPU), the �rst inexpensive, massive data-
parallel processors became accessible for researchers, which caused them to change their
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focus from working with the Central Processing Unit (CPU) as main supplier of arithmetic
horsepower to the more agile and higher capability GPU. Our work can contribute to help
create and stimulate this change in perspective. The reason is simple, because Lu and
Rogmans' interpolating algorithm [3] had already been implemented on the GPU, we
would build on that experience and try to implement the full application on the GPU,
thereby o�oading the end user's CPU, leaving it open for tasks not suited for the GPU
and other user applications as the Internet, chatting, playing music and many more.
This o�oading to the GPU can lead to signi�cant speedups thanks to its specialized
architecture.

Obviously not every task is suited for the GPU, but as it happens, a lot of image
processing tasks are well-suited and yet more and more conventional CPU tasks can be
transformed to �t the needs of a good GPU task. In short, the GPU needs parallelizable
tasks since it is built out of multiple processing units, all running concurrently. It is not so
hard to understand that a lot of image processing tasks get excellent results on the GPU
because they are pixel based and thereby can be easily parallelized. But more challenging
for future scienti�c research is the transformation of sequential CPU to parallel GPU
tasks. This book is not a guide to transforming every possible task to a task that suits
the GPU, but we do believe that every step, even the little ones, towards greater GPU
utilization and exploitation, will help others to overcome this challenge.

To illustrate the importance of parallelization, an o�-topic example is presented here.
Just recently, scientists of the Nederlandse Onderzoekschool voor Astronomie (NOVA)
were able to realise a major breakthrough in their research thanks to NVIDIA's GeForce
8800 GTX graphics card. As they were trying to reproduce astronomical fenomena on
a PC, they discovered that they were able to speed up these intense calculations by a
factor twenty, using the computers graphics card instead of the usual CPU. Thanks to
this discovery �The simulation of star clusters and the solar system suddenly becomes a
piece of cake� [4].

1.2.4 Satisfying the 3D hunger

The hunger for 3D information in the present is greater than ever, there are already
numerous applications and projects that would not have seen the light of day if it had
not been for their use three-dimensional information. We make a random pick, out of the
various possibilities to illustrate what an impact 3D can already have on your every day
life:

Figure 1.3: Center image with corrected gaze
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• Eye-gaze corrected video chatting: With the help of a multiple (web)camera
setup around your desktop screen, your daily web-based video chatting experience
will get a serious improvement. Since you cannot look at your screen and look into
the lens of your webcam simultaneously, no real eye contact is present and your
communication does not feel as real as it should [5]. Thanks to the information
of mutilple cameras, an intermediate view can be constructed to make it look on
the other side of the communications line as if you were looking straight into the
camera. This makes your web based contact with other people much more personal
and more resembling a live conversation.

Figure 1.4: Examples of autostereoscopic displays

• Autostereoscopic displays: To create a more realistic view of objects on your �at
and inherently 2D screen, depth information is inevitable when we are talking 3D.
Thanks to this information it will be possible to let your specialized screen, equipped
with what is called a `lenticular sheet', emit light rays that di�er depending on your
point of view, thus creating the posibility to virtually look around an entire object.
More precisely this means, that, instead of having your PC rotate the object to be
able to see its other side, it would su�se to move your head a little to see sides of
the object you could not see before.

• Future medical and AI applications: Even nowadays, in the sectors of medics
and Arti�cial Intelligence, a lot of applications, integrating 3D technology, already
exist. For medical purposes, it might come in handy for the surgeon to get a better,
in-depth view of the human body when performing an endoscopy. Using one pair
of cameras the e�ect of the human eye can be reproduced where two images are
merged into one image with depth vision.

The same principle might easily be applied to the robots equipped with AI. Because,
how can you make a robot better resemble a human being, if you can give him the
same pair of eyes to extract information from its surroundings? Again, thanks to
rapidly improving 3D algorithms, nothing stands in the way of developing a more
human, more realistic approach of an AI robot.

• 3D cinematography: Perhaps not many of you have experienced the e�ects de-
scribed above in real life, but this is a more contemporary example. In the enter-
tainment industry, 3D is a booming business. Although the concept itself exists
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Figure 1.5: Dodging a bullet in The Matrix

merely a century, it is not till the late nineties that there has been a commercial
expansion. One of the most well known examples is the principle of bullet-time,
�rst used in the Matrix trilogy. This process is not entirely 3D cinema, it is in fact
cinema post-production where the camera rotates around the main character while
he is dodging a bullet. In past times this e�ect was created with images from a
series of no more than 270 cameras, but with recent DIBR algorithms like ours, it
is possible to shoot these sequences with a limited number of cameras, leaving it up
to the processing horsepowers to create the intermediate images.

As The Matrix set the pace, many other developments followed in this sector, such
as full 3D movies, that use the principle of `stereo rendering', where they make you
wear special glasses to experience the 3D e�ect, the most well known are probably
�Beowulf�, �Meet the Robinsons� and the Belgian production �Fly me to the moon�.
As you can see, the 3D business is alive and kicking, and there is no foresight
whatsoever that that is going to change in the nearby future.

1.3 Thesis disposition

1.3.1 Basic graphics hardware

In this chapter, the basic principles of the graphics hardware are explained. We give an
overview of the pipelined graphics architecture and focus on the programmable elements of
the Graphical Processing Unit (GPU), as they are the most important to us. As working
with a GPU is very di�erent from working with the CPU, basic graphics programming
principles are given as well, describing how a programmer can learn to think in GPU
programming terms, which is quite an adaptation. Since more and more graphics cards
tend to be exploited for non-image processing, we introduce the reader to the world of
General Purpose computations on the GPU (GPGPU).

1.3.2 Camera model and usage

This chapter handles all elements related to the camera whatsoever. First, the camera
model is described. Starting from one of the simplest representations, to be gradually
built up to a model that represents reality as good as it gets. So from then on, we can
work with cameras in theory as well, since they will follow a de�ned model. Secondly,
we take a closer look at the cameras we use to develop our application. We investigate
why they were chosen and what properties give them an advantage. That means that
synchronization, stability, color images and more are part of this section, to learn what
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qualities and �aws real cameras can have. And �nally, we dive in to the programming
interface, that is used to con�gure the camera. We explain how these cameras can be
manipulated to execute the desired functionality.

1.3.3 Feature point detection

This entire chapter is devoted on the workings and implementation of a feature point
detector. Such a detector is very useful, since it will releave some computational work
from other algorithmic units. When using feature points, we can relate corresponding
images faster, because we do not have to match entire images when looking for correspon-
dences. Some key properties of the corner detector, like repeatability rate, localization
and computational speed are explained as well. Finally, the implementation approach
we use to execute our functionality on the GPU, is presented. Using this design, various
visual results were obtained and are summarized at the end of the chapter.

1.3.4 Camera calibration

Feature point detection is part of the process of camera calibration, explained in this
chapter. As camera calibration obtains the intrinsic and extrinsic parameters of the cam-
era, we demonstrate what these properties are and why it is so important to calculate
them. These parameters can be extracted from the fundamental matrix, that describes
the mapping from one image plane onto another. So essentially, we calulate the funda-
mental matrix �rst, and then we retrieve the camera parameters. But to calculate the
fundamental matrix, we need a large number of corresponding points, detected with a
corner detector, from which we can retrieve a number of accurate points with which we
can compute a proper fundamental matrix. The estimation of this set of points is per-
formed using an iterative optimization called Ransac. Once a good set of points is found, a
fundamental matrix is calculated and the camera properties are retrieved, thereby solving
camera calibration.

1.3.5 Distortion correction

This chapter focuses on the removal of distortion correction, which is an image deforma-
tion, induced by the use of real camera lenses. The distortion is modeled and an approach
for a solid solution is presented. To remove distortion, the inverse operation is applied
to the image to result in a corrected image. When implementing this on the GPU, we
will use a reverse approach, because of the GPU's pipelined architecture. Calculating
the undistorted image, causes bent lines to run straight again and gives a better approx-
imation of the reality. Without this correction, it is not possible for the stereo matching
algorithms to deliver an accurate intermediate viewpoint, if the received input does not
even represent reality.
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1.3.6 Recti�cation

In the �nal chapter, we explain why this last step of image preprocessing is necessary
for the stereo matching algorithms. To correct the images, a special geometric setup
is used, namely epipolar geometry. This leads to an easy understanding of what the
recti�cation does with a pair of camera images. Because this is a very important step,
just like distortion correction, we have subjected this stage to extensive testing on available
datasets. The results are promising, as you will see, and the images are now ready to be
used as the input of a stereo matching application.

1.4 Tools and experimental environment

The code described in this book is developed in the existing aLive framework which has
been build for commodity hardware by a combination of various programming languages,
each with a speci�c purpose. We will only provide a simple list of the tools and languages
used in this thesis, providing the interested reader with limited but su�cient overview.

The aLive framework uses the object oriented programming language C as a host
language for all the others. We use Microsoft DirectX version 9.0c and the extension
library D3DX for communicating with the graphics card. The graphics card in our system
is a NVIDIA GeForce 7900GTX with 512 MB GDDR3 memory [6] housed in a 3.2 GHz
dual core PC with 1 GB system memory. Application programming on the GPU is done
by developing and compiling the High-Level Shading Language (HLSL) to Shader Model
3.0 assembly languages. The GPU programming was structured by the use of the E�ect
Format, bundling all of the Shader programs in one collection.



Chapter 2

Basic graphics hardware

Graphics hardware is the core of our application since all the image processing that needs
to be done, is o�oaded to the supercomputing power of the Graphics Processing Unit
(GPU). Proper use of its computational power can decide over your application's success
or failure, we try to understand the way things work in there, so we can exploit some of
its qualities to our own bene�t. Di�erent factors play a role in this. The possible outcome
of your use of the graphics hardware depends on the amount of parallel programming you
apply, the load balancing of the GPU pipeline, localizing the data transfer bottleneck and
to which extent you are able to exploit the special qualities in your advantage.

2.1 The graphics pipeline

The GPU is not the average day system, handling tasks in a sequential order as fast as
possible. Instead, it is built analogous to the assembly lines of the automotive industry,
resulting in a pipelined design. Just as in these assembly lines the goal is to keep the data
that needs processing equally long at each stage, to avoid that a stage would have to wait
for the previous one or that all of the data piles up at one particular processing step (a
bottleneck). If this criterion is reached, a balanced pipeline is constructed and will deliver
the highest throughput. In GPUs we are not aiming on the construction of vehicles, but
we want the hardware to process a high amount of vertices, geometric primitives and
fragments. High throughput is the key feature of a balanced pipeline, as long as there is
a lot of data to process, to keep the overhead minimized.

2.1.1 The contemporary model

In this section we present a simpli�ed version of today's GPU's processing pipeline. Notice
that in reality, all of the elements mentioned are far more complex and have more extensive
capabilities than what is shown. But since we want to accustome the reader with the
principal working of the GPU, to underbuild the explanations given in the chapters ahead,
a simple but clear overview will su�ce.

In �gure 2.1 a simpli�ed model of the graphical pipeline is shown. As you can see, the
graphics hardware can be subdivided into four basic computational stages.

9
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Figure 2.1: The basic graphics hardware pipeline

1. The �rst stage receives the input data and performs the Vertex transformation.
The input data provided, merely exists from a couple of vertex coordinates, that
describe a model in three dimensions. By perfoming the vertex transformation onto
these vertices, their model coordinates are transformed to view coordinates, that can
simply be seen as the screen positions, if you would look at the object through a
camera. This transformation is in fact a projection from 3D world space to 2D screen
space, and can be modeled through a matrix multiplication. These mathemathical
operations are performed on each vertex seperately so the order of processing does
not in�uence the result.

Figure 2.2: A cube subdivided in triangle primitives

2. Primitive assembly and Rasterization is performed in the stage following the vertex
transformation. First, the hardware computes which coordinates form a primitive
geometric surface, using additional input information describing the object(s) in the
scene. Possible primitives are either triangles,lines or points, all other primitives can
be constructed out of combinations of these basic types (e.g. the cube in �gure
2.2). Primitives that do not completely fall into the view's visible region of 3D space
(the view frustrum), are partially or entirely discarded in a process that is called
clipping.

Secondly, the rasterizer will determine for each of the polygons that survived the
previous step, what set of pixels is covered by this geometric primitive. This process
is called rasterization and the output elements are called fragments instead of pixels.
Try not to confuse pixels and fragments as they are not the same. A pixel stands for
`pixel element' and is part of the content of the frame bu�er at a speci�c location.
A fragment can better be described as a `potential pixel', because only if it survives
the various raster operations at the end of the pipe, it will update an element of the
frame bu�er and become a pixel.
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3. Fragment texturing and coloring can then be performed on this collection of frag-
ments that is outputted by the rasterizer. This is the stage in the pipeline that gives
the fragments their �nal color, based on their initial color and various calculations
(for shadows, depth polling, etc.). A texture is an image that is loaded into GPU
memory and can be accessed from within this stage to determine the color of each
fragment. As not every image will have the same dimensions as the polygon it will
color, some �ltering (e.g. sub- or supersampling) may be necessary.

4. Then, a �nal sequence of raster operations is executed on the fragments before they
are sent to the frame bu�er, ready to appear on your screen. In this stage, hidden
surfaces are eliminated. This means that when new fragments lie behind the present
pixels, which are already in the frame bu�er, they have to be discarded. This is
only one example of all the operations that the fragments have to undergo, like
blending, dithering or anti-aliasing, just to name a few. But, because these other
operations are not of utmost important to get a good overview of the inner workings
of the GPU, we will round our story up here, and refer to other work [3, 7] for more
in-depth information.

To illustrate these key processing stages, an example is quite useful, so we have spread
the entire process out in �gure 2.3. The input the user sends, are the vertices that de�ne
a couple of triangles, and what comes out of the pipe are the pixels to be displayed on
the screen.

Figure 2.3: Visualizing the graphics pipeline

2.1.2 CPU - GPU interface

Although graphics hardware nowadays o�ers a lot of �exibility and programmability as
we will see in section 2.2, its functionality cannot be directly invoked by an application
running on the CPU. To protect the hardware and the system user against unwanted
errors or crashes in the GPU's functionality, the GPU programs can only be invoked
through an Application Programming Interface (API). In our system setup we will be
using Microsoft's Direct3D programming API [8, 9] and the DirectX 9.0c additional library
to communicate transparantly between CPU and graphics hardware. That means that,
to invoke GPU functionality, an application issues a standard DirectX function call and
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in the background, the library then performs the necessary steps to get the GPU program
(also called shader) up and running. This allows a user to send and receive data from the
graphics card in a transparant way (�gure 2.4).

Figure 2.4: The graphics API

Not only provides the use of an API user transparency, it also allows us to divide an
application that uses GPU resources up in two parts, one application-speci�c and one
hardware-speci�c. This decoupling between the part on the CPU, for control and high-
level tasks, and the part on the GPU, with hardware speci�c assembly programming,
makes it possible for an application to run on two systems with di�erent graphics hardware
and di�erent drivers without the need of recompilation. This increases the application's
portability a great deal.

2.2 Programming graphics hardware

In the beginning, there was nothing, so a graphics card did not exist and we could not
speak of pipelines at all. The earliest graphics hardware on a computer had the sole
purpose to bu�er the data that would be displayed on the screen. All of the per-pixel
calculations and other imaging operations was executed on the CPU. But the generic
buildup of the CPU made it much more suited for all kinds of di�erent tasks, but not
so much for the high amount of computations and the specialized functionality that was
required for proper 3D e�ects. Therefore specialized hardware was introduced into the
system and replaced the much too slow CPU to perform the needed graphics computations
[7, 10]. The �rst generations of graphics hardware were �xed functionality pipelines and
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were called 3D acceleration boards. They were the �rst to have vertex acceleration and
were also developed to ful�ll the increasing demands of the gaming community.

Figure 2.5: Evolution from �xed functionality (black box) to �exible and highly pro-
grammable hardware

This graphics hardware of the early ages was built out of con�gurable hardware. Up
untill now, the dominant trend in graphics hardware design has been the e�ort to ex-
pose more programmability within the GPU (�gure 2.5). This process started with the
introduction of a load of parallel processors on the GPU, �rst in the fragment processing
stage, later in the vertex shader stage and contemporary GPUs have introduced geome-
try shaders as well [11]. So not only the raw speed, the high level of parallelization and
the increasing precision, but especially the rapidly expanding programmability make the
modern GPU so �exible and powerful. As a consequence, programming graphics hard-
ware has become a hot topic in the development programmer's world, either for image
processing tasks, either for general purpose computations (GPGPU) [10] as we will see in
section 2.3.

2.2.1 Multi-level parallelism

Just as everything else, technology evolves, and when we talk about silicon die technol-
ogy, it evolves extremely fast. Nowadays we are able to �t hundreds of thousands of
computational units on a single die. To optimize performance with such a high amount
of computational units, the objective should be to let as much as possible units process
useful data and to have as few as possible units process control data or storage data. To
achieve this goal of maximizing the computational performance, the units have to process
lots of data at the same time, or in other words, in parallel. Graphics hardware designers
grasped this concept and have tried to exploit it to the fullest. This has lead to four dif-
ferent levels of parallelism [12, 3], all an essential part and contributing to the high-speed
processing of the modern GPUs. Although not directly necessary for hardware program-
ming, knowing what these levels of parallelism are about, leads to a better understanding
and thus a more e�cient use of the hardware. Therefore we summarize:

1. Task parallelism is visible at a �rst glance at the GPU pipeline. Every stage is
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working concurrently with the other stages, each performing di�erent operations,
thus working in parallel and increasing throughput.

2. When we zoom in at a single stage of the pipe, high-level data-parallelism can be
descried. Each stage is composed out of multiple processing units and thanks to
data independency (a primary demand of GPU programming) tasks can be run on
di�erent data at the same time.

3. Taking a closer look at the processors individually, we will learn that the input data
is a vector format. Using vector processors, this means that computations will be
perfomed on upto four di�erent data elements at the same time. This concept is
better known as low-level data-parallelism.

4. On each of these data elements, in one action multiple simple instructions can be
executed. We will refer to this as instruction-level parallelism.

Figure 2.6: The di�erent levels of parallelism in the GPU

This high degree of parallelization is also the main cause why GPUs are currently able
to outperform even numerous CPUs. Thanks to the parallel nature of the GPU, it can
pro�t to the maximum of new developments in the silicon die technology. As more and
more computational units can be placed on a single die, the CPUs run into trouble with
their high amount of unparallelized control data. The only way of increasing performance
is to increase clock speed as well, while GPUs can simply increase the number of parallel
processors they are using. That results directly in much higher computational horsepower,
since most of the computational units of a GPU spend their time processing useful data
instead of control data.

Now, you might think that, if we would just make everything in the GPU pro-
grammable, we would be able to perform any task. That is not the case, as many sequen-
tial programming functionalities cannot be implemented `as is' in the GPU, for instance
data independency is crucial and only in the very latest GPU generations branching in the
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fragment shader is possible, just like vertex texture accessing. Plus, the obtained return
lies much higher when we leave some of the pipe's hardware specialized for certain tasks.
Triangle rasterization is in that case a perfect example where specialized hardware will
be the better of full programmability of the stage. That is why, when we are going into
detail on hardware programming in the upcoming section, we will only cover the vertex
shader and the pixel shader and not the entire GPU pipe.

2.2.2 Shader programming

When we want to program either the vertex shader or the fragment shader, we have
to get our customized functionality into the GPU. As we have discussed before, any
communication between the user or the CPU and the graphics card has to go through the
graphics API (DirectX or OpenGL). But since the graphics program itself does not have
anything to do with intermodule communications, it is written in another language. This
used to be simple assembly code, but as the 3D industry evolved so quickly a new language
was developed to lighten the burden of the e�ect programmer. Microsoft and Nvidia
combined their forces and developed a C-like shading language, called C for graphics
(Cg) [7]. Later on, the partnership split up and Microsoft started selling the shading
language under the name of the High-Level Shading Language (HLSL) [13]. They are
both still very alike, but in this work we will only address HLSL.

Figure 2.7: Shader Pro�les

The E�ect framework was introduced by Microsoft and allows to store shader pro-
grams, settings and more in one global .fx �le. Within the DirectX 9.0 API an fx loader
is integrated, so your self-written piece of code, that has to be executed in a stage of the
GPU, will get loaded into the programmable processors through the API after passing the
FX-compiler. Yet there are still restrictions on what you can program on a vertex or frag-
ment shader, for instance the vertex shader can not access other vertices just as the pixel
shader can not access other pixels (data independency). And, for programming comfort,
di�erent pro�les can be used to compile a vertex or fragment program (see �gure 2.7),
allowing it to run on di�erent generations of GPUs supporting older or newer pro�les. In
DirectX these pro�les are called Shader Models (SM) and in this work Shader Model 3.0
is used. Depending on how demanding your piece of code is, you may want to use a more
advanced pro�le, risking that your program will not work on older hardware. To get the
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best of both worlds, that is, broad hardware support and still allowing the use of the latest
hardware, you could write di�erent versions of your program. One backup version, to run
on almost every GPU, and another advanced version for greater functionality hardware.
Having all of these di�erent pieces of code work together, remember that they are all still
in the same .fx �le, is covered in the next section.

2.2.3 High-level programming

To get the shader programs you have written to work on the GPU it is not su�cient to
just group them together in a single �le. Three quintessential elements ensure the smooth
cooperation of all these pieces and make sure that everything that is needed to apply a
rendering e�ect, is present in the .fx �le. Only by wrapping the vertex and pixel shader
programs together with render state, texture state and graphics pipeline pass information,
thus con�guring the entire pipeline, a developer can describe a complete rendering e�ect.

• Each .fx �le contains one or more techniques, which all describe a way to create an
e�ect. A technique always applies for a speci�c pro�le, thus aiming for a certain
level of GPU functionality. By making use of di�erent techniques, a fallback version
of your e�ect to work on older hardware can be provided together with a more
advanced version (see listing 2.1).

Listing 2.1: Using techniques to combine shaders

techn ique Example
{

pass P0
{

VertexShader = compile vs_3_0 vs_std ( ) ;
Pixe lShader = compi le ps_3_0 ps_std ( ) ;

}
}

techn ique Example_Backup
{

pass P0
{

VertexShader = compile vs_1_1 vs_std ( ) ;
Pixe lShader = compi le ps_1_3 ps_std ( ) ;

}
}

• Each technique contains one or more passes. Each pass represents a set of render
states and shaders to apply for a single rendering pass within a technique.

Listing 2.2: An example shader and environment setup

// De f i n i t i o n o f s t r u c t u r e s used in the shader
s t r u c t VS_OUTPUT_STD
{

f l o a t 4 viewCoordinate : POSITION;
f l o a t 2 texe lCoord inate : TEXCOORD0;

} ;
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s t r u c t PS_OUTPUT_STD
{

f l o a t 4 computedValue : COLOR;
} ;

// Input image i s loaded in GPU memory as a t ex ture
//and tex ture f i l t e r i n g modes are s e t
t ex ture inputImage ;
sampler inputSampler = sampler_state
{

Texture = <inputImage >;
MipFi l te r = NONE;
MinFi l te r = LINEAR;
MagFilter = LINEAR;
AddressU = BORDER;
AddressV = BORDER;
AddressW = BORDER;

} ;

// Standard p i x e l shader that samples a t ex ture to c o l o r the output p i x e l s
PS_OUTPUT ps_std (VS_OUTPUT vertexOutput )
{

PS_OUTPUT_STD pixelOutput ;

f l o a t 4 sampledTexel = tex2D ( InputSampler , vertexOutput . t exe lCoord inate ) ;
pixelOutput . computedValue . rgba = sampledTexel . rgba ;

re turn pixelOutput ;
}

• Within each pass you have to provide some information about the programs en-
vironment, what we describe as pipeline states. Alpha blending, depth writes or
texture �ltering modes (see listing 2.2) are some of the most common examples.

2.2.4 Schematic overview

Now that we have described most of the essential elements of the graphics hardware,
leading us to a better understanding and more e�cient programming of the graphics
pipeline, it is time for a short overview.

In �gure 2.8 a brief summary is given of the position of the GPU in the overall system
architecture. You can see that when a lot of data transfer is necessary between system
RAM and graphics hardware or when a lot commmunication between CPU and GPU is
inavoidable, this will seriously downgrade hardware performance since the transfer bus
speed will create a bottleneck.

A brief overview of the essential elements that built up the core of our graphics card,
the NVIDIA GeForce 7900GTX, is given in �gure 2.9. This is a perfect proof of what
we have tried to explain in the previous sections. The graphics hardware is built out of
several pipelined stages and these stages are capable of processing lots of data in parallel
through the use of a parallel processing architecture.
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Figure 2.8: Overall system architecture

2.3 Exploiting graphics hardware (GPGPU)

The graphics hardware sector is probably the fastest growing sector in silicon technology,
as mentioned before. Modern GPUs have become very �exible systems with tremendous
computational horsepower and fully programmable vertex and pixel shaders. No wonder
that these processors are now capable of much more than the graphics applications they
were originally designed for. Under the name of General Purpose computations on the
GPU (GPGPU) [14] researchers and developers have become interested in harnessing this
horsepower for general purpose computations. They have found that exploiting the GPU
in such a way can accelerate some problems by over an order of magnitude compared to
the CPU.

However, it is not possible for any programmer to just make the switch to GPU
programming. Mapping algorithms, that were designed for the sequential and low latency
based CPU, to the highly parallel and high throughput GPU requires good knowledge of
the graphics functionality. To introduce this new concept and to allow you to understand
some of the GPU exploitation that is explained in other sections of this book, we sum
up some of the most basic conversions that a program developer has to think of, to make
his functionality run on the GPU's programmable processors. You can think of it as
CPU-GPU analogies. Note that this is not a complete summary, as this �eld of graphics
programming evolves every day and we did not need the general purpose mappings in this
book to its full extent. That is why concepts as scatter and gather, reduce, sort or scan
[10] are not discussed here.

2.3.1 Stream programming

Data does not appear under the same form in the GPU as we are used to it on the
CPU. In the graphics architecture, data is represented by textures. So an array of data
will become a 2D texture when ported to the GPU as you can see in �gure 2.10. Since



Nederlandse samenvatting 19

Figure 2.9: A block diagram of the Nvidia GeForce 7 Series

two major issues concerning data on GPU are data parallelism and data independency,
we can think of processing an array of data as processing a stream, where the same
computations are performed on each element of the stream and no dependancy between
various elements is allowed. It should be clear that, to invoke this computation, we have
to send a quadrilateral to the start of the graphics pipeline. It is important to make
sure that there is a one to one mapping between the data stored in the texture and the
fragments that come out of the rasterizer. Otherwise data values will get interpolated
when using a texture sampler and results will become corrupted.

2.3.2 Fragment shaders

We call the sequence of computations that is performed on the elements of a stream the
computational kernel. When we would perform these kernel computations on an array of
data on the CPU, we would use nested loops to iterate through all the elements of the
array. The kernel itself would then be the statements inside the inner loop. On graphics
hardware, we write the demanded computations or kernel in a fragment shader, which is
loaded into all the processors available in the stage and executed on all the elements of
the sampled texture, so no nested loops are used. The amount of parallelism in this stage
depends on the number of processors and on how well we exploit the data parallelism,
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Figure 2.10: The Stream Programming Model

since processors work with four-component vectors. Making good use of this data packing,
when working with scalar values, can greatly reduce the time of computation [12].

2.3.3 Render-to-texture

In CPU programming, feedback is inherently present since the CPU uses a memory model
where variables and arrays can be written to and read out from all the time. On the GPU
this is not possible, the fragment shader has to write its results to the frame bu�er, but
it cannot use immediate feedback. There are two ways to get output data into a texture
that can be read during the following pipeline pass. Either indirectly, by copying it from
the frame bu�er (copy-to-texture) or directly, by rendering the results immediately on an
o�ine texture (render-to-texture).

These three concepts, using textures for data storage, fragment shaders as computa-
tional kernels and output feedback through texture storage, are the basics of GPGPU
programming. It should give you the insight that GPGPU programming is not as easy as
it may sound, but the possible outcome, a leap forward in computational capability and
a possible growth quickly exceeding CPU limits, makes all the programming e�orts and
challenges worthwhile.



Chapter 3

Camera model and usage

Cameras provide our application with its own set of eyes, they are irreplaceable because
they have to transform the surroundings to an input for our image processing application.
And just like the human eye, cameras are complicated structures, so models are used to
describe the cameras' behaviour and gradually we build up towards a general description
the cameras' inner workings. Such models describe the camera properties or intrinsic
parameters as well as the cameras pose and relative orientation or extrinsic parameters.
Once a model is set, a reality check has to be performed so we analyse why we opted
for synchronizable, stable, color cameras. If we determine what the camera should do,
with our model, and analyse what it does in reality, we are ready to make it do what we
want, we program the eyes of the application to capture exactly that information that
subsequent image processing needs.

3.1 Camera model

A camera is a mapping between the 3D world and its image plane. There are several
camera models that describe this mapping, the one we will be using is the �nite projective
camera model. The model actually represents a matrix multiplication that transforms a
point in the 3D world coordinate system to an image point. In fact, this equals a single
multiplication with the 3 × 4 perspective projection matrix (PPM). The fastest way to
understand this transformation is to build the model from the bottom up. We start with
a very specialized and simple camera model, the pinhole camera model, and go all the way
to a generic projective camera model through a series of gradations.

3.1.1 The pinhole camera model

The pinhole camera model originates from the age-old camera obscura (see �gure 3.1),
where all light rays converge at the hole in the camera case to construct an inverted
image on the camera's backplane. In our model we call this point where light rays join,
the camera center or optical center. Since we do not like it so much to work with inverted
images, we make life a little easier and put the image plane or focal plane in front of the
camera, at a distance equal to the focal length f.

21
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Figure 3.1: The camera obscura

Figure 3.2: The pinhole camera model

Further, we let the center of projection coincide with the origin of a Euclidian coordi-
nate system and choose an arbitrary point Q = [X Y Z]T in 3D space. In this model, Q
is mapped onto the point on the image plane where the line between Q and the optical
center instersects the plane. Using similar triangles we can calculate that the 3D point
Q = [X Y Z]T is mapped onto the image point q = [fX/Z fY/Z f ]T , as you can see in
�gure 3.2. For all image points of the focal plane, the third coordinate is the same, so it
can be negligated. This leads to the mapping

[X , Y , Z]T → [fX/Z , fY/Z]T (3.1)

which proves that the pinhole camera model is in fact a mapping from world coordinates
(3D) to image coordinates (2D). We call the point of intersection between a perpendicular
line starting at the optical center and the focal plane the principal point.

When we express both points Q and q in homogenous coordinates, the pinhole model
mapping can simply be described in matrix form as a linear mapping between their ho-
mogenous coordinates. This means that we can rewrite equation (3.1) as follows

XY
Z

→
fXfY
Z

 =

f 0
f 0

1 0



X
Y
Z
1

 (3.2)



Nederlandse samenvatting 23

Now when we call Q̃ the notation of a point in homogenous world coordinates
[
X Y Z 1

]T
and q̃ the notation for an image point represented by its homogenous 3-vector [fX fY Z]T ,
we can de�ne P as the 3 × 4 homogenous camera projection matrix. Equation (3.2) can
be condensed to

q̃ = PQ̃ (3.3)

The mapping of the pinhole projection model from homogenous world coordinates to
homogenous image coordinates is now described by the projection matrix P

P =

f 0
f 0

1 0

 (3.4)

3.1.2 Principal point o�set

Figure 3.3: Principal point o�set

In equation (3.1) we have assumed that the origin of the image coordinate system
coincides with the principal point p. In reality though, the image coordinate system will
have its reference in the bottom left corner of the image plane, which induces a shift in
equation (3.1)

[X , Y , Z]T → [fX/Z + px , fY/Z + py]T (3.5)

when we consider the couple (px, py) to be the image coordinates of the principal point.
Just like before, we can rewrite this equation in an equation with homogenous coordinates,
leading to the matrix transformation

XY
Z

→
fX + Zpx

fY + Zpy

Z

 =

f px 0
f py 0

1 0



X
Y
Z
1

 (3.6)

Now, when we de�ne
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K =

f px

f py

1

 (3.7)

equation (3.6) can be abbreviated to

q̃ = KQ̃cam (3.8)

and we call K the camera calibration matrix.

3.1.3 Camera rotation and translation

You have probably noticed that we used the notation Qcam in equation (3.8). Doing
this, we want to stress that these coordinates, of the 3D point Q, are still under the
assumption that the camera is located at the origin of the Euclidian coordinate system
with the principle axis aligned with the Z axis. We call Qcam a point in the camera
coordinate frame. In reality though, most of the time a point in world space will not be
expressed in camera coordinates, but in coordinates of a di�erent Euclidian coordinate
system what we call the world coordinate frame. These two coordinate systems are related
to each other through a rotation R and a translation t as you can see in �gure 3.4.

Figure 3.4: R,t relation between the world reference frame and the camera frame

Let Qcam be an arbitrary inhomogenous point in the camera frame and let Q be that
same point, expressed in inhomogenous world coordinates. Now we can write Qcam =
R(Q−Cworld) with Cworld the camera center expressed in world coordinates and R a 3×3
matrix that represents the orientation of the camera coordinate frame. Again, we can
rewrite this equation in homogenous coordinates which gives us

Q̃cam =

[
R −RC̃world

0 1

]
X
Y
Z
1

 =

[
R −RC̃world

0 1

]
Q̃ (3.9)
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Combining equation (3.9) with equation (3.8) gives

q̃ = KR
[
I | − C̃world

]
Q̃ (3.10)

Q̃ is now expressed in world coordinates and this is the general projective mapping for
the pinhole camera model. The elements of matrix K are called the intrinsic camera
parameters and R and C̃world who de�ne the orientation and position of the camera to the
world reference frame, con�ne the external camera parameters. Usually we do not express
the camera's position in terms of the camera center, so more often the world to image
transformation is represented by Q̃cam = RQ̃+ t, where t represents the translation from
the world origin to the camera center. The 3× 4 perspective projection matrix P , or the
3D-2D mapping camera matrix, becomes simply

P = K
[
R | t

]
(3.11)

where we know out equation (3.10), that t = −RC̃world.

3.1.4 CCD camera imperfections

The pinhole camera model de�nes that the image coordinate system is a Euclidian co-
ordinate system just as the world coordinate system with equal scales on both x and y
axes. But when we are working with real Charged Coupled Device (CCD) cameras, there
is a possibility that there are non-square pixels. That would mean pixels are longer in the
x-direction than in the y-direction or vice versa. So if image coordinates are expressed in
pixels, this demands for an extra scaling of the pinhole model. To introduce this additional
generality into our model we will use mx and my to express the number of pixels per unit
distance along the corresponding axes. To get the transformation from world coordinates
to pixel coordinates, we have to multiply equation (3.7) on the left with diag(mx, my, 1).
This is a 3× 3 matrix with the latter numbers on the diagonal. This lead us to

K =

αx x0

αy y0

1

 (3.12)

The elements αx and αy equal fmx and fmy respectively and represent the focal
length of the camera in terms of pixel dimensions in x and y directions. x̃0 = (x0, y0) is the
representation of the principal point in pixel dimensions and its coordinates are x0 = mxpx

and y0 = mypy. To introduce even more generality, we can take the possible skewness of
the pixels into account as well. The skew factor s models the non-orthogonality of the x
and y pixel axes (see �gure 3.5). This value is almost always zero, but in certain cases it
may di�er, so adding this factor increases the generality of our model as well.

Since skew has no e�ect on the orientation or position of the camera, it is also an
intrinsic parameter, one of the camera's properties and that means that �nally, with the
parameter s de�ned as the skew factor, we get
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Figure 3.5: skew e�ect s

K =

αx s x0

αy y0

1

 (3.13)

as the most general description of the intrinsic matrix of the �nite projective camera
model.

3.2 Camera speci�cations

Figure 3.6: The Point Grey Fire�y MV Camera

One of the thesis' objectives is to create a real-time preprocessing environment for the
aLive framework, so we are able to test the used algorithms on live feed and perform
checks on the achievable frame rate, the processed image quality and are able to work
with a large baseline. In order to do so, we need cameras that are easy to use, but still
complex enough to allow user-speci�ed programs to run on it. As you can see, we are not
talking about a couple of ordinary webcams, but this implies working with an industrial
type of camera.

I was not granted to choose the type of cameras, the manufacturer, the price or the
number of cameras. That choice had been made before my arrival on Imec, namely
the Fire�y MV camera, manufactured by Point Grey (see �gure 3.6). This choice was
motivated by the demands that, for our application, we need synchronizable, stable,
FireWire-based color cameras in a low price category. In the following paragraphs we will
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discuss the primary properties of the cameras, how they apply to our project and why, of
all choices, this seemed the optimal case.

3.2.1 A team player

One of the key features that distinguish these cameras from a couple of ordinary cameras
is their capability to synchronize automatically. Cameras that are on the same IEEE
1394 bus should synchronize instantly due to an on-board implementation. For cameras
that are on di�erent buses or on di�erent systems (di�erent PC), there is a software kit,
delivered along with the cameras, that enables this kind of synchronization. In our case,
this feature is of utmost importance, because when the cameras would not synchronize to
each other, `motion estimation' would not be possible. Motion estimation is the principle
that, when the experimental setup or stage is not static, we will assume that either the
camera or the subject is on the move and out of the various frames captured on subsequent
moments in time, we will try to derive and reconstruct the motion made by the camera
or the subject.

This would not be possible without synchronization, because then you would risk that
one of the frames is taken at a slightly di�erent time, meaning that the camera or the
subject has already moved compared to the frames captured by the other camera(s) and
you would not have a chance to retrieve the motion the scene has undergone. Consider
the following example (�gure 3.7). We assume that both images were taken at the same
time, but in reality camera 2 has captured the picture slightly later. From our point of
view, for a time t = 0.016 seconds, the dropping ball is at two di�erent heights (�oor
2 and �oor 1) at the same time so we will never be able to perform motion estimation,
because we are not sure of the ball's exact position at every captured instance of time.

Figure 3.7: Unsynced images corrupt motion estimation

We experienced a minor setback ourselves when we started working with the cameras,
because initially they would not synchronize. Thanks to a manufacturer's �rmware release,
the problem is far behind us. We are now guaranteed that frames on di�erent cameras are
captured within a timeframe of 125 microseconds, which makes it possible to work with
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most of the normal movements. Thanks to the timestamp encapsulated in the FlyCapture
API we are able to check and con�rm that pictures remain synchronized.

3.2.2 400 Mbps IEEE 1394 (FireWire) digital interface

Transfer of data from the cameras to the controlling host, in our case the PC, happens
through the FireWire interface, which was especially designed for time-critical applications
such as audio and video applications. Its maximum data rate of 400 Mb/s obviously
outperforms the old serial connectors such as RS/232 or PS/2 that go up to 20 Kb/s.
These older connectors have already been replaced by a faster version that theoretically
gets a data rate just as high as the FireWire interface, namely USB (Universal Serial
Bus). Key di�erences between FireWire and USB are [15]:

• Design goal : USB was designed for simplicity and low cost, while FireWire aims for
high performance and time-critical applications.

• USB uses a �speak when spoken to� protocol, which means that peripherals can not
communicate with the host, unless the host speci�cally requests communication.
The 1394 bus does not require a central controller or dedicated host computer for
the data transfers, but instead operates peer-to-peer to allow any device on the bus
to initiate transfers on its own.

• While USB devices cannot e�ciently utilize all the available bandwidth because the
communication is based on polling the devices, FireWire guarantees �xed bandwidth
with low overhead for isochronous data transfer.

Not only does this standard outperform the other serial interfaces, it also provides the
same services as existing IEEE-standard parallel buses at a potentially lower cost. Rather
than transferring data via a parallel interface, such as EIDE and SCSI with expensive
cables and connectors with as many as 68 pins, 1394 requires only four signal conductors
in a low cost interconnecting cable. No need to argue that the FireWire interface is the
perfect candidate for our time-critical video-based application with multiple cameras.

3.2.3 Color Space fundamentals

Because the perception of color is subjective and may di�er from person to person, people
have tried to come up with a method to help describe color either in human interaction
or in machine communication, the result being color spaces. You could de�ne a color
space as follows [16]: �A model for representing color numerically in terms of three or
more coordinates or parameters.� These parameters do not tell us what the color is, that
depends on what color space is used. E.g. the RGB color space represents colors in terms
of red, green and blue coordinates.

The need for various color spaces can be easily explained with the following example
(see �gure 3.8). A computer monitor starts with black pixels that need to be lit, combining
the three base colors of the human perception, red, green and blue. All together these
three colors form white and that is why we call this an additive color space. Printers in
contrary, start from a white paper and place �lters on the surface to subtract or absorb
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Figure 3.8: Additive colorspace vs. Subtractive colorspace

certain color ranges. Therefore the YCMK (Yellow Cyan Magenta Black) color space is
used. We call this a subtractive color space. Of course there are also other color spaces
used, e.g. intuitive color spaces such as HSL (Hue Saturation and Lightness), aimed to
facilitate constructing a color of your choice.

In image processing however, there is a high need for color intensity, because various
image processing algorithms use intensity images or grayscal images to perform their
calculations on. The YUV color space solves this problem; it separates the luminance
(intensity) component from the chrominance (color) information of colors [17, 18]. The
Y is a combination of all three RGB components with di�erent coe�cients due to the
sensitivity of the human eye. The U and V components are a combination of Y with
respectively the blue and the red component. For the construction of grayscale images,
only the Y component is needed because it represents the intensity of a pixel, so we
will not make any further remarks on the U or V components. In our application, the
camera transmits its captured information in Y8 format, which is an eight bit monochrome
channel, thus only using the luminance component. This comes in handy, since we will
be performing corner detection on grayscale images in a later stage.

3.2.4 Monochrome versus Color

The decision whether to use a monochrome camera or a color camera should be made
entirely based on the application you are trying to build rather than on your preference
of color or monochrome images. The Monochrome camera has an overall higher light
sensitivity that makes its biggest di�erence in the region of the infrared spectrum (�gure
3.9). Some online camera calibration methods are based on a technique using light pulses.
To relieve the human eye, you might use infrared light pulses and that is where the
monochrome camera comes in handy. Since we will be using a checker board for camera
calibration, we are set with a couple of color cameras. Another argument for this cause
is that we will be performing feature matching. It comes down to recognizing the same
distinct points in two separate images of the same scene, so color images o�er easier
distinction than monochrome images where the only valuable test would be the intensity
of the pixels.

This does not mean that we cannot use monochrome images anymore, because our
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Figure 3.9: Spectral response of the Fire�y MV

Fire�y MV color cameras use a Bayer tiled image format but transmit their information
in Y8 format [19, 20]. To convert this information to YUV or RGB or any other supported
format, we use conversion functions that are found in the FlyCapture API. So we are free
to choose the image format we need after capturing, in our application that would be
monochrome or grayscale images for corner detection and color images for live streaming.

3.3 Camera steering

3.3.1 Point Grey Fire�y API

To con�gure the cameras and to let our own customized functionality be implementable,
the manufacturer has included a programming API with the product package. It is the
Point Grey FlyCapture API and it provides a lot of functions and structures to implement
the design we want. As we have already mentioned before, the most important issue in
our camera application, is to get both cameras synchronized to a level that is acceptable
for a live streaming video.

At a �rst glance, using some of the example programs that were included in the
accompanying software package, we did not get the cameras to synchronize. And we did
not really �nd any clues in the API to implement the synchronization. So we checked the
information on the manufacturer's website, revealing that our the cameras would never
synchronize with the present software. But as in so many cases, a little manufacturer
help can come in very handy. We found a recently released �rmware �x - we are talking
August 2007 - that would solve the problem. And it did. Thanks to the �rmware upgrade,
cameras on the same IEEE 1394 bus synchronize automatically.

Of course, it would not su�ce just to trust on the manufacturer's word, saying that
they would synchronize, we would have to check this ourselves. That is where the pro-
gramming API became of proper use. With every frame that is send across the FireWire
cable, an accompanying timestamp travels along as you can see in listing 3.1.
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Listing 3.1: The FlyCaptureImage structure.

s t r u c t FlyCaptureImage
{

i n t iRows ;
i n t iCo l s ;
i n t iRowInc ;
FlyCaptureVideoMode videoMode ;
FlyCaptureTimestamp timeStamp ;
unsigned char ∗ pData ;
bool bSt ipp led ;
FlyCapturePixelFormat pixelFormat ;
unsigned long ulReserved [ 6 ] ;

}

This timestamping structure which is described in listing 3.2, has several components
useful in di�erent cases of synchronisation. With an application like ours, where the
cameras are connected to the same 1394 bus, the ulSeconds and the ulMicroseconds
promise to be the most useful. They represent the absolute system time when each frame
was captured in seconds and microseconds.

Listing 3.2: The FlyCaptureTimeStamp structure.

s t r u c t FlyCaptureTimestamp
{

unsigned long ulSeconds ;
unsigned long ulMicroSeconds ;
unsigned long ulCycleSeconds ;
unsigned long ulCycleCount ;
unsigned long u lCyc l eO f f s e t ;

}

In the case that you are synchronizing image grabs between two di�erent systems or
computers that share a common IEEE 1394 bus, you are advised to use the ulCycleSeconds
and the ulCycleCount elements of the FlyCaptureTimestamp structure. Using the other
elements would give incorrect measurements since the system timers will not be precisely
syncronized.

3.3.2 Synchronized results

A small application is developed to allow the user to grab images from the cameras at
a user-speci�c time. This means the image grabbing action has to be initiated with a
keystroke. Pseudocode of how our program works is presented below.

Listing 3.3: The FlyCaptureImage structure.

// The number o f images to grab .
#de f i n e _IMAGES_TO_GRAB 25

// The number o f cameras on the bus .
#de f i n e ALL_CAMS 2

// What f i l e format should we save the proce s s ed images as ?
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#de f i n e SAVE_FORMAT FLYCAPTURE_FILEFORMAT_PPM
#de f i n e SAVE_FORMAT_RAW FLYCAPTURE_FILEFORMAT_PGM

#de f i n e FILENAME_CONVERTED " images .ppm"
#de f i n e FILENAME_RAW "raw_images . pgm"

// I n i t i a l i z e the camera .
p r i n t f ( " I n i t i a l i z i n g camera %u .\ n" , CameraNumber ) ;
e r r o r = f l y c a p t u r e I n i t i a l i z e ( context [ CameraNumber ] , CameraNumber ) ;
_HANDLE_ERROR( error , " f l y c a p t u r e I n i t i a l i z e ( )" ) ;

unsigned i n t AllCameras = ALL_CAMS;

f o r ( i n t iImage = 0 ; iImage < _IMAGES_TO_GRAB; iImage++ )
{

p r i n t f ( "Grabbing image %d\n" , iImage ) ;

f o r ( CameraNumber = 0 ; CameraNumber < AllCameras ; CameraNumber++ )
{

e r r o r = flycaptureGrabImage2 ( context [ CameraNumber ] , &image [ CameraNumber ] ) ;
_HANDLE_ERROR( error , " f lycaptureGrabImage2 ( )" ) ;

}

p r i n t f ( "Saving image%u%u .\ n" ,CameraNumber , iImage ) ;
e r r o r = f lycaptureSaveImage (

arcontext [ CameraNumber ] ,
&image [ CameraNumber ] ,
f i l e ,
SAVE_FORMAT ) ;

_HANDLE_ERROR( error , " f lycaptureSaveImage ( )" ) ;

p r i n t f ( "Saving raw image%u%u .\ n" ,CameraNumber , iImage ) ;
e r r o r = f lycaptureSaveImage ( . . . ) ;
_HANDLE_ERROR( error , " f lycaptureSaveImage ( )" ) ;

p r i n t f ( "( h i t ente r )\n" ) ;
getchar ( ) ;

}

It was of course necessary to give the user feedback and to give him proof that the
processing was successful, that the images were stored correctly and that they were taken
isochronously. To ful�l these demands there were two techniques available, an intuitive
method and an intrusive, direct method.

• the intuitive method tries to provide visual control of the motion estimation problem.
We came up with the following experiment: We put two reasonably well parallel
aligned cameras in front of a grid. Then we dropped a bounce ball in front of the
camera, giving us the possibility to check in both camera frames at what hight
the moving ball has been captured. When synchronisation was successful, the ball
should be �oating at the same height in both images. Proof is given in �gure 3.10,
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where you can clearly see that the bouncing ball is at the exact same height in both
captured frames, as far as you can read out the grid accurately.

Figure 3.10: Without synchronization, the ball might be at two di�erent heights at the
�same� time.

So to the human eye, everything seems in order, but that does not mean that the
synchronisation is accurate enough. A couple of still frames might look accurate
at �rst sight, but when we take a series of images and combine them into a movie
with our DIBR algorithm, the possible synchronization faults will easily disrupt the
�uent motion of the bouncing ball.

• That is why there is also a more direct, intrusive method to check the accuracy
of the camera sychronization, using the FlyCaptureTimestamp mechanism. With
each sequence of images that is gathered at an instance of image grabbing from all
cameras present on the 1394 bus, we print out the accompanying image timestamp
to give the user feedback (see �gure 3.11 and listing 3.4).

Listing 3.4: The timestamp output

f o r ( CameraNumber = 0 ; CameraNumber < AllCameras ; CameraNumber++ )
{

p r i n t f ("Camera %02u : time = %03u.%04u , seconds = %04u ,
microseconds = %04u\n" ,
uiCamera ,
image [ uiCamera ] . timeStamp . ulCycleSeconds ,
image [ uiCamera ] . timeStamp . ulCycleCount ,
image [ uiCamera ] . timeStamp . ulSeconds ,
image [ uiCamera ] . timeStamp . ulMicroSeconds
) ;

}

This guarantees us that the captured images are synchronized up to 125 microsec-
onds, according to the manufacturers release note that came with the �rmware
update. This is quite logical since the ulCycleCount wraps around after 8000 val-
ues, what means that its smallest time notation is 1/8000th of a second = 125
microseconds.

With this problem out of the way, we can step on it and take our application to the
next level. Now that images can be grabbed synchronously and on demand, it is time to
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Figure 3.11: synchronization times are equal for both captured frames

implement feature detection on the captured images, which is the next step to full camera
calibration.



Chapter 4

Feature point detection

When we want to relate several images to reconstruct the captured surroundings of the
cameras, pixel-based matching would be too time-consuming and manually matching the
images makes no sense at all. An easy yet thorough way to correlate images and objects in
the images is necessary for our time-critical application. Therefore we use sets of interest
points, points that are remarkable in both images. Since computational horsepower is
not our number one concern, but our timeframe is, have we chosen for a computationally
expensive but stable and accurate detector, the Harris corner detector. Using grayscale
images to calculate intensity variations around the interest points, we are able to correlate
objects or object features between images. The output of this feature point detection is
the essential input for the upcoming chapter, because it will estimate the properties of
the cameras, thus de�ning their behaviour and that of their surroundings, leading us to
3D reconstruction.

4.1 Requirements

The principle of feature point detection is used in a broad range of computer vision appli-
cations. This involves visual robotic servoing, object tracking, stitching panoramic view
pictures and of course stereo matching. Most of the time, these applications require a
way to relate two or more images in order to extract valuable information. In our line
of work, we want to relate images that are taken at the same time, but from di�erent
point of views. The most straightforward way to implement some kind of image matching
algorithm, is the brute force approach. Take one image as the reference image and deter-
mine the corresponding pixel in the image under test for every pixel of the original image.
This would take an enormous amount of computational power and time since you would
have to do a very expensive, full image search for every pixel, seriously downgrading your
image processing application speed.

An intelligent approach suggests that you relate any pair of images, based only on
some interesting or striking locations or objects present in the frames. Such locations
are referred to as points of interest or feature points and can be detected using a feature
point detector. Using just a small collection of signi�cant points instead of every pixel
in the image, will decrease your application's computation time dramatically. But using

35
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too little feature points to relate images, can also result in a bad image correlation, that
leads to failure of the application. The ideal amount of feature points to use is a trade-o�,
between avoiding false results and still keeping the computation time as short as possible,
that has to be made with great caution. How such points of interest are detected, depends
on the kind of interest point detector you are using. Some will de�ne maxima of local
curvature as interest points, other will use locations of highly varying texture. We are
looking at corner points as interest points, because they are signi�cant as an intersection
point of two edges and thereby usually lie on the boundary between two objects or two
parts of the same object.

To demonstrate what qualities a corner detector must harness to stand out, to separate
itself from the rest of the pack, we will give a list of some of the most important properties.
As you will �nd out, you cannot combine all of these qualities into one detector, since
some of them are incompatible and others are application dependent. The application's
developer will have to make the right decision at the start, depending on what criteria
the application requires.

• Detecting all true corners and no false corners might seem an obvious demand, but
it is not. It is simply application dependent, because, over all these years, there is
still no strict de�nition of a corner in an image that covers all possibilities.

• The demand of proper localization is an appropriate one. Most of the time, you
want the corner detector to point out the corners correctly instead of giving you
an approximation of where the corner lies. Especially when you want to combine a
series of images, for instance in a panoramic view. You want to be sure, when you
cut and paste an image on a found edge, that it is actually cutting on the edge and
not a couple of inches away. But in other applications, such as object detection, it
is su�cient that you get a global approximation of the objects contours to perform
recognition. In other words, good localization is desirable for all, but critical for
some applications.

Figure 4.1: Example of pour versus proper localization
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• When you are searching corners or interest points in several images that have all
captured the same scene, you want your corner detector to detect the same interest
points in all these images. That is why a high repeatability rate is a very desirable
property for a corner detector (see �gure 4.2). For instance, when using a visual
servoing robotics application that moves through an environment, you need to �nd
correspondences between consecutive frames. The same points have to be detected,
even if there is a slight change in viewpoint or illumination. It assures you that you
have a stable corner detector. We de�ne the repeatability rate as the percentage of
the total number of corner points which are repeated between two images.

Figure 4.2: Illustration of corner detector with low repeatability rate

• Every real image is subjected to noise, which may lead to a false corner detection.
That is why you might demand a detector that is robust against noise and whose
localization will not su�er from it either.

• When building a real-time application, you might prefer a computationally e�cient
detector over a very robust and really accurate one. Again, this trade-o�, is appli-
cation dependent, but in�uences the working of your detector with great e�ect.

In the image processing application that we are building, a high detection rate and
a high repeatability rate are of utmost importance. In a later processing stage, we will
perform feature matching on a pair of images, which means a di�erent number of corners
in both images (low repeatability rate) or a low amount of corners detected (low detection
rate), would lead to incorrect matching, and thereby to erroneous camera calibration.

4.2 Corner detector �owchart

Historically, corner detection algorithms have evolved since the late 1970's. Several models
are not in use anymore today, while others are still popular, even after thirty years. But
most remarkable is, that up till now, no `universally good' real-time corner detector has
been built. If you think about it, with the previous section in mind, it is not that
unrealistic, since there are so many di�erent applications that all have di�erent demands
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and even the de�nition of what a `corner' exactly is, changes according to the subject it
is applied to.

Over the years, three main trends were introduced in corner detection on grayscale
images: edge-relation methods, topology methods and autocorrelation methods. Con-
cerning edge-relation methods, topology methods or other alternative corner detection
methods, you will hear harmonious names as Kitchen and Rosenfeld [21], SUSAN [22]
or Curvature Scale Space (CSS) corner detector [23]. But we chose to implement an au-
tocorrelation method that is widely used in stereo matching, the Harris corner detector
[24]. This method has been around for nearly twenty years now, and in that period it has
undergone a couple of revisions and modi�cations that have made it a suited candidate
for our application. It is known for its capability of detecting almost all true corners, it
has a good repeatability rate and over the years proper localization has been achieved
as well. Since we will be implementing our corner detector on the GPU as well, it does
not matter such a great deal that this detector is more computationally expensive than
others.

The Harris corner detector uses a measure of local autocorrelation to calculate the
corners in an image. It is the successor of the Moravec operator [25, 26], which introduced
the concept of `points of interest' and also resides on an autocorrelation method for corner
detection. To perform autocorrelation, consider a local window in the image, shift this
window in various directions and calculate the minimum change of intensity in which
these shifts result. This operation is repeated for every pixel in the image, so the output
image still has the same dimensions as the input image, but only now every pixel has an
interest value. A point of interest is de�ned as a local maximum in this image of interest
values. This means that corners, who have a large intensity variation in every direction,
will be detected as well, making this a corner detector, but with a more relaxed de�nition
of a corner.

Autocorrelation is the main principle where our corner detection algorithm is based
on. But as you may have guessed, there is a bit more to it than simply performing
autocorrelation calculations on the images. There are three main processing steps that
are present in most of the corner detectors: applying the corner operator, thresholding
the image and performing non-maximal suppression. These steps are schematized in a
generic �owchart (�gure 4.3) and a more into detail explanation follows in the subsequent
sections.

Figure 4.3: General �owchart of most corner detectors
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4.2.1 Apply corner operator

The �rst step in detection algorithms is always applying the speci�c corner operator.
This stage takes the original image as input and returns a processed version as output.
For each pixel in the image, a cornerness measure is calculated, which indicates to what
extent each pixel resembles a corner. As a consequence, we call the outcome of these
calculations a cornerness map. How this cornerness measure is calculated varies accord-
ing to which algorithm is used. We will summarize the Moravec interpretation of the
cornerness measure concept here, as it is the basis for the Harris corner detector we will
be implementing.

Moravec was the �rst to de�ne interest points as points where there is a large intensity
variation in every direction, which is the case at corners as well. But he was not so much
trying to detect corners, as he was just trying to �nd distinct regions in an image that
would allow him to match objects in consecutive image frames. This intensity variation
became the key to constructing his cornerness measure. The calculation of the Moravec
cornerness measure is built out of two steps:

1. Let I(x, y) be the intensity of a pixel (x, y) and take a grayscale image and a window
size as input parameters. For each pixel (x, y) in the image, calculate the intensity
variation from a shift (u, v) compared to the reference pixel as

V(u,v)(x, y) =

a=+N
2∑

a=−N
2

b=+M
2∑

b=−M
2

[I(x+ u+ a, y + v + b)− I(x+ a, y + b)]2 (4.1)

where the shifts (u, v) are elements of Ψ, and represent the eight principle directions
of �gure 4.4

Ψ = [(−1, 1), (0, 1), (1, 1), (−1, 0), (1, 0), (−1,−1), (0,−1), (1,−1)] (4.2)

Figure 4.4: The eight shift directions for the Moravec intensity variation

2. Out of the resulting values of these calculations we construct the cornerness measure
C(x, y) for each pixel (x, y) as

C(x, y) = min
{
V(u,v)(x, y)

}
with (u, v) ∈ Ψ (4.3)
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So for every pixel in the image we calculate the minimum intensity variation of shifts in
the eight principle directions and assign this value as the cornerness measure to the pixel.

4.2.2 Threshold cornerness map

The output of the cornerness measure operation, the cornerness map, has to be thresh-
olded. Remember that interest point detectors de�ne corners or points of interest as
local maxima in the cornerness map. You can easily imagine that there are a lot of local
maxima in the cornerness map that are not at all true corners, so a threshold is applied.

This holds that every pixel in the cornerness map that has a value below the threshold,
is set to zero. The value of the threshold has to be empirically chosen, not too high, so
we prevent missing some true corners, and not too low, so no false corners are detected.
Practice learns that there is rarely a threshold value that will exclude all false corners and
include all true corners, so it will have to be chosen depending on the application's needs.

4.2.3 Perform non-maximal suppression

The �nal critical step in our corner detecion algorithm is to locate the local maxima in the
thresholded cornerness map. In this map, thanks to the thresholding operation, there are
only non-zero values in the surroundings of a corner that needs to be detected. In order
to �nd a maximum that represents a real corner, we apply non-maximal suppression to
eliminate high, but not the highest values, close to the real corner. So for every pixel, a
check is performed whether it has the highest value within a certain range, for instance
within a circular kernel with a �ve pixel radius. If this is not the case, the value of that
pixel is set to zero. The search range that is used, the radius of the circle, is also a user-
de�ned input variable that varies for every application. Corners are now easily found in
the ouput image of this step, since they are the only pixels left with a non-zero value.

4.3 Implementing the Harris corner operator

In this section, a more detailed explanation of the Harris corner detector is given. It
builds on the Moravec corner detector and uses the �owchart described earlier. We will
demonstrate the di�erence between the Harris and the Moravec detector and explain why
these changes are necessary and how we implemented them in our graphics pipeline.

In �gure 4.5, a schematic overview is given of all the necessary steps that have to be
implemented on the GPU to construct a full Harris corner detector. Although each of
the steps of this storyboard is discussed separately in further sections, you can already
recognize the global �owchart structure of section 4.2 in this �gure. First, every important
step in constructing the cornerness measure is given, and then we perform the thresholding
and non-maximal suppression steps we are already acquainted with. The formula of
autocorrelation to construct the cornerness measure is given as well, to clarify why such
steps as Gaussian weighting and calculating partial derivatives are necessary, but the full
derivation is given in section 4.3.4.
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Figure 4.5: General �owchart of our Harris corner detector

4.3.1 Intensity based algorithm

We have mentioned it before, most interest point detection algorithms make use of some
sort of intensity variation to perform edge or corner recognition, and so does the Harris
corner detector. So any input image we want to process, has to be converted to an
intensity image �rst. This implies that all RGB images have to be converted images that
only use the Y component of the YUV format, what equals a conversion to grayscale
images.

As we have seen in section 3.2.3 about color spaces, it is possible to create a YUV image
from an RGB image and it has the important feature that it separates the luminance
(intensity) and the chrominance (color) information of the image. Most important to
remember about the YUV color space, is that the Y component contains the luminance
information we need and that it is a combination of all three RGB components with
di�erent coe�cients due to the sensitivity of the human eye. To make the conversion
from an RGB image to a suitable grayscale corner detection input image, we use the
simple one step formula [27]

Y = 0.299R + 0.587G + 0.114B (4.4)

Implementing this step on the GPU really is a piece of cake, since it can make perfect
use of the internal structures that accompany every pixel that arrives at the pixel shader.
It should be clear why a pixel shader is used, since this is the stage of the graphics pipeline
where texturing and coloring is performed.
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Listing 4.1: The Grayscale conversion.

s t r u c t PS_OUTPUT_STD
{

f l o a t 4 computedValue : COLOR;
} ;

PS_OUTPUT_STD ps_greyConversion (VS_OUTPUT_STD vertexOutput )
{

PS_OUTPUT_STD pixelOutput ;

f l o a t 4 sampledTexel = tex2D ( clampSampler0 , vertexOutput . t exe lCoord inate ) ;

pixelOutput . computedValue . rgb = dot ( sampledTexel . rgb , f l o a t 3 (0 . 299 f , 0 .587 f , 0 .114 f ) ) ;
pixelOutput . computedValue . a = 1 . 0 ;

r e turn pixelOutput ;
}

In listing 4.1 you can see that the output structure pixelOutput contains a 4 element
vector, describing the red, green, blue and alpha (opacity) channel of every pixel. In
order to get a grayscale image as output, we calculate the intensity out of the input RGB
channels and give the output RGB channels all that same intensity value, so no color pops
out.

4.3.2 Partial Derivatives

The Moravec operator we described in section 4.2, has a discrete isotropic response because
the intensity variation is only calculated in the eight principle directions using two hori-
zontal, two vertical and four diagonal shifts. Harris and Stephens performed an analytic
expansion to this model, as you will see in section 4.3.4, resulting in a corner measurement
that allows the variation of the autocorrelation to be calculated over any orientation. This
analytical expansion uses partial derivatives to compute its autocorrelation function, but
since the derivation is given in a subsequent section, we will illustrate here intuitively,
that the use of image gradients will make it possible to calculate an intensity variation in
all directions.

Very often the Prewitt operator [27] is used to approximate the �rst-order gradients
of an image, because computing the real gradient is rather time consuming. Figure 4.6
shows an example of the gradient approximation for the horizontal and diagonal direction.
Knowing this, we can rewrite the Moravec intensity variation measurement for a horizontal
shift (�gure 4.7) as follows

Vx =
9∑

i=1

(Ai −Bi)
2 =

9∑
i=1

(Bi − Ai)
2 ≈

9∑
i=1

(
∂Ii
∂x

)2 (4.5)

where
∂Ii
∂x
≡ Ii ⊗ (−1, 0, 1) ≈ Bi − Ai (4.6)
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Figure 4.6: Sample use of the Prewitt operator

The same derivation can be made for a shift in the vertical, diagonal or any other direction.
This analysis indicates that intensity variation can be written as a function of the gradient
of the image. So for any shift (u, v) the intensity variation becomes

V(u,v)(x, y) =

j=+N
2∑

j=−N
2

k=+M
2∑

k=−M
2

(
u
∂Ij
∂x

+ v
∂Ik
∂y

)
with (u, v) ∈ Ψ (4.7)

where
∂Ij
∂x

and ∂Ik
∂y

are computed as ilustrated in equation (4.6)

Thanks to this new measurement, we obtain an rotationally invariant description of the
intensity variation, since proper choice of u and v allows us to calculate the autocorrelation
for any direction.

According to the formula in �gure 4.5, we will need partial derivatives in both x-
and y-directions as well as a multiplication of both. So we have to send our GPU the
assignment to calculate the necessary partial derivatives out of the grayscale input image
and store them in temporary textures, using the render-to-texture function (see 2.3.3), to
reuse this data in our next processing step, calulating the cornerness measure.

We have two options when we want to implement this on the GPU: either we stick to
the Prewitt approximation of the gradients and build a shader to execute this functionality,
or we try to use some of the additional specialized hardware and let the GPU calculate the
image gradients by itself. Because we were still in a testing phase, and for starters we just
wanted a working version of the Harris corner detector, we chose to stick to the Prewitt
approximation. Programming the GPU to use specialized hardware would consume too
much of our development time, so initially we left this part open for optimization.
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Figure 4.7: Window shift in the horizontal x-direction

4.3.3 Gauss convolution

In image processing, convolution is the multiplication sum of the convolution kernel with
the covered image region of the kernel. The convolution kernel is actually the window that
is used as an overlay on the image and every element of that kernel window has a certain
weight. In �gure 4.8 is shown how convolution works and, as you can see, it returns an
output image with the same dimensions as the input image. The convolution operation
is executed for every pixel and the pixel value is now the result of this calculation.

Figure 4.8: The convolution operation

The Moravec detector uses such a convolution kernel as well, but it does not catch
the eye as much as the convolution kernel of the Harris detector will. The kernel used by
Moravec has binary values, so only pixels within the window are multiplied with a weight
of 1.0, and all others are not part of the convolution. The use of binary values and the
fact that it uses a square window, makes the Moravec detector to be considered noisy.

Intuitively, variable weights should be assigned to measurements made closer to the
center of the window, but up untill now an equal emphasis is put on every measurement,
disregarding their distance from the center pixel. A Gaussian weight distribution would
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stress the importance of the center pixel more, and lower the in�uence of the measure-
ments on the border of the convolution kernel. But using a square window disturbs our
measurements as well, since we would like to take pixels into account that lie on an equal
distance from the kernel center. Because of the square window the Euclidian distance
from the center pixel to the kernel edge varies for di�erent directions. A circular window,
or a square window simulating circular window values, would help solve this problem.

Figure 4.9: A simple and more complex example of a 2D Gaussian weighted window

Both these demands call for a 2D Gaussian weighted convolution kernel that is inher-
ently circular isotropic(see �gure 4.9). Although it is still a square, values at the corners
are really low, to cause, as the name says, a distribution that applies equal Gaussian
weighting in every direction. When using a simple Gaussian kernel as in �gure 4.9, the
convolution equation out of �gure 4.8 becomes

C7 = 1 · x1 + 2 · x2 + 1 · x3 + 2 · x6 + 5 · x7 + 2 · x8 + 1 · x11 + 2 · x12 + 1 · x13 (4.8)

and you can see that this computation takes 9 operations. This means that executing such
a 2D convolution on a window with dimensionsM×N leads to an algorithmic complexity
of O(N ×M).

To implement this step on the GPU, we used the most important property of a 2D
circular isotropic kernel. Mathematics learns us that we can split a 2D circularly isotropic
kernel into a horizontal 1D convolution followed by a vertical 1D convolution. This will
reduce the algorithmic complexity, and thus the number of computations and the pro-
cessing time, to O(N +M). In GPU terms this means that we will divide the convolution
in a horizontal pipeline pass that we use as the input for the vertical pass, as you can see
in listing 4.2.

Listing 4.2: Two 1D convolution kernels.

techn ique aLive_HorizontalConvolut ion
{

pass P0
{

VertexShader = compile vs_3_0 vs_horConvolution ( horConv_horTexelStride ) ;
Pixe lShader = compi le ps_3_0 ps_horConvolution ( horConv_weightDistr ibution ,

horConv_normalisationFactor ) ;
}
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}

techn ique aLive_Vert ica lConvolut ion
{

pass P0
{

VertexShader = compile vs_3_0 vs_verConvolution ( verConv_verTexelStride ) ;
Pixe lShader = compi le ps_3_0 ps_verConvolution ( verConv_weightDistr ibution ,

verConv_normalisat ionFactor ) ;
}

}

Besides dividing the 2D kernel in two 1D kernels, we also adopted some speedups from
the aLive framework. The latter uses rasterizer exploitation (functions vs_horConvoluion
and vs_verConvolution in listing 4.2), texture coordinate interpolation and further divi-
sion of the kernel to increase processing speed by leveraging the utilization. An in-depth
discussion can be found in Lu [28].

4.3.4 Cornerness measure

The cornerness measure for the Harris corner detector starts by performing an analytical
expansion of the autocorrelation function used in the Moravec operator [29]. To provide
better insight, a short version of the derivation is given. For a shift (∆x,∆y) and a
reference pixel (x, y) the Moravec autocorrelation function is

c(x, y) =

j=+N
2∑

j=−N
2

k=+M
2∑

k=−M
2

W [I(xj, yk)− I(xj + ∆x, yk + ∆y)]2 (4.9)

with (xi, yi) as the points in the Gaussian window centered on (x, y), with the Gauss-

function W = e−
x2j+y

2
k

2σ2 omitted for clarity. The shifted image is approximated by a Taylor
expansion truncated to the �rst order terms

I(xj + ∆x, yk + ∆y) ≈ I(xj, yk) +
[
Ix(xj, yk) Iy(xj, yk)

] [∆x
∆y

]
(4.10)

where Ix and Iy are the partial derivatives in x- and y-direction. Now substitution of
equation (4.10) in equation (4.9) and further derivation leads us to the matrix notation
of equation (4.7) in the section about partial derivatives

c(x, y) =

j=+N
2∑

j=−N
2

k=+M
2∑

k=−M
2

W

([
Ix(xj, yk) Iy(xj, yk)

] [∆x
∆y

])2

=
[
∆x ∆y

] [ ∑∑
W (Ix(xj, yk))2

∑∑
W Ix(xj, yk)Iy(xj, yk)∑∑

W Ix(xj, yk)Iy(xj, yk)
∑∑

W (Iy(xj, yk))2

] [
∆x
∆y

]
=

[
∆x ∆y

]
C(x, y))

[
∆x ∆y

]
(4.11)
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and C(x, y) is now the matrix that captures the new local autocorrelation that is as good
as rotationally invariant. With this matrix and the matrix' eigenvalues, a cornerness
measure is constructed. Harris and Stephens [24] proposed following cornerness measure
so the eigenvalue of the matrix C(x, y) could be left out

C(x, y) =

[
D E
E F

]
(4.12)

with a cornerness measure

c(x, y) = Det(C)− k · · ·Trace(C)2 (4.13)

where the size of the parameter k has already been studied by Z. Zhang et al. [30],
demonstrating that an optimal value for k lies around k = 0.04. The other elements of
the equation are

Det(C) = D + E (4.14)

Trace(M) = DE − F 2 (4.15)

Thanks to all our previous work, calculating the partial derivatives and performing
Gaussian weighting on the output images, the only thing that is left to do, is implement
equation (4.13) in the graphics pipeline. So a simple pixel shader is written where we
use the output of the previous stages (D, E, F ) that is stored in temporary textures to
combine all of that into an output image that holds a cornerness measure for every pixel.
This step is visualized in a slightly altered picture of the corner detector �owchart (�gure
4.10).

Figure 4.10: Combining all outputs to construct the cornerness measure
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4.3.5 Thresholding and non-maximal suppression

There is not that much left to say about the last two steps because they are identical
and the Harris corner detector does not need to change them, compared to the Moravec
corner detector. So a user-de�ned threshold is applied on the cornerness map to exclude
false corners and then non-maximal suppression is performed to properly localize the
true corners. The non-maximal suppression gets the best results when you use a circular
perimeter to search for other local maxima, but since we were still building a test version
we have not implemented a circular search range, but an easy rectangular one. It will not
take long for an experienced GPU programmer to add this functionality to the shader.

4.4 Experimental results

We present the experimental results we got from the Harris corner implementation in a
pipelined fashion according to the �owchart model on which we have based our imple-
mentation. For every step a didactic image is used that illustrates the functionality of
this step to the fullest, because simply showing you dark pictures with a couple of dots,
that have a change throughout these steps that is almost unnoticeable with the human
eye, would be unsatisfactory. We worked with a model image, that is built out of a couple
of entirely black rectangles against a white background, and with a real scene setup, that
is also frequently used for stereo correspondence testing, the Tsukuba scene [31] (�gure
4.11).

Figure 4.11: The images used for testing the Harris corner detector

As you may have noticed, this corner detector that we have implemented is a working
version, but it is not yet the best working version. But that was not really needed, as the
development of this corner detector was an explorative step towards camera calibration
and was meant to estimate the amount of work and development time it would take to
write our own camera calibration code on graphics hardware. Now that we have already
implemented a �rst step of the camera calibration method, we are closer to determining
the approximate time frame that would be needed to construct a full camera calibration
application on graphics hardware.

But as we are working with a �xed camera setup, we are not strictly compelled to build
this entire step. What we really want at the end of the ride, is to obtain preprocessed
images that can be used as input for the aLive framework, so we can replace the implemen-
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tation of our own graphics hardware accelerated camera calibration with a tool available
for free use (Camera calibration tool by Thomas Svoboda [32]). As a consequence we can
focus on the further preprocessing of the images, namely distortion correction (chapter 6)
and recti�cation (chapter 7). Yet we have built a corner detector that can be the basis
for futher optimization and construction of a very accurate corner detector or even for
full camera calibration on the GPU in the years to come. To be complete, we will still
summarize the steps that need to be executed to obtain camera calibration, which has its
core in matrix computations, in the following chapter.
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Figure 4.12: First part of the Harris corner detector overview
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Figure 4.13: Second part of the Harris corner detector overview





Chapter 5

Camera calibration

We speak of a calibrated camera pair if the relative rotation and translation of the cameras
is known and if the camera properties are known as well, what means that we have to
determine the intrinsic and extrinsic camera parameters. Remember from chapter 3 that
the camera parameters describe the transformation from 3D space coordinates to 2D
image points coordinates. More speci�c, the extrinsic parameters de�ne the location and
orientation of the cameras' reference frames with respect to the world reference frame,
and thus their mutual orientation. The intrinsic parameters on the other hand, link the
pixel coordinates of an image point to their coordinates in the camera reference frame.
Retrieving these parameters out of a given pair of images from an uncalibrated camera
pair is our objective in this chapter.

5.1 Calibration model

Their are two ways in achieving camera calibration, either using photogrammetric calibra-
tion, or using self -calibration. Photogrammetric calibration observes a calibration object
who's geometry is known with very high precision and the object is usually built out of
a couple orthogonal planes. This kind of approach requires a very precise camera setup
and expensive calibration equipment [33]. Using self-calibration, often no calibration ob-
ject is used and the camera calibration is performed using a pair of images from either
one moving camera or from a pair of frozen cameras. The �rst case, with the moving
camera is a very �exible approach, but also one of the hardest to implement. In this
work, we have chosen an approach that is some sort of a special case of self-calibration,
because we planned on using a �xed camera setup in combination with a checkerboard.
The latter makes it much easier to detect feasible points of interest, needed in a later
calibration stage. This technique is also called photometric self-calibration because it uses
easily recognizable points, e.g. a red led or a checkerboard. Although we are not using
the calibration with a checkerboard, we still use photometric self-calibration, because the
Svoboda tool uses a green led as easy interest point for calibration purposes.

As for the camera model that we will be using throughout our explanation, we would
like to remind you that we use the �nite pinhole camera model, discussed in section
3.1.1. Most important to remember is that the perspective projection matrix P is a

53
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representation of the 3D-2D mapping the camera induces. So for a point Q in 3D space
and its corresponding image point q this gives

q = PQ (5.1)

and P is constructed out of the two matrices we want to construct in this chapter, the
intrinsic matrix (K) and the extrinsic matrix ([R | t]).

P = K
[
R | t

]
(5.2)

5.2 Epipolar geometry

Epipolar geometry describes the intrinsic projective relationship between two di�erent
views and is independent of scene structure. It only depends on the cameras' internal
parameters and relative pose. This geometry is usually considered when trying to lo-
cate corresponding points in di�erent views in a stereo matching application, so we will
demonstrate why epipolar geometry plays such a big part in this point correspondence as
well as in scene reconstruction.

5.2.1 Terminology

Consider a point Q in world coordinates and its corresponding image points q and q′,
located on the image planes of the cameras with camera centers C and C ′ respectively.
The line that connects the camera centers is called the baseline. When we backproject
the rays from image points q and q′ into the world coordinate system, they will intersect
at point Q. Now both of these rays and the baseline, or the points Q,C and C ′ form a
plane, that will be further referred to as the epipolar plane π (see �gure 5.1).

The points of intersection of the baseline with the image planes are called the epipoles
and they are also the projecion of one camera center onto the image plane of the other
camera. The epipolar plane π, that we can construct with QCC ′, intersects the image
planes of both cameras as well. These intersections form lines in the image planes and
they are called epipolar lines. Since the epipoles e and e′ lie on the baseline and are thus
also a part of plane π, we can also construct the epipolar line l′ using the projection of
the other camera center C (epipole e′ in this camera's image plane), and the projection
of the 3D-space point Q (the image point q′). The same works for the epipolar line l.

Varying the position of the world point Q, will change the orientation of the epipolar
plane π and the epipolar lines l and l′. But since every epipolar plane will always include
the baseline, every epipolar line will go through the image plane's epipole. So the epipole
can also be described as the intersection of all existing epipolar lines. Since the epipoles
are also the projection of the camera centers onto the opposing image plane, varying the
position and orientation of the cameras and there image planes will change the position
of the epipoles.



Nederlandse samenvatting 55

Figure 5.1: The epipolar plane π

5.2.2 The epipolar constraint

Now imagine that only the image point q and the camera centers C and C ′ are given, and
we want to determine the position of the corresponding image point q′ (see �gure 5.2).
We can backproject the ray from the known image point into world coordinate space,
using the line that connects camera center C and image point q. The world point Q must
be on this line, since it was a ray from Q going through C that constructed the image
point q in the �rst place. Projecting this ray on the image plane of the other camera,
gives us the line l′, which is an epipolar line and goes through the epipole e′. Because l′ is
the projection of the ray that contains Q, we know for sure that the corresponding image
point q′ lies somewhere on that line.

Approaching this from a di�erent point of view, returns the same result. With C,C ′

and q known, we can construct the baseline and the epipolar plane. Since the corre-
sponding image point q′ is always a part of the epipolar plane, we know that q′ must lie
somewhere on the intersection line l′ of the epipolar plane and the image plane of the
other camera. This mapping can be described as

q → l′ (5.3)

and is a point-to-line mapping. The fact that we can only determine the line that contains
the corresponding image point using epipolar geometry, but not the precise location, is
called the epipolar constraint. Although `constraint' might have a negative connotation,
try not to see this as a bad thing, because thanks to this correlation, we can narrow the
search for corresponding points in a stereo matching application to a single line l′ instead
of the entire image. Because this mapping can only be calculated for a pair of calibrated
cameras, the need for camera calibration is clear.
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Figure 5.2: The epipolar constraint

5.3 Fundamental matrix

The fundamental matrix is used to describe the mapping from a point to a line in a stereo
image pair, which we have discussed in the previous section. The matrix holds intrinsic and
extrinsic information of the cameras [34]. You could also say that the fundamental matrix
is the algebraic representation of epipolar geometry. This leads to the transformation of
equation (5.3) into

l′ = Fq (5.4)

with F a 3× 3 matrix

F =

f11 f12 f13

f21 f22 f23

f31 f32 f33

 (5.5)

and since the mapping from the corresponding image point q′ back to the original image
plane, results in a transfer to the epipolar line as well, we can write

l = F T q′ (5.6)

We know that the image point q′ is a point on the epipolar line l′, which results in

q′T l′ = 0 (5.7)

So when we combine equation (5.4) and (5.7) we get

q′T l′ = q′TFq = 0 (5.8)

for any pair of matching points q and q′ in two image planes. The result of equation
(5.8) is important for the determination of the fundamental matrix, since this gives us a
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way of characterizing the F -matrix in terms of image points, without the need of camera
matrices. So equation (5.8) proves that we can compute the fundamental matrix out of
image points alone.

Now, if we de�ne q as
[
x y 1

]T
and q′ as

[
x′ y′ 1

]T
, each corresponding image

pair will give us one linear equation expressed in the unknown terms of the fundamental
matrix F . For q and q′ this gives us the linear equation

x′xf11 + x′yf12 + x′f13 + y′xf21 + y′yf22 + y′f23 + xf31 + yf32 + f33 = 0 (5.9)

So for a set of n corresponding image points we can expand equation (5.9) to a set of
linear equations


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
x′2x2 x′2y2 x′2 y′2x2 y′2y2 y′2 x2 y2 1
x′3x3 x′3y3 x′3 y′3x3 y′3y3 y′3 x3 y3 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1


(n×9)


f11

f12

f13
...
f33


(9×1)

=


0
0
0
...
0


(n×1)

(5.10)

with f the 9-vector made up of the entries of F in row-major order.

To calculate the elements of the fundamental matrix F , we would need at least nine
linear equations, since F has nine unknown variables. But their are two other restrictions
that reduces the minimal number of linear equations to seven. These restrictions come
down to the fact that F is scalable and that F has to be of rank 2 [34]. So a mini-
mum number of seven corresponding images points is essential to be able to calculate a
fundamental matrix.

5.4 Image points correspondence

To be able to perform further calculations that will lead us to the extraction of the
necessary camera parameters, or even just to compute the fundamental matrix, we need
sets of corresponding image points, as mentioned in the previous section. That means that
the interest points that were originally detected by our Harris corner detection algorithm
in each image separately, now have to be matched or found across a pair of given images,
assumed that the cameras are capturing the same scene and point matching is possible.
To illustrate this, let us take a look at the glass example of �gure 5.3.

When the edge of the glass is detected as an interest points q0 and q′0 in the left and
the right image respectively, we want these two interest points, one in each image, to be
written down as a pair of corresponding image points (q0, q

′
0), because they originate from

a light ray coming from the same position on the 3D object.

The method to determine these pairs of corresponding image points, looks a lot like
the correlation method of our Harris corner detector, explained in chapter 4. That is why
we will not go into much detail on this topic, as there are many other concepts, necessary
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Figure 5.3: Example of corresponding image points

to get the cameras calibrated, that are yet left untouched. It basically comes down to
the following; In the reference image, an interest point is selected and a local window is
placed on top of it, with the interest pixel located in the center. Now, a measurement
is made to have a reference that gives us an idea of the intensity variation in that local
window or the intensity of the di�erent pixels that are part of this window.

Figure 5.4: An example of point matching

Then, we place the same window and perform the same measurement on each and
every interest point in the other image. Every measurement is compared to the reference
measurement, and only when the correlation between the reference point and a point in
the other image is the highest of all interest points in that image, we can accept it as a
match. These two points are now almost considered a corresponding image pair. But �rst
we reverse the process and apply the same steps starting in the other image, and only if the
interest point, that was detected as a match by the �rst step, detects the original reference
point as a good match, we agree that a pair of corresponding image points is found. In
�gure 5.4, you can see an example of a successful match and a mismatch. Obviously the
algorithm is a little more advanced as is stated here, but with this general concept in your
mind and the knowledge you have gained frome the Harris corner detector, you should
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have no trouble reading some more advanced literature on this topic if necessary.

5.5 Calculating the fundamental matrix

5.5.1 The eight-point algorithm

Calculation of the fundamental matrix can be done in several ways. You could use a
geometric approach, like the Gold Standard method or the Sampson distance [34], but
we are going to use a relatively simple way of calculating the F -matrix, the algebraic
eight-point algorithm [35]. It is a linear way of estimating a fundamental matrix, given a
set of point correspondences. It takes o� by rewriting equation (5.10) into


x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
x′2x2 x′2y2 x′2 y′2x2 y′2y2 y′2 x2 y2 1
x′3x3 x′3y3 x′3 y′3x3 y′3y3 y′3 x3 y3 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1





f11

f12

f13

f21

f22

f23

f31

f32

f33


=


0
0
0
...
0

 (5.11)

or even shorter

Af = 0 (5.12)

So the matrix A holds the set of linear equations necessary to compute the elements of
the 9-vector f , that are also the elements of the fundamental matrix. It is a homogenous
set of equations, and since f can only be determined up to a scale factor, matrix A has
to be at least of rank 8. In practice, this means that at least eight pair of correspondent
points have to be found to form a matrix A of rank 8 and make it possible to compute f .

In the previous section, we have explained that there is a second constraint that would
allow us to compute the F-matrix with only seven pairs of corresponding image points.
This method will prove to be more complex than the eight-point algorithm and would
even lead to 3 di�erent fundamental matrices in some cases. But right now we are not
looking for a way to compute the F -matrix with the minimum amount of corresponding
image pairs. As you will see in section 5.6, we rather want an easy way to compute
a fundamental matrix that can be optimized further and we will use a whole bunch of
corresponding points, so there is no need to limit this number to seven. Thanks to the
simple start and possible further optimization using an algorithm called Ransac, we can
construct a fundamental matrix that is not dependant of a small number of point matches.
Through optimization, the constructed matrix is the best �t for all feature points, so there
is room for a little error in the feature matching computations as well.

After determining the set of eight linear equations, the computation of the F -matrix
is quite straightforward. The solution for f out of equation (5.12) is found using the
Singular Value Decomposition (SVD) of A
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A = UDV T (5.13)

and f is now the singular vector corresponding to the smallest singular value of A, that is
the last column of V if the diagonal elements of D are ranked in descending order. Simply
reorganizing the elements of f in a 3× 3 matrix gives the desired F -matrix.

These simple steps, setting up the linear equations and performing singular value
decomposition, form the basis of the entire eight-point algorithm. In sections 5.5.2 and
5.5.3, we will make some slight adjustments to this method in order to obtain a robust
and trustworthy algorithm.

5.5.2 Constraint enforcement

One of the key properties of the fundamental matrix is that it has to be of rank 2. A lot
of applications rely on this property, for instance if the calculated F -matrix would not
be of rank 2, this would cause for the epipolar lines not to go through the same point, in
which case our epipolar geometry is seriously disturbed because all epipolar lines should
cross the same point, the epipole. And the problem is, that solving the set of linear
equations from (5.10), will generally not cause the fundamental matrix to be of rank
2, so we should undertake action to enforce this constraint on the calculated F -matrix.
The matrix F will be replaced by another matrix F ′ that is satisfactory to the rank 2
constraint. Mathematically this problem is described as

Minimize the Frobenius norm ‖F − F ′‖ subject to rank(F ′) = 2 (5.14)

Using singular value decomposition, this problem is not too hard to solve. The SVD of F
is

F = UDV T (5.15)

with d1 ≥ d2 ≥ d3 elements of

D =

d1

d2

d3

 (5.16)

Then the F ′ we are looking for is

F ′ = U

d1

d2

0

V T (5.17)

F ′ is now a fundamental matrix that is still a solution of the set of linear equations
and is of rank 2 as well, so the constraint has been properly enforced.
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5.5.3 The normalized eight-point algorithm

Up till now we have described the main principles and computations of the eight-point
algorithm. But the key to success, to a robust and noise resisting algorithm, is actually
proper normalization of the input data [35], even before we construct the linear equa-
tions. In the case of our algorithm, the proposed normalization, represented by T for the
reference image and T ′ for the corresponding image, performs two simple steps:

• The image points are translated in such a way that the center of the collection is at
the origin of the coordinate system.

• The points are scaled as well, to make the RMS distance from the reference points
to the origin equal

√
2.

Knowing all this, we can summarize the entire eight-point algorithm in a couple of
simple steps. The goal remains to calculate a matrix F out of a set of at least 8 pair of
corresponding points, so x′Ti Fxi = 0. The steps we have to take to accomplish this goal
are

1. Normalization: with T and T ′ the normalization transformations described result
in x̂i = Txi and x̂′i = Tx′i. Out of these sets of normalized corresponding points
(x̂i, x̂′i), we will calculate the fundamental matrix.

2. Linear solution: calulate a matrix F̂ out of the linear equations of Â as described
in equation (5.13).

3. Constraint enforcement : compute a new F̂ ′ to ful�ll the demand rank(F̂ ′) = 2 using
the SVD of the original F̂ as in equation (5.15)

4. Denormalize the solution using F = T ′F̂ ′T . The resulting F is the fundamental
matrix that corresponds to the set of linear equations formed with the original pairs
of corresponding points (xi, x

′
i).

5.6 RANSAC: RANdom SAmple Consensus

Up to this point, we have assumed that the set of corresponding points that was presented
was only susceptible to errors in the measurement of these points' position, induced by
the interest point detection, the Harris corner detector in our case. But in reality, there
will be some point mismatches as well, so some points in one image will be linked to false
correspondence points in the other image as you can see in �gure 5.5, where the arrows
show the shift from one image to another. In an ideal situation, the arrows should far
more parallel to each other.

We call these points outliers, as they are data points that do not �t the model of image
correspondence. You could also say that they are measurements following a di�erent,
unmodelled error distribution. Now we would like an algorithm that can estimate for
instance the homography between the sets of corresponding points using only the inliers,
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Figure 5.5: Example of erronous point matching

or correct point matches in this case, and thus perform a calculation that is robust against
outliers. Inliers can be generally described as data points which can be explained by the
model or data points that �t the model.

5.6.1 The RANSAC algorithm

The RANSAC algorithm is such a robust way of �tting data to a model in the optimal
way, despite of some outliers. There are simpler algorithms like case deletion to calulate
a robust model �t, if the amount of outliers is really low. But one of the special abilities
of RANSAC is that it is able to cope with a very large proportion of outliers [36]. The
main di�erence with conventional smoothing techniques, is that instead of trying to use
as much data as possible to construct an initial solution and gradually eliminate false
data, RANSAC uses a small initial data set and enlarges it with consistent data when
possible. Why conventional smoothing techniques cannot cope with outliers is illustrated
in �gure 5.6.

Figure 5.6: The outliers in�uence the least squares �t a great deal

First, RANSAC selects a random sample v out of the given set of data V with outliers
present, so v ⊂ V . This random sample is the minimal subset needed to determine the
model (for instance, to draw a line, you only need two data points). The points of this
sample v are now called hypothetical inliers and a model is �tted to these points, what
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means that all free parameters of the model are constructed using the data points of the
sample set v. After the initial solution to the model is determined, we determine which
other data points, that were not already in the subset, lie within a distance threshold dT

from the model. So for every point in the remaining data set, RANSAC tests how well
the point �ts to the constructed model. If it �ts well, so it lies within the threshold dT ,
then this point is classi�ed as a hypothetical inlier as well. All these points together, the
sample data and the ones within the threshold, form the consensus set S and de�ne the
inliers of the given data set V . If we have a high number of inliers, we can say that we
have a reasonably good model. If the number of inliers is too low, relative to a threshold
IT , the model is discarded.

However, the constructed model was estimated using only the sample data set v, so
now we reestimate the model using all the hypothetical inliers of the consensus set S and
at the same time, we estimate the error of the inliers relative to the model. These steps
are iterated a �xed number of times, each time producing either a model that is rejected,
because it has a number of inliers below a threshold IT , or a model which is then re�ned
using the consensus set S together with an error measure. If this error measure is lower
than our previous best model, the new model becomes the best model and the old one is
discarded.

The distance threshold dT , the threshold for the number of inliers IT and the number of
iterations necessary to �nd the optimal solution, either have to be determined empirically
or are subject to some statistical formulas [34], which we will not further explore in this
work. Most important to remember is that RANSAC is able to do robust estimation of
model parameters and that it can estimate the parameters with a high degree of accuracy
even when outliers are present in the data set.

There are some alternatives to RANSAC as well, and they give an alternative score to
the model constructed from a number of data points. Instead of de�ning the score on the
number of data points within a certain threshold distance, we can score the model by the
median of distances from the origin to all points in the data. The model with the lowest
median is then selected and the method that uses this is called the Least Median Squares
(LMS). The advantage of LMS is that it needs no knowledge of the error statistics or
any input thresholds, but it has as disadvantage that the number of outliers cannot be
greater than 50%, otherwise the median itself will be and outlier. We will not discuss
this method any further as it is treated in the Master's thesis of Gabriels [37] to a much
greater extent.

5.6.2 A simple RANSAC illustration

To illustrate the theoretical approach that was given in the previous section, we will apply
RANSAC to �nd the best approximation of a line through a set of points. The collection
of points is given in �gure 5.7, where black dots represent inliers and the hollow dots are
the outliers. Now, choosing a minimal random sample (only 2 data points needed), you
can immediately see that drawing a line through (a, b) will get much more support than
drawing a line through (c, d). So the latter will never be chosen as the optimal case.

Once two points have been chosen and a line is drawn, for instance (a, f) as in �gure
5.8a, we check how many other points �t this model, or in other words, how many points
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Figure 5.7: the 2D RANSAC example

lie within a distance threshold from this line. In this case, four other points can be de�ned
as inliers. The next step is now to re�ne our model using all the inliers, which leads to the
line in �gure 5.8b. Depending on how big the estimated error measurement is compared
to our previous best line, we will keep this line or discard it. These steps will be reiterated
for a prede�ned number of times to produce the optimal line or the line with the most
inliers or points within the threshold distance.

Figure 5.8: The initial sample (a) and the re�ned sample set (b)

5.6.3 Computing an optimal F-matrix with RANSAC

As we have mentioned earlier, using RANSAC to calculate a fundamental matrix is nec-
essary because we cannot suppose that no mistake was made during point matching.
Certain pairs of corresponding points are falsely linked and are therefore considered as
outliers of our model. RANSAC �ts neatly in the entire approach of the fundamental
matrix as you can see in �gure 5.9. The algorithm to compute the F -matrix takes two
images and the accompanying set of corresponding image points as input, and outputs
the fundamental matrix. The distance measure used in �gure 5.9, calculates how closely
a matched pair of points satis�es the epipolar geometry, given a current estimate of F .
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Remember that, in section 5.3 we derived

x′Ti Fxi = 0 (5.18)

so it can be easily measured how closely the estimated F -matrix �ts this relationship.
When the error in the result is too big, and thereby exceeding a prede�ned threshold, the
pair of corresponding points is considered an outlier, otherwise an inlier. The other steps
in the �owchart should be clear, considering the previous sections that we have discussed.

Figure 5.9: The Ransac �owchart
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5.7 Extraction of the camera parameters

The calculation of the camera matrices has to be performed in two steps, in cooperation
with the fundamental matrix we computed in the previous section. First we calculate the
intrinsic camera matrix K and then, using K and the fundamental matrix, we can extract
the extrinsic camera matrix.

5.7.1 The intrinsic matrix

The matrix K contains the intrinsic parameters, such as the focal length, the position of
the principal point and others (see chapter 3).

K =

f px

f py

1

 (5.19)

For the computation of this matrix out of the fundamental matrix and a given pair of
images, we have to make a couple of assumptions, otherwise it would not be possible [38]:

1. The camera plane has to be rectangular, which is the case in most modern cameras.

2. The principal point has to lie at the center of the camera plane. So both px and
py lie at the half of the number of pixels that make up the camera plane in the
principal directions.

Thanks to these assumptions, the problem of estimating the intrinsic parameters is now
reduced to �nding the focal length f . In [39], a formula for f is given

f =

√
−p
′T [e′]xIFppTF Tp′

p′T [e′]xIFIF Tp′
(5.20)

where F is the fundamental matrix, I is the identical matrix, p and p′ are the principal
points in both images, constructed like this

I =

1
1

1

 p =

px

py

1

 p′ =

p′xp′y
1

 (5.21)

and with the epipole e′ as [e1 e2 e3]
T that can be written as

[e′]x =

 0 −e′3 e′2
e′3 0 −e′1
−e′2 e′1 0

 (5.22)

The epipoles e and e′ can be found with the help of the fundamental matrix. Since e
is on the epipolare line for which l′ = Fq for every point q in an image, we can state
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that Fe = 0. So e can now be computed by applying singular value decomposition on the
fundamental matrix. When F = UDV T is calculated, e is the column of V that represents
the smallest singular value decomposition. The computation of e′ is analogue to this one,
only now we calculate the SVD of the matrix F T .

Thus, we have found a way to compute the focal length f of the intrinsic matrix K
and as a consequence, we know all intrinsic camera parameters. The computation of the
focal length of the second camera is performed with almost the same formula, but the
principal points and epipoles in the formula that used to refer to one camera, now refer
to the other and vice versa.

5.7.2 The extrinsic matrix

Given the fundamental matrix F and the intrinsic matrix K, it is now possible to compute
the extrinsic camera parameters. As you may or may not remember, these parameters
de�ne the rotation and translation of the cameras in reference to the world coordinate
frame. Quite obviously, they exist of a 3 × 3 rotation matrix R and a 3 × 1 translation
vector t.

To calculate the extrinsic parameters, we need the essential matrix E, which is in
fact a specialized version of the fundamental matrix. But, opposite to the fundamental
matrix, it only includes information about the rotation and the translation of the image
planes, so it is not in�uenced by the intrinsic matrix. If the intrinsic matrix K is known,
and let q be an image point, then we can obtain the point q̂ = K−1q. We can construct
that same point q̂ like this: q̂ = [R | t]Q and we call this a point expressed in normalized
coordinates. Using normalized coordinates we can state, just like for the fundamental
matrix (equation (5.8)), for normalized corresponding image points (q̂i, q̂′i)

q̂′
T

i Eq̂i = 0 (5.23)

proving that the essential matrix is in fact very related to the fundamental matrix, but
it does not take the camera properties into account. Computing the essential matrix can
be done, using the fundamental matrix and the intrinsic matrix that we have calculated
in the previous sections. The relationship between these three goes like this

E = K ′TFK (5.24)

Once we have the essential matrix, the extrinsic parameters can be extracted. We can
choose to have one of the camera reference frames coincide with the world reference, so
the normalized perspective projection matrices become

P = [I | 0] (5.25)

and
P ′ = [R | t] (5.26)

Using the singular value decomposition of the essential matrix, we can compute the
projection matrix P ′. When the SVD of E equals
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E = U

1
1

0

V T (5.27)

there are four possible solutions for P ′. For the rotation matrix, two solutions are available

1. R = UWV T

2. R = UW TV T

and there are two options for the translation matrix as well

1. t = u3

2. t = −u3

with u3 as the last column of the matrix U and

W =

0 −1 0
1 0 0
0 0 1

 (5.28)

That leaves us with four possible combinations for P ′ = [R | t], namely

1. P ′ = [UWV T | + u3]

2. P ′ = [UWV T | − u3]

3. P ′ = [UW TV T | − u3]

4. P ′ = [UW TV T | − u3]

As these four propositions are the algebraic representation of four di�erent geometric
camera setups, we have to determine the one that re�ects reality. You can see in �gure
5.10 that there is only one case where the object is in front of both cameras, thus this
is the correct case and the rotation and translation parameters that are linked with this
situation are the ones we are looking for. You can �nd the right geometric situation by
selecting the case for which the reconstructed 3D point Q has a positive depth for both
cameras. Reconstructing point Q is no longer an obstacle since we have obtained the
intrinsic and extrinsic parameters and image points are related to their corresponding
world points through q = K[R | t]Q.

Even though it required some serious wanderings to achieve our goal, we have ob-
tained a method to compute the extrinsic and intrinsic camera parameters starting from
a pair of images. So thanks to the epipolar geometry, feature point correspondences, the
fundamental matrix, the RANSAC optimization and the essential matrix, we can call our
pair of cameras `calibrated'.
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Figure 5.10: The four possible camera orientations for calibrated reconstruction from E





Chapter 6

Distortion correction

Distortion of images occurs through the use of real lenses instead of the ideal situation
we are used to work with. They cause radial and tangential distortions, that have to be
�ltered out, because if the images are not a good representation of reality, further image
processing becomes rather di�cult. Solving this problem goes over two di�erent paths,
either the straightforward way or the reverse approach. Our job is to choose the option
that is best suited for a GPU implementation. The GPU pipeline has a di�erent approach
on working with input images, so we have to adapt our algorithms accordingly. On this
lower level of programming, some pitfalls like erroneous texture sampling need to be
avoided. Without the use of any �ltering technique like bilinear interpolation, the images
will not return the demanded quality expected from a distortion correction algorithm.

6.1 Lens e�ects

Figure 6.1: The pinhole camera model

Throughout the previous sections we have always assumed that the camera model we use,
is an ideal representation of the image capturing process. The pinhole model is a linear
model and therefore it can only model linear e�ects, so it assumes that the transformation
from world coordinates to image coordinates is perfectly linear. Considering the geometric
situation we have used in section 3.1.1 (repeated in �gure 6.1), this model expects the
world point, the image point and the camera center to be collinear and it also expects that

71
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lines in world coordinates remain lines in the image coordinate system. A real camera
di�ers from the pinhole model in several ways.

A real camera does not use a simple hole as the point of convergence of incoming light
rays, instead it uses real lenses. Due to various constraints in the lens manufacturing
process, we experience non-linear deformations or distortions that make the pinhole model
inaccurate during image grabbing with real cameras (�gure 6.2).

Figure 6.2: Deformation of the incoming light rays through real lenses

Among these lens e�ects are tangential distortions and radial distortions, both part
of the Brown-Conrady Model [40], but the most important and well-known non-linear
distortion is radial distortion. It is called radial because it is radially symmetric and
this lens e�ect causes straight lines in the real world to be depicted as curves after the
image transformation. In general, radial distortion can be de�ned as an alteration in
magni�cation from the center of distortion to any point in the image, measured in radial
direction from that center. Usually, there is no tangential distortion present, thus the
center of distortion is located at the image center, where, most of the time, the principal
point lies as well. The magnitude of distortion is proportioned to the distance from the
image center. That is exactly why otherwise straight edges are curved the most near the
edge of the image, as you can see in �gure 6.3.

Figure 6.3: An obvious example of radial distortion

Depending on the kind of magni�cation we are experiencing, there are two categories
of radial distortion [41]. If your view on the world is enlarged near the center of the image,
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we call it barrel distortion. If, on the other hand, the image has shrunk near the image
center, we speak of a lens e�ect called pincushion distortion. As pincushion distortion is
very rare for our type of cameras, we will be handling barrel distortion. Both cases and
the corrected image are illustrated in �gure 6.4. We do not like a wrong representation
of reality and neither do the DIBR algorithms since they will not produce correct output
images that relate to the real world, if their input image do not give a true representation
of reality. That is why these lens e�ects, that are inavoidable, have to be �ltered and
corrected before any stereo matching image processing is possible.

Figure 6.4: Barrel and pincushion distortion

To solve this problem, we will correct the captured images to make it seem, for other
units that take the images as their input, as if the images were taken with a linear device.
The result we are aiming for has already been illustrated in �gure 6.4.

6.2 Distortion correction

Before we think about correcting the distortion e�ects, we �rst have to consider when
and where in the imaging process we have to correct them. Since the e�ect takes place
in the lens, mathematically we should perform distortion correction just after the initial
projection from world coordinates to image coordinates. So the in�uence of the intrinsic
camera parameters should not be taken into account. From equation (3.9) and (3.10), we
can write for a 3D space point Q, that it is related to its corresponding (non-distorted)
image point qu as

qu =

xu

yu

1

 = [R | t]Q (6.1)

where xu and yu are the notation of the ideal,undistorted image coordinates without the
in�uence of the intrinsic K-matrix. The actual projected image coordinates are related
to the ideal image coordinates by a radial deformation, so the radial distortion can be
modelled as [

xd

yd

]
= L(r)

[
xu

yu

]
(6.2)
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In this equation, is r the radial distance, measured out of r2 = x2
u + y2

u from the center
of radial distortion. L(r) is a function that models the radial distortion, and, as this
e�ect is non-linear, it is typically modeled using a Taylor expansion. It can be shown that
only the even terms play a role of importance in this expansion [33], so the distortion
approximation becomes

L(r) = 1 + κ1r
2 + κ2r

4 + κ3r
6 + . . . (6.3)

It is obvious that only the low-order terms will make a di�erence in the distortion model,
so that is why most of the time only κ1, κ2, κ3 are calculated. These three κ's are called
the distortion parameters and are computed at the time of camera calibration. They are
essential input parameters for distortion correction, but they are also themselves output
parameters from a previous preprocessing step. Finally, radial distortion can be modeled
as the relation between the ideal image points and the actual image points

qd =

[
xd

yd

]
=

[
(1 + κ1r

2 + κ2r
4 + κ3r

6 + . . .)xu

(1 + κ1r
2 + κ2r

4 + κ3r
6 + . . .)yu

]
(6.4)

But this is not yet the equation that will correct the images, because this equation only
models what the distorted pixel coodinates will be, when the undistorted coordinates are
given. To calculate the distortion correction [42], we use equation (6.5)

xu = xc + L(r)(xd − xc)

yu = yc + L(r)(yd − yc) (6.5)

and here are (xd, yd) the measured/actual coordinates, (xu, yu) the corrected/ideal image
coordinates and (xc, yc) the center of radial distortion. Now we have an equation that
allows us to calculate the corrected coordinates from a given distorted image, or in other
words, we can calculate where every pixel of the distorted image should be positioned in
the corrected image, in order to remove the non-linear radial distortion.

6.3 GPU implementation

There are two ways to construct the undistorted, corrected image and which one you
choose, should depend on the kind of computational resources you have at your disposal.
First, we can determine the pixel locations in the undistorted image using equation (6.5).
This means that we construct a new image from the ground up, where the pixels are
mapped from the distorted image on the right locations in the undistorted image according
to equation (6.5), as you can see in �gure 6.5. Or, we can use the reverse approach, where
the pixels' color in the new image is de�ned through the transformation of equation (6.4),
that de�nes the corresponding distorted pixel location and thus the right color. The
general concept is to apply image distortion to a perfect image, just like a camera lens
would, to �nd out which corrected pixel maps to which distorted pixel and vice versa.

The reverse approach, is extremely well-suited for implementation on the GPU, as we
will explain on the basis of �gure 6.6. To invoke a program on the graphics card, we
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Figure 6.5: Mapping the distorted image pixels onto the corrected pixel locations

always have to send at least a geometrical entity (triangle, quadrilateral) to the start of
the pipeline, the vertex processor. Most of the time we use a quadriliteral with the same
dimensions as the image we want to process. The image we are going to process, in this
case the distorted image, is loaded in a texture, so it sits in GPU memory and can easily
be accessed from the programmable shaders.

Once the quad has passed the vertex shader and the rasterizer has interpolated the
vertex coordinates to create fragments, we have a quad as input for the fragment shader
that has the same dimensions and the same amount of pixels as the texture image, so
we can speak of a one-to-one texel-to-fragment mapping (texel = texture pixel). These
fragments have the coordinates of pixels in an ideal, undistorted image, so we will use
a texture access to map the distorted image pixels onto the corrected fragments. This
operation is performed using equation (6.4): we calculate the texture coordinates of the
distorted image we want to sample, out of the input coordinates that accompany the
fragments created in the rasterizer. As you can see in listing 6.1, once the right texture
pixel is found, we apply this color to the fragment in the corrected image, thus creating
an undistorted image as output of our processing pipeline.

Listing 6.1: The fragment program the computes distortion correction

PS_OUTPUT_STD ps_d i s to r t i on (VS_OUTPUT_STD vertexOutput , uniform f l o a t k1 ,
uniform f l o a t k2 ,
uniform f l o a t k3 ,
uniform f l o a t k4 ,
)

{
PS_OUTPUT_STD pixelOutput ;
f l o a t 3 m_undist , m_dist ;

r_square = pow(m_undist ,2)+ pow(m_undist , 2 ) ;
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Figure 6.6: Using the reverse approach in the GPU pipeline

m_distort . x = (1 + k1∗ r_square + k2 ∗(pow( r_square , 2 ) )
+ k3 ∗(pow( r_square , 3 ) ) )∗m_undist . x ;

m_distort . y = (1 + k1∗ r_square + k2 ∗(pow( r_square , 2 ) )
+ k3 ∗(pow( r_square , 3 ) ) )∗m_undist . y ;

m_distort . z = m_undist . z ;

// perform texture sampling at c a l c u l a t ed l o c a t i o n s
f l o a t 4 sampledTexel = tex2D ( inputSampler , f l o a t 2 ( m_distort . x , m_distort . y ) ) ;

// c o l o r the fragment with the c a l c u l a t ed d i s t o r t e d p ixe l ' s c o l o r
pixelOutput . computedValue . rgb = sampledTexel . rgb ;

r e turn pixelOutput ;
}

This is only the general approach that we have used in the graphics pipeline, but in
reality it takes a series of steps to compute the right coordinates, so you will see more
calculations in the actual shader. We summarize the necessary steps for an ideal image
pixel m, related to its 3D point M through m = K[R | t]M :

1. Calculate the undistorted pixel mu = K−1m to eliminate the in�uence of the intrin-
sic matrix K;
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2. Compute the radial distance from the center of image distortion r2 = m2
ux +m2

uy;

3. Determine the coordinates of the distorted pixel md with Taylor expansion of equa-
tion (6.4) and the given κ1, κ2, κ3;

4. Compute the texture coordinates of the distorted image mt = Kmd. Multiplication
with K is necessary because the distorted image is obtained with the in�uence of
the intrisic camera parameters;

5. determine the right pixel to sample in the texture using bilinear interpolation;

6. Sample the texture at the calculated location and apply the color of that pixel to
the fragment m, which we started the calulations with;

Now there is one step in particular that we have not mentioned so far, namely bilinear
interpolation. While the distortion correction calculates the location of the pixel in the
distorted image that needs to be displayed, it does not necessarily mean that this will result
in perfect integer coordinates [43]. As a consequence, the actual location lies `between'
the pixels in the original image. The principle of bilinear interpolation is there to solve
that problem.

Figure 6.7: Bilinear interpolation neighborhood

The solution to our problem is stated in �gure 6.7. Bilinear interpolation is used
instead of simply truncating results that have a fractional component, because truncation,
or alternatively rounding, causes errors in pixel location. These errors in turn, cause the
distortion correction to produce shattered lines with a sawtooth pro�le, as you will see in
our experimental results. This algorithm obtains the color of the calculated location by
taking a weighted sum of the pixel values of the four closest neighbors. It computes the
pixel value at the location Q in the �gure as follows

Qx,y = mM + nN + oO + pP (6.6)

where
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m = (1− x)(1− y) n = (1− y)x

o = (1− x)y p = xy

Implementing this on the GPU is standard, because it has been foreseen as one of the
environment settings in shader programming that you can choose the kind of interpola-
tion you want when calculated texture coordinates do not result in integer values. This
principle is called texture �ltering. The possible options and an example of the environ-
ment shader settings are listed in 6.2. LINEAR points to bilinear interpolation, and for
the other options, that may or may not be hardware supported, we refer to the literature
[44].

Listing 6.2: The fragment program the computes distortion correction

−The po s s i b l e opt ions :

typede f enum D3DTEXTUREFILTERTYPE
{

D3DTEXF_NONE = 0 ,
D3DTEXF_POINT = 1 ,
D3DTEXF_LINEAR = 2 ,
D3DTEXF_ANISOTROPIC = 3 ,
D3DTEXF_PYRAMIDALQUAD = 6 ,
D3DTEXF_GAUSSIANQUAD = 7 ,
D3DTEXF_FORCE_DWORD = 0 x 7 f f f f f f f ,

} D3DTEXTUREFILTERTYPE, ∗LPD3DTEXTUREFILTERTYPE;

−Used in a p i p e l i n e environment setup :

t ex ture inputImage ;
sampler inputSampler = sampler_state
{

Texture = <inputImage >;
MipFi l te r = NONE;
MinFi l te r = LINEAR;
MagFilter = LINEAR;
AddressU = BORDER;
AddressV = BORDER;
AddressW = BORDER;

} ;

6.4 Experimental results

The datasets used to test the functionality of our distortion correction algorithm are
obtained from the �Expertisecentrum voor Digitale Media� (EDM) in Hasselt. The data
consist of a couple of images accompanied by the proper distortion parameters for each
camera, all capturing more or less the same scene. Even though the distortion parameters
were obtained from a self-calibrated camera setup and not from a recognized website or
database to assure data accuracy, they proved to be accurate enough to demonstrate the
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workings of distortion correction. Even though data was not always as accurate as it
should be, there was enough information at hand to test the basic functionalities.

To demonstrate that working with the lower-order terms of the Taylor expansion is
good enough for accurate results, �gure 6.8 is used. In the original picture (on the left),
the iron beam behind the green curtain is bent too much to represent the actual situation.
Distortion correction was performed with only one of the κ parameters, κ1, wich has the
greatest in�uence of all coe�cients.

Figure 6.8: Distortion using only the �rst distortion parameter

Clearly, for this image, it su�ces to use just one parameter, to convert the image
back to a situation that approaches reality. Using more parameters will increase accuracy
mostly in the corners, but will never have the same inpact as κ1. They are less important
in the Taylor expansion, so only small, but often essential adjustments can be made with
the less important terms.

Our second test was used to test the in�uence of the bilinear interpolation when
sampling textures. In the left image of �gure 6.9, no interpolation method whatsoever
was used, resulting in a sawtooth pattern near the edges of the iron poles. In contrary,
take a look at the right image, where no crude imperfections are visible because for
constructing this image, the bilinear texture interpolation method was used.

So, in order to create smooth edges and avoid image imperfections that are too easy
noticable for the human eye, bilinear interpolation is needed.

Finally, in �gure 6.10, the distortion correction is executed to its full extent. The �rst
image is the original image, the second is the corrected image with κ1 only, the third one
uses both κ's, κ1 and κ2, given as input data. And in the fourth image we saved the image
in a larger texture, to be able to see the correction transformation take place. The image
now looks as if it was shot with pincushion distortion, but since it was actually captured
with barrel distortion, applying pincushion distortion to the image reverses the process
and gives an undistorted image as output. So this test harnesses all the properties of our
distortion correction algorithm.
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Figure 6.9: Demonstration of the usefulness of bilinear interpolation

Figure 6.10: Bilinear interpolation neighborhood



Chapter 7

Recti�cation

The process of recti�cation is essential for subsequent stages as it assures that all cor-
responding object features wind up on the same horizontal scan line, thus reducing the
stereo matching cost and the algorithmic complexity. Only out of a recti�ed image pair, a
stereo matching algorithm is able to construct a depth map, to calculate the requested in-
termediate viewpoints. Recti�cation is based on epipolar geometry and camera matrices,
so there is no recti�cation without camera calibration. Through computation of a new
pair of camera matrices, any uncalibrated camera pair can be transformed to a calibrated
one. Since all this eventually comes down to a per-pixel matrix transformation, it is eas-
ily implemented using a GPU shader. To prove that recti�cation was successful, epipolar
reconstruction of recti�ed images of specialized datasets can show us that epipoles will
now reside at in�nity, making the transformation a success.

7.1 Stereo matching fundamentals

7.1.1 Usefulness and approach

In a couple of words, stereo matching makes it possible to aqcuire depth information out
of two images. These images are either viewing the same scene under a slightly di�erent
angle or they have at least a lot of similarities. This concept is based on the workings of the
human eye, where depth perception is possible because each eye captures the surrounding
reality from a slightly di�erent viewpoint. Just like we have a left and a right eye, we
have a left and a right picture, as you can see in �gure 7.1. Information out of both views
is used to construct a depth image, necessary to compute intermediate images in a later
stage, called image warping.

Producing such a depth image, is the most time-consuming part in a stereo matching
application. Basically, stereo matching will approach this problem by taking one pixel
out of a reference image (mostly the left image), and performing a two-dimensional search
in the other image (the right image) for the corresponding pixel. This search is executed
using a technique called intensity-based matching. Again, as with feature correspondence,
a window overlay is used on the reference pixel and an intensity function is calculated.
The same action is performed on the pixel under test in the right image and both results
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Figure 7.1: Stereo matching �owchart

are compared to produce a matching cost. The pixel in the right image that results in
the lowest matching cost is de�ned as a match.

But, since such a 2D search would require a lot of computational power and could
seriously downgrade the processing time of our application, stereo matching applications
assume that images are captured in a parallel setup. That means both optical axes of the
left and right camera are parallel aligned, so the image planes are coplanar. This limits
the search range to a single horizontal line (scan line) on which the intensity matching has
to be performed. The stride on this line, starting from the coordinates of the reference
pixel, to get to the pixel with the lowest matching cost, is called the disparity and is
expressed in pixel units. For instance, if we �nd the minimal matching cost in the right
image, and it corresponds to a pixel that is shifted �ve pixels to the left, the disparity is
5. Calculating the minimal matching cost for every pixel in the reference image, returns
a disparity map, which you can see in �gure 7.2. The larger the disparity, the whiter the
pixel values, and the pixel color gradually darkens as the disparity decreases.

Figure 7.2: A disparity map of the Teddy scene

A disparity map is also called a depth map. The reason is simple and demonstrated
in �gure 7.3. Obviously, the closer objects are to the camera, the larger their shift, when
comparing their position in the left and the right image. The further away from the camera
they are, the smaller their movements. This principle is called the motion parallax.
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Figure 7.3: The closer to the camera, the greater the disparity

So larger depth gives a lower disparity and less depth results in high diparity value.
Since a disparity map proves to be enough to describe the depth information encapsulated
in a scene, there is really no need to transform this disparity image to an actual depth
map.

Image interpolation calculations are now done with information embedded in the depth
map. Suppose we want to construct an image that is exactly halfway between the left
and the right image (�gure 7.4). That means that certain objects, that were visible in
the left image, will now get occluded because others slide in front of it. How big this shift
will be and how much objects will get occluded, is extracted from the depth map. Since
it gives us the disparity values, transferring from the left to the right image, the transfer
from the left to halfway will only yield half the disparity a full transfer would. Dividing
the entire depth map in half gives every object the right amount of shift to construct a
intermediate image that re�ects the real world view from that viewpoint.

Figure 7.4: Shifting reveals unvisible pixels and occludes others

This is a simpli�ed disposition of what stereo matching is, but it provides su�cient
information to comprehend the general concepts and understand why recti�cation of in-
put images is required. For an into depth essay of stereo matching, image warping and
occlusion handling, Rogmans [3, 28] is advised.
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7.1.2 Image recti�cation

Thanks to image recti�cation, stereo matching can be limited to a scan line instead of an
entire image search. But this is a consequence of the rectifying transformation, it does
not de�ne what it is. In fact, recti�cation is also referred to as epipolar recti�cation since
it causes a speci�c change in the epipolar geometry of a camera setup. Or, more speci�c,
it de�nes a transformation of each image plane such that pairs of corresponding epipolar
lines become collinear and parallel to one of the image axes [45]. The situation before
recti�cation is shown in �gure 7.5.

Figure 7.5: Normal epipolar geometry

This is the same epipolar geometry from section 5.2. Given a point in the left image,
to �nd the corresponding point in the right image, we can enforce the epipolar constraint.
This determines that the corresponding image point is on the epipolar line in the right
image plane formed by the intersection of the image plane and the plane CQC ′. Figure
7.6 shows that, the more the image planes are aligned, the further away the epipoles lie.

Figure 7.6: Aligned image planes cause the epipoles to move towards in�nity.

That means, that if we consider the special case where the image planes are coplanar,
both epipoles will lie at in�nity, and the focal (image) planes are parallel to the baseline
as well. Now, since the epipoles are located at in�nity, the epipolar lines form a bundle
of parallel lines in the image planes that converge at in�nity (see �gure 7.7).
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Figure 7.7: parallel epipolar lines intersect at in�nity

In conclusion, using the epipolar constraint, we can limit the otherwise 2D search to
a one-dimensional search on an epipolar line to �nd the corresponding image point. In
the special case that both image planes are coplanar, the epipoles lie at in�nity and the
epipolar lines are now horizontal, so our search is limited to the same horizontal line as
in the reference image. The transformation that moves the epipoles towards a point at
in�nity is called recti�cation, and any pair of images can be transformed so the epipolar
lines become parallel and horizontal in each image.

7.2 The recti�cation process

7.2.1 Rectifying the camera matrices

For image recti�cation, we assume that camera calibration has already been performed,
so we are talking about a calibrated camera pair and the perspective projection matrices
Po1 and Po2 are known. The basis of image recti�cation is to de�ne two new PPMs Pn1

and Pn2 that are obtained by rotating the old ones around their optical centers. This
leads to parallel epipolar lines, but that does not yet mean that they are horizontal. For
epipolar lines to be horizontal as well, the baseline must be parallel to the new X-axis of
the cameras. The corresponding image points must have the same vertical coordinate as
well, so that is why the new cameras are required to have the same intrinsic matrix, to
make them use the same scales on their vertical axis. The new recti�ed images can be
seen as if they were captured with a new pair of cameras that di�er with the old cameras
by a rotation around their optical centers.

From section 3.1.3, we know that we can write the new PPMs as

Pn1 = A[R | −Rc1] (7.1)

Pn2 = A[R | −Rc2] (7.2)
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where c1, c2 are the old optical centers, as they are the same for the new PPM because no
translational movement is involved in image recti�cation. The intrinsic matrix A is equal
for both PPMs and can be chosen arbitrarily, so either Ao1 or Ao2. The rotation matrix
R , which gives the camera's orientation relative to the world frame, is the same for both
cameras as well, because now they are parallel aligned. The matrix R can be written as

R =

rT
1

rT
2

rT
3

 (7.3)

with r1, r2, r3 as its row vectors that de�ne the X, Y, Z axes of the cameras relative to the
world reference frame. Following the previous assumptions we have made, these axes are
determined as

1. The new X-axis is parallel to the baseline: r1 = c1−c2
‖c1−c2| .

2. The new Y -axis is orthogonal to the new X-axis and to k: r2 = k ∧ r1 where k is
an arbitrary unit vector, but is often chosen as the unit vector of the old Z-axis, so
Y has to be orthogonal to the new X and the old Z.

3. The new Z-axis is othogonal to XY : r3 = r1 ∧ r3.

Although this algorithm fails when it has to deal with a pure forward motion, it is
relatively simple and we can make good use of it because stereo correspondence will never
work on a pair of images that have undergone a pure forward motion anyway, because no
depth information can be extracted. For more general solutions of this problem, [34] is
suggested.

7.2.2 The rectifying transformation

Now that we know what the PPMs of the new, recti�ed camera pair look like, the last
step is �nding the transformation that transforms the old image planes to the new ones.
In fact, this means that we are not touching the cone of rays that intersects the image
planes, but we are simply rotating the image planes. Consider the left image, then we are
looking for a transformation T1 that maps P̃o1 onto P̃n1. Now, if we write the PPMs as

P̃o1 = [Lo1 | lo1] (7.4)

P̃o2 = [Lo2 | lo2] (7.5)

and for any 3D point Q̃ we can describe the relation to its image points q̃o1 and q̃n1 in the
old and new image planes respectively,

q̃o1 = P̃o1Q̃ (7.6)

q̃n1 = P̃n1Q̃ (7.7)
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The world coordinates of Q̃ can also be described in terms of the equations of the optical
rays (rays from Q̃ to c1)

Q̃ = c1 + λoL
−1
o1 q̃o1 (7.8)

Q̃ = c1 + λnL
−1
n1 q̃n1 (7.9)

and both λ's of the old and new projections are arbitrary scale factors. Out of the
equations (7.8) and (7.9) we can conclude

q̃n1 = λLn1L
−1
o1 q̃o1 (7.10)

This is the equation that describes the direct mapping from the old image plane to the
new one, so the sought transformation T1 = Ln1L

−1
o1 . For the right image, the derivation

of T2, and thus the rectifying transformation, is analog. The only matter that still re-
quires a little concern, is that the produced results will not be integer values, so bilinear
interpolation will be necessary again. But we have already discussed in section 6.3 that
this feature is part of the standard functionality of our graphics card, so the problem is
solved relatively easy.

7.3 GPU implementation

As we have tried throughout this entire thesis to map everything to the graphics card and
perform the least calculations possible on the CPU, this approach is used as well when
implementing the recti�cation. Considering what is explained in the previous paragraph,
we can subdivide the recti�cation process in two steps for a �xed camera setup:

1. First we have to recalculate the new perspective projection matrices for the recti�ed
camera pair. Combining the new and old PPMs as in equation (7.10), we can
construct the mapping transformation T1 from the old left to new left image, and
calculate T2 for the mapping from the old right to the new right image.

2. Once we have the transformation matrices, and if we assume that our stereo setup
is �xed, no additional calculations are needed, because the matrices T1, T2 work
for all images captured by either the left or the right camera. So we program the
per-pixel transformations in the graphics pipeline to produce the recti�ed versions
of the input images.

Because step one only requires a one-time calculation, there is no need to program
this on the GPU, since most of our computation time will be lost on overhead to set up
the calculations. Most image processing caculations involve matrix multiplications and
the graphics pipeline has hardware optimized for matrix calulations, so that is why the
DirectX 9 API is equipped with a lot of matrix functions that lower the complexity of
matrix computations almost to the level of regular algebra. Examples of these very use-
ful functions are D3DXMatrixIdentity(), D3DXMatrixMultiply(), D3DXMatrixInverse(),
. . . [44] that make the use of library calls a simple but very pro�table solution.
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Once we have the transformation matrices, implementing the transformation is not a
tricky business. It is an operation that has to be executed on every pixel to transform
the entire image plane from the old to the new, recti�ed orientation. Thus, we use a
pixel shader to compute the transformation and output the recti�ed image. We keep the
transformation matrices in memory, then, pairs of images with the same timeframes are
sent in, matrix T1 is applied to the left image, matrix T2 is applied to the right image
and a pair of recti�ed images is outputted, ready for use as input for a stereo matching
algorithm.

7.4 Experimental results

7.4.1 Middlebury datasets

Datasets used to evaluate the image recti�cation, are datasets presented by the College
of Middlebury [46]. The Dinoset and the Templeset, both multiview examples are ideal
for testing our recti�cation process, because the baseline can be varied according to the
developer's desire and the cameras are de�nitely not parallel aligned. These sets are all
captured with one camera that is rotated around the object of interest as you can see
in �gure 7.8. The positions that are included in the �nal datasets are highlighted in the
picture as the red and blue cameras.

Figure 7.8: Captured camera positions in the Dino and Temple sets

Most important about these datasets is the accompanying calibration data. The cali-
bration data is guaranteed to be very accurate, so we do not have to worry about wrong
input data. When we would use some of our own calibration data, we risk starting o�
on the wrong foot because our calibration calculations may contain errors or still be
inaccurate. Using these datasets as input, we can create an objective evaluation and
measurement of the accuracy of our image recti�cation algorithm.
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7.4.2 Results and validation

We have two validation methods to check the accuracy of the produced results after
recti�cation. On one hand, we can manually check the translation of corresponding image
points between the two output images. This is not a waterproof method, since we are
visually matching image points instead of reconstructing the epipolar geometry. But in
some cases, as you will see in the results, the objects in the images o�er not enough feature
points to allow proper calulations. So that is why we check the results by hand as well,
as a �rst indication that the images might be recti�ed. On the other hand, if we can �nd
enough corresponding points, using Matlab code from the work of Gabriels [37], we can
reconstruct the epipolar geometry and have the application draw the epipolar lines on the
output images. If the epipolar lines turn out to be parallel and horizontal, recti�cation
was successful.

In the results that are presented, we have the dataset with a picture of Sammy Rog-
mans that was obtained at the EDM, and thus the calibration parameters to these images
were calculated there as well. Although there was the possibility that the calibration data
would not be accurate enough to perform proper recti�cation, �gure 7.9 proves us wrong.
Even though no epipolar reconstruction was possible due to a lack of feature points,
caused by the homogenous clothing and background, you can still see that recti�cation
was successful according to the manual check. Further we also have the Dinoset from
Middlebury, where no reconstruction was possible either because of untextured surface,
so in �gure 7.10, again a manual check was our only way of validating the result. The
last dataset is give in �gure 7.11 and is the Templeset from Middlebury, which gives the
best results, because epipolar reconstruction is possible on these images and the epipolar
lines are all parallel and horizontal. So proof is given in several ways that our recti�cation
transformation works like it should.
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Figure 7.9: Using a manual check, the Sammy dataset looks to be properly recti�ed
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Figure 7.10: The shift of feature points is only parallel and horizontal in the recti�ed pair
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Figure 7.11: Epipolar reconstruction o�ers a certi�ed proof of proper recti�cation



Chapter 8

Conclusions and Future work

8.1 Conclusions

A revolutionary new technique, called Free Viewpoint Video, allows a spectator to freely
choose his custom viewpoint. That viewpoint is then synthesized with the information
gathered from a couple of �xed, physical cameras. To allow this concept to apply on real
live video feeds as well, the captured images have to be adequately preprocessed because
the image rendering algorithms that calculate the requested viewpoints, take ideal images
as input, without considering possible deformations in real images. This mainly involves
correcting radial distortion, caused by the use of real camera lenses, and rectifying the
input images in order to align the object features on the same scan line. Then a stereo
matching application can use the preprocessed images as input and compute the requested
intermediate viewpoint out of a practical stereo camera setup. To keep the application
within real-time limits, we implement this vast amount of computations on the GPU.

Performing recti�cation or distortion correction is only possible if the intrinsic and ex-
trinsic camera parameters of the stereo camera setup are known. That is why the cameras
are subjected to a method of self-calibration using a recognizable pattern (checkerboard
or LED-light). Such self-calibration methods relate images with the special pattern, so no
really intensive feature matching is required as long as there are enough images provided.
We developed a Harris corner detector on a PC's graphics hardware that can be used to
detect points of interest on checkerboards or detecting LEDs in dark images. Out of these
point correspondences, the mapping between the di�erent image planes can be derivated.
And with the mapping between corresponding image planes, the properties of the cameras
and their relative position can be determined. Once the intrinsic and extrinsic camera
parameters are known, we have a calibrated camera pair and we can continue to the next
image processing step. Since we are developing a static camera setup application, there is
no real need for continuous recalibration, so the calibration can be executed o�ine once
for the entire setup. That is one of the reasons why we used a tool for the camera cal-
ibration, so we could devote our development time on the subsequent processing stages,
distortion correction and recti�cation.

Radial distortion is the most common form of distortion and is modeled by a Taylor
expansion chopped o� behind the low order terms. We approach this problem from the

93



94 Nederlandse samenvatting

reverse way, when implementing it on the GPU. Instead of calculating a mapping from
the given distorted image to a new corrected image, we do it the other way around. We
send in a quadrilateral at the start of the graphics pipeline and, after rasterization, the
mapping from the corrected image to the distorted image that is loaded in a texture, is
calculated. This is of course because a GPU always has to sample a texture to give colors
to the fragments in the pipe, and because the mapping from ideal coordinates to distorted
coordinates is straightforward, we make good use of this property.

When radial distortion is removed, the corresponding images pairs need to be recti�ed,
so they look like a couple of parallel aligned cameras. Together with the camera calibration
parameters, a new perspective projection matrix can be determined for every camera.
Transforming the old PPMs into the new PPMs causes the epipolar lines to converge at
in�nity. That means that the epipoles are at in�nity and the epipolar lines are parallel
aligned, what was one of the �rst demands for further image processing. Implementing
this on the GPU can be condensed in a pixel-per-pixel matrix multiplication, making it
the suited candidate for a simple fragment shader.

Thanks to the highly parallel nature of the GPU, these two image preprocessing steps,
distortion correction and recti�cation, do not downgrade the stereo matching application
a lot. The image distortion correction and recti�cation achieves a frame rate of 3691 fps,
for 450×375 image resolutions, so the entire applicaton only su�ers from a minor setback
of 1.32%. The highest achievable frame rate for the entire image processing application
results in 43.9 fps.

8.2 Future work

Our work is far from done here, as there are several optimizations and possibilities that
need our attention because of their great potential. An entire self-calibration framework
can be developed, so we do not have to rely on someone else's tool. This will also give
the researchers a good experimental knowledge, so we can build our own calibration setup
as well. Working with the cameras themselves is actually also a possible thesis subject.
Every camera has a di�erent white balance, the cameras need to be synchronized over
di�erent IEEE 1394 buses, the correct Region of Interest (ROI) should be transmitted and
many more. Further, there is a spot to develop a very accurate, intrusive benchmarking
mechanism, to perform precise timings, based on the system clock of the GPU instead of
the CPU. The distortion and correction operations need to be optimized and combined
on a lower level, so the rest of the application su�ers as little as possible from the image
preprocessing. There are more options than those mentioned here and some of them
might take more time than just a couple of weeks, but that should not stop us, there are
de�nitely still a lot of challenges in this domain.
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