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Abstract

In neuroscience, a vast body of worked is aimed at crafting 

single  neuron  models,  that  reproduce  the  firing 

characteristics of neurons in vivo. Recently, there has been 

much  interest  in  understanding  the  behaviour  of  these 

single neurons over long times scales, from hours to days.

Experiments have shown that, on such time scales, nerve 

cells exhibit dynamics that are not captured in any neuron 

model  to  date.  In  particular,  the  neuronal  excitability 

exhibits scale-invariant statistics. In this work we propose a 

neuron model that exhibits this behaviour, by augmenting 

the canonical sodium channel scheme with a linear chain of 

degenerative,  inactive  states  and  by  assuming  that  the 

number of ion channels in the nerve membrane fluctuates 

about its equilibrium value in a random manner. We show 

that this model indeed reproduces the observed excitability 

characteristics in a robust way, agreeing qualitatively with 

the experimental results.





ACKNOWLEDGEMENTS iii

Acknowledgements

Numerous are the people without which this thesis work would not be what it is today.

First and foremost, I would like to thank Dr. Daniele Linaro, who was never short on in-

formation and was always keen to provide help and assistance with my abundant problems

with regards to computers, simulations and data processing. Thanks to his meticulous

proofreading, the quality of this text and my scientific English improved greatly. I would

also like to thank prof. Michele Giugliano, who was always keen to advance my knowl-

edge of neuroscience and who provided excellent guidance and many insightful discussions.

The other members of the laboratory of theoretical neurobiology and neuroengineering

also deserve my gratitude: Mike Wijnants, who provided abundant help when there were

computer-related problems, Joao Couto, who never hesitated to answer my questions, and

the others: Pascal Warnaar, Istvan Biro, Rocco Barone and Antonina Monaco, who pro-

vided a stimulating and exciting scientific environment to work in.

None of this work would have been possible without the continuous support of my

family. They supported me throughout my studies and always provided me with the

freedom to pursue my ideas and goals, no matter how crazy they may have seemed at

first. They provided exactly the stable environment one needs to fully develop oneself and

ultimately to succeed at his studies.

Furthermore I would like to thank prof. Jan Ryckebusch for his willingness to supervise

this thesis work and for never hesitating to answer my questions. Finally I would like to

thank my fellow physics students, with whom I passed five beautiful and interesting years.

Willem Wybo, June 2012.





CONTENTS v

Contents

Abstract i

Acknowledgements iii

Contents v

1 Introduction 1

2 Conductance based neuron models 4

2.1 Nerve cells and action potentials . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Neuronal morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Trans-membrane currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Reversal potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Conductances and gating functions . . . . . . . . . . . . . . . . . . 8

2.4 Charge-balance equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Hodgkin-Huxley model . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.2 Connor-Stevens model . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Phase space and spike failures . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Spike-failures and scale-invariant excitability 17

3.1 Experimental protocol and set-up . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Transient phases and intermittency . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Experimental probes . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Scale-invariant excitability . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Measures to reveal scale-invariance . . . . . . . . . . . . . . . . . . 22

4 Slow sodium inactivation and long effective time-scales 26

4.1 Results with classic models . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Modelling slow sodium inactivation . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Integro-differential representation . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Memory kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS vi

4.3.2 Effective power law . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Entry rate functions . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 Chain length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.3 Entry rate amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Stochastic neuron models and scale-invariant excitability 46

5.1 Noisy algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1 Microscopic MCMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.2 System-size expansion . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.3 Effective noise using the auto-correlation function . . . . . . . . . . 50

5.2 Insertion and removal of ion channels . . . . . . . . . . . . . . . . . . . . . 51

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.3.1 Probability to have a spike . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.2 Traditional channel noise . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.3 Removal and insertion without channel noise . . . . . . . . . . . . . 60

5.3.4 Removal and insertion with channel noise . . . . . . . . . . . . . . . 64

6 Conclusion 69

A System-size expansion 72

Bibliography 74



INTRODUCTION 1

Chapter 1

Introduction

In recent years, the field of computational neuroscience has grown tremendously through

advances in technology and computer power, drawing in scientists from fields as diverse as

physics, engineering and computer sciences [1]. The reasons for this influx are abundant:

a fresh and dynamical field, where mathematical insight is paired up with intuition, that

deals with topics such as information processing, learning and memory in networks of

neurons. Such networks occur in all animals, ranging from very simple - the nematode

worm Caenorhabditis Elegans has only 302 neurons [2], making it an ideal test subject -

to very complex - the human brain is estimated to contain around 1011 neurons [3]. The

ultimate goal, to understand how our brains learn, love, store memories, develop creative

ideas and become conscious, may be quite ambitious given the staggering numbers, but is

nevertheless enthralling and the road to its answer has been paved with interesting and

useful discoveries. No wonder then, that so many young researchers are fascinated by this

field and are drawn to it.

Thus the scene has been set, and herds of young scientists are ready and eager to

translate networks of neurons into bits and bytes, throw in connectivity and learning rules

and see which information they can code. Nevertheless, they need one more thing, as all

their efforts are bound to fail without it: accurate neuron models. Developing such single-

neuron models has been a vital part of neuroscience ever since Louis Lapicque proposed the

first integrate and fire model [4], and is also the subject of this thesis work. In single-neuron

modelling, the goal is often two-fold: at a fundamental level one wants to understand the

biophysical processes that govern and change the behaviour of neurons, from time-scales

of milliseconds up to a full lifetime - although even today this remains a mere dream, and,

at a more applied level, to develop simplified, effective models that contain only a few

variables that can account for the key properties of the nerve cell’s dynamics, so that they
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can be used efficiently in large-scale networks and so that one can determine which of the

many neuronal properties really matter for information processing.

In general, scientists try to conceive mathematical models that aim to explain a range as

wide as possible of experimentally observed phenomena, starting from principles that are as

simple as possible. However, a model, is only good as long as it describes experimentally

observed data, and that is precisely where a fundamental problem of neuroscience lies.

Neuron models are often simplified mathematical abstractions, whereas nerve cells are

tremendously complex objects, regulated and influenced by processes on time scales far

beyond what is experimentally observable. Recently however, the boundary of what is

possible has been pushed forward, as technologies have been developed that make it possible

to extend the duration of experiments that record the activity of single neurons from time-

scales of hours to time-scales of days. Such long-term recordings have been performed [6]

and the dynamics they revealed were very rich and complex, and not at all captured by

any previously developed neuron model. It is the subject of this thesis work to try and

capture at least a good part of these dynamics in a neuron model, in such a way that it is

possible to ask clear and well-defined biophysical questions about its causes.

To come to these questions, some fundamental concepts in neuronal modelling have to

be discussed. This is the subject of the second chapter, where we will explain how neurons

can be modelled by relatively simple models. We will define what we mean by neuronal

excitability, and discuss the causes of this excitability. We also motivate our choice of

models, which follows the framework introduced by Hodgkin and Huxley in their canonical

paper [5]. We choose this framework because it is relatively simple and allows us to ask

biophysically precise and well-defined questions about the causes of the complex dynamics

described in [6].

In the third chapter, we will review results from [6] that are relevant for this work.

We will give a brief introduction to the experimental set-up and protocol, and discuss the

relevance of this protocol. It turned out that some relatively advanced statistical measures

were needed to perform a full analysis of the data, so in this chapter we will also explain

these measures.

The goal of the fourth chapter is to come to a deterministic neuron model that explains

as many aspects of the dynamics reported in [6] as possible. We will start by showing that

canonical neuron models don’t describe these dynamics at all, which will motivate us to

propose a model that implements a slow sodium inactivation. We also analyse and test

this model thoroughly and compare the results against the experimental data.

Since neurons are inherently stochastic, and a great part of the observed dynamics re-

sults almost certainly from stochastic effects, we introduce the stochasticity of neurons in
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the fifth chapter. Such stochasticity can come in many forms. Traditionally, neurons are

modelled using Markov chains [7] and it is generally assumed that neuronal stochasticity

results from this Markov noise. Thus we discuss algorithms to model such noise and moti-

vate why we use them or why we don’t. Nevertheless, whether such Markov noise is really

present in neurons has been debated, and this noise may not contribute enough or may

not have the right properties to explain the observed stochastic dynamics. Therefore we

hypothesize that another form of noise may exist, with fundamentally different properties

than the Markov noise. We explain these properties, motivate why it might be necessary to

introduce such a form of noise and test this hypothesis thoroughly on different variations

of our model.
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Chapter 2

Conductance based neuron models

2.1 Nerve cells and action potentials

The interesting properties of neuronal systems arise through differences in ion concen-

trations between the inside and the outside of nerve cells. Most of the time, the ion

concentrations are distributed so that the membrane potential, defined as the difference

between the potential in the intracellular and the extracellular medium, is negative. For

example, in pyramidal neurons of the mammalian cortex, it fluctuates around −65 mV.

This is a dynamic equilibrium, kept in place by ion channels and ion pumps that selectively

let ions pass through the nerve membrane. Ion pumps generally keep the ion concentra-

tions steady, so that this equilibrium potential is maintained. If this was not the case,

intracellular and extracellular potentials would eventually level out. However, these ion

pumps do not contribute to the short time-scale properties of the neurons and hence they

are seldom considered in neuronal modelling. Usually it is assumed implicitly that they

keep the ion concentrations constant.

The ion channels are of far greater interest to the modeller. This is not at all obvious at

first: they open and close in a seemingly random manner and passively let ions flow through

when they are open, thus generating an ion flow that depends only on the concentration

and on the potential gradients. They are interesting because of two key features they

possess: first, they are very selective, which means that they allow only a single type of

ions to flow through and secondly, the rates at which they open and close depend in a

highly non-linear manner on the membrane potential.

These two key properties give rise to one of the fastest biological processes ever recorded,

the action potential or spike. This process occurs when the electrical inputs a neuron

receives increase its membrane potential to a sufficiently high value (generally −50 to −30
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mV). Through the changes in the opening and closing rates of the ion channels, induced

by their voltage dependence, a self-reinforcing process emerges that drives the membrane

potential to rise very rapidly to a positive value (10 to 60 mV) and then to drop equally

fast back to its resting potential.

Neurons use action potentials to communicate: hence, understanding the emergent

behaviour of neural networks is impossible without understanding how and when these

action potentials are generated. Because of this reason, a significant amount of research in

neuroscience is aimed at replicating the neuronal firing characteristics in computer models.

Such models come in a wide variety of shapes and forms, ranging from models that are

closely related to the actual biophysical picture, containing thousands of equations that

explicitly model chains of chemical reactions, to very simplified models that retain only one

or a few aspects of neuronal dynamics. To motivate our choice of models we first provide

a brief discussion of the morphology of neurons.

2.2 Neuronal morphology

Nerve cells come in a wide variety of shapes and forms, adapted to their specific task, and

while there are many variations and exceptions occur rather often, three main structures

can be identified in general: the dendrites, the soma and the axon. The dendrites branch

many times and form a very rich three-like structure that originates from the soma. This

structure allows the nerve cells to receive inputs from the axons of many other neurons

through synaptic connections, that can be as numerous as 100000 for some types of neurons,

such as cerebellar Purkinje cells. These inputs then propagate through the dendrites and

eventually arrive at the soma, the cell body, where they are processed and integrated. If

enough of these inputs arrive in a given time-interval, so that the membrane potential is

excited above the firing threshold, an action potential is likely to be produced. The axon

then serves to transmit these action potentials to those neurons that have dendrites with

synaptic connections to that axon. Numbers are staggering again, as on average there are

180 synaptic connections per mm to an axon and a single axon can reach lengths of 40

mm.

Action potentials as the ones we described, that are generated in the soma and prop-

agate away from it through the axon, are called orthodromic spikes. In some situations

however, particularly in experiments, action potentials are generated through some form

of stimulation in the axon, and then propagate towards the soma. Such spikes are called

antidromic action potentials.
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Axon terminal

Axon

Soma

Dendrite

Figure 2.1: The structure of a typical neuron.

In both cases, the spikes are generated in a localized region of the neuron, either in the

soma or in a specific part of the axon. Often, it is not unreasonable to assume that the

membrane potential in such a localized region is uniform, so that spatial fluctuations can

be discarded and that the potential can be described by a single variable V . Such models

are called single-compartment models and we shall use them throughout the rest of this

work, since this is a reasonable assumption in the experimental protocol we will discuss in

the next chapter.

2.3 Trans-membrane currents

Ions flowing through ion channels result in a net trans-membrane current: at the single

channel level, these currents are most often approximated by Ohm’s law, as linear functions

of the voltage. Non-linearities arise because the number of conducting channels changes

in a non-linear way as a function of the voltage. If V denotes the membrane potential,

the current Ii that arises through the flow of a type of ions through a specific type i of

channels becomes

Ii = gi(V )(V − Ei). (2.1)
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In this form the parameters Ei and gi have a clear physical interpretation. Ei denotes

the reversal potential for this type of ion channel: at this potential, inward and outward

ionic flows are exactly balanced, and the net current is zero. Above this potential the ionic

current is drawing the voltage down and below it the current is drawing the voltage up

(whether the current is then inward or outward depends on the sign of the ionic charge).

gi denotes the total conductance of the population of ion channels being considered. It is

proportional to the mean conductance of a single channel and to the amount of channels

that are open and thus conducting. The single channel conductance is usually assumed to

be fixed, whereas the number of open channels depends on the voltage.

2.3.1 Reversal potential

The reversal potential for a certain type of ion channels is the potential at which the

net trans-membrane current through these channels becomes zero. Since ionic flows are

dependent on both the membrane potential and the concentration gradients, the reversal

potential will follow from an equation involving both, that can be derived using a simple

thermodynamic argument.

Suppose the membrane potential V is negative: positive ions with charge q exiting the

cell will have to overcome a potential barrier of height −qV . The amount of ions that

can overcome this barrier is proportional to the integral of the Boltzmann distribution for

values greater then −qV , and thus to exp(qV/kT ). The flow of ions out of the cell is then

proportional to this factor and the ion concentration inside cin. Ions that enter the cell

don’t feel such a potential barrier, and hence the inward current is proportional only to

the concentration outside the cell cout. At the reversal potential V = E, these flows are

exactly balanced, thus leading to the condition

cout = cin exp(qE/kT ). (2.2)

Rewriting this leads to the Nernst equation

E =
kT

q
ln

(
cout
cin

)
. (2.3)

Redoing this derivation for all possible combinations of signs of the membrane potential

and the ion’s charge leads to exactly the same result. Since the ion concentrations inside

and outside the cell can be measured, these reversal potentials can be calculated. The most

common types of ions used in conductance based models, sodium (Na+) and potassium

(K+), have reversal potentials ENa and EK of more or less 55 mV and −75 mV respectively.
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Knowing this, it can be anticipated that sodium currents will be responsible for the rapid

rise in the membrane potential during the spike and potassium currents for the rapid drop.

2.3.2 Conductances and gating functions

The conductance gi of a population of ion channels is formally just the factor of proportion-

ality between the voltage and the trans-membrane current. Through a simple reasoning

however, a relation can be established between this conductance and the physical variables

that determine it. Suppose that for an open ion channel, a mean single channel conduc-

tance γi can be defined. If there are N open
i channels in the open or conducting state, the

conductance gi is given by γiN
open
i . Generally it is more convenient to think in fractions

of open channels. Calling this fraction oi = N open
i /Ni, where Ni is the total number of

channels of the population, the conductance becomes

gi = gioi (2.4)

where gi = γiNi denotes the maximal conductance of the population of ion channels.

The fraction oi of channels that are conducting is the variable that induces non-linear

effects as the action potential. It is generally assumed that channels open and close because

of chains of chemical reactions, whose rates depend non-linearly on the voltage. The

simplest of such chains consists of two states, the said open state and a single closed state

ci, with a voltage-dependent rate αi(V ) to go from closed to open and a voltage-dependent

rate βi(V ) to go from open to closed, as in figure 2.2A. Figures 2.2B and 2.2C contain

pictures of more complicated schemes.

Channels flicker randomly between these two states, and hence the neuronal system is

inherently stochastic. How to model neurons in such a probabilistic way is the subject of

chapter 5. For the moment we assume that there are enough ion channels, so that the

evolution of the fraction oi can be modelled by the evolution of its mean in a deterministic

way. In such a framework, the fraction of channels that will go from ci to oi in a small

time-interval dt is given by αi(V )dt ci(t). The fraction of channels that will stay in oi

during this time-interval is given by (1− βidt) oi(t). The fraction of open channels at the

time t+ dt is then given by

oi(t+ dt) = (1− βidt) oi(t) + αi(V )dt ci(t). (2.5)

Hence, the evolution of oi is governed by the following linear equation:

doi
dt

= −βi(V )oi(t) + αi(V )ci(t). (2.6)



2.3 Trans-membrane currents 9

A

B

C

Figure 2.2: (A) The simplest possible kinetic scheme, consisting of one open and one

closed state. (B) A more complicated kinetic scheme, commonly in use to model potassium

currents. (C) A scheme that is commonly used to model sodium currents.

For the evolution of ci, an analogous equation can be derived, leading to the linear system

d

dt

(
oi(t)

ci(t)

)
=

(
−βi(V ) αi(V )

βi(V ) −αi(V )

)(
oi(t)

ci(t)

)
. (2.7)

This system is redundant, as the colums of the transition matrix sum to zero. This is

a general result when doing mean-field theory in kinetic schemes and it expresses the

conservation of probability. Substituting ci = 1− oi, it is clear that the system is also fully

described by the following equation:

doi
dt

= −βi(V )oi(t) + αi(V )(1− oi(t)). (2.8)
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Such an equation can be rewritten in a more intuitive form

doi
dt

=
1

τi
(oi(t)− o∞i(V )), (2.9)

where

τi(V ) =
1

αi(V ) + βi(V )
(2.10)

o∞i(V ) =
αi(V )

αi(V ) + βi(V )
. (2.11)

In this form, the equation for oi has a simple meaning: o∞i(V ) is the steady-state value of

oi and τi(V ) is the characteristic time constant with which oi evolves. In other words, fast

variables (small τi(V )) follow their asymptotic value closely, whereas slow variables (large

τi(V )) lag behind. Sometimes the kinetics are specified through the rates α and β and

sometimes through the asymptotic variable and the relaxation times.

For the more complicated schemes, mean field expressions as (2.7) can also be derived.

Suppose a scheme contains N states x = (x1, . . . , xN). For the scheme in figure 2.2B we

have x = (n4, n3, . . . , n0) and for figure 2.2C x = (m3h1,m3h0, . . . ,m0h0). The mean field

approximation explained above for the two-state scheme now yields a transition matrix W,

leading to the linear system of equations

dx

dt
= Wx. (2.12)

Again, this matrix is redundant as the columns sum to zero, and one of the equations can

be eliminated.

Kinetic schemes 2.2B and 2.2C have very particular forms and their states have very

particular names. This is because these schemes can be mapped onto combination of

multiple two-state schemes. The scheme in figure 2.2B, for instance, maps onto a model

where all channel are assumed to consists of four identical subunits, that all have the same

two-state scheme given by equation (2.8), and that the channel is only conducting or open

if all four subunits are open. If we denote the fraction of open subunits as measured over all

channels as n (the fraction of closed subunits is 1− n), then the fraction of open channels

o = n4 is given by n4. It can be checked that the fraction of channels in the state n3 of the

kinetic scheme is then given by n3(1−n), the fraction of channels in state n2 = n2(1−n)2,

n1 = n(1 − n)3 and n0 = (1 − n)4. In the mean-field approximation, the dynamics given

by equation (2.12) and by the equation

dn

dt
= −βn(V )n(t) + αn(V )(1− n(t)) (2.13)
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are then strictly equivalent if the above mapping is applied. An analogous mapping can

be achieved for scheme 2.2C, but now o = m3h, where m and h are two different variables

both following a different two-state mean-field equation.

dm

dt
= −βm(V )m(t) + αm(V )(1−m(t)) (2.14)

dh

dt
= −βh(V )h(t) + αh(V )(1− h(t)) (2.15)

This subunit picture was how the variations in the number of conducting channels were

originally modelled. However, many kinetic schemes have been proposed that are impos-

sible to map onto a subunit picture [9], [10]. Nevertheless these subunit interpretations

provide convenient insight in how the action potential is generated, as it is easy to anal-

yse the resulting differential equations. Such analysis is done in every textbook on neural

modelling (see for instance [3]) and we will not repeat it here, as we are not interested in

the specific subunit dynamics generating the spike.

2.4 Charge-balance equation

Since the cell membrane is mostly impermeable to charged ions, it acts as a capacitor,

around which charge can build up. The ion channels in the nerve-membrane form a huge

array of parallel conductors, as in figure 2.3. The rate of change of the membrane potential

is simply given by the known relation from electronic circuits:

Cm
dV

dt
+
∑
i

Ii = Iext (2.16)

where the sum runs over all trans-membrane currents. Often, it is convenient to separate

the trans-membrane currents due to ion channels explicitly from other currents, such as

synaptic inputs or currents injected by the experimenter (Iext). Substituting equation 2.1

in equation (2.16) yields

Cm
dV

dt
+
∑
i

giA(V − Ei) = Iext. (2.17)

Usually the capacitance per unit area is taken (cm = Cm/A), and equation (2.17) scales

with the cell’s surface as

cm
dV

dt
+
∑
i

gi(V − Ei) = Iext/A (2.18)

Virtually all neural models have this equation in common: they differ in how the trans-

membrane currents are modelled. In the following we discuss two particular examples of

such models that will be relevant for later discussions in this work.
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Figure 2.3: The equivalent circuit of a nerve cell, with capacitance cm, two voltage gated

ionic currents (g1,g2), a leakage current (gl), synaptic inputs (gs) and an external electrode

current (Ie). Taken from [3].

2.4.1 Hodgkin-Huxley model

The Hodgkin-Huxley model [5] was the first conductance based model, derived in 1952

by Hodgkin and Huxley from measurements of the membrane potential in the squid giant

axon. In their model, they included a population of ion channels selective for sodium ions

and a population selective for potassium ions. Figure 2.4A shows a spike generated by this

model. Notice how the fraction of open sodium channels rises at the spike initiation and

how the fraction of open potassium channels rises when the voltage drops again.

The sodium trans-membrane current is then modelled according to the scheme of figure

2.2C, with rate functions

αm(V ) = −0.1
V + 40

exp(−0.1(V + 40))− 1
(2.19)

βm(V ) = 4 exp(−(V + 65)/18) (2.20)

αh(V ) = 0.07 exp(−(V + 65)/20) (2.21)

βh(V ) =
1

exp(−0.1(V + 35)) + 1
, (2.22)

(2.23)

a maximal conductance given by gNa = 120 mS/cm2 and a reversal potential ENa = 50

mV.

The potassium current is modelled according to the kinetic scheme of figure 2.2B, with
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rate functions

αn(V ) = −0.01
V + 55

exp(−0.1(V + 55))− 1
(2.24)

βn(V ) = 0.125 exp(−(V + 65)/80) (2.25)

(2.26)

a maximal conductance overlinegK = 36 mS/cm2 and a reversal potential EK = 50 mV.

The leakage current is specified by gl = 0.3 mS/cm2 and El = −54.3 mV.

2.4.2 Connor-Stevens model

The Connor-Stevens model [8] is a modified form of the Hodgkin-Huxley model. It contains

the sodium, potassium and leakage currents of the normal Hodgkin-Huxley model, but with

slightly modified parameters, and an extra potassium current (commonly referred to as the

A-current). This potassium current is not responsible for drawing the voltage down after

the action potential and introducing an refractory period, but balancing the rise of the

voltage due to the sodium current. Thus these potassium channels are mostly open at

the spike initiation. This causes interesting dynamical effects that will turn out to be

particularly useful in this work. We discuss them in the next paragraph. In figure 2.4B we

show a spike generated by this model. Notice how there is a fraction of open potassium

channels (those of the a-current) at the spike-initiation.

The kinetic scheme of this current is also given by figure 2.2B, but commonly the

variables denoted by m are replaced by a and the variables denoted by h are replaced by

b. The kinetics are only specified by the asymptotic values a∞, b∞ and relaxation times

τa, τb, given by

a∞(V ) =

[
0.0761 exp(0.0314(V + 94.22))

1 + exp(0.0346(V + 1.17))

]1/3

(2.27)

τa(V ) = 0.3632 +
1.158

1 + exp(0.0497(V + 55.96))
(2.28)

b∞(V ) =

[
1

1 + exp(0.0688(V + 53.3))

]4

(2.29)

τb(V ) = 1.24 +
2.678

1 + exp(0.0624(V + 50))
, (2.30)

(2.31)

but these functions can be transformed back straightforwardly to reaction rates by (2.10).

The maximal conductance is ga = 47.7 mS/cm2 and the reversal potential Ea = −75 mV.



2.4 Charge-balance equation 14

A B

Figure 2.4: (A) A spike in the Hodgkin-Huxley model. (B) A spike in the Connor-Stevens

model. Both spikes are plotted with the respective fractions of open channels of their

currents.

The normal potassium current is then given by the maximal conductance gK = 20 mS/cm2,

reversal potential EK = −72 mV and reaction rates

αn(V ) = −0.02
V + 45.7

exp(−0.1(V + 45.7))− 1
(2.32)

βn(V ) = 0.25 exp(−(V + 55.7)/80) (2.33)

(2.34)

whereas the sodium current is specified by the maximal conductance gNa = 120mS/cm2,
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the reversal potential ENa = 55 mV and reaction rates

αm(V ) = −0.38
V + 29.7

exp(−0.1(V + 29.7))− 1
(2.35)

βm(V ) = 15.2 exp(−(V + 54.7)/18) (2.36)

αh(V ) = 0.266 exp(−(V + 48)/20) (2.37)

βh(V ) =
3.8

exp(−0.1(V + 18)) + 1
(2.38)

(2.39)

Finally the leakage current is specified by gl = 3 mS/cm2 and El = −17 mV. Note that for

convenience we took El = −54.3 mV throughout our simulations, as this does not change

the qualitative behaviour of the model.

2.5 Phase space and spike failures

In this section we expose some of the dynamic properties that differ between the models.

A stimulation protocol that is often applied in experiments, consists in injecting a constant

current into the neuron: in the charge-balance equation, this translates to

Iext(t) = I0. (2.40)

Upon simulating such a protocol, the neuron may spike at a high rate, at a low rate or not

at all, depending on the amplitude I0. In the Hodgkin-Huxley model, the mean spike-rate

rises discontinuously from zero when I0 is increased. Neurons for which this happens are

labelled as ‘type II’ neurons [11],[3]. In the Connor-Stevens model, the spike-rate will rise

continuously from zero when I0 is above a threshold. Such neurons are labelled as ‘type

I’ neurons. Thus the spike rate can be arbitrarily low in the Connor-Stevens model. This

happens because at spike initiation, the sodium current and the A-current balance each

other, causing a possibly very slow rise in the voltage. Such a slow rise is impossible in the

Hodgkin-Huxley model.

Another interesting consequence of including such an a-current, that will turn out to be

particularly interesting for this thesis, is that the response characteristics when the neuron

is injected with a short, strong current pulse are fundamentally different for different values

of gNa. If gNa is decreased, the deviation from the equilibrium potential (i.e. the amplitude

of the spike) decreases continuously in the Hodgkin-Huxley model. In the Connor-Stevens

model, this deviation decreases discontinuously. This is relevant, because it is in fact
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A B

Figure 2.5: (A) Deviation from the equilibrium potential after a stimulation for varying

maximal conductances. (B) Deviation from equilibrium for the Connor-Stevens model for

different values of both the maximal conductance of the sodium current and the maximal

conductance of the potassium current

known that the maximal conductances may vary, as channels in the cell membrane can

become inactive for some time or can be removed from the membrane altogether. We

show this effect in figure 2.5A. In figure 2.5B we scan the whole phase space of maximal

conductances of the currents in the Connor-Stevens model relevant at spike initiation. As

neurons effectively move around in this phase space under repeated activity, interesting

effects may arise from this discontinuous boundary.
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Chapter 3

Spike-failures and scale-invariant

excitability

3.1 Experimental protocol and set-up

As discussed in the introduction, the ultimate goal in computational neuroscience is to

understand the emergent properties of biologically realistic neural networks, in terms of

information processing, information storage and learning. However, if one looks directly

at networks of neurons in brain tissue, it is in general very difficult to determine which

behaviour emerges as a network property and which behaviour is inherent to the single

neurons. Experiments are often performed on isolated neurons, stimulated with electrical

currents or charges in which one measures the evolution of the membrane potential to

determine when the neuron spiked. To apply such a stimulation, two protocols exist:

either a pipette is inserted in the cell membrane, and through that pipette currents are

recorded or injected, or an electrode is held in the vicinity of the cell, and a charge is

applied so that the neuron is stimulated from the outside. The second protocol has the

advantage that the membrane is left intact, so that the cells under examination can survive

much longer (∼ days) than cells whose membrane is penetrated (∼ hours).

Many temporal patterns of stimulation have been used, from random currents to highly

precise periodic pulses. All of these protocols are aimed at uncovering key aspects of the

neuronal dynamics, such as the activation or inactivation of certain types of ion channels or

the study of neuronal excitability. Recently, experiments using the periodic pulse-protocol

with extracellular stimulation have been performed by Gal et al. [6]. These experiments

revealed long lasting excitability changes and non-stationarities in the neuronal response

characteristics that are not captured in any neuron model to date, as we show in the next
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chapter.

The measurements were performed on cultured neurons, isolated from the network they

are embedded in by using synaptic blockers. An array of electrodes (micro-electrode array

or MEA) is present in the substrates on which the neurons are grown and through one of

these electrodes electric pulses were applied. In this experimental set-up, spikes are elicited

antidromically by stimulating with an electrode, and responses are recorded with a second

electrode. This set-up is depicted in figure 3.1, where the electrode closest to the coloured

neuron’s axon (1) could for instance deliver the pulses, and the electrode closest to the

soma (2) could record the action potential. Since the spikes were recorded non-invasively

(the cell-membrane was not penetrated), measurements as these could last up to a few

days.

Figure 3.1: The experimental set-up. The electrodes of the MEA are clearly visible in

between the nerve cells. A neuron is coloured red for illustrative purposes.

3.2 Transient phases and intermittency

Upon injecting a short, strong current pulse as described above, one reasonably expects

the neuron to fire an action potential every time. If done with sufficiently long intervals

in between, this is indeed what happens: at low frequencies of stimulation (∼ 1 Hz), the

response is always one-to-one. However, if the frequency of the stimulation is increased

(∼ 10 to 50 Hz), it seems that the neuron does not have sufficient time to recover: slowly the

latency, defined as the delay between stimulation and action potential, starts to increase.

Interestingly, there seems to be a critical latency and if reached, the spike response is no

longer one-to-one. Not every stimulation elicits a spike. If the stimulation rate is then
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decreased to its original value, the spike-response again settles in a one-to-one regime and

the latency slowly returns to its original value. These effects are shown in figure 3.2. We

will adopt the nomenclature of [6] and refer to the regimes with increasing or decreasing

latency and one-to-one response as transient phases and to the regime where the response

is not one-to-one as the intermittent phase.

3.2.1 Experimental probes

Several measures can be defined to characterize the response patterns defined above: most

straightforwardly, we can look at plots of the latency versus time. On such plots, transient

phases will be visible as slowly increasing latencies and during the intermittent phase these

plots will look chaotic (figure 3.3A). The durations of the transient phases, especially the

first transient of increasing latency, can be studied for different stimulation frequencies

(figure 3.3B). Any model that aims to describe these experiments, should reproduce these

durations for at least a wide range of frequencies. These durations should also diverge

for the very low simulation rates (intermittency is never reached). Another interesting

measure -albeit a bit a tricky one, as will be discussed in paragraph 3.3- is the equilibrium

spike rate. Since the response is not one-to-one, this rate will be lower than the simulation

rate. Interestingly enough, this equilibrium spike rate seems to be largely independent

of the stimulation rate (figure 3.3C). It may also be noted that the latencies during the

intermittent phase are always higher than during the stable phase. Finally, the failures

during the intermittent phase don’t always seem to occur in a purely random manner.

Often, sequences of spike are followed by sequences of failures (figures 3.3E and 3.3F)

3.3 Scale-invariant excitability

In the previous paragraph we discussed observed effects that last over long time scales

(∼ 10 s to ∼ 100 s) compared to the time scales on which the general conductance based

models operate (∼ 1 ms to ∼ 100 ms). However, during the intermittent phase, even

longer time-scales seem to be present in the neuronal excitability: upon measuring the

spike rate for behaviourally relevant durations of hours and days, it was observed that this

rate varied on many time scales. Long periods of activity were followed by long periods of

inactivity. These periods seemed to be embedded in even longer periods of overall activity

or inactivity. This process repeated itself for all durations that could be measured (∼ 20 to

∼ 50 hours), thus pointing to scale-invariance. A convenient visualisation of this process

can be achieved by creating a binary array with ones when a stimulation was followed by
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Figure 3.2: (A) Voltage trace as recorded by the an electrode of the MEA, stimulation

and response are visible. (B) The same neuron, stimulated for 600 s at 1 Hz, then for 100 s

at 20 Hz and then again for 600 s at 1 Hz. (C),(D) and (E) are zooms of the response

patterns. (F) is the spike latency versus the time. Taken from [6]
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Figure 3.3: Measurements for stimulation rates of 1, 5, 10, 15, 20, 25, 30, 35, 40 and

45 Hz. Stimulations were delivered in block of 120 s. (A) Latencies as a function of time.

(B) 1/τ , where τ is the half-time it takes to reach intermittency from the start of the

stimulation. (C) Steady state spike rates, defined as the mean spike rate during the last

30 s of each block. (D) Minimal and maximal latencies. (E), (F) Visualizations of the

response patterns, where successive spikes are connected with lines. (Taken from [6])
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a spike and zeros when the stimulation failed to elicit a spike. In figure 3.4A such an array

is shown, sliced in sequences that are put on top of each other. Figure 3.4B shows the

spike-rate of one neuron, binned using bin widths of 5 minutes. Figure 3.4C shows that

the spike-shapes were stable during the experiments.

Figure 3.4: (A) Binary array, black: failure, white: a spike. (B) Spike rate of a neuron

binned with five-minute intervals. (C) Spike shape throughout the experiments. Adapted

from [6].

3.3.1 Measures to reveal scale-invariance

Visual inspection is clearly not sufficient to quantify scale-invariance: as a consequence,

various measures were developed to reveal the presence of scaling in time-series. In this

section we discuss some of them. Figure 3.5 contains these measures for the experimental

data.

The most straightforward way to uncover scale-invariance, is to look at the time series

at different resolutions (figure 3.5A): upon binning the spike-rate in increasingly larger

bins, the fluctuations around the mean should not decay.
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Figure 3.5: (A) Rate fluctuation around the mean. (B) Periodogram spectral density,

(C) detrended fluctuation analysis, (D) the Fano factor and (E) the Allen factor for five

different neurons. (F) and (G) show the distributions of respectively the sequences of

consecutive spikes and the sequences of consecutive failures. Sequences of spikes follow an

exponential distribution whereas sequences of no spikes follow a power law distribution.

Adapted from [6].
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The measures of the Fano factor and of the Allen factor [13], shown in figures 3.5E and

3.5F, provide a more quantitative description of this idea, by computing the ratio of the

variance and mean of the time series, for different bin widths. If we denote the number

of spikes in a bin of length T , starting at time t, by N(t, t + T ), then the Fano factor is

defined as

FF(T ) =
E(N(t, t+ T )2)− E(N(t, t+ T ))2

E(N(t, t+ T ))
=
V (T )

N(T )
(3.1)

where V (T ) denotes the variance and N(T ) the mean of the time-series defined by binning

in intervals of length T . In our case the time series will be a binary array with ones when

there was a spike after a stimulation and zeros if there was no spike after the stimulation.

Suppose now that the spikes were generated in an uncorrelated fashion with a certain

probability p, and that every stimulation corresponds to a trial to generate a spike: then,

the probability of having N spikes in a time-interval of duration T is described by a

binomial distribution. If there are M(T ) stimulations that time-interval T , the mean

number of spikes is given by N(t) = M(T )p and the variance is V (T ) = M(T )p(1 − p).
Hence the Fano factor V (T )/N(T ) of such a spike train is independent of the bin size. If

scaling is present in the time-series, it can be shown that the Fano factor will rise linearly

on a double logarithmic (log-log) plot, with a fractal exponent between zero and one [13].

Related to the Fano factor is the Allen Factor, defined as

AF(T ) =
E[(N(t, t+ 2T )−N(t, t+ T ))2]

2E(N(t, t+ T ))
= 2FF(T )− FF(2T ) (3.2)

Following the same reasoning, the Allen factor is independent of the bin size for a purely

random spike train and rises linearly on a loglog plot with increasing bin size if scaling is

present.

Figure 3.5C contains the periodogram spectral density. Let Rt be a time series of N

data points, in our case the spike rate binned over small intervals. The periodogram of Rt

is then defined as:

PSD(ω) =
1

N

∣∣∣∣ N∑
t=1

Rte
−iωt
∣∣∣∣2 (3.3)

If the time series contains only a limited number of frequencies, for instance trough a com-

bination of sines and cosines, the PSD would show sharp peaks around those frequencies.

If the time series is scale invariant, no peaks should be present and the periodogram should

exhibit 1/ω-type behaviour over a wide range of frequencies.



3.3 Scale-invariant excitability 25

An additional method to uncover scale-invariance is to look at the detrended fluctu-

ations [12]. This eliminates the possibility of erroneously confusing scale-invariance with

non-stationariness in the time series, by subtracting the overall trends. Suppose again that

Rt is a time series of spike rates: first, Rt is integrated

It =
t∑

t′=1

(Rt′ − E(R)), (3.4)

then the integrated time series is divided in boxes of size n and within those boxes a least-

squares line is fit to the data, representing the trend in that box. Let N denote the number

of such boxes and Ink the result of such a fit in the box to which k belongs. The detrended

fluctuations of the time series are then defined as

DF(n) =

√√√√ 1

M

M∑
k=1

(Ik − Ink )2 (3.5)

It can be shown that scaling is present if the detrended fluctuations exhibit power law be-

haviour with an exponent between 1/2 and 1. For purely random spike rates the detrended

fluctuations rise with an exponent of 1/2 [12].
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Chapter 4

Slow sodium inactivation and long

effective time-scales

4.1 Results with classic models

The results described in the previous chapter are unaccounted for by classic models. In

simulations, the experimental protocol is mimicked by approximating the voltage pulses

delivered extracellularly by the injection of current pulses. Iext(t) from equation (2.18) has

the following functional form in this protocol:

Iext(t) =

I0 if nT < t < nT + ∆t

0 otherwise
(4.1)

with ∆t = 1 ms. In figures 4.1A and 4.1B we show the equivalent of figure 3.2B for

respectively the HH-model and the CS-model. It is to be seen that in neither of these

models the intermittent phase is ever reached. There aren’t even any traces of a possible

transient phase at the experimentally used frequencies (< 50 Hz). This is to be expected,

as all the time-scales in these models are of the order of the length of a single spike, i.e. a

few milliseconds, whereas the periods of stimulation at these frequencies are of the order or

50 milliseconds. Inevitably, such effects point to presence of variables that retain memory

of the previous neuronal activity for a time that is much longer than the relaxation times

present in traditional models as the Hodgkin-Huxley or the Connor-Stevens model.
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A B

Figure 4.1: Plots of the voltage for (A) the HH-model and (B) the CS-model. Stimulations

were delivered in three block of 40 seconds at rates of 1 Hz, 25 Hz and again 1 Hz. The

voltage traces for the first few milliseconds after each stimulation are coloured and put on

top of each other.
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4.2 Modelling slow sodium inactivation

In the following we introduce a model for a slow, spike-dependent sodium inactivation,

inspired by [17]. Such a slow inactivation has been measured experimentally [14] and

it is known that inactivating ion channels of the sodium type causes an increase in the

spike latency. We add a linear chain of inactive states to the kinetic scheme in figure

2.2C. Channels can enter into this chain from the open state oNa = m3h1 according to

a voltage-dependent rate α(V ) and they return to the state m0h0 by means of a slow,

voltage-independent rate β. The rates in between the states of the chain are also given

by β. We have chosen this configuration because the spike shape is practically unchanged

and the inactivation is purely spike-dependent. Figure 4.2 shows this scheme.

I0 I1 I2 In-2 In-1

Figure 4.2: The classic kinetic scheme for sodium channels extended with a linear chain of

inactive states. All rates except β are voltage-dependent.

Given this scheme, we define a variable a by

a(t) = m0h0(t) +m1h0(t) + . . .+m3h1(t). (4.2)

This variable represents the fraction of channels that is not affected by this slow inactivation

and hence contributes to the spike. The idea is that there is a clear separation of time scales
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between the evolution of a and the typical duration of the spike, so that during a spike a

can be considered a constant. Hence a will effectively modify the maximal conductance

gNa to a lower value geff = gNaa.

As follows from figure 2.5, it is better to use the Connor-Steven model than the Hodgkin-

Huxley model: in the former there is a clear boundary between spikes and failures at a

specific value of geff, and thus of a, something that is not at all present in the Hodgkin-

Huxley model, where defining such a boundary would be an arbitrary choice. Figure 4.3

shows the spike shape and the increase in latency for different values of a. We will denote

this boundary by athr. Note that the precise value of athr is a function of the charge in the

injected current pulse.

Figure 4.3: Spike shapes for different values of a in the Connor-Stevens model. As a

decreases, the latency increases until a reaches a critical values, below which the event can

no longer be classified as a spike.

Every time a spike is generated in this model, a fraction of channels inactivates due to

the rate α(V ) and returns only very slowly due to the slow rate β. Thus, under repeated

stimulation, a steadily decreases (figure 4.4A) and, as a consequences, the latency increases.

This is the transient phase that is observed experimentally. If the stimulation rate is high

enough, so that a does not reach a dynamic equilibrium where a(t) > athr every time a

stimulation is delivered, a will eventually reach the firing threshold athr. At that point,

failures start to occur and the neuron enters the intermittent response phase, where spikes

are only fired if a(t) > athr at the time of stimulation (shown in figure 4.4B). We depict

the evolution of the voltage and latencies in figure 4.5, for a simulation of 300 s, where
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the stimulation rate was 1 Hz for the first and last 100 s, and was 25 Hz between 100 s and

200 s.

A B

Figure 4.4: (A) Evolution of the latency and a during the transient phase and start

of the intermittent phase. (B) Evolution of a and the membrane potential during the

intermittent phase. The stimulation rate was 25 Hz, α(V ) was kept constant at 0.1 ms−1

and β = 0.01 ms−1.

As shown in [16] during the course of this works, there exists another, related way

of generating the observed transient and intermittent phases. Returning to the subunit

picture for sodium channels with a scheme as in figure 2.2C, it is to be seen these channels

usually have a fast-inactivating variable h, specified by the rates αh(V ) and βh(V ), that is

responsible for shutting of the rapid rise in open sodium channels at the spike-initiation,

and thus for halting the rapid rise of the voltage. This is represented as oNa = m3h, where

the rate equation of h is of the form (2.14). The relaxation time of this variable is of the

order of ∼ 1 to 10 ms and, as discussed, it can not relate excitability changes over ∼ 50

ms, the typical time scale between the spikes in the experiments of [6]. Therefore one

can introduce a slow inactivating variable s (see for instance [15]), that has a much larger
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Figure 4.5: A visualisation of the response patterns when stimulations were delivered in

three intervals of equal length, at respective rates of 1 Hz, 25 Hz and again 1 Hz and when

α(V ) was kept constant at 0.1 ms−1 and β = 0.01 ms−1.
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relaxation time, so that oNa = m3hs, whose rates αs(V ) and βs(V ) are so that s drops

a little bit during every spike and returns slowly to s = 1 at the equilibrium potential.

Such models have the disadvantage that only a single slow time scale is present in the

excitability, whereas the experiments indicate that there is a multiplicity of time scales.

Note that such a variable s is the exact equivalent of a. By applying the mapping from

a subunit picture to a kinetic scheme, it can be shown that s is indeed the sum over all

states that are not affected by the slow inactivation. Hence our model is a more general

case of the HHS-model discussed in [16], that yields the same results if the length of the

chain N is one.

4.3 Integro-differential representation

As explained in the previous paragraph, the variable a represents an important quantity

of the system: it determines, in the pulse-stimulation protocol, if the neuron will spike or

not. From figure 4.2 and equation (4.2) we see that its evolution is controlled by

da

dt
(t) = −α(V )o(t) + βi0(t) (4.3)

where o(t) = m3h1(t), the open state and where i0(t) is the fraction of channels in the

first state of the linear chain i = (i0, i1, . . . , iN). We can use the voltage-independence

of the transition rates in the chain to write (4.3) as an integro-differential equation that

summarizes the total effect of the chain in one memory kernel f(t). This approach will aid

us in understanding the system and will hopefully lead to fitting procedures to infer the

internal time scale 1/β from experiments. The equation reads

da

dt
(t) = −α(V )o(t) + β

∫ t

−∞
α(V )o(ξ)f(β · (t− ξ))dξ (4.4)

and we will derive it in the following section.

4.3.1 Memory kernel

To find this kernel, we first need to look at a discrete diffusion problem (see for instance

[23]) with N + 1 states i0, i1, ..., iN , where there is a reflecting boundary at iN and an

adsorbing boundary at i0

i∗ ←
β
i0

β
�
β
i1

β
�
β
· · ·

β
�
β
iN (4.5)
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Note that the probability mass in the chain i = (i0, i1, . . . , iN) is not conserved: when a

random walker arrives at i0, it has a probability of exiting the chain without a chance of

returning. We can refer to this by saying the random walker has entered a ‘limbo-state’ i∗.

The probability of being in limbo is 1 −
∑N

n=0 in(t). We are interested in the probability

f(t) for a random walker to enter this state in the interval [t, t + dt], starting from the

initial condition

in(t = 0) = δ0n for n = 0, . . . , n. (4.6)

The dynamics of this system are fully described by the following linear system of linear

differential equations:

di0
dt

(t) = −2βi0(t) + βi1(t) (4.7)

din
dt

(t) = βii−1(t)− 2βin(t) + βii+1(t) n = 1, ..., N − 1 (4.8)

diN
dt

(t) = βiN−1(t)− βiN(t), (4.9)

which can be written in compact form as

di

dt
(t) = βWi(t) (4.10)

with

W =



−2 1 0 0 · · · 0 0

1 −2 1 0 0 0

0 1 −2 1 0 0
...

. . .

0 0 0 0 −2 1

0 0 0 0 · · · 1 −1


. (4.11)

By normalizing time according to τ = βt, equation (4.10) can be expressed as

di

dτ
(τ) = Wi(τ). (4.12)

Such a system can be expanded in normal modes φλie
−λiτ , where λi is the i-th eigenvalue

of W and φλi the corresponding eigenvector: any solution for a given initial condition at

time t = 0 can be written as a linear superposition of exponentials. Once we know this,

we can calculate the probability mass that will have entered the limbo-state i∗ after a time

τ , as this is simply 1−
∑N

n=0 in(τ). The probability mass that will enter this state in the
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time interval [τ, τ + dτ ] will then be given by f(τ)dτ = di∗
dτ

(τ)dτ . This can be re-expressed

as

f(τ) = −
N∑
n=0

din
dτ

(τ) = i0(τ) =
N∑
n=0

cλφ0λe
−λτ , (4.13)

where we used equations (4.7)-(4.9) for the second equality.

Now suppose that in every time-interval [ξ, ξ+dξ] a probability mass pn(ξ) = δ0npinjected(ξ)

is injected at i0. We can denote the fraction of this mass that will be in the state i0 at a

later time τ by i0ξ(τ). For this fraction we will have:

i0ξ(τ) = pinjected(ξ)f(τ − ξ). (4.14)

The total amount of probability mass in i0 is then a linear superposition of all these

contributions:

i0(τ) =

∫ τ

−∞
i0ξ(τ)dξ =

∫ τ

−∞
pinjected(ξ)f(τ − ξ)dξ (4.15)

We now identify the limbo state i∗ with a. In this case pinjected(ξ) = α(V )o(ξ), since this

is precisely the fraction of channels that will enter the inactive chain in a time-interval

[ξ, ξ + dξ]. Hence equation (4.15) becomes

i0(τ) =

∫ τ

−∞
α(V )o(ξ)f(τ − ξ)dξ. (4.16)

Equation (4.4) is then found by substituting this expression in (4.3) and replacing τ by βt.

4.3.2 Effective power law

The memory kernel function found in the previous paragraph turns out to exhibit power

law behaviour (f(τ) = qτ−m) in the range 1 < τ < 104. Indeed, from figure 4.6a it is

clear that we can fit a line to log(f(τ)) ∼ −m log(τ) + log(q). From a least-square fitting

procedure for N = 100 the parameters m and q where found to be

m = 1.50 (4.17)

log(q) = 0.28. (4.18)

Hence we can write:

f(τ) '


∑N

n=0 cλφ0λe
−λτ if τ < 1

qτ−m if 1 < τ < 104.
(4.19)
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(a) (b)

Figure 4.6: (a) The memory kernel in normalized time, (b) memory kernels for different

values of beta, together with their fits according to (4.20)

Going to the physical time t = τ/β, this becomes

f(βt) '


∑N

n=0 φ0λe
−λβt if t < 1/β

qβ−mt−m if 1/β < t < 104/β.
(4.20)

This is an interesting result, as it tells us that during the power law regime the only

dependence on the rate β is contained in a multiplicative factor. Thus we can imagine that

within certain approximations equation (4.4) can be written as

da

dt
(t) ' −α(V )o(t) + qβ1−m

∫ t

−∞
α(V )o(ξ)(t− ξ)−mdξ, (4.21)

a form that has potential to result in a fitting procedure for β.

4.4 Results

We compare the results of our model to the experimental results of figure 3.3, taking for

a start a step-function inactivation rate α(V ), so that at every spike a small fraction of
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channels inactivates. We chose

α(V ) =

0 ms−1 if V < −20 mV

0.15 ms−1 if V > −20 mV,
(4.22)

a chain-length of N = 100 and β = 0.01 ms−1. We conduct simulations of 600 s and

plot similar quantities as the ones in figure 3.3. The duration of the transient phase is

calculated by taking the time from the start of the simulation until the first failure (figure

4.7B). We shall adopt the nomenclature of [6] and call this duration τ . We calculate the

steady state spike-rate (figure 4.7C) by averaging the spike-rate over the last 150 s of each

simulation. The latency interval is simply defined by the minimal and maximal latency

measured during the intermittent phase (figure 4.7D). We also show the response patterns

at different times during the simulation (figure 4.7E and 4.7F).

It is to be seen that the qualitative behaviour of the latencies versus time is already

quite good (figure 4.7A). The slightly curved shape one gets by plotting the reciprocal of

the duration of the transient phase as a function of the stimulation rate also agrees quite

well with the experiments (figure 4.7B). While the steady-state spike-rate (figure 4.7C)

is quantitatively different, the qualitative result that this spike-rate is more or less inde-

pendent of the stimulation rate is also reproduced. The minimal and maximal latencies

during the intermittent phase are always higher than in the stable response phase (fig-

ure 4.7D), but their quantitative values do not agree with the experiments. This is not

so surprising, as these values depend sensitively on the precise types of trans-membrane

currents, and small differences in these currents may cause big differences in the latencies.

Moreover, in the experiments, action potentials travel through the axon before they can be

recorded, which may cause them to be delayed even further. It is also to be seen that the

response patterns in our model are different from the bursting response patterns measured

experimentally. It was suggested that this may be caused by different, slowly inactivating

or slowly activating potassium currents [16], but an accurate study of the effects of such

currents is out of the scope of this work.

4.4.1 Entry rate functions

In this section we compare different rate functions to enter the inactive chain. We check

the behaviour for the step function (4.22), a constant inactivation rate α(V ) = 0.01 ms−1,

an exponential

α(V ) = 0.04 exp(0.025(V + 25)) ms−1, (4.23)
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C D

E F

Figure 4.7: Simulations of the periodic stimulation protocol, conducted over 600 s for

stimulation rates of 1, 5, 10, 15, 20, 25, 30, 35 and 40 Hz. (A) Latencies as a function of time

during the first 100 s of the simulation. (B) Reciprocals of the duration τ of the transient

phase as a function of the stimulation rate. (C) Steady-state spike rates measured over

the interval 450 to 600 s. (D) minimal and maximal latencies. (E)-(F) Response patterns

at different points in the simulation. In (E) the transient phase breaks down and in (F)

the neuron goes from a regime with two spikes after every failure to a regime with either

one or two spikes after every failure.
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Figure 4.8: Different entry rate function plotted in function of the membrane potential.

a sigmoid

α(V ) =
0.15

exp(−0.15(V + 20)) + 1
ms−1, (4.24)

and a Hodgkin-Huxley like rate function

α(V ) =
−0.005(V + 10)

exp(−0.1(V + 10))− 1
ms−1. (4.25)

Equation (4.24) is the continuous approximation of step-function inactivation rate, thus

we expect similar results for these two inactivation rates. Equations (4.23) and (4.25)

feature the more traditional forms used in Hodgkin-Huxley formalisms. These functions

are plotted in figure 4.8. We have chosen these functions so that the fraction of channels

that inactivates during the spike is largely similar. As can be seen, the inactivation rates

(4.23) and (4.25) emphasize the height of the spike more than the rates (4.22) and (4.24):

for the former more channels will inactivate if a strong spike occurs than for the latter. As

a consequence, a will drop faster at the start of the simulation for (4.23) and (4.25) than

for (4.22) and (4.24), resulting in a different shape of the latency as a function of time.

Figure 4.9 shows the behaviour of the latencies as a function of time during during

simulations according to the same protocol as described above. Figure 4.9A shows the
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Figure 4.9: Latencies as a function of time during the first 40 s of stimulation at rates of

1, 5, 10, 15, 20, 25, 30, 35 and 40 Hz. (A) A step-function inactivation rate, (B) a constant

rate, (C) an exponential rate, (D) a sigmoid rate and (E) a HH-like rate.



4.4 Results 40

step-function inactivation rate, figure 4.9B the constant rate, figure 4.9C the exponential

rate, figure 4.9D the sigmoidal rate and figure 4.9E the HH-like rate. Minor differences

exist in the way the latency rises during the transient phases: the inactivation rates (4.23)

and (4.25) that emphasize the amplitude of the spike indeed yield a slightly different shape

than the rates (4.22) and (4.24), that is more concave in the second part of the transient

phase. In general, qualitatively similar functions indeed give qualitatively similar results

(compare panels A and D and panels C and E of figure 4.9).

In figure 4.10A we show the reciprocals of the durations of the transient phases, recorded

as explained earlier. It is to be seen that there is little difference and all of these rate-

function can fit the experiments reasonably well. The steady state spike rates however can

not, as can be seen in figure 4.10B. Only the step-function and sigmoid inactivation rate

are compatible with stead state rates that are independent of the stimulation rate. This

motivates us, from the point of view of simplicity, to use the step-function inactivation rate

for the remainder of this work.

4.4.2 Chain length

The second question we ask ourselves is how the experimental probes described above

change with the length of the chain. To analyse this we conducted 600 s-long simulations

according to the same protocol as described above, with the step function inactivation rate,

where we varied the number of states N in the inactive chain. We took N = 1, 5, 10, 50, 100.

When rescaling N , it is apparent that the value of β needs to be rescaled too. A model

neuron with N = 100 and β = 0.01ms−1 might have no trouble reaching intermittency,

whereas for a model neuron with N = 1 the latency during high-frequency stimulation

might not even change appreciably at this value of β. We therefore conducted simulations

for each N where β ranged between 0.1ms−1 and 0.00001ms−1, if those values were relevant

for the given N . In figure 4.11 we show the latencies as a function of time for chain lengths

of N = 1, 5, 10, 50 and 100 and β = 0.0001, 0.001, 0.001, 0.01 and 0.01 ms−1 respectively. It

can be seen that the longer chain lengths do a better job at explaining the wide variety of

time scales present in the experiments.

In figure 4.12 we show results for the reciprocals of the durations τ of the transient

phases and for the steady-state spike rates. For a chainlength of N = 1 (figure 4.12A),

we conducted simulations with β ranging from 0.01 to 0.00001 ms−1. For β = 0.01 ms−1

the model neuron never reaches intermittency. Intermittency was reached for the lower

values of β. Nevertheless the shape of the 1/τ -curve as a function of the stimulation rate is

always quantitatively off by an order of magnitude. The qualitative shape is also that of a
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A B

Figure 4.10: (A) Reciprocals of the durations of the transient phases and (B) steady-state

spike rates for the different entry rate functions. Simulated for 600 s with stimulation rates

of 1, 5, 10, 15, 20, 25, 30, 35 and 40 Hz.

straight line, instead of a curved line. Adjusting the value of β, steady-state spike-rates can

be tuned to fit the experiments. For N = 5 and N = 10, we conducted simulations with

β = 0.01, 0.001, 0.0005 and 0.0001 ms−1 (figures 4.12B and 4.12C). Again, at β = 0.01 ms−1

the intermittent phase was never reached. The plots of 1/τ still fail to reproduce the

experimentally recorded curved lines for the higher frequencies. Nevertheless, for N = 10

and β = 0.001 ms−1, hints of the right shape are visible. The values of the reciprocals are

still off by an order of magnitude. It is also to be seen that the steady-state spike-rates

depend sensitively on the choice of β and on the length of the chain (comparing figures

4.12B and 4.12C). For N = 50 and N = 100 we performed simulations for β = 0.1, 0.01 and

0.001 ms−1 (figures 4.12D and 4.12E). We did not use lower values of β because already

at β = 0.001 ms−1 the steady-state values of the spike-rate are much lower than in the

experiments. As can be seen, from N = 50 onwards the plots of the reciprocals 1/τ versus

the stimulation rate start to exhibit the right shape. Nevertheless the correct order of

magnitude is only obtained for β = 0.001 ms−1. The steady-state spike-rate is shown to

depend again sensitively on the length of the chain. Spike rates that agree quantitatively

with the experiments are thus expected in the range N = 50 to N = 100.
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Figure 4.11: Latencies as a function of time during the first 40s of stimulation, at rates

of 1, 5, 10, 15, 20, 25, 30, 35 and 40Hz. (A) For a chain length of N = 1 and rate β =

0.0001ms−1, (B) a chain length of N = 5 and rate β = 0.001ms−1, (C) a chain length of

N = 10 and rate β = 0.001ms−1 (D) a chain length of N = 50 and rate β = 0.01ms−1 and

(E) a chain length of N = 100 and rate β = 0.01ms−1.
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Figure 4.12: Reciprocals of the durations of the transient phases (column 1) and the steady-

state spike-rates (column 2) for stimulation rates 1, 5, 10, 15, 20, 25, 30, 35 and 40 Hz. The

values of β are indicated in the legends. Chain lengths of (A),(B) N = 1, (C),(D) N = 5,

(E),(F) N = 10, (G),(H) N = 50 and (I),(J) N = 100.
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4.4.3 Entry rate amplitude

In the previous paragraph we concluded that the reciprocals of the durations of the tran-

sient phases τ were an order of magnitude to large for the shorter chain lengths N = 1, 5

and 10. These magnitudes can be changed however by changing the fraction of channels

that inactivates at every spike. Therefore we rescale the step-function inactivation rate by

an amplitude factor hα:

α(V ) =

0 ms−1 if V < −20 mV

0.15hα ms−1 if V > −20 mV.
(4.26)

For each chain length N we thus have two relevant parameters: hα controls the amount

of channels that inactivate at every spike and β controls the speed of their return to the

active state. We now want to know whether it is possible for each chain length N to

obtain values for the reciprocals of the transient times 1/τ and for the steady state spike

rates feq that agree quantitatively with the experimental results. Since for none of the

reasonable parameter values the model reached intermittency at 1 Hz, so that 1/τ = 0 at

that stimulation rate, and since 1/τ rises monotonically as a function of the stimulation

rate, we argue that if we obtain the correct value of 1/τ at a stimulation rate of 40 Hz, 1/τ

will also lie within the correct range for all other values of the stimulation rate in between

1 and 40 Hz. Thus we scan the relevant parameter space (hα, β) and look where both 1/τ

and feq have the observed values, that is 1/τ ' 0.16 Hz and feq ' 8 Hz.

The results of these simulations for N = 1, 5, 10, 50 and 100 are shown respectively

in rows A,B,C,D and E of figure 4.13. We plotted the full surface of 1/τ and of feq as

a function of hα and β, and we also indicated where these surfaces intersected with the

planes 1/τ = 0.16 Hz and feq ' 8 Hz. In the third panel of every row we plotted these

lines in the parameter space. The combinations for which these lines intersect or lie close

together give values for both 1/τ and feq that agree quantitatively with the experiments.

As can be seen, for any chain length N this model is tunable to produce observables that

lie close to the experimental values. With increasing chain lengths however, the surfaces

become much smoother and these lines move closer together, meaning that there is a much

larger parameter set that fits the experiments. This observation and the curved shapes in

the 1/τ plots of figure 4.12 for the larger chain lengths N , lead us to prefer them over the

shorter chain lengths.
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Figure 4.13: Surfaces of reciprocals of the durations of the transient phase 1/τ (first col-

umn) and of the steady state spike rates feq (second column) as a function of hα and β and

at a stimulation rate of 40 Hz. The fat lines indicate the experimentally observed values

(blue: 1/τ and red: feq). These lines are plotted again in the third column. Figures (A),

(B), (C), (D) and (E) show chain lengths of respectively 1, 5, 10, 50 and 100.
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Chapter 5

Stochastic neuron models and

scale-invariant excitability

5.1 Noisy algorithms

In the previous chapter we introduced a deterministic neuron model that exhibits slow

dynamics that last over time-scales of seconds to minutes. We found that this model could

already account for a great deal of the experimentally observed effects. Nevertheless it

always evolved to some steady state, where the spike rate was found to be regular. Hence

no scale-invariant statistics could be measured.

In chapter 2 however, we noted that the ion channels in the nerve membrane flickered

randomly between open and closed states, with overall kinetic rates that are given by the

schemes in figure 2.2B for the potassium channels and figure 2.2C for the sodium and

A-channels. Many algorithms have been proposed to model the noise that emerges from

this random behaviour, either in a microscopic way, by modelling the individual transi-

tions of ion channels through Markov chain Monte Carlo methods (MCMC) ([18], [7]),

or in an effective way, by approximating this noise by Langevin dynamics (for instance

[19],[20],[21],[22]). Thus, these algorithms can be divided in two categories: the first cate-

gory explicitly models the microscopic state of the system whereas in the second category

continuous approximations are used. In the microscopic case the number of channels in

all states of the kinetic scheme is tracked, and transitions between different configura-

tions of the system are discrete. If the scheme contains M states, we define the vector

X = (X1, . . . , XM) whose i-th component Xi denotes the number of channels in state i

of the scheme and refer to X as the microscopic configuration of the system. The second

category of algorithms defines a continuous vector x = (x1, . . . , xM) = (X1

N
, . . . , XM

N
) and
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then tries to approximate the noise resulting from the microscopic algorithms by using

continuous stochastic processes. We shall refer to x as the macroscopic configuration of

the system.

The Markovian assumption implies that ion channels that evolve through a kinetic

scheme have no memory of their previous states. This can be formalized as (see for instance

[23]):

Ṗ (X, t) =

∫
[W (X|X′)P (X′, t)−W (X′|X)P (X, t)]dX′, (5.1)

where W (X|X′) denotes the probability to go from state X′ to state X. Thus the prob-

ability P (X, t + dt) to have a certain vector X at time t + dt is only dependent on the

probability P (X, t) to have a certain vector X at time t. Equation (5.1) is referred to as

the master equation.

5.1.1 Microscopic MCMC

Of course, we are not interested in the full evolution of P (X, t), but only in the evolution

of realisations X(t). It is possible to take advantage of the fact that X(t) is memoryless to

develop simulation algorithms: one such example is given by Gillespie’s algorithm [18], in

which the time-interval until the next change in the system is drawn from an exponential

distribution. Thus the time-step in this algorithm is not constant, which makes it tricky

to implement in the NEURON simulating environment. Therefore, we used a simpler

algorithm that implements the Markov assumption by stating that the probability for a

channel to move in a small time-interval [t, t + dt] is only dependent on the current state

of the channel.

The canonical form of this algorithm is as follows: suppose that a state Xi has K

transition rates ρj, with j = 1, . . . , K, that go from state Xi to another state in the scheme,

and that the simulation time step is dt. The probability that a channel will move in that

time-step to another state is then distributed according to an exponential distribution

Pi→ any j ∝ 1− exp

(
−
∑
j

ρjdt

)
(5.2)

and trivially

Pno move ∝ exp

(
−
∑
j

ρjdt

)
(5.3)
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Thus for every channel in Xi a uniformly distributed random number r1 between 0 and 1 is

drawn. If r1 > Pi→ any j the channel doesn’t change state and if r1 < Pi→ any j the channel

moves. If the channel moves, a second uniformly distributed random number r2 is drawn

to decide to which state the channel moves. If∑j−1
k=1 ρkdt∑K
k=1 ρkdt

< r2 <

∑j
k=1 ρkdt∑K
k=1 ρkdt

, (5.4)

the channels moves to state j. At every time step, this algorithm runs over all channels in

every state Xi and decides whether and to where they will move. After this time-step, first

the fraction of open channels, then the voltage and finally the voltage-dependent kinetic

rates are updated. Then the whole process starts anew.

In the case of a small time step dt, so that ρjdt� 1 for all j, this algorithm simplifies

considerably. Equations (5.5) and (5.6) then linearise to

Pi→ any j ∝
K∑
j=1

ρjdt (5.5)

and

Pno move ∝ 1−
K∑
j=1

ρjdt. (5.6)

Since the probability to choose to which Xj a channel moves is directly proportional to

ρjdt, we may draw only one random number r, do nothing if r >
∑K

j=1 ρjdt and move the

channel to state j if
∑j−1

k=1 ρkdt < r <
∑j

k=1 ρkdt, as depicted in figure 5.1. We use the

MCMC algorithm in this form throughout all our stochastic simulations.

Figure 5.1: Schematic representation of the MCMC algorithm.

Note that in this form the algorithm simply draws random numbers from a multinomial

distribution. The numbers of channels N1, . . . , NK that move from Xi to X1, . . . , XK in
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the time-interval [t, t+ dt], are then distributed as

p(N1, . . . , Nk) ∝ (ρ1dt)N1 . . . (ρKdt)NK (1−
K∑
k=1

ρkdt)
1−

∑K
k=1Nk (5.7)

with a mean

µ = (Nρ1dt, . . . , NρKdt) (5.8)

and a covariance matrix

cov =


Nρ1dt(1− ρ1dt) −Nρ1dtρ2dt · · · −Nρ1dtρKdt

−Nρ2dtρ1dt Nρ2dt(1− ρ2dt) · · · −Nρ2dtρKdt
...

...
. . .

...

−NρKdtρ1dt −NρKdtρ2dt · · · NρKdt(1− ρKdt)

 (5.9)

5.1.2 System-size expansion

As noted in chapter 2, taking the deterministic limit (N → ∞) of the master equation

(5.1) results in the following linear system of equations

dx

dt
= Wx. (5.10)

Using a technique previously developed in physics and brought to neuroscience by [19],

known as the system-size expansion [23], it is possible to extend equation (5.10) to add the

fluctuations

dx

dt
= Wx + Lξ. (5.11)

Here ξ = (ξ1, . . . , ξM) is a vector of normally distributed random numbers and L is the

matrix square root of the diffusion matrix D.

Equation (5.11) is the Langevin equation that can be derived from the Fokker-Planck

equation associated with the master equation (5.1). This Fokker-Planck equation makes

use of the diffusion matrix D, defined by

(D(x))kl =
1

N2

∫
rkrlΩ(x, r)dr (5.12)

where Ω(x, r) = W (X, r), with W (X, r) = W (X|X′) and r = X−X′. At every time-step in

the algorithm, this diffusion matrix is recalculated and its matrix square root is computed.

Because of this second step, the algorithm is quite inefficient.
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Nevertheless this algorithm was shown to perform well, approximating accurately a

number of statistical measures of the microscopic algorithm [20], [21]. However, the auto-

correlation functions

Φxi(∆, t) = E(xi(t+ ∆)xi(t))− E(xi(t))
2 (5.13)

obtained by this algorithm were never compared with the autocorrelation functions of the

microscopic MCMC-algorithm. Quite often, the autocorrelations obtained by Langevin

algorithms are decaying much faster than the ones obtained by the microscopic algorithm

[24]. Since we want to model the effects of long effective time-scales, we can not take the

risk of introducing errors in the autocorrelations. Therefore we do not use this algorithm.

We nevertheless show in appendix A how to compute the diffusion matrix for the linear

inactive chain we use.

5.1.3 Effective noise using the auto-correlation function

It was shown that the autocorrelation function (5.13) can be used for some kinetic schemes

to model the channel noise in a very efficient manner [22]. By realizing that only the open

state in a given kinetic scheme is needed in the charge-balance equation, it can hypothesised

that adding the channel noise only to this state in the charge balance equation, and evolving

the kinetic scheme deterministically, will yield the same results.

Suppose that a population of channels produces the following current

I = go(V )(V − E) (5.14)

and that o is the k-th state in a kinetic scheme specified by the vector x with M components

(thus o = xk). Suppose furthermore that the evolution of this scheme is specified by

the transition matrix W. The approximation of [22] is then to add a phenomenological

combination of stochastic processes ξj (j = 1, . . . ,M) to equation (5.14) in the following

way

I = g

(
o(V ) +

∑
j

ξj

)
(V − E) , (5.15)

so that this sum has exactly the same autocorrelation function Φxk=o as the one obtained

by the microscopic algorithms.

This autocorrelation function can be computed analytically [22], [25] and reads for

Markov chains in their equilibrium state

Φxk=o(∆) =
1

N
o∞
[
c exp(−W|∆|)cT − o∞

]
(5.16)
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where o∞ is the equilibrium value of o and c = (0, . . . , 0, 1, 0, . . . , 0) is a vector so that

o = cx. It is to be seen that this expression reduces to a combination of exponentials

Φxk=o(∆) =
∑
j

σje
−λjt, (5.17)

where the λj’s are the eigenvalues of W. It can be shown that a linear combination (as in

equation (5.15)) of Ornstein-Uhlenbeck processes

dξj
dt

(t) =
1

λj

(
−ξj(t) + σj

√
2

λj
νj(t)

)
, (5.18)

where the νj(t)’s are Gaussian delta-correlated processes with zero mean, has the same

autocorrelation function as the Markov scheme.

Thus the effective noise approximation of [22] consists of recalculating the autocorre-

lation function (5.16) at every time-step, advancing the OU processes (5.18), advancing

the vector x deterministically, according to (5.10), advancing the voltage according to the

charge-balance equation and finally updating the voltage-dependent transition rates.

This approximation is very efficient if the kinetic schemes in use can be mapped onto

two-state subunit schemes, because then expression (5.16) for the autocorrelation function

simplifies considerably. This is impossible for the scheme 4.2, and thus this approximation

becomes much more complicated. Moreover, this algorithm was only shown to work for

those cases where the channels distribution x is not to far from the equilibrium channel

distribution x∞ of the kinetic scheme. Because of the slow relaxation times this is never

the case for the sodium-scheme in figure 4.2 under repeated spiking, so using this algorithm

might again introduce errors in the results. Therefore we refrain from using it in this work.

5.2 Insertion and removal of ion channels

In the previous paragraph we have discussed the traditional form of channel noise, resulting

from the intrinsic stochasticity of the chemical reactions that channels in the cell membrane

undergo. In some cases, and in particular in kinetic schemes as 4.2, channel noise might

contribute to the observed long correlations in the excitability.

During the course of this work however, we noted that another form of channel noise

might contribute to this effect. A clue is provided in [26], where a model by Gerstein and

Mandelbrot is discussed. As they note, if an event happens every time a variable is above a

certain threshold, and because of this event the variable jumps below this threshold, where

it performs a (bounded) random walk, the resulting distribution of inter-event intervals
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is a power law. Since we have shown that in the deterministic version of our model the

variable a jumps below the firing threshold athr every time a spike happens during the

intermittent phase (figure 4.4), we hypothesize that if in some way a performed a random

walk, we would find the experimentally observed properties of the excitability.

This noise is however fundamentally different from the noise that results from a Markov

scheme. We now provide an intuitive argument for this (where we basically rederive the

system-size approximation for a two-state scheme).

Consider a two-state scheme, as in figure 2.2, and suppose that this scheme contains

N channels. According to the kinetic rates α and β (where we dropped the index i), the

numbers of channels at equilibrium in each state N o
∞ and N c

∞ follow from

N o
∞βdt = N c

∞αdt and N o
∞ +N c

∞ = N. (5.19)

Since in paragraph 5.1.1 we discussed that deciding how many channels will move from

one state to another is equivalent to drawing from a multinomial distribution (in this case

a binomial distribution, since there are only 2 possibilities: moving to the other state or

staying in the present state). Thus, at equilibrium, the expected number of channels that

will move in a small time-interval [t, t+dt] from o to c is given by µ(No→c) = N o
∞βdt and the

variance on this number is var(No→c) = N o
∞βdt(1−βdt). For the transition from c to o we

have µ(Nc→o) = N c
∞αdt and the variance on this number is var(Nc→o) = N c

∞αdt(1−αdt).

If now there is a deviation ε from the equilibrium channel numbers N o
∞ → N o

∞ + ε and

N c
∞ → N c

∞ − ε, we have

µ(No→c) = (N o
∞ + ε)βdt and var(No→c) = (N o

∞ + ε)βdt(1− βdt) (5.20)

µ(Nc→a) = (N c
∞ − ε)αdt and var(Nc→o) = (N c

∞ − ε)αdt(1− αdt). (5.21)

Going to the continuous limit (N → ∞), both of these binomial distributions become

Gaussians and we have:

P (No→c) ∼ N ((N o
∞ + ε)βdt, (N o

∞ + ε)βdt(1− βdt)) (5.22)

P (Nc→o) ∼ N ((N c
∞ − ε)αdt, (N c

∞ − ε)αdt(1− αdt)) . (5.23)

Since we are interested in the probability that the amount of channels in o changes by a

number ∆N in the time-interval [t, t+ dt], we combine (5.22) and (5.23)

P (∆N) = P (Nc→o)− P (No→c) ∼ N (µ, σ2), with (5.24)

µ = (N o
∞β −N c

∞α)dt− ε(α + β)dt and (5.25)

σ2 = (N o
∞βdt(1− βdt) +N c

∞αdt(1− αdt))dt+ ε(βdt(1− βdt) + αdt(1− αdt)).

(5.26)
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Since dt is small, we ignore all terms of order dt2. Using the balance condition (5.19), we

find

P (∆N) ∼ N (−ε(α + β)dt, 2N o
∞βdt+ ε(α + β)dt). (5.27)

Going to the continuous variables, this gives

P (∆o) = P

(
∆N

N

)
∼ exp

(
N2(∆o+ ε

N
(α + β)dt)2

4N o
∞βdt+ ε(α + β)dt

)
. (5.28)

Thus we find

P (∆o) ∼ N
(
−ε
N

(α + β)dt, 2
o∞
N
βdt

)
, (5.29)

where o∞ = N o
∞/N and where we ignored the term in the variance proportional to ε/N2,

since ε� N o
∞ under all normal circumstances. Identifying ε/N with o−o∞, we find indeed

that (5.29) defines an Ornstein-Uhlenbeck process for o

do

dt
(t) = (α + β)(o(t)− o∞) +

√
2

N
o∞βν(t), (5.30)

where ν(t) is a delta-correlated zero-mean Gaussian noise process. We see that the ratio of

drift over variance (µ/σ2, where µ and σ2 follow from equation (5.29)) rises approximately

linearly in ε. Such a relation gives rise to an Ornstein-Uhlenbeck process, that has no

self-similar properties. Moreover, it was our experience that such processes, derived from

Markov schemes, always stay fairly close to their equilibrium values. Of course, we could

extend this kinetic scheme to include many time-scales, so that by the approximation ex-

plained in 5.1.3 many Ornstein-Uhlenbeck processes need to be introduced. It was however

our experience that finding a scheme that produces these processes with just the right pa-

rameters (determined from (5.16)) is very tricky. Moreover, we did not find any situation

where noise resulting from such schemes caused the channel numbers to deviate enough

from their equilibrium values to cause significant effects on the neuronal excitability.

This leads us to believe that it might be interesting to think about other forms of

noise, that don’t have the property µ/σ2 ∼ ε. If for instance we assume that the noise

contributions don’t follow Ornstein-Uhlenbeck processes, but that they look more like

Wiener processes over a significant interval −δ < ε < δ, so that µ/σ2 ∼ 0 � ε over this

interval. It is known that the Wiener process is self-similar, hence it is not unlikely to

argue that such a process could cause the scale-invariant excitability.

Thus we asked whether channel noise contributions in neurons can display the properties

of a Wiener process (continuous variables, macroscopic configuration) or a random walk
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(discrete variables, microscopic configuration) rather than the typical Ornstein-Uhlenbeck

relaxation processes associated with the noise that results from Markov schemes. At first

this seems impossible, as modelling chemical reactions through Markov schemes has proven

its merits numerous times and is the most commonly accepted technique. Nevertheless we

note that the ion channels do not stay in the nerve membrane forever, nor were they

there since the creation of the cell. They are synthesized from proteins inside the cell and

then diffuse to the cell membrane, where they let ions pass through and after some time

they are removed from the cell membrane. While both the evolution of ion channels in

the nerve membrane and their synthesis from proteins inside the cell may be modelled

with Markov Chains, we hypothesise that the intermediate step, their diffusion to the cell

membrane, might cause a noise contribution that looks more like a Wiener process than

an Ornstein-Uhlenbeck process.

It should be noted however that very little is known about what governs the insertion

and removal of ion channels, and very complex processes and feedback mechanisms may

be at work to prevent the ion channel numbers from dropping too low or rising too high.

Thus, any complicated model that tries to model these feedback effects explicitly would be

nothing more than a mere speculation and therefore we keep our assumptions as simple as

possible. We assume that the rate of removal of ion channels from the nerve membrane is

constant, so that the expected number of removals per unit of time µr is a fixed number.

We also assume that the expected number of arrivals µa of ion channels in the nerve

membrane is constant. We furthermore assume that there are feedback mechanisms inside

the neuron that prevent the number of channels from rising too high or dropping too low.

Since we do not know anything about the nature of these mechanisms, we code them in our

algorithm doubling µr if the amount of ion channels is above a certain upper bound Nmax

and by doubling µa if the number of channels is below a lower bound Nmin. We sketch

schematically the effect of this procedure on µ/σ2 in figure 5.2. We also sketch µ/σ2 for the

Markov chain and for what could be a biophysical function that has the right properties

to cause the scale-invariant excitability.

We translate the principles explained above into an algorithm, by assuming that the

actual numbers of ion channels removed and inserted into the nerve-membrane in a small

time-interval [t, t+ dt] are Poisson-distributed

P (Nr|µr, dt) ∼ Poisson(Nr;µrdt) = (µrdt)Nr e−µrdt

Nr!
(5.31)

P (Na|µa, dt) ∼ Poisson(Na;µadt) = (µadt)Nae−µadt

Na!
(5.32)

Thus, at every time-step, we draw two Poisson-distributed random numbers that represent

the number of channels that are to be removed (Nr) and the number of channels that are
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Figure 5.2: A cartoon of the drift in the noise as a function of the deviation from equilib-

rium.

to be added (Na). Then, the states of the kinetic schemes from which the channels are

removed and added, are chosen according to the number of channels in that state. This

assumption is reasonable for the channels that are removed, but might be questionable

for channels that are added. Therefore we also compare this algorithm with an algorithm

that adds channels to and removes channels from the same state. For this to have an

effect, a state needs to be chosen from the active part of the scheme, so that the effective

conductance is indeed modified. As the dynamics of removel and insertion are much slower

than the fast dynamics of the spike, the active state to which they are added does not

matter. We choose m0h0.

5.3 Results

Given the discussion in the previous paragraphs, we arrive at three hypothesises to test:

1. The observed scale invariant excitability is caused only by traditional channel noise
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that results from the long correlation times induced by the chain of inactive states

(kinetic scheme in figure 4.2).

2. Traditional channel noise is not important, and the scale-invariant excitability is

caused only by the newly proposed form of noise that might arise from the insertion

and removal of ion channels

3. Scale invariant excitability is caused by both phenomena.

In the following we will show results for all three hypothesises. We start however by a few

considerations about the probability to have a spike, as this will turn out to be important

for understanding the differences between the models.

5.3.1 Probability to have a spike

We start by considering the probability Ps that a spike is fired in response to a fixed

amplitude current pulse. In the deterministic case the situation was simple, as there was a

clear jump in the spike amplitude at a certain value of a (figure 2.5). In the stochastic case

however, the spike amplitude is a random variable. Thus it is necessary to check whether

there is a clear boundary between spikes and failures. Figure 5.3 shows a histogram of the

deviation from the equilibrium potential after a stimulation recorded from model neurons

in the intermittent phase. This distribution clearly has two parts and our threshold crossing

protocol (with a threshold at −20 mV, corresponding to a deviation of 50 mV above the

equilibrium potential) indeed classifies events in the lower part of the distributions a failures

and events in the higher part as spikes.

Furthermore, the probability Ps is a function of a, that is fundamentally different for

the deterministic case (representing the situation where the channel noise is not important,

figure 2.5) and for the stochastic case (representing the situation where channel noise is

important, figure 5.4). In the deterministic case, there is a sharp threshold between spikes

and failures at a given value of a, whereas in the stochastic case, spikes and failures happen

randomly, with a probability that is only slightly dependent on a.

As a consequence, there can be significant differences in the distributions of the length of

sequences of consecutive spikes and consecutive failures. In the deterministic case, there is

the sub-threshold random walk behaviour, that leads us to expect a power law distribution

of the sequence lengths of failures. In the stochastic case however, spikes and failures

happen in a random fashion, with probabilities that are only slightly correlated by a. Thus

we expect exponential distributions for both the sequences of spikes and failures.



5.3 Results 57

0 20 40 60 80 100 120
Deviation from equilibrium (mV)

0

500

1000

1500

2000

2500

N
u
m

b
e
r 

o
f 

o
cc

u
re

n
ce

s

Figure 5.3: Histogram of the heights of the deviations from the equilibrium potential in

response to a fixed amplitude current pulse.

A B

Figure 5.4: The probability to have a spike in the stochastic Connor-Stevens model at fixed

values of a, and thus of geff, for a channel number Nc = 1507. In (A) only the maximal

conductance of sodium is varied and in (B) both the sodium and potassium maximal

conductance are varied. For each point in the phase-space we conducted 100 trials.
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A B

Figure 5.5: (A) Evolution of the latency and a during the transient phase and start of the

intermittent phase. (B) Evolution of a and the membrane potential during the intermittent

phase. Simulation performed with Nc = 1507

As shown in figure 5.5A, the approach to intermittency in the stochastic model is quite

chaotic. It is difficult to define a clear transient phase from the latencies and it is also

difficult to define a clear point where the intermittent phase starts, as failures can happen

at many values of a. These two properties where not at all present in the experiments

and lead us to consider the results from the stochastic models with great caution. As

mentioned above and confirmed in figure 5.5B, there is still a clear separation between

spikes and failures.

For all three hypotheses, we conducted simulations of 10 h for chain-lengths N =

1, 5, 10, 50 and 100, where the inactivation rate α(V ) was kept the same and β = 0.0001,

0.001, 0.001, 0.01 and 0.01 ms−1 respectively. To check the dependence of the effect on

the number of sodium channels, we conducted simulations for channel numbers Nc =

377, 754, 1507, 3016 and 6786 (note that the channels numbers of the A- and potassium

currents where also scaled accordingly). The simulation rate was always kept at 25Hz. If
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we allowed the number of channels to vary, we fixed Nmin = 0.9Neq and Nmax = 1.1Neq

unless stated otherwise, where Neq is determined from the maximal conductance and the

cell’s surface S by Neq = gS/γ, with γ denoting the single channel conductance. When we

modelled the removal and insertion of channels, we took their respective rates proportional

to the cell’s surface µr = µa = cS, with c = 3.183 · 10−3ms−1µm−1.

5.3.2 Traditional channel noise

In the model with traditional channel noise, the effect of the long correlations is quite tiny.

Figure 5.6A shows a plot of a binary array, where white pixels mean that a spike was

elicited in the inter-stimulation interval and black pixels mean that no spike was elicited.

The array was cut in slices of 760s that were put on top of each other. At first sight, there

are no long term spike-rate changes and the array looks like what one would expect for a

purely random statistic. Figures 5.6B and 5.6C show respectively the fluctuations around

the mean for different bin lengths and the spike rate, binned in intervals of 10 minutes.

These measures confirm that the long term correlation are tiny.

Nevertheless a close examination of the statistical measures reveals that some long

correlations are indeed present. Figure 5.7 shows the periodogram spectral density, the

detrended fluctuations, the Fano and Allen factors and the sequences of spikes and failures.

It is to be seen that these measures follow mostly what one would expect from a random

spike rate. The Fano and Allen factors are mostly flat, the detrended fluctuations rise

with a coefficient of 1/2 and the sequences of consecutive spikes and of consecutive failures

both have an exponential distribution. Nevertheless between bin lengths of 102 ∼ 103

seconds long correlations can be observed for a chain length of N = 100. The Fano and

Allen factors show a rising trend (albeit only one order of magnitude) and in this range

the detrended fluctuations rise with a coefficient greater than 1/2 (this is clearly visible in

figure 5.7H, where for N < 100 the coefficient is 1/2 over the whole range of bin sizes).

Note that the discrepancies in figures 5.7K and 5.7L are due to the different spike-rates.

The larger lengths of sequences of spikes for N = 1, 5, 50 mean that the equilibrium spike

rate was higher than for N = 10, 100. For the sequences of failures it is the other way

around.

Thus we can conclude that it is not possible to model the full scale-invariant behaviour

with only a chain of inactive states. While such a chain indeed induces long spike rate

correlations, these are nevertheless quite tiny and are concentrated in a specific time range

(102 ∼ 103s). While we could try to include models of the sodium and A-currents that are

of arbitrary complexity, it is quite hard to reverse engineer a kinetic scheme that exhibits
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Figure 5.6: Results for a simulation of 10 h, with only traditional channel noise at a

simulation rate of 25 Hz. Other paremeters: chain length N = 100, β = 0.01 ms−10 and

Nc = 1507. (A) Binary array of the spiking, cut in slices of 760s. White pixels denote

spikes, black pixels failures. (B) Rate fluctuation around the mean. (C) Spike-rate binned

in bins of 10 minutes.

scaling behaviour. Moreover, as already noted, we always arrived at the conclusion that

the induced correlations were to small, even with low channel numbers. It can be seen

from figure 5.5A that at the same time the latency of the spikes was much more chaotic

than what is observed experimentally, making this hypothesis even more unlikely.

5.3.3 Removal and insertion without channel noise

Considering the second hypothesis, we see that long range spike rate correlations can exist.

Figure 5.8A shows again a binary array of white and black pixels as before. Now it can

be seen that there are indeed very large regions of overall reduced excitability followed

by very large regions of increased excitability. Moreover, the rate-fluctuations around the
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Figure 5.7: (A,G) Periodogram Spectral Density, (B,H) Detrended fluctuation analysis,

(C,I), Fano Factor (D,J), Allen Factor (E,K), sequences of consecutive spikes and (F,L)

sequences of consecutive failures for simulations times of 10h at frequency 25Hz for different

channel numbers (A-F) and for different chain lengths N (G-L), with only traditional

channel noise.
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mean look similar over a wide range of time-scales (figure 5.8B). The spike-rate binned in

intervals of 10 minutes does vary (figure 5.8C), but its fluctuations are not as big as the

ones measured experimentally .

A B

C

Figure 5.8: Results for a simulation of 10 h, with only the insertion and removal of channels.

Stimulation delivered at a rate of 25 Hz. Other parameters: chain length N = 100, β =

0.01 ms−1 and Nc = 1507. (A) Binary array of the spiking, cut in slices of 760s. White

pixels denote spikes, black pixels failures. (B) Rate fluctuation around the mean. (C)

Spike-rate binned in bins of 10 minutes.

Looking at the statistical measures (figure 5.9), it is to be seen that there is indeed

scaling in the time series of the spike-rate. The periodogram spectral density exhibits 1/ω

behaviour, the detrended fluctuation rise with a coefficient close to unity and the Allen

and Fano factors rise approximately linearly over a range of time-scales. Because of the

sub-threshold random walk behaviour, the distribution of lengths of the sequences of con-

secutive failures indeed exhibits power law behaviour. The distribution of the lengths of

sequences of consecutive spikes is however not exhibiting exponential behaviour, a conse-

quence of the fact that the spikes don’t happen randomly, but with a probability equal to
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Figure 5.9: (A,G) Periodogram Spectral Density, (B,H) Detrended fluctuation analysis,

(C,I), Fano Factor (D,J), Allen Factor (E,K), sequences of consecutive spikes and (F,L)

sequences of consecutive failures for simulations times of 10h at frequency 25Hz for different

chain lengths N (A-F) and for different channel numbers Nc (G-L), with the removal and

insertion of channels as the only noise source.
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one if a is above athr. It can furthermore be seen that the scaling becomes much better if

the chain length N increases and if the number of channels Nc decreases.

Of course, it can be argued that our choice of Nmin = 0.9Neq and Nmax = 1.1Neq was

arbitrary. Therefore we also ran a simulation with Nmin = 0.8Neq and Nmax = 1.0Neq. As

can be seen in figures 5.10G-5.10L, changing these limits does not have an influence on

the overall qualitative behaviour. Only the mean spike rate changes, and accordingly, the

distributions of consecutive spikes and failures.

We also compared the two hypothesis of insertion and removal, i.e. proportional to the

number of channels in the state or simply in a single state. In figures 5.10A-5.10F we show

a comparison between the two cases. As can be seen, these two hypothesis result into scale-

invariant excitability over a good range of time scales. Only at the longest time-scales the

spike-rate becomes slightly more regular when channels are added to or subtracted from

on single state.

5.3.4 Removal and insertion with channel noise

So far we have shown that channel noise alone cannot account for the observed effects,

and removing and inserting channels randomly, when the neurons evolves deterministically

otherwise, produces a great deal of the experimentally observed behaviour. In real neurons

however, both phenomena should be present at the same time. Thus we explore what

happens if we include both effects into the model neuron. Figure 5.11A shows the familiar

binary array. As can be seen, long correlations are clearly present, albeit less pronounced

than in the deterministic case. This is confirmed further by the rate fluctuations (figure

5.11B).

The statistical measures in figure 5.12 show that there is indeed scaling in the time

series of the spike-rate. The periodogram spectral density decreases as 1/ω, whereas the

detrended fluctuation rise with a slope greater than 1/2. The Fano and Allen factors also

rise with the bin size over a few orders of magnitude. Again, the scaling improves as the

chain length N increases. The scaling is present for all tested channels numbers Nc. Notice

however that the distributions of the lengths of sequences of consecutive spikes and failures

are again exponentials. This is because there is no sharp spike-threshold in a, and thus

spikes happen at random, with a probability only slightly correlated by a.

Finally we check what happens if we apply the algorithm for inserting and removing

channels also to the A-current, the other current relevant at spike-initiation. This can

be interesting, because the excitability as a function of geff
Na = gNaa and geff

A might change

only slightly in one direction of the relevant phase-space (for instance in the direction of
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Figure 5.10: (A,G) Periodogram Spectral Density, (B,H) Detrended fluctuation analysis,

(C,I), Fano Factor (D,J), Allen Factor (E,K), sequences of consecutive spikes and (F,L)

sequences of consecutive failures for simulations times of 10h at frequency 25Hz a chain

length N = 100 and a channel number Nc = 1507, with the insertion and removal of

channels as only noise source. Figures (A-F) compare proportional insertion and removal

with insertion in and removal from a single site (m0h0) and figures (G-L) compare different

limits Nmin and Nmax.
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Figure 5.11: Results for a simulation of 10h, with channels noise and the insertion and

removal of channels. Stimulation delivered at a rate of 25Hz. Other parameters: chain

length N = 100, β = 0.01ms−10 and Nc = 1507. (A) Binary array of the spiking, cut

in slices of 760s. White pixels denote spikes, black pixels failures. (B) Rate fluctuation

around the mean. (C) Spike-rate binned in of 10 minutes.

geff
Na), but might drop very sharply in other directions. This is however not the case for the

Connor-Stevens model (see figure 5.4) and applying this algorithm on both currents does

not lead to a qualitative change in the behaviour (see figure 5.13).
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Figure 5.12: (A,G) Periodogram Spectral Density, (B,H) Detrended fluctuation analysis,

(C,I), Fano Factor (D,J), Allen Factor (E,K), sequences of consecutive spikes and (F,L)

sequences of consecutive failures for simulations times of 10h at frequency 25Hz for different

chain lengths N (A-F) and for different channel numbers (G-L). Both channel noise and

insertion and removal were included.
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Figure 5.13: (A,G) Periodogram Spectral Density, (B,H) Detrended fluctuation analysis,

(C,I), Fano Factor (D,J), Allen Factor (E,K), sequences of consecutive spikes and (F,L)

sequences of consecutive failures for simulations times of 10h at frequency 25Hz for differ-

ent chain lengths N (A-F) and for different channel numbers (G-L). Channel noise was

included and also the insertion and removal of both the sodium channels and the potassium

channels of the A-current.
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Chapter 6

Conclusion

In this thesis work we modelled the experimental results in two stages: first, we expanded

a deterministic model with a sodium current with slow inactivation. We showed that this

model is tunable to fit the experimental data and can be applied with minor changes

to fit different types of qualitative behaviour. If the length of the chain N is sufficient

(N ∼ 50− 100), the reciprocals 1/τ of the durations of the transient phases as a function

of the stimulation rate exhibit the observed curved shape. Once N is chosen, the kinetic

rate β and the amplitude of the inactivation rate α(V ) can be chosen so that the steady-

state spike-rates have the right values and that the durations of the transient phases are

within the right order of magnitude for each stimulation rate.

Secondly, we have looked at possible ways to create a model that exhibits the observed

scale invariance in the spike rate over a good range of time-scales. We have shown that to

introduce these scale-invariant features, it is not sufficient to include traditional channel

noise in the model neuron. For very few channels, so that fluctuations are large, long

correlations are indeed present, but their influence is not big enough to introduce major

spike rate changes over long time scales. Moreover, the long correlations are only present

in a specific range of time scales (102 to 103 s). Also, this neuron model behaves much

more chaotically than the experimental observations suggest, as failures happen often and

randomly, so that it becomes very hard to separate transient from intermittent phases.

As a consequence, the distributions of the lengths of the sequences of consecutive spikes

and of consecutive failures are both exponential. While for the spikes this agrees with the

experiments, this is not the case for the failures.

This led us to introduce a new form of stochasticity with very different statistical

properties than those of the Markov noise. We started from very simple principles, that we

implemented on a purely phenomenological basis, and hypothesized that this noise could
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result from the insertion and removal of ion channels from the cell membrane. Adding this

noise, and evolving the voltage and fractions of open channels deterministically otherwise,

we found that this model could indeed reproduce the scale-invariant excitability, while

introducing no important changes in the overall qualitative behaviour of transient and

intermittent phases. Moreover, because of the sub-threshold random-walk behaviour, this

model results in a power-law distribution of lengths of sequences of consecutive failures.

Nevertheless, the distribution of the lengths of sequences of consecutive spikes does not

follow the experimentally observed exponential distribution, because in this model spikes

do not occur randomly.

Combining the two approaches, we found again that the distributions of the lengths

of the sequences of consecutive spikes and of consecutive failures were both exponential,

because spikes again happen randomly. Nevertheless, the long fluctuations present in the

spike rate were considerably bigger than with only traditional channel noise, and the scaling

lasted for a bigger range of time-scales.

We also note that we have only used the Connor-Stevens model as a basis for this

work. Nevertheless there are multiple ways to introduce the same behaviour, as was shown

during the course of this work in [16]. It might be interesting to look at other models,

since as we discussed, spikes that happen randomly lead to exponential distributions of

sequence lengths and sub-threshold random walks lead to power law distributions of lengths

of sequences of failures. Thus a model with a multidimensional phase space of effective

conductances relevant for spike-generation that has a very sharp firing threshold in one

direction and where the excitability changes only slightly in other directions, could be used

in principle to obtain both distributions at the same time.

We believe that, on its own, this research provides a basis to explore the effect that

these long-lasting excitability changes have on the behaviour of more complex neuronal

systems, since we provided a model that, even if it does not represent the true physical

picture, at least reproduces the experimentally observed results and can therefore be used

to explore the consequences of this effect in neural networks. For this purpose alone our

model is already very interesting, as the general hypothesis in neuroscience is that memory

in neural networks is only coded in the strength of synaptic connections. The work of [6]

showed that neurons may in fact also have memory: the probability that a neuron may

spike at a given moment can be correlated with the probability it spiked minutes, or even

hours before. Thus it would be highly relevant to investigate whether networks composed

of scale-invariant neuron models lead to fundamental differences in the way information is

processed.

We also think that this work may spark further experimental research, as it poses a
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fundamental question about how the overall excitability of neurons is regulated by changes

in the number of ion channels in the cell membrane. To date, very little is known about

processes that govern these changes, and many parameters, such as gene expression and

environmental changes might play a role. A big obstacle for this work was the sparsity

of available information on this subject, which led us to implement a model that was as

simple as possible. If more information will become available at some point in the future,

more detailed models could be constructed that exhibit scale-invariant excitability, and

more refined questions could be posed about its causes.
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Appendix A

System-size expansion

In this paragraph we compute the diffusion matrix for a linear diffusive chain that consists

of K + 2 states (X−1, X0, . . . , XK), wherein there is a large number N of random walkers.

Remember that Xi denotes the amount of random walkers in state i. The fraction of

random walkers in that state will be denoted by xi = Xi/N . Since X−1 = N −
∑K

n=0 Xn,

we only need to consider the evolution of X = (X0, . . . , Xk). With no extra effort, we can

assume general transition rates between the states. Let us denote the rate to go from state

p to state q by w(q, p). According to the general theory of system size expansions [23],

we need to rewrite the transition probability W (X|X′) from the master equation (5.1) in

a form W (X′, r), with r = X −X′. The diffusion matrix will then be given by equation

(5.12), where x = X/N and Ω(x, r) = W (X, r).

To find this transition probability W (X|X′), we assume that, in the limit of a small time

step, at most one walker can change its position. Hence we have that either Xn = X ′n for

all n or that (Xn−1, Xn) = (X ′n−1 ± 1, X ′n ∓ 1) for one specific n. The probability for a

transition from n−1 to n in a small time interval [t, t+dt] can be written as w(n, n−1)Xndt

and the probability for the opposite transition as w(n−1, n)Xn−1dt. With this knowledge,

the master equation becomes

Ṗ (X, t) =
K∑
n=0

{w(n, n− 1) (Xn−1 + 1)P (Xn−1 + 1, Xn − 1, t)

+ w(n− 1, n) (Xn + 1)P (Xn−1 − 1, Xn, t)

− [w(n− 1, n)Xn + w(n, n− 1)Xn−1]P (X, t)}. (A.1)
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This can be written in the canonical form (5.1) by introducing Dirac-delta’s

Ṗ (X, t) =

∫
dX′ [P (X′, t)

·
K∑
n=0

{w(n, n− 1)X ′n−1δ(X
′
n − [Xn − 1])δ(X ′n−1 − [Xn−1 + 1])

∏
k 6=n,n−1

δ(X ′k −Xk)

+ w(n− 1, n)X ′nδ(X
′
n − [Xn + 1])δ(X ′n−1 − [Xn−1 − 1])

∏
k 6=n,n−1

δ(X ′k −Xk)}

− P (X, t){conjugate part}. vankampen

Hence W (X|X′) is recognized as

K∑
n=0

{w(n, n− 1)X ′n−1δ(X
′
n − [Xn − 1])δ(X ′n−1 − [Xn−1 + 1])

∏
k 6=n,n−1

δ(X ′k −Xk)

+ w(n− 1, n)X ′nδ(X
′
n − [Xn + 1])δ(X ′n−1 − [Xn−1 − 1])

∏
k 6=n,n−1

δ(X ′k −Xk)}.

From the definitions x = X/N and Ω(x, r) = W (X, r) it follows that

Ω(x, r) =N
K∑
n=0

{w(n, n− 1)xn−1δ(rn − 1)δ(rn−1 + 1)
∏

k 6=n,n−1

δ(rk)

+ w(n− 1, n)xnδ(rn + 1)δ(rn−1 − 1)
∏

k 6=n,n−1

δ(rk)} .

Upon substitution in (5.12), the elements of the diffusion matrix are found:

(D(x))00 =
1

N
[w(0,−1)x−1 + w(−1, 0)x0 + w(1, 0)x0 + w(0, 1)x1] (A.2)

(D(x))KK =
1

N
[w(K,K − 1)xK−1 + w(K − 1, K)xK ] (A.3)

(D(x))ll =
1

N
[w(l, l − 1)xl−1 + w(l − 1, l)xl + w(l + 1, l)xl + w(l, l + 1)xl+1] (A.4)

(D(x))kl = − 1

N
[w(k, l)xl + w(l, k)xk] for |k − l| = 1 (A.5)

and zero otherwise.
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