

Faculteit Bio-ingenieurswetenschappen

Academiejaar 2011-2012

Autotrofe bodemrespiratie in bosecosystemen: hoe belangrijk is intern CO_2 transport via sapstroom?

Laura Agneessens Promotor: Prof. dr. ir. Kathy Steppe Tutor: ir. Jasper Bloemen

> Masterproef voorgedragen tot het behalen van de graad van Master in de bio-ingenieurswetenschappen: Milieutechnologie

Auteursrecht

De auteur en de promotor geven de toelating deze masterproef voor consultatie beschikbaar te stellen en delen van de masterproef te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van resultaten uit deze masterproef.

The author and the promoter give the permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis.

Gent, juni 2012

De promotor Prof. dr. ir. Kathy Steppe De tutor ir. Jasper Bloemen De auteur Laura Agneessens

Dankwoord

Sommige clichés zijn er om gebruikt te worden. De tijd vliegt. Het lijkt nog maar gisteren dat ik me als eerstejaars afvroeg waar in hemelsnaam het E-blok toch zou zijn. Vandaag vijf jaar later ben ik bijna afgestudeerd en de trotse auteur van deze thesis. Dit zou me nooit gelukt zijn zonder de steun en hulp van velen, wie ik graag via deze weg wil bedanken.

Aan mijn promoter, prof. Kathy Steppe, dank je wel voor je geweldig enthousiasme, engagement en energie dat zo aanstekelijk werkt. Toen je me vorig jaar zei een thesisonderwerp te kiezen dat me 'kriebels in mijn buik geeft', wist ik meteen dat ik op de goede plaats was. Bedankt voor je oprechte interesse en steun dit jaar en bovenal bedankt voor je geloof in mij.

Jasper, ik denk niet dat ik sterk genoeg kan uitdrukken hoe blij en dankbaar ik ben dat je mijn begeleider was. Ik heb dit jaar zoveel bijgeleerd en ik denk dat ik vrijwel op elk moment bij je terecht kon voor vragen of advies. Dank je voor je grote steun en vertrouwen dit jaar en voor al je energie die je gestoken hebt in deze thesis.

Sam, dank u voor de IAT_EX hulp! Aan Stijn, Lies, Jarinda en Annelies zonder jullie was het maar half zo leuk geweest in het 'thesiskot'! Eline, dank je voor je leuke gezelschap in de bib, daar op onze tweede rij.

Aan al de vrienden die ik heb leren kennen deze vijf jaar, het was hier zalig vertoeven dankzij jullie! De gezellige momenten in de zon, de beruchte dessertavonden, de openingsfuiven (voor, tijdens en na), de telefoontjes de avond voor het examen, samen op vakantie en samen in de les. Vrienden en herinneringen voor het leven.

Tot slot wil ik nog heel sterk mijn ouders bedanken. Bedankt voor jullie onvoorwaardelijke steun niet alleen deze vijf jaar, maar al mijn hele leven, tijdens zowel de leuke als de moeilijke momenten. Of zoals ze in Clabecq zeggen: "Zolang we maar kunnen lachen."

Gent, juni 2012

Samenvatting

Na fotosynthese vormt bodem CO_2 efflux de grootste koolstofflux in bosecosystemen. Deze flux kan onderverdeeld worden in een autotrofe component, zijnde de respiratie van wortels en hun geassocieerde organismen, en een hetetrofe component, zijnde de afbraak van bodem organisch materiaal door bodem micro-organismen.

Algemeen wordt aangenomen dat CO_2 afkomstig van wortelrespiratie volledig via de bodem naar de atmosfeer ontsnapt. Hieruit volgt wortelrespiratie geschat kan worden als zijnde een gedeelte van bodem CO_2 efflux. Recent onderzoek suggereert echter dat een substantieel deel van CO_2 afkomstig van bodemrespiratie de wortels via de sapstroom verlaat en deels bovengronds naar de atmosfeer diffundeert. Dit zou betekenen dat in vroegere bepalingen bodemrespiratie en in het bijzonder wortelrespiratie werd onderschat, terwijl bovengrondse respiratie werd overschat.

In een plantage te Zwijnaarde, België werd de stam van 7-jarige eiken (*Quercus robur* L.) geringd, waardoor de toevoer van fotosynthetische assimilaten naar de wortels onderbroken werd. Door metingen van zowel bodem CO_2 efflux als de interne CO_2 concentratie in de stam van geringde en niet-geringde bomen kon de hypothese van intern CO_2 transport van ondergronds afkomstig CO_2 getest worden.

Vijf dagen na het ringen bedroeg de procentuele afname van de bodem CO_2 efflux en interne CO_2 concentratie respectievelijk 21.8 % ± 3.7 % en 21.4 % ± 1.1 %. De daling waargenomen in de interne CO_2 concentratie bevestigt het opwaartse transport van CO_2 uit de wortels naar de stam. Gedurende periodes van hoge sapstroom bleek het niet in rekening brengen van intern CO_2 transport wortelrespiratie tot 44.9 % ± 0.7 % te onderschatten. Op een dagelijkse basis bedroeg deze onderschatting 25.1 % ± 0.5 %. Het opwaarts getransporteerde CO_2 droeg bij aan de stam CO_2 efflux en de stam efflux van CO_2 afkomstig van wortelrespiratie volgde variaties in het sapstroompatroon. De bijdrage van CO_2 afgeleid van de wortels aan stam CO_2 efflux bedroeg 50.4 % ± 5.5 % over een 24 h-periode.

Uit deze masterproef blijkt het belang van het in rekening brengen van intern CO_2 transport via de sapstroom voor de correcte inschatting van zowel boven- als ondergrondse respiratie. Om deze reden wordt het beschouwen van deze nieuw ontdekte interne CO_2 flux bij metingen van boven- en ondergrondse respiratie aangeraden.

Summary

After photosynthesis, soil CO_2 efflux is the second biggest carbon flux in forest ecosystems. This flux can be divided in an autotrophic component, namely respiration from the roots and their associated microorganisms, and a heterotrophic component, namely the respiration of soil organic matter by soil microorganisms.

It is generally accepted that all root-respired CO_2 reaches the atmosphere by diffusing from inside the root outward to the soil. As a consequence, soil CO_2 efflux measurements are generally considered as the reference technique for estimating root respiration. However, it has been recently suggested that a substantial part of root-respired CO_2 leaves the roots via the sap flow and diffuses aboveground to the atmosphere. This would mean that previous estimations have been underestimating soil respiration and more specifically root respiration, while overestimating stem and branch respiration.

In a plantation situated in Zwijnaarde, Belgium, seven year old oaks (*Quercus robur L.*) were girdled, cutting of the supply of photosynthetic assimilates to the roots. Through measurements of soil CO_2 efflux and internal stem CO_2 concentration on girdled and non-girdled trees the hypothesis of internal CO_2 transport of CO_2 derived from below could be tested.

Five days after girdling a decrease of $21.8 \% \pm 3.7 \%$ and $21.4 \% \pm 1.1 \%$ was measured for soil CO₂ efflux and internal CO₂ concentration respectively. The decrease of internal CO₂ concentration confirms the upward transport of root-derived CO₂ to the stem. Not taking into account internal CO₂ transport during periods of high sap flow led to an underestimation of root respiration up to $44.9\% \pm 0.7\%$. On a daily basis this underestimation averaged to $25.1\% \pm 0.5\%$. Aboveground, the internally transported CO₂ contributed to stem CO₂ efflux and the efflux of root-derived CO₂ from the stem depended on variations in sap flow. The contribution of root-derived CO₂ to stem CO₂ efflux amounted $50.4\% \pm 5.5\%$ over a 24 h-period.

This master thesis points out the importance of taking the internal transport of CO_2 via sap flow into account when estimating above- and belowground respiration. Therefore we believe that measurements of above and belowground respiration should account for this newly recognized internal CO_2 flux.

Inhoudsopgave

Auteursrecht	iii
Dankwoord	v
Samenvatting	vii
Lijst van figuren	xiii
Lijst der afkortingen	XV

Inleiding

••
XVII
77 4 11

1	Boo	lem C	O ₂ efflux	3
	1.1	Situer	ing koolstoffluxen in een ecosysteem	3
	1.2	Onder	verdeling bodem CO_2 efflux volgens oorsprong $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	4
	1.3	Invloe	d van abiotische omgevingsfactoren op bodem CO_2 efflux $\ldots \ldots \ldots \ldots$	5
		1.3.1	Temperatuur	6
		1.3.2	Bodemvochtigheid	6
		1.3.3	Invloed to evoer fotosynthetische assimilaten	7
		1.3.4	Invloed van bodem organische stof	7
	1.4	Bepali	ng bodem CO_2 efflux en zijn autotrofe en heterotrofe componenten \ldots	8
		1.4.1	Het opdelen van bodem CO_2 efflux in autotrofe en heterotrofe componenten	8
		1.4.2	Ringen	8
		1.4.3	Meting van bodem CO_2 efflux	11
		1.4.4	Bijdrage bodem CO_2 efflux tot ecosysteemrespiratie $\ldots \ldots \ldots \ldots$	13
2	Inte	ern CC	\mathbf{D}_2 transport	15
	2.1	$\rm CO_2~c$	oncentraties in bomen	15
		2.1.1	CO_2 in de gasfase in even wicht met CO_2 in de vloeistoffase $\ldots \ldots \ldots$	15
		2.1.2	Invloed pH en temperatuur	15
	2.2	Bronn	en van intern CO_2	16
		2.2.1	Wortelrespiratie	16
		2.2.2	Rhizosfeer CO_2	17
		2.2.3	Stamrespiratie	17
	2.3	Sinks	van intern CO_2	18
		2.3.1	CO_2 efflux	18

${\it Inhouds opgave}$

		2.3.3 Assimilatie via fotosynthese in blad- en houtig weefsel	20
	2.4	Belang intern CO_2 transport bij CO_2 efflux metingen	20
	2.5	Doelstellingen	21
3	Ma	teriaal en methodes	23
	3.1	Beschrijving experimentele setup	23
	3.2	Ringen van bomen	23
	3.3	Bodem CO_2 efflux metingen	24
		3.3.1 Automatische metingen bodem CO_2 efflux	25
		3.3.2 Manuele metingen van bodem CO_2 efflux $\ldots \ldots \ldots$	26
	3.4	Bepaling interne transport flux van CO_2 afgeleid van wortelrespiratie	27
		3.4.1 Bepaling CO_2 concentratie in de gasfase in de stam	27
		3.4.2 Sapstroommetingen	27
		3.4.3 Berekening CO_2 transport flux $\ldots \ldots \ldots$	28
	3.5	Stam CO_2 efflux	29
	3.6	Berekening autotrofe bodemrespiratie: vergelijking standaard en nieuwe methode .	30
	3.7	Berekening boven grondse efflux van CO_2 afgeleid van wortelrespiratie $\ldots \ldots \ldots$	31
	3.8	Bepaling bodemkarakteristieken en wortelbiomassa	32
	3.9	Dataverwerking en -analyse	33
4	\mathbf{Res}	sultaten	35
	4.1	Klimatologische condities	35
	4.2	Bodem CO_2 efflux en bodemparameters $\ldots \ldots \ldots$	38
	4.3	Intern CO_2	40
	4.4	Autotroof aandeel bodem CO_2 efflux $\ldots \ldots \ldots$	42
	4.5	De bovengrondse efflux van wortelgerelateerde $CO_2 \ldots \ldots \ldots \ldots \ldots \ldots$	44
5	Dis	cussie	49
	5.1	Bepaling autotrofe bodemrespiratie: standaard methode	49
	5.2	Het verband tussen intern CO_2 transport en wortelrespiratie	50
	5.3	Bepaling autotrofe bodemrespiratie: nieuwe methode	52
	5.4	Boven grondse efflux van intern CO_2 afgeleid van wortel respiratie $\ldots \ldots \ldots$	53
	5.5	Belang accurate bepaling bodemrespiratie voor metingen en modelleren op grote	
		schaal	55
6	Cor	nclusie	57
Bi	Bibliografie		

Lijst van figuren

1.1	Koolstoffluxen doorheen ecosysteem.	4
1.2	Close-up van een geringde boomstam van Quercus <i>robus</i>	9
1.3	Opbouw CO_2 concentratie in een gesloten dynamische bodemkamer	12
2.1	Invloed temperatuur en pH op CO_2 oplosbaarheid	16
3.1	Geringde boomstam Quercus robur.	24
3.2	Opstelling bodemkamers ter bepaling bodem CO_2 efflux	25
3.3	Automatische bodemmeetkamer.	26
3.4	Schematische voorstelling van de experimentele set-up van het stamsegment	28
3.5	CO_2 massabalans rond een stamsegment	32
3.6	Staalname ter bepaling bodemkarakteristieken.	33
4.1	Verloop bodem- en stamtemperatuur gedurende de proefperiode	36
4.2	Bodemvochtgehalte en neerslag gedurende de proefperiode	37
4.3	Dampspanningsdeficit gedurende de proefperiode	38
4.4	Verloop van bodem CO_2 efflux van de geringde en controleplots	39
4.5	Verloop intern CO_2 concentratie in de geringde- en controlebomen	41
4.6	Intern CO_2 flux in de geringde en controlebomen	42
4.7	Het autotroof aandeel van bodem $\rm CO_2$ efflux volgens de standaard en nieuwe methode.	43
4.8	Dagelijkse dynamiek in het procentuele aandeel van $\mathbf{R}_{\mathrm{auto}}$ van totale bodemrespiratie.	44
4.9	Relatieve grootte CO ₂ -fluxen in en rond een stamsegment	45
4.10	Dagelijkse dynamiek bijdrage wortelgerelateerd CO_2 aan stam efflux	46

Lijst der afkortingen

Afkorting	Betekenis	Eenheid
$[CO_2]$	gasvormige CO_2 concentratie in de stam	%
$[\mathrm{CO_2}^*]$	totale hoeveelheid opgelost anorganische koolstof	mol $\rm CO_2 \ L^{-1}$
ΔS	$\rm CO_2$ -opslagterm	$\mu mol~CO_2~m^{\text{-}3}~\text{s}^{\text{-}1}$
f_s	sapstroomsnelheid	$\mathrm{cm}^3 \mathrm{h}^{-1}$
$\mathbf{F}_{\mathbf{T}}$	intern CO_2 transport	mg C m ⁻² h ⁻¹
$\mathbf{E}_{\mathbf{A}}$	stam CO_2 efflux	μ mol CO ₂ m ⁻³ s ⁻¹
$\mathrm{E}_{\mathrm{A,wortel}}$	bijdrage CO_2 afgeleid van de wortels aan stam CO_2 efflux	$\mu mol~CO_2~m^{-3}~s^{-1}$
E_B	bodem CO_2 efflux	mg C m ⁻² h ⁻¹
PAR	fotosynthetisch actieve straling	micro mol $\mathrm{m}^{\text{-}2}~\mathrm{s}^{\text{-}1}$
$\mathbf{R}_{\mathrm{auto}}$	autrotroof aandeel bodemrespiratie	mg C m ⁻² h ⁻¹
$\mathbf{R}_{\mathbf{eco}}$	ecosysteemrespiratie	mg C m ⁻² h ⁻¹
RH	relatieve vochtigheid	%
T_{B}	bodemtemperatuur	$^{\circ}\mathrm{C}$
Θ	bodemvochtgehalte	volume $\%$
T_{L}	luchttemperatuur	$^{\circ}\mathrm{C}$
T_S	stamtemperatuur	$^{\circ}\mathrm{C}$
VPD	dampspanningdeficit	kPa

Inleiding

Klimaatsverandering ten gevolge van een toename in broeikasgassen vormt een actueel en dringend probleem. Om de impact en feedback tussen een wijzigend klimaat en ecosystemen correct te kunnen inschatten is een grondige kennis van de globale koolstofcyclus vereist. Een belangrijk onderdeel van deze cyclus is bodem CO_2 efflux.

De literatuurstudie omvat hoofdstuk 1 en 2. Hoofdstuk 1 situeert de rol van bodem CO_2 efflux in de koolstofcyclus van ecosystemen. De verschillende bronnen die bijdragen aan bodem CO_2 efflux en de invloed van abiotische omgevingsfactoren op deze flux worden beschreven. Bodem CO_2 efflux kan onderverdeeld worden in een autotrofe component, zijnde wortelrespiratie en een heterotrofe component, zijnde de microbiële afbraak van bodem organisch materiaal. De in deze studie gebruikte techniek voor de onderverdeling van bodem CO_2 efflux in zijn autrofe en heterotrofe component wordt hier in detail besproken. Tot slot wordt dieper ingegaan op het gebruik van 'gesloten dynamische bodemkamers' voor het opmeten van bodem CO_2 efflux.

In hoofdstuk 2 wordt aandacht besteed aan intern CO_2 transport in bomen. Wortelrespiratie, opname van opgelost CO_2 via bodemwater en stam- en takrespiratie dragen bij tot intern CO_2 . Radiale diffusie naar de bodem of atmosfeer, transport via de sapstroom en refixatie door fotosynthese vormen de voornaamste 'sinks'. Tot slot wordt het verband tussen de autotrofe component van bodem CO_2 efflux en het interne transport van CO_2 vanuit de wortels naar de stam in detail weergegeven.

Hoofstuk 3 behandelt de materiaal en methodes waarbij de proefopstelling in de plantage te Zwijnaarde, de uitgevoerde metingen en berekeningsmethoden gebruikt in deze studie worden besproken.

Hoofdstuk 4 geeft de resultaten van deze studie weer. Na een overzicht van de klimatologische conditities gedurende de proefperiode, volgen de resultaten van de impact van het ringen op bodem CO_2 efflux, de interne CO_2 concentratie en de interne transportflux. Hierna volgen de resultaten van de bepaling van de autotrofe component van bodem CO_2 efflux volgens een standaard en nieuw voorgestelde methode. Tot slot wordt de bijdrage van CO_2 afgeleid van de wortels aan stam CO_2 efflux ingeschat. In hoofdstuk 5 worden de resultaten van deze studie besproken en in een bredere context geplaatst. Via vergelijking in met de bestaande literatuur worden deze resultaten geïnterpreteerd en kritische kanttekeningen geformuleerd.

Hoofdstuk 6 vat tot slot de belangrijkste resultaten en bevindingen van deze studie samen.

Hoofdstuk 1

Bodem CO_2 efflux

1.1 Situaring koolstoffluxen in een ecosysteem

Ecosysteemrespiratie (R_{eco}) is, naast fotosynthese, een immense terrestrische koolstofflux (Raich & Schlesinger, 1992) waarbij tot 18 keer meer CO₂ wordt uitgestoten dan globaal bij verbranding van fossiele brandstoffen (Prentice et al., 2001). Algemeen wordt aangenomen dat fotosynthese en ecosysteemrespiratie van dezelfde grootteorde zijn (Schimel et al., 1994), waarbij het verschil tussen beiden gelijk is aan de netto-ecosysteemproductie (NPP). Deze parameter geeft weer of een ecosysteem al dan niet koolstof uit de atmosfeer assimileert en wordt globaal geschat op een 60 Pg/jaar (Atjay et al., 1979; Prentice et al., 2001) waarbij voornamelijk bossen grote hoeveelheden koolstof vastleggen (Luyssaert et al., 2010) in biomassa (Janssens et al., 2001) en bodems (Knohl et al., 2003).

Terwijl fotosynthese via een enkel en goed onderbouwd proces beschreven kan worden (Lawlor, 2001), integreert de totale ecosysteemrespiratie meerdere processen, zowel boven- als ondergronds, waarbij CO_2 terug wordt afgegeven aan de atmosfeer (Hanson et al., 2000; Bhupinderpal et al., 2003; Kuzyakov, 2006; Trumbore, 2006).

Ruimtelijk kan ecosysteemrespiratie in bosecosystemen onderverdeeld worden in een boven- en ondergrondse CO_2 flux (Fig. 1.1), waarbij de bovengrondse component afkomstig van blad-, stam- en takrespiratie voornamelijk als autotroof verondersteld mag worden (Trumbore, 2006). Bovengrondse respiratie zal verder niet besproken worden in deze inleiding. Functioneel kan bodem CO_2 efflux (E_B) opgedeeld worden in een autotrofe component, namelijk respiratie van de wortels en geassocieerde micro-organismen, en een heterotrofe component, namelijk de vrijstelling van CO_2 door de microbiële decompositie van organisch materiaal. Geschat wordt dat de E_B 30-90 % bijdraagt tot de totale ecosysteemrespiratie van bossen (Goulden et al., 1996; Law et al., 1999; Longdoz et al., 2000; Davidson et al., 2006). Dit toont het belang aan van een correcte inschatting van bodem CO_2 efflux bij het opstellen van koolstofbalansen in bossen (Janssens et al., 2001).

Figuur 1.1: Koolstoffluxen doorheen een ecosysteem (Trumbore, 2006).

1.2 Onderverdeling bodem CO₂ efflux volgens oorsprong

Algemeen kunnen vijf bronnen geïdentificeerd worden welke substantieel bijdragen tot E_B (Kuzyakov, 2006). Als eerste is er CO₂ afkomstig van wortelrespiratie, tevens de enige autotrofe bron (Schuur & Trumbore, 2006). Wortels zijn in staat een brede waaier aan chemische componenten als wortelexudaten af te scheiden (Flores et al., 1999). Deze wortelexudaten kunnen regulerend op de rhizosfeer (de bodemzone beïnvloed door wortels) werken, de chemische en fysische eigenschappen van de bodem wijzigen en de groei van concurrende planten verhinderen (Nardi et al., 2000; Walker et al., 2003). Bovendien vormen wortelexudaten een belangrijke C-bron voor rhizobacteriën (wortel-geassocieerde micro-organismen) (Hutsch et al., 2002; Bonkowski, 2004). De CO₂ afkomstig van deze rhizomicrobiële component vormt een tweede bron van bodem CO₂ efflux (Kuzyakov & Larionova, 2006). Deze eerste twee fluxen zijn sterk aan elkaar verbonden en worden vaak gegroepeerd in één wortel-afgeleide CO₂ flux, maar strikt genomen behoort rhizomicrobiële respiratie echter tot de heterogene component van bodemrespiratie (Kuzyakov 2006; Trumbore 2006). In de tekst zal naar de gecombineerde flux van rhizomicrobiële en wortelrespiratie verwezen worden door middel van één term, nl. wortelrespiratie.

De heterotrofe component van E_B bevat tevens de vrijstelling van CO_2 ten gevolge van de microbiële afbraak van recent afgestorven plantenmateriaal en de microbiële afbraak van ouder bodem organisch materiaal in de aanwezigheid van plantwortels (Kuzyakov, 2006). De aanwezigheid van wortels wijzigt de fysisch, hydrologisch en chemische omgeving van de rhizosfeer en beïnvloedt

Hoofdstuk 1. Bodem CO_2 efflux

hierbij verschillende biologische processen zoals decompositie van organisch materiaal, plantproductiviteit (Wu et al., 1993; Gregory, 2006; Bird et al., 2011) en de ecosysteemkoolstofbalans (Kuzyakov & Larionova, 2006). Deze verandering in decompositiesnelheid kan zowel positieve als negatieve waarden aannemen en wordt aangeduid als het 'rhizosphere priming effect' (Kuzyakov, 2002; Rasse et al., 2005; Cheng, 2009; Bird et al., 2011). Dit effect wordt toegeschreven aan de beschikbaarheid van wortelexudaten (Bonkowski, 2004) en aan de competitie voor stikstof tussen wortel en rhizobacteriën (Couteaux et al., 1991; Kuzyakov, 2002; Cheng, 2009).

De vijfde component van bodem CO_2 efflux is afkomstig van de afbraak van bodem organisch materiaal in een wortelvrije bodem, dewelke vaak als basale respiratie wordt beschouwd (Insam, 1990; Kuzyakov, 2006).

De mate waarin de individuele bronnen bijdragen aan bodem CO_2 efflux is afhankelijk van de biotische en abiotische eigenschappen van het ecosysteem (Kuzyakov & Gavrichkova, 2010). Afhankelijk van het beschouwde ecosysteem en de gebruikte technieken varieert het geschatte aandeel van wortel- en rhizomicrobiële respiratie tot E_B tussen 10-90 % (Hanson et al., 2000) waarbij de hogere bijdrages worden waargenomen bij bosecosystemen (Subke et al., 2006).

Terwijl de activiteit van heterogene bodemorganismen geassocieerd is aan de demineralisatiegraad van bodem organisch materiaal, is CO_2 afkomstig van wortelrespiratie gerelateerd aan de aanvoer van bovengrondse fotosynthetische assimilaten (Horwath et al., 1994; Hanson et al., 2000). Litton et al. (2007) bepaalden dat tot 75% van de koolstof geassimileerd tijdens fotosynthese wordt afgeleid naar de bodem. Daar wordt ongeveer 60% van de geassimileerde koolstof gebruikt in wortelrespiratie (Grossiord & Epron, 2012).

1.3 Invloed van abiotische omgevingsfactoren op bodem CO_2 effux

 E_B wordt beïnvloedt door een brede range van biotisch en abiotische factoren zoals bijvoorbeeld temperatuur, bodemvochtigheid, plantgemeenschap en fotosynthetische assimilaten (Davidson et al., 1998; Subke et al., 2006; Trumbore, 2006). Aangezien verschillende processen bijdragen tot E_B , is het noodzakelijk om de invloed van een omgevingsfactor op een proces afzonderlijk na te gaan (Baldocchi, 2008) om zo op gepaste wijze het effect van variërende omgevingsfactoren te kunnen inschatten (Fenn et al., 2010; Kuzyakov & Gavrichkova, 2010). Hoofdstuk 1. Bodem CO_2 efflux

1.3.1 Temperatuur

Variaties in bodemtemperatuur kunnen een groot deel van dagelijkse en seizoensgebonden variaties in E_B verklaren (Davidson et al., 1998). Algemeen gaat een temperatuurstijging gepaard met een toename in CO₂-efflux (zolang andere factoren, zoals bodemvocht en nutriëntbeschikbaarheid, niet limiterend zijn) (Pregitzer et al., 2000; Baldocchi, 2008; Fenn et al., 2010). CO₂ efflux metingen van noordelijke en zuidelijke ecosystemen vertonen echter gelijkaardige waarden en geven aan dat op lange termijn adaptatie aan omgevingstemperatuur optreedt (Atkin et al., 2005; Baldocchi, 2008). Temperatuursgevoeligheid van bodem respiratie wordt vaak gekarakteriseerd aan de hand van empirisch bepaalde formules, waarvan de Q_{10} functie een veel gebruikte methode is. De Q_{10} temperatuurscoëfficiënt geeft aan wat met welke factor een proces zoals respiratie zal toenemen bij een temperatuursstijging van 10°C (Valentini, 2003). De Q_{10} waarde wordt dan gebruikt in onderstaande vergelijking (Lloyd & Taylor, 1994).

$$R_2 = R_1 Q_{10}^{\frac{T_2 - T_1}{10}} \tag{1.1}$$

Met R_1 en R_2 de respiratiesnelheid bij respectievelijk temperatuur T_1 en T_2 .

Atkin et al. (2005) geeft aan dat het gebruik van een Q_{10} -waarde van 2.0 - 2.3 binnen het beperkte temperatuursbereik tussen 15 °C en 25 °C gepast is, hoewel individuele studies waarden rapporteren tussen 3.4 tot 5.6 (Davidson et al., 1998; Davidson & Janssens, 2006). Eerdere studies vermeldden een verschillende temperatuursgevoeligheid van de autotrofe en heterotrofe component van bodem CO₂-efflux (Boone et al., 1998; Pregitzer et al., 2000), maar latere studies spraken dit tegen (Irvine et al., 2005; Sulzman et al., 2005; Subke et al., 2006). Baath & Wallander (2003) vergeleken de Q_{10} -relatie van CO₂-efflux van wortelrespiratie met de CO₂-efflux van een wortelvrije bodem. De snelheid van respiratie was dertig maal lager in de wortelvrije bodem, maar er werden geen significante verschillen in Q_{10} -waarde gevonden. Hierbij suggereerden ze dat eerdere verschillen in Q_{10} -waarden gevonden door Boone et al. (1998) te wijten zijn aan moeilijk te controleren overige omgevingsparameters.

1.3.2 Bodemvochtigheid

Algemeen wordt een positieve relatie tussen E_B en bodemvochtgehalte waargenomen, tenzij deze laatste zeer lage of hoge waarden aanneemt (Davidson et al., 1998; Qi & Xu, 2001). Verschillende studies stelden een stijging in E_B vast na een periode van neerslag. Dit effect is meer uitgesproken tijdens drogere periodes (Huxman et al., 2004), maar wordt ook waargenomen in vochtigere klimaten (Lee et al., 2004). Algemeen bepaalt de hoeveelheid labiel organisch materiaal en de hoeveelheid neerslag de grootte van de stijging in E_B (Baldocchi, 2008). Davidson et al. (1998) suggereerden het gebruik van de bodemwaterpotentiaal als indicator voor de hoeveelheid biologisch beschikbaar water en vonden een ondergrens voor bacteriën op -0.01 MPa en -1.5 MPa voor wortels. Hoewel sterk afhankelijk van de bodemkarakteristieken wordt een bodem vaak beschouwd op veldcapaciteit te zijn wanneer de bodemwaterpotentiaal -0.33 MPa bedraagt (Saxton & Rawls, 2006), een waarde veel hoger dan de absolute ondergrens van wortels.

1.3.3 Invloed to evoer fotosynthetische assimilaten

Seizoenale veranderingen in zonnestraling, bodemtemperatuur, en bodemvocht gebeuren vaak simultaan met variaties in plantactiviteiten en bijgevolg met variaties in de transfer van fotosynthetische assimilaten van bovengrondse naar ondergrondse plantdelen. Wijzigende omgevingsfactoren maskeren zo vaak het effect van fotosynthese op wortelgerelateerde processen (Subke et al., 2006; Fenn et al., 2010; Kuzyakov & Gavrichkova, 2010).

Meer en meer studies geven aan dat de toevoer van fotosynthetische assimilaten een significante impact heeft op wortelrespiratie (Xu et al., 2008; Kuzyakov & Gavrichkova, 2010; Subke et al., 2011). E_B is afkomstig van groei- en onderhoudsrespiratie. Onderhoudsrespiratie betreft de processen voor het onderhoud en behouden van cellulaire structuren en intracellulaire ionen- en metaboliet-gradiënten en vindt het hele jaar door plaats (De Vries & Penning, 1975). Dit in tegenstelling tot groeirespiratie dat enkel tijdens het groeiseizoen plaatsvindt (Amthor, 2000). Onderhoudsrespiratie is sterk temperatuursafhankelijk, terwijl groeirespiratie afhankelijk is van de beschikbaarheid van fotosynthetische assimilaten (Sprugel et al., 1995). Dit verklaart waarom variaties in E_B zowel gerelateerd kan worden aan bodemtemperatuur als wijzigingen in koolstofallocatie naar de bodem (Hogberg et al., 2001; Kuzyakov & Gavrichkova, 2010).

Daarnaast is het afscheiden van wortelexudaten door wortels, waarvan suikers een belangrijke component vormen (Hutsch et al., 2002), direct gekoppeld aan fotosynthese in de kruin (Murray et al., 2004; Thornton et al., 2004). Wortelexudaten worden snel verbruikt door micro-organismen aanwezig in de rhizosfeer, wat een stijging van rhizomicrobieel gerespireerd CO_2 veroorzaakt (Subke et al., 2006).

1.3.4 Invloed van bodem organische stof

Onzekerheid bestaat of de decompositiesnelheid van organisch materiaal, reeds gedurende langere tijd aanwezig in de bodem, met eenzelfde gevoeligheid reageert op temperatuursveranderingen als recent gevormde fotosynthetische assimilaten (Knorr et al., 2005). Een onderbouwd inzicht in de relatie tussen bodemtemperatuur en demineralisatie van bodem organisch materiaal is noodzakelijk voor een correcte inschatting van de koolstofcyclus (Fang et al., 2005). Knorr et al. (2005) vond dat de temperatuursgevoeligheid van niet-labiel bodem organisch material groter is dan deze van labiele componenten. Andere studies suggereren geen significant verschil in de respons van beide groepen op temperatuursverandering (Fang et al., 2005; Davidson & Janssens, 2006). Verdere inzichten in substraatbeschikbaarheid, depolymerisatie en microbiële efficiëntie zijn nodig om de impact van een warmer klimaat op de decompositie van bodem organisch materiaal in te schatten (Conant et al., 2011).

1.4 Bepaling bodem CO_2 efflux en zijn autotrofe en heterotrofe componenten

1.4.1 Het opdelen van bodem CO_2 efflux in autotrofe en heterotrofe componenten

Het opdelen van E_B in autotrofe en heterotrofe componenten is van essentieel belang voor het correct begrijpen en modelleren van koolstoffluxen in ecosystemen (Trumbore, 2006). Heterotrofe processen in de bodem zijn gelinkt aan ondergrondse koolstofaccumulatie en nutriëntdynamica (Ryan & Law, 2005; Kuzyakov, 2006; Wang & Yang, 2007), terwijl autotrofe respiratie gerelateerd is aan plantactiviteit en toevoer van bovengrondse fotosynthetische producten naar de bodem (Sulzman et al., 2005; Binkley et al., 2006; Kuzyakov & Gavrichkova, 2010). Autotrofe en heterotrofe componenten reageren ook anders op omgevingsfactoren zoals aangehaald in §1.3 (Goulden et al., 1996; Boone et al., 1998; Bhupinderpal et al., 2003; Sulzman et al., 2005).

Verschillende technieken worden toegepast voor het opdelen van CO_2 efflux, elk met hun vooren nadelen (Hanson et al., 2000; Hogberg et al., 2001; Lee et al., 2003; Ryan & Law, 2005; Kuzyakov, 2006; Subke et al., 2006). Grosso modo kunnen de technieken opgedeeld worden naargelang de techniek al dan niet steunt op het gebruik van isotopen. De groep van de niet-isotopische technieken wordt dan verder opgedeeld volgens de mate van verstoring van de bodem tijdens de toegepaste techniek. Eén van deze technieken, waarbij bomen worden geringd, werd gebruikt in deze studie en wordt hier verder besproken in detail.

1.4.2 Ringen

Methodiek

Bij het ringen van bomen wordt er destructief een deel van het floëemweefsel verwijderd waardoor de stroom van assimilaten vanuit de bladeren naar de wortels wordt onderbroken (Kuzyakov, 2006) (Fig. 1.2). Dit veroorzaakt kort na het ringen een afname van wortelrespiratie en laat zo een inschatting van de autotrofe component van de totale bodem CO_2 -efflux toe door het verschil te bepalen in E_B van zones met geringde bomen en niet-geringde bomen (controle plot)(Hogberg

Hoofdstuk 1. Bodem CO_2 efflux

et al., 2001; Frey et al., 2006; Kuzyakov, 2006). Algemeen wordt aangenomen dat het het ringen zelf heeft geen directe fysische impact op bodem en wortels, waardoor het water- en temperatuursprofiel van de bodem nabij geringde bodem niet sterkt afwijkt van onbehandelde bomen (Hogberg et al., 2001), dit in tegenstelling tot andere toegepaste scheidingstechnieken zoals trenching (Fisher & Gosz, 1986; Hanson et al., 2000; Lee et al., 2003; Kuzyakov & Larionova, 2006) of wortelverwijderingstechnieken (Hanson et al., 2000). Frey et al. (2006) stelden vast dat uitvoering van ringen de koolstof-, stikstof- en nitraatconcentraties in de bodem niet beïnvloedde. Een ander voordeel van het ringen van bomen in vergelijking met andere niet-isotopische methoden is de praktische haalbaarheid van de techniek, gegeven de vaak grote wortelbiomassa van bomen (Hogberg et al., 2001; Subke et al., 2004; Kuzyakov, 2006).

Figuur 1.2: Een geringde boomstam van Quercus robur.

Invloed seizoen op effect ringen

Door het toepassen van ringen wordt een verhoogd gebruik van de koolstofreserves in de wortels vastgesteld (Olsson et al., 2005; Hogberg et al., 2009). Frey et al. (2006) vergeleek zetmeelconcentraties in de fijne wortels van geringde en niet-geringde Europese kastanjes (*Castanea sativa*). 37 dagen na het ringen was de zetmeelconcentraties van de geringde bomen een grootteorde kleiner dan deze van de controlebomen. Eerdere studies geven aan dat na het ringen zetmeelreserves worden aangesproken om de concentraties van oplosbare suikers op peil te houden (Jordan & Habib, 1996; Regier et al., 2010). Li et al. (2003) suggeerden dat deze sterke afname in zetmeel ook het gevolg kan zijn van een afname van de synthese van nieuw zetmeel in de wortels. De grootte van deze koolstofreserves varieert seizoenaal en beïnvloedt de tijdsvertraging tussen het het tijdstip

van ringen en de waargenomen daling in wortel CO_2 -efflux. Ringen van bomen tijdens de late zomer en herfst veroorzaakt een snellere daling van E_B dan tijdens de lente omwille van beperkte wortelsreserves gedurende die perioden van het jaar (Hogberg et al., 2001; Domec & Pruyn, 2008; Maier et al., 2010).

Invloed bodem microbiële gemeenschap op effect ringen

Naast een effect op wortelreserves, heeft het ringen van bomen ook een effect op de substraatbeschikbaarheid voor micro-organismen in de rhizosfeer. Door afsterving van de wortels na het ringen komt extra substraat ter beschikking wat leidt tot een verhoogde microbiële CO_2 -efflux (Bhupinderpal et al., 2003). Dit effect kan leiden tot een onderschatting van de wortelgerelateerde efflux component (Hogberg et al., 2001; Binkley et al., 2006; Hogberg et al., 2009).

Anderzijds leidt het ringen van bomen tot een afname in wortelexudaten, waardoor de substraatbeschikbaarheid voor de microbiële bodemgemeenschap afneemt (Binkley et al., 2006; Kuzyakov, 2006; Subke et al., 2006). Subke et al. (2004) graafden tijdens een boomringexperiment de aanwezige strooisellaag af en verving ze een door gelijke hoeveelheid ¹³C-gemerkt strooisel voor een geringde en controleplot. Deze opstelling toonde aan dat ringen leidde tot een daling van strooiselafbraak in vergelijking met de controleplot, aangezien er een lagere ¹³C aanrijking werd waargenomen bij staalname van de rhizobacteriën. Dit omwille van de afwezigheid van het 'rhizosphere priming effect' onder geringde bomen. Hierdoor is een overschatting van de autotrofe component van E_B mogelijk (Binkley et al., 2006).

Invloed ringen op sapstroomsnelheid

Er wordt verondersteld dat ringen geen invloed heeft op de opname en transport van water door de boom (Subke et al., 2004; Daudet et al., 2005; Murakami et al., 2008). Deze veronderstelling wordt tegengesproken door resultaten bekomen door De Schepper et al. (2010). Hierbij werden twee jaar oude eiken geringd en werd een afname van xyleemsapsnelheid waargenomen. Deze afname kan waarschijnlijk verklaard worden door een feedback effect (Cheng et al., 2008; Domec & Pruyn, 2008): het ringen van bomen zorgt voor een opstapeling van fotosynthetische producten boven de geringde zone. Hierdoor ontstaat verzadiging in de hoger gelegen plantdelen, waardoor een negatieve terugkoppeling van de fotosynthesesnelheid plaatsvindt. Tijdens de experimenten van De Schepper et al. (2010) werd daarenboven de geringde zone niet afgedekt, in tegenstelling tot bij ons experiment, wat waarschijnlijk een uitdrogingseffect van het xyleem teweeg zal gebracht hebben. Hoofdstuk 1. Bodem CO_2 efflux

1.4.3 Meting van bodem CO₂ efflux

Gesloten dynamische bodemkamers

Er bestaan verschillende methoden voor het opmeten van E_B , met elk voor- en nadelen (Livingston & Hutchinson, 1995; Davidson et al., 2002; Pumpanen et al., 2004). Hier wordt dieper ingegaan op het gebruik van 'non-steady state through-flow' chambers of vrij vertaald 'gesloten dynamische' bodemkamers.

Bij deze methode wordt een afgesloten kamer op het bodemoppervlak geplaatst waarna vervolgens de snelheid van toename in CO_2 concentratie wordt bepaald (Livingston & Hutchinson, 1995). Na het sluiten van de bodemkamer volgt eerst een periode waarbij de kamers gespoeld worden met lucht uit de omringende atmosfeer om zo de initiële CO_2 concentratie in de kamer gelijk te stellen aan de atmosferische concentratie. Vervolgens begint de CO_2 concentratie in de kamer op te bouwen aangezien CO_2 afkomstig van de bodem in de kamer wordt toegevoegd. Een pomp circuleert via een gesloten circuit de aanwezige lucht in de bodemkamer naar een infrarood gas analysator (IRGA), dewelke de CO_2 concentratie in aangevoerde lucht meet, vanwaar de lucht terug naar de bodemkamer wordt gestuurd (Savage et al., 2008). Uit de toenamesnelheid van CO_2 concentratie in de meetkamer kan de E_B bepaald worden (Fig. 1.3) (Livingston & Hutchinson, 1995; Pumpanen et al., 2004).

Analytische bepaling bodem CO₂ efflux

De gemeten CO_2 concentratie in de bodemkamers wordt uitgezet in functie van de tijd waarna de lineaire regressiecoëfficiënt (\mathbb{R}^2) bepaald wordt van verschillende periodes, dewelke een minimum aantal meetpunten moet bevatten. De periode met de grootste regressiecoëfficiënt, dewelke tevens groter is dan een op voorhand vastgelegd minimum (bv. 0.9), is de meest lineaire sectie en wordt gekozen voor de bepaling van de E_B . Deze kan vervolgens bepaald worden via onderstaande vergelijking (Savage et al., 2008).

$$E_B = \frac{dCO_2}{dt} \cdot \frac{PV}{ART} \cdot \frac{1mol\ CO_2}{10^6\ \mu mol\ CO_2} \cdot \frac{1\ mol}{22.4\ L} \cdot \frac{12g\ C}{mol\ CO_2} \cdot 3600\frac{s}{h}$$
(1.2)

met E_B in mg C m⁻¹ h⁻¹, dCO₂/dt de helling van de toename in CO₂ concentratie in functie van de tijd (µmol CO₂ mol lucht⁻¹ s⁻¹), P de atmosferische druk (atm), V het kamervolume (L), T de luchttemperatuur (K), A de oppervlakte binnen de ring (m²) en R de universele gasconstante zijnde 0.08206 L atm mol⁻¹ K⁻¹.

Hoofdstuk 1. Bodem CO_2 efflux

Figuur 1.3: Opbouw CO_2 concentratie in een gesloten dynamische bodemkamer met elke 12 sec een meetpunt. Op tijdstip 0 sluit de meetkamer, waarna een periode van spoelen volgt. De rechte lijn geeft de lineaire sectie aan gebruikt voor het bepalen van bodem CO_2 efflux.

Voorkomen van artefacten

Voor een correcte bepaling van E_B is het van belang dat de bodemmeetkamers slechts een minimale verstoring van de omgeving met zich meebrengen (Livingston & Hutchinson, 1995; Davidson et al., 2002; Heinemeyer et al., 2011). Belangrijke aandachtspunten zijn de aanwezige druk in de meetkamer en de CO₂ concentratiegradiënt tussen bodem en atmosfeer (Davidson et al., 2002).

Door opbouw van CO_2 in de meetkamer ontstaat er in de kamer een andere concentratiegradiënt tussen bodem en atmosfeer, waardoor diffusie van CO_2 uit de bodem negatief beïnvloed wordt en E_B mogelijks onderschat wordt (Conen & Smith, 2000; Davidson et al., 2002; Pumpanen et al., 2004).

De aanwezige druk in de bodemkamer heeft tevens een invloed op gemeten E_B . Het plaatsen van een systeem waarbij de druk in de kamer wordt gelijkgesteld aan de heersende atmosfeerdruk is noodzakelijk voor het vermijden van overdruk en aldus onderschatting van E_B (Lund et al., 1999; Davidson et al., 2002). Daarentegen kan een te hoge uitstroomsnelheid van lucht uit de kamer een onderdruk en aanzuiging van CO_2 rijke lucht uit de bodem veroorzaken (Longdoz et al., 2000).

Hoofdstuk 1. Bodem CO_2 efflux

Manuele en automatische meetsystemen

Gesloten bodemkamers kunnen manueel of automatisch gebruikt worden, waarbij een afweging kan gemaakt kan worden tussen enerzijds een hoge ruimtelijke of anderzijds een hoge temporele resolutie. Een manueel systeem van een groot aantal gelijkmatig verdeelde meetkamers laat toe om de seizoenale E_B accuraat in te schatten met een grote ruimtelijke betrouwbaarheid (Stoyan et al., 2000; Savage & Davidson, 2003). Omwille van praktische beperkingen zoals tijd en weersomstandigheden zijn metingen slechts periodiek mogelijk, waardoor diurnale variaties en de invloed van snel wijzigende parameters niet opgevangen worden (Davidson et al., 2002).

De hoge meetfrequenties van automatische systemen geeft de mogelijkheid deze variaties wel te registreren (Crill et al., 2000; Liu et al., 2006; Carbone & Vargas, 2008). Een hoge financiële kost en grotere onderhoudsvraag beperkt echter vaak het aantal ingezette automatische meetkamers wat ten nadele is van de ruimtelijke resolutie (Savage et al., 2008).

Via een combinatie van enkele automatische meetkamers met verschillende manuele meetkamers kan echter een goede inschatting van zowel de ruimtelijke als de temporele variatie in E_B bekomen worden (Davidson et al., 2002; Savage & Davidson, 2003; Carbone & Vargas, 2008).

1.4.4 Bijdrage bodem CO₂ efflux tot ecosysteemrespiratie

Zoals eerder aangegeven draagt E_B een substantieel deel bij tot R_{eco} . Deze bijdrage varieert echter seizoenaal onder invloed van biotische en abiotische factoren (Davidson et al., 2006). Gedurende de vroege lente zal de ratio van E_B op R_{eco} een minimum vertonen, waarna deze toeneemt in zomer om vervolgens maximaal te worden tijdens de herfst (Law et al., 1999; Lee et al., 2003). Gedurende de winterperiode neemt de bodemrespiratie sterk af tot een niveau van basale respiratie (Winston et al., 1997).

Algemeen wordt aangenomen dat E_B een goede maat is voor bodemrespiratie. Bijgevolg zijn alle meetmethodes van bodemrespiratie gebaseerd op het paradigma dat CO_2 afgeleid van wortelrespiratie via de bodem naar de atmosfeer diffundeert. Echter, recent hebben Aubrey & Teskey (2009) en Grossiord & Epron (2012) gesuggereerd dat bodemrespiratie onderschat wordt bij metingen van E_B . In beide onderzoeken werd vastgesteld dat een deel van de autotrofe respiratie in het wortelsysteem blijft, waarna het bijdraagt tot intern CO_2 transport (F_T).

Hoofdstuk 2

Intern CO₂ transport

2.1 CO_2 concentraties in bomen

2.1.1 CO_2 in de gasfase in evenwicht met CO_2 in de vloeistoffase

Het spinthout van bomen kan een belangrijke hoeveelheid gas bevatten, met algemeen waarden van 20 volume % (Gartner et al., 2004). De samenstelling van het inwendig gas in boomstammen verschilt sterk van de samenstelling van de atmosferische gasfase. Respiratie draagt bij tot CO_2 in de boomstam en gemeten interne gasvormige CO_2 concentraties variëren van lager dan 1% tot meer dan 26%, wat ongeveer 30 tot 750 keer hoger is dan atmosferische CO_2 concentraties (Teskey et al., 2008).

Naast CO_2 in de gasfase, bevindt zich tevens een belangrijk deel van het intern CO_2 opgelost in het xyleemsap. Opgelost CO_2 reageert verder met water tot de vorming van koolzuur (H₂CO₃), wat verder kan dissociëren tot bicarbonaat (HCO₃⁻) en carbonaat (CO_3^{2-}). De som van alle opgeloste CO_2 -species vormt de totale hoeveelheid opgeloste anorganische koolstof ([CO_2^*], mol L⁻¹) (Hari et al., 1991; Stumm & Morgan, 1996; Levy et al., 1999).

$$[CO_2^*] = CO_{2(aq)} + H_2CO_{3(aq)} + HCO_{3(aq)}^- + CO^{(2-)_{3(aq)}}$$
(2.1)

Door verdere dissociatie HCO_3^- en carbonaat CO_3^{2-} is de hoeveelheid H_2CO_3 verwaarloosbaar. De wet van Henry beschrijft het evenwicht tussen de CO₂ concentratie in de gasfase en opgeloste fase en laat toe om de hoeveelheid CO₂ opgelost in het xyleemsap te bepalen. Temperatuur, pH en de partieeldruk van CO₂ boven het xyleemsap beïnvloeden dit evenwicht (Stumm & Morgan, 1996).

2.1.2 Invloed pH en temperatuur

De totale hoeveelheid $[CO_2^*]$ kan bekomen worden via onderstaande formule:

$$[CO_2^*] = \left(1 + \frac{K_1}{10^{(-pH)}} + \frac{(K_1K_2)}{(10^{(-pH)})^2}\right) \cdot K_{\rm H} \cdot pCO_2$$
(2.2)

Met K_1 en K_2 dissociatieconstanten, K_H de constante van Henry en pCO₂ de CO₂ partieeldruk (%) boven het xyleem (Stumm & Morgan, 1996).

Figuur 2.1 geeft de invloed van een temperatuurs- en pH-verandering op $[CO_2^*]$ weer. Een verandering in pH heeft een meer uitgesproken effect op deze parameter, waarbij een stijging in pH een hogere oplosbaarheid van CO₂ in de vloeibare fase met zich meebrengt (Stumm & Morgan, 1996; Teskey et al., 2008; Cerasoli et al., 2009). De literatuur meldt een range van pH variërend tussen 4.5 tot 7.4 (Teskey et al., 2008). Metingen uitgevoerd door Aubrey et al. (2011) op *Populus deltoides* vonden dat pH geen diurnale trend vertoonde en niet beïnvloed werd door temperatuur of neerslag. Tevens werd er geen significant verschil in pH tussen verschillende plantonderdelen gevonden.

Figuur 2.1: Effect van temperatuur en pH op de concentratie van opgelost anorganische koolstof in xyleemsap bij een constante CO_2 partieeldruk van 1% boven het xyleemsap (Teskey et al., 2008).

2.2 Bronnen van intern CO_2

2.2.1 Wortelrespiratie

Uit recent onderzoek blijkt dat wortelrespiratie een niet onbelangrijke bijdrage levert aan intern CO_2 (Teskey & McGuire, 2007; Aubrey & Teskey, 2009; Grossiord & Epron, 2012), aangezien een deel van de CO_2 afgeleid van wortelrespiratie opwaarts getransporteerd kan worden met de sapstroom na oplossing in het xyleemsap. Hoge CO_2 concentraties aan de basis van de boomstam in vergelijking met CO_2 concentraties gemeten voor hogere stamsegmenten wijzen erop dat een groot deel van het intern CO_2 benedengronds is afgeleid (Teskey & McGuire, 2007).

Hoofdstuk 2. Intern CO_2 transport

2.2.2 Rhizosfeer CO₂

Gasvormig CO₂ aanwezig in de bodem is in evenwicht met opgelost CO₂ in de bodemoplossing. De gasvormige CO₂ concentratie in evenwicht met de bodemoplossing in bosbodems varieert tussen <0.1% en 2% (Amundson & Davidson, 1990; Yavitt et al., 1995; Pumpanen et al., 2003; Jassal et al., 2005) en verschillende studies geven aan dat wortels in staat zijn CO₂ op te nemen via het bodemwater (Arteca & Poovaiah, 1982; Amiro & Ewing, 1992; Enoch & Olesen, 1993; Ford et al., 2007). Teskey & McGuire (2007) maten de CO₂ concentratie in de bodem en aan de basis van de stam van een plataan (*Platanus occidentalis*) en bekwamen een waarde van respectievelijk 1.2% en 7.6% ter benadering van de CO₂ concentratie in de wortels. Gezien de interne concentratie een veelvoud van de bodemconcentratie bedroeg, concludeerden ze hieruit dat de CO₂ concentratie in de boom maar voor een beperkte hoeveelheid is afgeleid van de opname van bodemwater waarin CO₂ is opgelost. Voor *Populus deltoides* werd deze bijdrage geschat op 8%, terwijl 92% van CO₂ concentratie gemeten in de stam basis afkomstig was van CO₂ afgeleid van wortelrespiratie (Aubrey & Teskey, 2009). Ford et al. (2007) vonden tevens dat de opname van opgeloste bodem CO₂ voor minder dan 1% bijdroeg aan de netto koolstofassimilatie bij zaailingen van *Pinus taeda*.

2.2.3 Stamrespiratie

Een belangrijk aandeel van intern CO_2 is afkomstig van stam- en takrespiratie in levende cellen (Teskey et al., 2008). Vooral het cambium en floëem bevatten levende cellen, terwijl in het spint enkel de houtstraalcellen levend zijn (Fahn, 1982; Cutler et al., 2008). In grote stammen kan echter de hoeveelheid levende xyleemcellen deze van het floëem en cambium in aantal overschrijden (Ryan, 1990; Ceschia et al., 2002). Ongeveer één derde van het koolstofverlies van een ecosysteem door respiratie wordt veroorzaakt door stam- en takrespiratie (Damesin et al., 2002). Teskey & McGuire (2007) vond echter dat slechts 55 % van de stam CO_2 efflux (E_A) afkomstig is van lokaal respirerende cellen en dat de overige 45 % via intern transport werd aangevoerd. De processen die bijdragen tot stam- en takrespiratie kunnen functioneel onderverdeeld worden in groei- en onderhoudsgerelateerde processen (De Vries & Penning, 1975). Dit geeft aanleiding tot een seizoenale variatie in de xyleem CO_2 concentratie (Ceschia et al., 2002; Vose & Ryan, 2002; Saveyn et al., 2007). Ook diurnale patronen in xyleem CO_2 concentraties worden waargenomen met algemeen minima overdag en maxima 's nachts (McGuire & Teskey, 2002; Saveyn et al., 2007; Teskey & McGuire, 2007; Maier et al., 2010).

2.3 Sinks van intern CO_2

2.3.1 CO_2 efflux

Via radiale diffusie naar de atmosfeer of bodem kan CO_2 de stam, takken of het wortelstelsel verlaten (Teskey & McGuire, 2007; Cerasoli et al., 2009; Maier et al., 2010). Diffusie van CO_2 in water gebeurt vele malen trager dan de diffusie van CO_2 in de lucht. De diffusiecoëfficiënt van CO_2 in water bedraagt 1.6×10^{-9} m⁻² s⁻¹ tegenover 1.6×10^{-5} m⁻² s⁻¹ in lucht (Nobel, 1999). Diurnale en seizoenale veranderingen in de verhouding van gas- tot watergehalte beïnvloedt hierdoor de snelheid van radiale CO_2 diffusie (Sorz & Hietz, 2006; Saveyn et al., 2007).

De hoge interne $[CO_2]$ wijzen erop dat de stam belangrijke barrières bevat tegen diffusie van CO_2 naar de atmosfeer (Steppe et al., 2007; Cerasoli et al., 2009). Het cambium limiteert significant laterale diffusie (Teskey et al., 2008). Sorz & Hietz (2006) vonden dat de minimum diffusiecoëfficiënten voor O_2 in waterverzadigd xyleem steeds lager was dan deze voor O_2 in puur water, wat aangeeft dat xyleem een belangrijke diffusiebarrière vormt.

Radiale diffusie van CO_2 uit het wortelstelsel wordt ook gelimiteerd. De bodem CO_2 concentratie kan een veelvoud van de atmosferische concentratie bedragen en oplopen tot 13000 ppm (Amundson & Davidson, 1990). Deze hoge concentraties hinderen radiale diffusie van CO_2 uit de wortels naar de bodem (Qi et al., 1994). Dit effect wordt versterkt door de aanwezigheid van fysische barrières tegen CO_2 diffusie uit de wortel (Saveyn et al., 2007). In vele planten worden de oudere delen van het wortelstelsel beschermd door de afzetting van een wasachtige stof, nl. suberine (Fahn, 1982). Suberine remt het verlies van O_2 via radiale diffusie naar de bodem en kan een analoge werking hebben op CO_2 (Qi et al., 1994; Colmer, 2003; Greenway et al., 2006).

2.3.2 Transport met de sapstroom

Oplossing van CO_2 in het xyleem

Naast diffusie of efflux naar de atmosfeer, kan CO_2 vrijgesteld door stamrespiratie oplossen in het xyleem en opwaarts getransporteerd worden (Martin et al., 1994; Levy et al., 1999; Saveyn et al., 2008; Cerasoli et al., 2009). Teskey & McGuire (2007) vonden dat over een periode van 24 h, gemiddeld 34 % van de CO_2 vrijgesteld door stamrespiratie intern in de stam opwaarts werd getransporteerd. Deze bevinding stemt overeen met eerdere observaties van lagere E_A waarden gedurende periodes van verhoogde sapstroomsnelheden (f_s) (Levy et al., 1999; Bowman et al., 2005; Gansert & Burgdorf, 2005). Factoren die f_s beïnvloeden, kunnen zo de hoeveelheid CO_2 dat diffundeert vanuit de stam en takken naar de atmosfeer beïnvloeden (Teskey & McGuire, 2002; Maier & Clinton, 2006).
E_A vormt aldus een combinatie van lokaal vrijgestelde CO_2 en CO_2 aangevoerd met de sapstroom vanuit lager gelegen weefsel (Teskey & McGuire, 2007). McGuire & Teskey (2004) stelden een massabalans op waarbij stamrespiratie van een stamsegment geschat wordt door rekening te houden met E_A , F_T en opslag van CO_2 in het stamsegment (ΔS).

Zoals vermeld in §2.3.1 remmen hoge bodem CO_2 concentratie (Qi et al., 1994) en diffusiebarrières radiale diffusie uit de wortel af. Dit zorgt voor een opbouw van CO_2 in de wortel wat oplossing in het xyleemsap bevordert (Levy et al., 1999; Teskey et al., 2008; Aubrey & Teskey, 2009). Op basis van metingen van intern CO_2 transport en bodem CO_2 concentratie profiel schatten Aubrey & Teskey (2009) dat de hoeveelheid wortelgerelateerde CO_2 welke oplost in het xyleem dubbel zo groot is als de hoeveelheid CO_2 welke diffundeert naar de bodem. Ford et al. (2007) vonden tevens dat wortels in staat zijn CO_2 opgelost in het bodemwater op te nemen. Beide bodemgerelateerde processen dragen bij tot het CO_2 dat intern getransporteerd wordt.

Variatie in sapstroomsnelheid

Zoals vermeld in §2.3.2 kan CO_2 in de plant via de sapstroom opwaarts getransporteerd worden. Transpiratie bestaat uit de verdamping van water naar de atmosfeer via de bladstomata en vormt een drijvende kracht voor de opwaartse sapstroom. Hierbij resulteren hogere transpiratiesnelheden tot een grotere (f_s) (Taiz & Zeiger, 2006).

Variaties in f_s kunnen verklaard worden door variaties in omgevingsfactoren zoals luchttemperatuur (T_{lucht}), atmosferische relatieve vochtigheid (RH), bodemvochtgehalte (θ), fotosynthetisch actieve straling (PAR) en dampspanningdeficit (VPD) (O'Brien et al., 2004). Het gebruik van VPD laat toe om RH en T_{lucht} te bundelen in één parameter en is het verschil tussen de huidige en de maximale hoeveelheid water aanwezig in de atmosfeer bij de huidige temperatuur (Kramer & Boyer, 1995). Algemeen bestaat er een positief, asymptotisch verband tussen f_s en een hogere PAR en VPD (Kramer & Boyer, 1995; Sperry, 2003; Buckley, 2005; Verstraeten et al., 2008). Gedurende zonnige dagen, met een hoge PAR-straling en lage RH, wordt een grotere f_s gemeten dan tijdens regenachtige dagen (Maier & Clinton, 2006; Saveyn et al., 2007; Nasr et al., 2011). Een stijging in θ beïnvloedt f_s in positieve zin, hoewel O'Brien et al. (2004) en Dalsgaard et al. (2011) geen significante invloed van θ op f_s konden waarnemen.

Algemeen wordt er een dagelijks patroon in f_s waargenomen met maxima overdag en minima 's nachts (Bowman et al., 2005; Gansert & Burgdorf, 2005; Teskey & McGuire, 2007; Aubrey & Teskey, 2009; Cerasoli et al., 2009; Bekku et al., 2011). Zonnestraling stimuleert de opening van de stomata waardoor water kan verdampen en levert een belangrijk aandeel van de energie nodig

Hoofdstuk 2. Intern CO_2 transport

voor de verdamping (Kramer & Boyer, 1995). Hiernaast treedt er ook een seizoenaal patroon in sapstroom op, waarbij gedurende periodes na bladval een lagere f_s optreedt (Kunert et al., 2010).

2.3.3 Assimilatie via fotosynthese in blad- en houtig weefsel

Een deel van het intern CO_2 kan vastgelegd worden door fotosynthese in blad- en houtige weefsels (Pfanz et al., 2002; Teskey & McGuire, 2002; Saveyn et al., 2010). Actieve chloroplasten worden gevonden in verschillende stamweefsels waarbij voornamelijk in de cortex veel chlorofyl voorkomt (Kharouk et al., 1995; Schmidt et al., 2000; Pfanz et al., 2002). Hierdoor is fotosynthese in de stam mogelijk, met de hoeveelheid binnenkomende straling als een belangrijke limiterende factor (Aschan & Pfanz, 2003). In tegenstelling tot bladfotosynthese speelt CO_2 geen beperkende rol. Omwille van diffusiebarrières aanwezig in de stam worden hoge interne CO_2 concentraties bereikt (Teskey et al., 2008).

Refixatie van CO_2 door stamfotosynthese biedt de plant voordelen ten opzichte van bladfotosynthese. Aangezien geen stomata vereist zijn, kan waterverlies beperkt worden (Cernusak & Marshall, 2000; Pfanz et al., 2002). Tevens gaat stamfotosynthese gepaard met weinig fotorespiratie omwille van hoge CO_2 concentraties in de stam (Cernusak & Marshall, 2000) en kan het bijdragen tot het vermijden van anoxische condities in de stam (Pfanz et al., 2002). Levy et al. (1999) vonden voor verschillende ecosystemen dat CO_2 getransporteerd via het xyleem voor 0.5 tot 7% verantwoordelijk was voor CO_2 gefixeerd door fotosynthese.

2.4 Belang intern CO_2 transport bij CO_2 efflux metingen

Zoals eerder aangehaald, kan een substantieel deel van het CO_2 afkomstig van stam-, tak- en wortelrespiratie inwendig in boven- en ondergronds delen van de boom blijven, waarna het opwaarts kan getransporteerd worden met de sapstroom (Bowman et al., 2005; Teskey & McGuire, 2007; Aubrey & Teskey, 2009; Grossiord & Epron, 2012).

Bij schattingen van stamrespiratie berekenden Bowman et al. (2005) dat 13-38% van de CO_2 verademd door stamrespiratie werd weggevoerd met de sapstroom. Het opwaarts getransporteerde CO_2 kan vervolgens op een verdere locatie de stam verlaten (Teskey & McGuire, 2002; Maier & Clinton, 2006; Ford et al., 2007). Het xyleem kan dus zowel een bestemming als bron zijn van CO_2 dat via diffusie de stam verlaat (Bowman et al., 2005). Daarnaast vonden Teskey & McGuire (2007) dat slechts 55% van de CO_2 dat diffundeert van de stam naar de atmosfeer afkomstig is van lokale respiratie en 45% van E_A afkomstig was van lager gelegen boven- en ondergrondse delen van de boom, na transport met de sapstroom. Bijgevolg kan een substantieel deel van E_A afkomstig zijn van de bodem (Aubrey & Teskey, 2009; Grossiord & Epron, 2012). Aangezien een

gedeelte van de CO_2 afkomstig van wortelrespiratie bovengronds diffundeert, impliceert dit dat efflux-gebaseerde meetmethodes van E_B en E_A onvolledig zijn. Waarbij E_b de effectieve bodemrespiratie onderschat, is er bij de bepaling van E_A een overschatting van de werkelijke respiratie. Bijgevolg kan F_T belangrijk zijn bij het opdelen van R_{eco} in zijn bovengrondse en ondergrondse componenten.

2.5 Doelstellingen

Het ringen van de boomstam verhindert het transport van fotosynthetische assimilaten vanuit de bladeren of opslagweefsel naar de wortels. Er wordt verwacht dat de aanvoer van fotoassimilaten in belangrijke mate bijdraagt tot wortelrespiratie, waardoor deze laatste na het ringen zal afnemen. Recent onderzoek suggereert dat een deel van de CO_2 afkomstig van wortelrespiratie het wortelsysteem niet verlaat, maar via het xyleem opwaarts getransporteerd wordt. Aangezien wortelrespiratie sterk afhankelijk is van de aanvoer van fotosynthesische assimilaten kan verwacht worden dat het verhinderen van neerwaarts transport van fotosynthetische assimilaten via het ringen een invloed zal hebben op zowel E_B als F_T . Daarenboven, indien deze hypothese klopt, wordt de grootte van wortelgerelateerde respiratie onderschat door standaard methoden.

Bijgevolg wordt in deze studie getracht het belang van F_T aan te tonen en wordt een nieuwe methode voorgesteld ter bepaling van het autotrofe aandeel van bodemrespiratie, waarbij F_T in rekening gebracht wordt.

Indien een gedeelte van CO_2 afgeleid van wortelrespiratie omhoog getransporteerd wordt, kan deze bovengronds diffunderen naar de atmosfeer en zo bijdragen aan E_A . Via het opstellen van een massabalans rond een stamsegment kunnen interne en externe CO_2 fluxen in rekening gebracht worden. Hierbij wordt getracht de bijdrage van CO_2 afkomstig van wortelrespiratie aan E_A in te schatten.

Hoofdstuk 3

Materiaal en methodes

3.1 Beschrijving experimentele setup

Metingen in het kader van deze masterproef werden uitgevoerd gedurende de periode aprilseptember 2011 in een 7-jarige eiken (Quercus robur L.) plantage te Zwijnaarde, België. Deze plantage werd onderverdeeld in twee plots met een oppervlakte van $10 \times 10m^2$, waarbij in de eerste plot bomen werden geringd, verder vermeld als geringde plot en waarbij de tweede plot werd beschouwd als een controleplot. Per plot werden 4 bomen geselecteerd voor verder onderzoek. De gemiddelde diameter op 1.3 m hoogte was 6.50 ± 0.32 cm en 6.17 ± 0.31 cm voor de bomen van de geringde en controleplot respectievelijk. Op DOY 215 werden boorspanen op een hoogte van 100 cm genomen van 8 eiken in de plantage. Deze stalen werden geplaatst in een droogoven tot constant gewicht, waarna het gemiddelde vochtgehalte (L, L m⁻³) bepaald kon worden.

Luchttemperatuur (T_L, °C) (Type T, Omega, Amstelveen, Nederland), fotosynthetisch actieve straling (PAR, µmol m⁻¹ s⁻¹) (Li-190S, Li-Cor, Lincoln, NE, VS) en relatieve vochtigheid (RH, %) (Hygroclip, Rotronic AG, Bassersdorf, Zwitserland) werden gemeten op een hoogte van 1.5 m in een zone tussen de twee plots. Het dampspanningsdeficit(VPD, Pa) werd bepaald door middel van Vgl. 3.1. Neerslag werd gemeten in een open veld naast de plantage met behulp van een pluviometer (RG-1, Delta-T, Cambirdge, VK). In de bodem werd bodemtemperatuur (T_B, °C) (Type T, Omega, Amstelveen, Nederland) gemeten op een diepte van 7.5 cm en 22.5 cm en werd bodemvocht (θ , volume %)(SM-300, Delta-T, Cambridge, VK) gemeten op een diepte van 7.5 cm en 22.5 cm voor beide plots. Data van deze metingen werd gelogd om de 1 min. met behulp van een datalogger (CR1000x, Campbell Scientific, Logan, UT, VS).

$$VPD = a \cdot \left(\frac{b.T_L}{c+T_L}\right) \cdot (1-RH) \tag{3.1}$$

met de waarde van de empirische constanten a, b en c zijnde respectievelijk 613.75, 17.502 en 240.97 (Jones, 1992).

3.2 Ringen van bomen

Op 5 augustus 2011 (DOY 217) werd omstreeks 16 h het ringen van de bomen uitgevoerd. Bij de vier bomen van de geringde plot werd van de stam een schorsband over een breedte van 5.5 cm verwijderd op een hoogte van 50 cm (Fig. 3.1). Het ringen werd zo uitgevoerd zodat het

spintweefsel intact bleef. Vervolgens werd dit weefsel bedekt met vershoudfolie om dehydratatie van het spintweefsel te voorkomen. Het doorzichtige folie liet toe om de vorming van herstelweefsel in de zone waar de schors was verwijderd meteen op te merken en te verwijderen. Om de invloed van randeffecten door wortels van omliggende niet-geringde bomen te vermijden werden extra bomen in een straal van 4-5 m om en bij de proefbomen ook geringd.

Figuur 3.1: Ringen van *Quercus robur* uitgevoerd in het kader van deze masterproef. Bij (A) en (B) is het spintweefsel zichtbaar door verwijdering van de schors. Bij (C) is de geringde zone met vershoudfolie bedekt om dehydratatie van het spintweefsel tegen te gaan.

3.3 Bodem CO₂ efflux metingen

Zowel manuele als automatische metingen van bodem CO_2 efflux (E_B , mg C m⁻² h⁻¹) werden uitgevoerd bij de vier geringde en controlebomen. Drie open bodemkamers voor manuele metingen van E_B (Diameter (D): 19 cm, Hoogte (H): 12 cm) werden permanent geïnstalleerd op een afstand van 40 cm van de boom en op een diepte van 3 cm en volgens noordelijke, zuidelijke en oostelijke richting. De westelijke kamer op 40 cm afstand (D: 19 cm, H: 15 cm) werd geïnstalleerd op een zelfde diepte en gebruikt voor continue automatische metingen. Naast de kamers op 40 cm, werden bij elke manuele meting vier tijdelijke kamers met eenzelfde afmeting geplaatst als de drie overige kamers voor manuele metingen op 70 cm afstand van de boom. De bodemkamers werden geplaatst

volgens een dergelijke patroon om ruimtelijke variatie in E_B in te schatten in een zone met straal 1 m rondom een boom (Fig. 3.2).

Figuur 3.2: (A) Opstelling van de permanente bodemkamers voor de bepaling van bodem CO₂ efflux (E_B). De grijze kamers werden gebruikt voor manuele metingen van E_B, waarbij automatische metingen werden uitgevoerd met behulp van de oranje kamer. In (B) wordt de opstelling van de bodemkamers schematisch weergegeven. De oranje ring steld de automatische bodemkamer voor. De grijze en blauwe ringen stellen de manuele meetkamers op respectievelijk 40 en 70 cm voor.

3.3.1 Automatische metingen bodem CO_2 efflux

De automatische meetkamer was opgebouwd uit een PVC-ring die automatisch afgesloten werd gedurende metingen van E_B (Fig. 3.3). Deze meetkamers waren van het type "non steady state through flow chamber" zoals beschreven in de literatuurstudie. In totaal werden acht kamers gebruikt (één per boom), waarbij sequentieel één kamer per keer werd gesloten met behulp van een home-made multiplexer systeem. Net voor de start van een meetperiode werd de CO₂ concentratie in kamer ([CO₂], %) gelijkgesteld aan de atmosferische CO₂ concentratie, waarbij de kamer in halfopen positie werd geplaatst. Vervolgens werd de kamer afgesloten gedurende vier minuten en werd de stijging in [CO₂] in de kamer geregisteerd. Na deze vier minuten werd de bodemkamer geopend en de volgende automatische bodemkamer geactiveerd. Een meetcyclus waarbij alle kamers één voor één werden gesloten nam 40 minuten in beslag. Lucht circuleerde via een gesloten circuit met behulp van een pomp (KNF Neuberger GmbH, Freiburg, Duitsland) vanuit de kamer naar een infrarood gas analysator (IRGA) (range 0-2000 ppm, model GMP 343, Vaisala inc., Helsinki,

Finland) en terug aan een debiet van $1.1 \text{ L} \text{ min}^{-1}$. De IRGA werd gecalibreerd voor gebruik met behulp van calibratiegassen met $[CO_2]$ van 0.03%, 0.04%, en 0.1%. Daarnaast werd een luchtdruk en temperatuur correctie toegepast voor deze sensoren zoals voorgeschreven door de fabrikant. Automatische metingen vonden plaats van 22 april 2011 (DOY 112) tot en met 23 september 2011 (DOY 266). Data van de automatische E_B metingen werd gelogd om de 12 sec met behulp van een datalogger (CR1000x, Campbell Scientific, Logan, UT, VS).

3.3.2 Manuele metingen van bodem CO₂ efflux

Manuele metingen van E_B werden uitgevoerd met een IRGA (EGM 4, PP systems, Amesbury, MA, VS) die verbonden was met een bodemrespiratiekamer (SRC-1, PP systems, Amesbury, MA, VS). Metingen werden uitgevoerd door het plaatsen van de bodemrespiratiekamer op de bodemringen geïnstalleerd in de bodem. Na afsluiting van de bodemkamer door plaatsing van het meettoestel volgde een stabilisatieperiode van 14 seconden. De toename in $[CO_2]$ werd geregistreerd 2 minuten na de stabilisatieperiode of indien een toename van $[CO_2]$ in de kamer van meer dan 50 ppm werd opgemeten. Simultaan met de manuele metingen van E_B werd bodemtemperatuur gemeten op een diepte van 7.5 cm (STP-1, PP systems, Amesbury, MA, VS). Manuele metingen van E_B werd om de 3 dagen uitgevoerd van DOY 217 tot en met 257. Voor elke meting vond calibratie van het toestel plaats met calibratiegas met een $[CO_2]$ van 489 ppm.

Figuur 3.3: Op de voorgrond een automatische bodemkamer (oranje ring) gebruikt voor bepaling van bodem CO_2 efflux.

3.4 Bepaling interne transport flux van CO₂ afgeleid van wortelrespiratie

3.4.1 Bepaling CO₂ concentratie in de gasfase in de stam

 $[CO_2]$ in de stam werd in-situ gemeten met solid state non-dispersive infrared (NDIR) CO₂ sensoren (model GMM221, Vaisala, Helsinki, Finland) geïnstalleerd in een gat met 20 mm diameter en 50 mm diepte. Voor de start van de metingen werd calibratie van deze sensoren uitgevoerd met calibratiegassen met $[CO_2]$ van 0.03 %, 2.5%, 10 % en 15% voor een temperatuursrange van 10 °C tot 30 °C. Voor installatie werd de sensor nog geplaatst in een gasdoorlatend polytetrafluoretheen omhulsel (Int. Polymer Engineering, Tempe, AZ, VS) ter bescherming van de sensor tegen vocht, waarna de opening tussen sensor en stam werd afgesloten met een pasta flexible putty adhesive (Qubitac, Qubit Systems, Kingston, Ontario) om een gasdichte afsluiting te voorzien.

In de vier bomen van de geringde plot werd één CO_2 sensor geplaatst aan de stambasis op een hoogte van 5 cm boven het bodemoppervlak. In de vier bomen van de controleplot werden twee sensoren geplaatst op een hoogte van 5 en 26 cm boven het bodemoppervlak (Fig. 3.4). Omwille van technische problemen met sensoren werd enkel data gebruikt van drie geringde en drie controlebomen. Bijgevolg werd enkel bodem efflux data van deze bomen gebruikt. Data van de intern [CO_2] metingen werd gelogd om de 1 min. met behulp van een datalogger (CR1000x, Campbell Scientific, Logan, UT, VS).

3.4.2 Sapstroommetingen

Sapstroomsnelheid (f_s , cm³ h⁻¹) werd bepaald door het opschalen van sapstroomdichtheid gemeten met thermal dissipation probes (TDP) sensoren (TDP 10, Dynamax Inc., Houston, TX, VS) met spinthoutoppervlakte. De selectie van deze sensoren was gebaseerd op eerdere resultaten van sapstroomdichtheidsbepalingen op bomen van dezelfde plantage met TDP-10, TDP-30 en heat ratio method sensoren (HRM, ICT international, Armidale, Australië) sensoren. Metingen verkregen met TDP-10 gaven de beste benadering van gemiddelde f_s voor het spinthout en werden verder gebruikt in berekeningen. Spinthoutoppervlakte werd geschat aan de hand van een relatie tussen stamdiameter en spinthoutoppervlakte opgesteld voor beide plots op 22 februari 2011 (DOY 53). Eén TDP-10 sensor per boom was geïnstalleerd op een hoogte van 35 cm (Fig. 3.4). Aangezien deze sensoren gebaseerd zijn op het meten van temperatuursverschillen tussen een verhitte- en referentienaald werden de sensoren bedekt met isolerende bubbelfolie om interferentie van luchttemperatuur te voorkomen. Uit proeven uitgevoerd door Steppe et al. (2010) blijkt dat TDP sapstroomsensoren de werkelijke sapstroomsnelheid onderschatten. Bijgevolg werden de bekomen waarden gecorrigeerd met een correctiefactor (2.975) bepaald tijdens een additioneel

experiment uitgevoerd op stamsegmenten van bomen van dezelfde plantage zoals beschreven in Steppe et al. (2010). Samenvattend werd de f_s als berekend via onderstaande vergelijking:

$$f_s = v_s.A_{spinthout}.F_{correctie} \tag{3.2}$$

Met v_s de sapstroomdichtheid (cm³ cm⁻² h⁻¹), A_{spinthout} het spinthoutoppervlak (cm²) en F_{correctie} de correctiefactor zijnde 2.975. Data van sapstroommetingen werd gelogd om de 1 min met behulp van een datalogger (CR1000x, Campbell Scientific, Logan, UT, VS).

Figuur 3.4: Schematische voorstelling van de experimentele set-up van het stamsegment, ter aanduiding van de posities van de geïnstalleerde meetapparatuur in de stam van de controlebomen. NDIR= solid state non-dispersive infrared CO₂ sensor, TC= thermokoppel, TDP= thermal dissipation probes sensor. Bij de proefbomen was er geen NDIR op 26cm of een cuvette geïnstalleerd.

3.4.3 Berekening CO₂ transport flux

Ten eerste werd op basis van de data van $[CO_2]$ in de gasfase, opgemeten met NDIR sensors, de totale hoeveelheid opgeloste koolstof ($[[CO_2^*], mol L^{-1})$ in het xyleemsap bepaald volgens Vgl. 2.2

(Stumm & Morgan, 1996). De temperatuursafhankelijkheid van de constanten K_H , K_1 en K_2 werd in rekening gebracht via vergelijkingen zoals beschreven door Butler (1991).

Stamtemperatuur (T_S) gebruikt in temperatuursvergelijkingen werd opgemeten met één thermokoppel (Type T, Omega, Amstelveen, Nederland) nabij elke NDIR sensor, geïnstalleerd op 50 mm diepte op twee cm van de sensor. Xyleem sap pH data werd gemeten bij vier additionele bomen van dezelfde plantage als waar het de proefopzet werd uitgevoerd. Met behulp van een drukkamer (PMS instrument company, Albany, OR) werd sap uit afgeknipte takken geëxtraheerd, waarna onmiddellijk de pH van dit geëxtraheerd sap werd bepaald met een pH micro-electrode verbonden aan pH meter (Red Line standard sensor Argus meter, Sentron, Roden, Nederlands). Deze pH bepaling werd tweewekelijks uitgevoerd. Eerste metingen gebeurden op 14/03/11 (DOY 73) en vonden sinds 29/04/2011 (DOY 119) elke twee weken 's middags plaats tot en met 29/09/2011(DOY 272). De gemiddelde pH-waarde over deze periode bedroeg 6.53 ± 0.34 .

Om vervolgens de interne CO_2 flux via het xyleem (F_T) te kunnen vergelijking met E_B moeten beide CO_2 -fluxen op een zelfde oppervlakte beschouwd worden. Via onderstaande vergelijking kan F_T per bodemoppervlak uitgedrukt worden (Aubrey & Teskey, 2009).

$$F_T = \frac{[CO_2^*].f_s}{A_{wortel}} \tag{3.3}$$

Met F_T in mg C m⁻² h⁻¹, $[CO_2^*]$ de totale hoeveelheid opgeloste koolstof in het xyleem (mg C L⁻¹), f_s de sapstroomsnelheid (L h⁻¹) en A_{wortel} het oppervlak ingenomen door de wortels van de boom (m²). A_{wortel} werd bepaald door middel van wortel opgravingen. Hierbij werd gevonden dat een zone met een straal van ongeveer de 1 m werd ingenomen door de wortels. Daarnaast geldt algemeen als vuistregel dat de wortels van een boom even ver reiken als zijn kruin. Bij deze proefopstelling bedroeg de straal van de boomkruinen gemeten aan de basis van de kruin ongeveer 1 m (Perry, 1982). Bijgevolg werd A_{wortel} geschat op 3.14 m^2 .

3.5 Stam CO₂ efflux

Metingen van stam CO_2 efflux (E_A , µmol CO_2 m⁻³ s⁻¹) werd met behulp van cuvettes uitgevoerd voor de vier controlebomen. Deze cylindrische cuvettes werden geïnstalleerd tussen de NDIR sensoren op een gemiddelde hoogte van 15 cm, en omsloten een stamsegment van 6 cm (Fig. 3.4). De cuvette bestond uit een doorzichtige polycarbonaatfilm (Roscolab Ltd, London, VK) en werd bevestigd aan de boomstam met behulp van isolatietape (Rs components benelux, Brussel, België). Met behulp van deze opstelling werd een gasdichte sluiting verzekerd waarbij eventuele lekken, ontstaan door de lichte overdruk die in de cuvette heerste, werden gedicht met niet-corrosieve siliconen pasta (Rs components benelux, Brussel, België), De cuvette werd bedekt met aluminiumfolie om stamfotosynthese te vermijden. Omgevingslucht werd gestuurd naar deze cuvettes aan een debiet van 1.1 L min⁻¹ door middel van een pomp (KNF Neuberger GmbH, Freiburg, Duitsland). Analoog zoals bij E_B metingen werd analyse van E_A voor de verschillende cuvettes sequentieel uitgevoerd met behulp van een multiplexer programma waarbij 6 minuut metingen per cuvette werden uitgevoerd. Hierbij werd, naast de cuvettes geïnstalleerd op de controlebomen, ook een referentiecuvette opgenomen in de meetcyclus met een zelfde opbouw, maar waarbij geen stamsegment werd omsloten. Metingen van deze referentie cuvette werden gebruikt om de [CO₂] te bepalen van de lucht die in de cuvettes gestuurd werd. [CO₂] van de in- en uitgaande lucht van de cuvettes werden gemeten met behulp van een IRGA (range 0-5000 ppm, model GMP 343, Vaisala inc., Helsinki, Finland). Calibratie van de IRGA werd uitgevoerd analoog zoals beschreven voor de E_B metingen. E_A werd bepaald op basis van de volgende formule:

$$E_{\rm A} = \frac{d}{v} \cdot \Delta[CO_2] \cdot \frac{22.4L}{1mol} \cdot \frac{1min}{60sec}$$
(3.4)

Waarbij d het luchtdebiet is doorheen de cuvette (1.1 L min⁻¹), v is het spinthoutvolume van het stamsegment (m³) en Δ [CO₂] is het verschil in [CO₂] van de in- en uitgaande lucht van de cuvette (µmol mol⁻¹). Spinthoutvolume werd bepaald op basis van de relatie opgesteld voor de schatting van spinthoutoppervlakte voor installatie van de sapstroomsensoren. Data van E_A-metingen werd gelogd om de 12 sec. met behulp van een datalogger (CR1000x, Campbell Scientific, Logan, UT, VS).

3.6 Berekening autotrofe bodemrespiratie: vergelijking standaard en nieuwe methode

Op basis van verschillen in E_B tussen controle $(E_{B,C})$ en geringde plots $(E_{C,R})$ kan een inschatting gemaakt worden van de autotrofe bodemrespiratie $(R_{auto}, mg \ C \ m^{-2} \ h^{-1})$ volgens de standaardmethode:

$$R_{auto} = E_{B,C} - E_{B,R} \tag{3.5}$$

Met $E_{B,R}$ (mg C m⁻² h⁻¹) en $E_{B,C}$ (mg C m⁻² h⁻¹) de bodem CO₂ efflux van de gerinde en controleplots.

Indien er echter naast E_B , ook het aandeel van CO_2 afkomstig van wortelrespiratie die intern getransporteerd wordt in rekening wordt gebracht, zoals bij de door ons voorgestelde methode, dan kan R_{auto} als volgt bepaald worden:

$$R_{auto} = E_{B,C} - E_{B,R} + (F_{T,C} - F_{T,R})$$
(3.6)

met $F_{T,R}$ (mg C m⁻² h⁻¹) en $F_{T,C}$ (mg C m⁻² h⁻¹) de interne CO_2 flux in respectievelijk de geringde en controlebomen.

3.7 Berekening bovengrondse efflux van CO₂ afgeleid van wortelrespiratie

Via een massabalans zoals beschreven door McGuire & Teskey (2004) werden de interne en externe CO_2 fluxen rond een stamsegment bepaald (figuur 3.5). Deze fluxen omvatten CO_2 dat de stam verlaat via diffusie (E_A), opgelost CO_2 dat via de sapstroom het stamsegment binnenkomt (I_T) of verlaat (E_T) en CO_2 dat opgeslagen of vrijgesteld wordt in het stamsegment over een bepaalde periode (ΔS).

 E_A werd berekend zoals beschreven in §3.5. De transportflux (F_T , µmol $CO_2 \text{ m}^{-2} \text{ s}^{-1}$) zijnde ($I_T - E_T$) kan bepaald worden via:

$$F_T = \frac{f_s}{v} \cdot \Delta[CO_2^*] \tag{3.7}$$

Met f_s het sapstroomdebiet doorheen het segment $[m^3h^{-1}]$, v het spinthoutvolume $[m^3]$, $\Delta[CO_2^*]$ de hoeveelheid CO₂ opgelost in het xyleemsap [mol CO₂ m⁻³].

Bepaling van ΔS gebeurt volgens:

$$\Delta S = \left([\overline{CO_2^*}]_{T1} - [\overline{CO_2^*}]_{T0} \right) \cdot \frac{L}{T}$$
(3.8)

Met $[\overline{CO_2^*}]_{T1}$ en $[\overline{CO_2^*}]_{T0}$ het gemiddelde van de hoeveelheid CO₂ opgelost in het xyleem ter hoogte van de boven- en ondergrens van het stamsegment op respectievelijk tijdstip T1 en T0 [mol CO₂ m⁻³], L het vochtgehalte van het stamsegment [L m⁻³] en T het tijdsinterval T1 - T0 [h] (McGuire & Teskey, 2004).

Hoofdstuk 3. Materiaal en methodes

Figuur 3.5: Conceptueel model van een massabalans in en rond een stamsegment. Met $E_A = \text{stam CO}_2$ efflux, $I_T = \text{invoer CO}_2$ via de sapstroom, $E_T = \text{uitvoer CO}_2$ via de sapstroom en $\Delta S = \text{opslag}$ CO_2 in het stamsegment (McGuire & Teskey, 2004).

Via bepaling van de ratio $\frac{E_A}{F_T}$ kan geschat worden welk aandeel van CO₂ aanwezig intern in het stamsegment naar de atmosfeer diffundeert. Via vergelijking van CO₂ opgelost in het xyleem in de geringde en controlebomen na het ringen kan het aandeel CO₂ afkomstig van wortelrespiratie bepaald worden.

$$F_{T,wortel} = F_{T,C} - F_{T,R} \tag{3.9}$$

Met $F_{T,wortel}$ de hoeveelheid CO_2 afgeleid van wortelrespiratie aanwezig in de sapstroom [mol $CO_2 \text{ m}^{-2} \text{ h}^{-1}$] en $F_{T,C}$ en $F_{T,R}$ zoals beschreven in §3.6. De bovengrondse efflux van CO_2 van wortelrespiratie wordt vervolgens bepaald via :

$$E_{Awortel} = \frac{E_A}{F_T} \cdot F_{T,wortel}$$
(3.10)

3.8 Bepaling bodemkarakteristieken en wortelbiomassa

Op 4 augustus 2011 (DOY 216), de dag voor het ringen van de bomen, werden ongestoorde bodemstalen genomen van de geringde en controleplot met Kopecky-ringen voor de bepaling van bodemdensiteit (Fig. 3.6A). Met behulp van een bodemboor werden eveneens voor beide plots bodemstalen genomen tot op een diepte van 30 cm voor textuuranalyse en de bepaling van pH en organisch koolstof (OC, %) en Calciumcarbonaat (CaCO3, %) gehalte. Bodemdensiteit werd

afzonderlijke gemeten voor de verschillende bomen door het nemen van twee stalen per boom in de zone beschouwd voor E_B metingen (Fig. 3.6). Voor bepaling van deze parameters werden eveneens twee stalen per boom genomen in de zone beschouwd voor E_B metingen. Vervolgens werden deze stalen per plot samengevoegd om zo één mengstaal per plot te bekomen. Analyses van deze stalen werden uitgevoerd door de vakgroep bodembeheer, faculteit bio-ingenieurswetenschappen, Universiteit Gent.

Figuur 3.6: (A) Bepaling van de bodemdensiteit met behulp van Kopecky ringen.(B) Staalname met bodemboor ter bepaling van textuur, pH en organisch koolfstof en CaCO₃ gehalte.

Wortelbiomassa werd bepaald voor alle bomen van de controle en geringde plot door staalname met een PVC ring (D: 5.5 cm) op een diepte tussen 0-15 cm en 15-30 cm. Per boom werden twee stalen genomen in de zone beschouwd voor E_B metingen op een afstand van 30 cm van de boom. Staalname vond plaats op 23 september (DOY 266) op het einde van het experiment. Na staalname werden de stalen bewaard in een diepvriezer, waarna ze werden gewassen op een zeef voor de verwijdering van bodemresten. Finaal werden deze stalen gedroogd in een droogoven tot constant gewicht, waarna worteldrooggewicht werd bepaald per oppervlakte eenheid (g m⁻²).

3.9 Dataverwerking en -analyse

Verwerking van de data en modellen werd uitgevoerd door middel van Matlab 7.12 (The Mathworks Inc., Natick, MA, VS). Sigmaplot 11.0 (Systat Software Inc., Chichago, Il, Vs) werd gebruikt om de figuren te bekomen.

Hoofdstuk 4

Resultaten

4.1 Klimatologische condities

Gedurende de meetperiode van 30 juli 2011 tot en met 16 augustus 2011 bedroeg de gemiddelde bodemtemperatuur (T_B) 18.4 ± 2.5 °C en 18.6 ± 1.0 °C op 7.5 cm en 22.5 cm diepte respectievelijk. Grotere variaties in T_B werden waargenomen op 7.5 cm (tussen 13.3 °Cen 26.7 °C) dan op 22.5 cm diepte (tussen 16.0 °C en 19.9 °C) (Fig. 4.1A). De gemiddelde stamtemperatuur (T_S) bedroeg 18.9 ± 1.7 °C voor zowel de geringde als controlebomen en varieerde tussen en 13.8 en 22.4 °C (Fig. 4.1.B). Voor alle figuren wordt het tijdstip van ringen (05 augustus 2011 (DOY 217)) aangegeven met een pijl.

Het bodemvochtgehalte (θ) van de geringde plot, gemeten op dezelfde dieptes als metingen van T_B, varieerde tussen 24.3 ± 6.1% en 28.5 ± 5.6% op 7.5 cm en 22.5 cm respectievelijk (Fig. 4.2A). θ van de controle plot kende een gelijkaardig verloop en bedroeg gemiddeld 19.5 ± 3.0% en 23.9 ± 3.7% op een diepte van 7.5 cm en 22.5 cm diepte respectievelijk. De gemiddelde neerslag voor de proefperiode was 3.02 ± 5.0 mm. Voor de meeste dagen werd een beperkte hoeveelheid neerslag of geen neerslag waargenomen, behalve voor DOY 226 werd over de ganse dag een neerslaghoeveelheid gemeten van 20.4 mm (Fig 4.2B). Duidelijk is te zien dat deze hoeveelheid neerslag een invloed had op θ zowel op 7.5 cm en 22.5 cm diepte.

Uit de data van luchttemperatuur (data niet getoond) en relatieve vochtigheid (data niet getoond) kan het dampspanningsdeficit (VPD) van de lucht bepaald worden. De VPD bedroeg gemiddeld 0.41 ± 0.48 kPa, maar vertoonde sterke variatie tussen de verschillende dagen (Fig. 4.3). De VPD was maximaal 1,79 kPa op DOY 213. Na het ringen waren er nog twee dagen, DOY 222 en DOY 223 waarbij een hoge VPD werd waargenomen in vergelijking met de andere dagen na het ringen.

Figuur 4.1: A) Bodemtemperatuur (T_B) van de controleplots gemeten op 7,5 cm en 22,5 cm.
B) Gemiddelde stamtemperatuur (T_S) van de geringde en controlebomen gemeten op 5 cm hoogte van het bodemoppervlak. Data van T_B en T_S werd uitgemiddeld over 4 uur. De pijl geeft het tijdstip van ringen weer (DOY 217).

Figuur 4.2: A) Bodemvochtgehalte (θ) van de geringde plot op 7.5 en 22.5 cm diepte gedurende de proefperiode.

B) Neerslag gedurende de poefperiode. Voor het bodemvochtgehalte werd de data uitgemiddeld per 10 min. Voor de data van de neerslag werden dagtotalen opgesteld. De pijl geeft het tijdstip van ringen weer (DOY 217).

Figuur 4.3: Dampspanningsdeficit (VPD) gedurende de proefperiode. De pijl geeft het tijdstip van ringen weer (DOY 217).

4.2 Bodem CO₂ efflux en bodemparameters

De bodem CO_2 efflux (E_B) gemeten met behulp van de automatische bodemkamers toonde een gelijkaardig patroon voor zowel de geringde- en controleplots voor het tijdstip van ringen (Fig. 4.4). In deze periode varieerde E_B tussen de 125.3 ± 12.5 en 202.1 ± 8.8 mg C m⁻² h⁻¹ voor de geringde plot en tussen 127.2 ± 4.4 en 202.1 ± 8.8 mg C m⁻² h⁻¹ voor de controleplot. Algemeen bleek dat E_B goed het dagelijkse verloop van T_B (Fig. 4.1.A) volgt. Tevens werd er een invloed van θ op E_B vastgesteld. Na periodes van regenval en bijhorende stijging in θ (Fig. 4.2A) werd een stijging in E_B opgemeten, zoals bv. kan waargenomen worden op DOY 227.

Op de dag van het ringen (DOY 217) werd een gemiddelde E_B waarde gemeten van respectievelijk 185.5 ± 7.2 en 190.2 ± 7.2 mg C m⁻² h⁻¹ voor de geringde en controleplots. Gedurende de twee dagen na het ringen werd een sterke daling in E_B van de geringde plots waargenomen terwijl de E_B van de controleplots op eenzelfde niveau bleef als voor het ringen (Fig. 4.4). Deze daling stabiliseerde na vijf dagen waarna de efflux van de geringde plots weer eenzelfde patroon als de controleplots vertoonde.

Vijf dagen na het ringen bedroeg de gemiddelde $E_B 121.16 \pm 5.1$ en $166.16 \pm 7.0 \text{ mg C} \text{ m}^{-2} \text{ h}^{-1}$ voor de geringde en controleplots. De daling van E_B voor de geringde plot bedroeg $21.8 \% \pm 3.7 \%$ ten opzichte van de efflux gemeten op de dag van het ringen. Deze afname is reeds gecorrigeerd met de afname waargenomen in de controleplots gerelateerd aan variaties in abiotische factoren. Vijfentwintig dagen na het ringen liep deze afname op tot $34.9 \% \pm 4.3 \%$. E_B -metingen vonden plaats tot 18 september 2011 (DOY 261) en gedurende deze periode werd eveneens een verschil in E_B voor de geringde en controleplot waargenomen.

Naast het gebruik van automatische bodemkamers, werd E_B ook manueel opgemeten. Metingen volgens de vier windrichtingen per plot waren gelijkaardig, waardoor een ruimtelijke variabiliteit uitgesloten kon worden. De manuele metingen bevestigden de waarden bekomen via de automatische bodemkamers. De lineaire regressie tussen de manuele en automatische metingen kan beschreven worden via y = 0.60x + 42.6 ($R^2 = 0.70$) en y = 0.70 + 54.9 ($R^2 = 0.65$) voor respectievelijk de geringde en controleplots.

Figuur 4.4: Verloop van de bodem CO₂ efflux (E_B) van de geringde en controleplots. Data van E_B zijn gemiddelden voor metingen bij 3 bomen per plot en over 4 uur. De standaardafwijking van E_B van de controle en geringde plot wordt weergegeven met de grijze en donkergrijze zone respectievelijk. De pijl geeft het tijdstip van ringen weer (DOY 217).

Voor de start van de proef werd de wortelbiomassa, pH, bodemkoolstofgehalte en bodemdichtheid van de geringde en controleplots bepaald. Tabel 4.1 geeft de waarden van deze parameters weer. Beide plots worden gekenmerkt door gelijkaardige parameters, wat vergelijking tussen geringde en controleplots toeliet.

Tabel 4.1: Wortelbiomassa (M_{wortel}) pH, bodemdichtheid (ρ_b) en -koolstofgehalte (OC) van de controleen geringde plots. De standaardafwijking staat vermeld tussen haakjes.

Parameter	$M_{\rm wortel}$	$_{\rm pH}$	OC	$ ho_b$
Eenheid	${ m g~m^{-2}}$	-	%	g cm ⁻³
Geringde plot	287.8(59.6)	4.65	2.0	1.2(0.2)
Controleplot	286.7(40.1)	5.05	2.8	1.3(0.1)

4.3 Intern CO₂

De CO₂ concentratie in de stam [CO₂], gemeten op een hoogte van 5 cm, vertoonde een gelijkaardig patroon voor zowel de bomen van de geringde als de controleplot tijdens de periode voor het ringen (Fig. 4.5) De gemiddelde [CO₂] voor deze periode was $10.3\% \pm 0.12\%$ en $10.7\% \pm 0.1\%$ voor de bomen van de geringde en controleplot respectievelijk. Dagelijkse variatie in [CO₂] werd gekenmerkt door maximale concentraties 's nachts en minimale concentraties overdag. Over lange termijn waren variaties in [CO₂] gerelateerd aan schommelingen in T_S (Fig. 4.1.B)

Na het ringen werd er echter een sterke afname in $[CO_2]$ waargenomen bij de bomen in de geringde plot (Fig. 4.5), waarbij de $[CO_2]$ in de stam van de bomen van de controleplot relatief op het niveau bleef van voor het ringen. Tevens werd er een daling van $[CO_2]$ waargenomen bij de bomen van de controleplot, wat verklaard kan worden door een daling van T_S gedurende de periode DOY 219-DOY 222 (Fig. 4.1B). Vijf dagen na het ringen bedroeg de procentuele afname van $[CO_2]$ in de stam van bomen van de geringde, gecorrigeerd met de afname in de controleplots ten gevolge van variaties in abiotische factoren, $21.4\% \pm 1.1\%$, wat ongeveer gelijk is met de daling waargenomen voor E_B over dezelfde periode na het ringen. Omwille van technische storingen tussen DOY 226 en DOY 239 waren geen metingen mogelijk, maar deze konden wel verder gezet worden vanaf DOY 239 tot DOY 244. Gedurende deze periode was de daling in $[CO_2]$ relatief t.o.v. de $[CO_2]$ op het tijdstip van ringen opgelopen tot $41.2\% \pm 1.2\%$. Daarenboven was gedurende deze periode de $[CO_2]$ in de geringde bomen een vijfde lager dan deze in de controlebomen, wat aangeeft dat er een langdurig effect was van het ringen op de $[CO_2]$ in de stam van de bomen van de geringde plot.

Figuur 4.5: Verloop intern CO₂ concentratie ([CO₂]) in de geringde- en controlebomen. Data van [CO₂] zijn gemiddelden van 3 bomen per plot en over 4 uur. De standaardafwijking van [CO₂] van de controle en geringde plot wordt weergegeven met de grijze en donkergrijze zone respectievelijk. De pijl geeft het tijdstip van ringen weer (DOY 217).

Op basis van Vgl.3.3 kan de interne CO₂ transport flux afkomstig van de bodem (F_T) bepaald worden voor de bomen van zowel de controle als geringde plot (Fig. 4.6). F_T varieerde tussen 0 en $80.8 \pm 3.6 \text{ mg C} \text{ m}^{-2} \text{ h}^{-1}$ en werd beïnvloed door zowel [CO₂] als sapstroom (f_s). F_T volgde het dagelijkse verloop van f_s en gedurende dagen met een beperkte f_s werd ook een kleinere F_T waargenomen. Na het ringen werd een daling in [CO₂] waargenomen (Fig. 4.6), dewelke zich weerspiegelt in F_T . Vooral voor de dagen DOY 222 en DOY 223, waarop een hoge VPD en sapstroom werd waargenomen, was er een duidelijk verschil in F_T voor de bomen van de geringde en controleplot.

Figuur 4.6: Intern CO_2 flux (F_T) in geringde en controlebomen. Data zijn gemiddelden waarden van 3 bomen per plot en over 4 uur. De standaardafwijking van [CO₂] van de controle en geringde plot wordt weergegeven met de grijze en donkergrijze zone respectievelijk. De pijl geeft het tijdstip van ringen weer (DOY 217).

4.4 Autotroof aandeel bodem CO₂ efflux

In tegenstelling tot de standaard methode, waarbij enkel metingen van E_B worden gebruikt, kan volgens een nieuwe methode autotrofe bodemrespiratie (R_{auto}) geschat worden op basis van zowel E_B als F_T metingen van de geringde en controleplot (Fig. 4.7). Aangezien er pas na twee dagen na het ringen (na de periode DOY 217-DOY 219) een duidelijke stabiliteit was in de daling van E_B en F_T voor de geringde plot, relatief ten opzichte van de controleplot, worden de schattingen van R_{auto} enkel na die periode gebruikt voor de vergelijking van de standaard en nieuwe methode. Vooral tijdens de dagen DOY 222 en DOY 223 wordt er een sterk verschil in de schatting van R_{auto} volgens beide methodes waargenomen. Deze dagen komen overeen met dagen van hoge VPD (Fig. 4.3) en een groot verschil in F_T flux (Fig. 4.6). Tijdens nachtelijke schatting van R_{auto} komen de resultaten voor de standaard en nieuwe methode overeen aangezien de F_T flux dan nul is.

Figuur 4.7: Het autotroof aandeel van bodemrespiratie (R_{auto}) bepaald via de standaard methode en nieuwe methode. Data van R_{auto} zijn gemiddelden voor alle bomen en over 4 uur. De grijze zone geeft de periode 2 dagen na het ringen weer waarover R_{auto} data niet beschouwd wordt.

Naargelang de gebruikte methode voor het bepalen van R_{auto} wordt een verschillend dagelijks patroon waargenomen gedurende de periode DOY 220-226. Schatting volgens de standaard methode geeft aan dat R_{auto} 's nachts minimaal is, gevolgd door een lichte stijging in de ochtend. Belangrijker is echter dan er een depressie in R_{auto} wordt waargenomen gedurende de dag. In de late namiddag/avond stijgt R_{auto} dan terug, om dan later terug af te nemen in de nacht tot een minimum (Fig. 4.8). Bepaling van R_{auto} volgens de nieuwe methode, waarbij rekening wordt gehouden met F_{T} , geeft echter een ander patroon weer met een maximale R_{auto} overdag (12 - 16 h). Tijdens de periode 12 h-16 h wordt R_{auto} volgens de nieuwe methode ingeschat op 45.4 % ± 1.5 % tegenover slechts 26.5 % ± 2.7 % volgens de standaard methode (Fig. 4.8).

De daggemiddelde R_{auto} bedraagt volgens de nieuwe en standaard methode respectievelijk 36.2 % ± 0.8 % en 27.1 % ± 1.6 %, wat aangeeft dat de standaard methode de R_{auto} flux voor ongeveer een kwart (25,1 % ± 0.5 %) onderschat.

Figuur 4.8: Dagelijkse dynamiek in de bijdrage van autotrofe bodemrespiratie (R_{auto}) tot bodem CO₂ efflux (E_B) met standaardafwijking op 10 augustus 2011 (DOY 222) volgens de standaard en nieuwe methode.

4.5 De bovengrondse efflux van wortelgerelateerde CO_2

Finaal kan op basis van de berekening van een massabalans opgesteld voor stamrespiratie (Fig. 4.9) een schatting gemaakt worden van welke aandeel van F_T bovengronds zal diffunderen naar de atmosfeer via de stam (Fig. 4.10), waar het zal bijdragen aan de stam CO₂ efflux (E_A). Om de bijdrage van CO₂ afkomstig van de wortels CO₂ aan E_A (E_{A,wortel}) in te schatten, werd rond een stamsegment E_A, F_T en CO₂-opslagterm (Δ S) bepaald, volgens Vgl.3.4, 3.7 en 3.8. E_A en F_T varieerden dagelijks in grootte en relatief belang en volgden een omgekeerd diurnaal patroon. E_A bedroeg gemiddeld 2.39 ± 0.10 mol CO₂ m⁻³ en schommelde tussen 1.82 ± 0.05 mol CO₂ m⁻³ overdag en 3.29 ± 0.12 mol CO₂ m⁻³ 's nachts.

 $\rm F_{T}$ volgde het dagelijks verloop in sapstroom en was 's nachts verwaarloosbaar en 's middags maximaal. $\rm F_{T}$ bedroeg gemiddeld $6.66\,\%\pm0.16\,\rm mol\ CO_{2}\ m^{-3}$ en kon oplopen tot $21.29\,\%\pm0.91\,\rm mol\ CO_{2}\ m^{-3}$.

In tegenstelling tot E_A en F_T kende ΔS geen dagelijks patroon. De bijdrage van ΔS aan de dagelijkse massabalans bedroeg minder dan 0.01%. Hieruit blijkt dat de bijdrage van E_A aan stamrespiratie het grootste is tijdens de nacht en dat overdag een groot deel van de CO_2 afkomstig van stamrespiratie intern het stamsegment verlaat via de transpiratiestroom.

Figuur 4.9: De gemiddelde relatieve grootte van de interne CO_2 transportflux (F_T), stam efflux (E_A) en opslagterm (ΔS) voor DOY 220-222 bepaald volgens de massabalansmethode uitgemiddeld voor alle controlebomen en over 4 uur.

Aan de hand van de partitionering van stam respiratie kan vervolgens $E_{A,wortel}$ bepaald worden volgens Vgl. 3.10 (Fig. 4.10). Aangezien overdag (periodes 12-16 h en 16h-20 h) F_T groot is, zal gedurende deze periode veel CO₂ afkomstig van het wortelstelsel opwaarts getransporteerd worden, waarbij het in grote mate kan bijdragen aan E_A . 's Nachts (0-4 h) is er echter geen F_T , waardoor de bijdrage van de F_T flux aan E_A nul is. De gemiddelde dagelijkse $E_{A,wortel}$ voor DOY 220 - 222 bedroeg 50.4 % ± 5.5 %.

Figuur 4.10: Gemiddelde dagelijkse dynamiek van E_A en $E_{A,wortel}$ met standaardafwijking van DOY 220-222 uitgemiddeld voor alle controlebomen en over 4 uur.

Hoofdstuk 5

Discussie

5.1 Bepaling autotrofe bodemrespiratie: standaard methode

Tussen 30 % en 90 % van de ecosysteemrespiratie (R_{eco}) vindt in de bodem plaats (Goulden et al., 1996; Law et al., 1999; Longdoz et al., 2000; Davidson et al., 2006), wat aangeeft dat een correcte inschatting van de CO₂ efflux van de bodem naar de atmosfeer cruciaal is bij het opstellen van een ecosysteem koolstofbalans. De bodem CO₂ efflux (E_B) voor de controleplot in de plantage in Zwijnaarde bedroeg voor de proefperiode gemiddeld 167.9 ± 20.9 mg C m⁻² h⁻¹, wat in de range is van eerdere resultaten bekomen voor bosecosystemen (Hogberg et al., 2001; Borken et al., 2006; Fenn et al., 2010). Manuele metingen van E_B uitgevoerd in een korte omloophout plantage gelegen naast onze experimentele plantage gaf aan dat de gemiddelde E_B 216 mg C m⁻² h⁻¹ bedroeg, wat iets hoger is dan de gemeten E_B voor onze controleplot (Vande Walle et al., 2007).

Naast het kwantificeren van E_B is het belangrijk om E_B te verdelen in zijn autotrofe component, zijnde wortelrespiratie, en heterotrofe component, zijnde de microbiële demineralisatie van bodem organisch materiaal, om zo variaties in E_B beter te kunnen beschrijven (Trumbore, 2006). In deze studie werd ervoor gekozen wortelrespiratie te bepalen door middel van ringen, waarvan de voordelen van deze techniek, in vergelijking met andere technieken zoals trenching, reeds besproken werd in de literatuurstudie. Gedurende de twee dagen na het ringen werd een snelle daling in E_B geobserveerd in de geringde plot relatief ten opzichte van de E_B in de controle plot. Dit bevestigt eerdere waarnemingen dat CO_2 assimilatie in de bladeren een sterke invloed uitoefent op wortelrespiratie en de activiteit van de wortelgeassocieerde organismen via het floëemtransport van fotosynthetische assimilaten (Hogberg et al., 2001; Subke et al., 2004; Frey et al., 2006; Moyano et al., 2008; Kuzyakov & Gavrichkova, 2010).

In de wortels worden deze fotosynthetische assimilaten gebruikt tijdens het metabolisme en wordt een substantieel deel gerespireerd (McDowell et al., 2001). Het ringen verhindert de allocatie van fotosynthetische assimilaten van de bladeren naar de wortels, waardoor een daling in wortelrespiratie wordt waargenomen. Tijdens ons experiment gebeurde deze daling in E_B kort na het ringen, dit in tegenstelling tot resultaten bij andere studies. Hogberg et al. (2001) en Frey et al. (2006) observeerden pas 5 tot 9 dagen na het ringen een significant verschil in E_B tussen geringde en controleplot. Dit verschil kan verklaard worden doordat in deze studie metingen van E_B werden uitgevoerd in een plantage met jonge eiken (7 jaar oude eiken) waarbij wortels van deze jongere

bomen een beperktere hoeveelheid wortelreserves bevatten in vergelijking met wortels van oudere bomen (Pregitzer et al., 2000). Daarnaast werd het experiment ook op het einde van de zomer uitgevoerd (begin tot midden augustus), waarbij reserves in de wortels tot 50 % kunnen gedaald zijn in vergelijking met reserves tijdens het groeiseizoen (Hogberg et al., 2001; Domec & Pruyn, 2008; Maier et al., 2010; Regier et al., 2010). Beide argumenten wijzen erop dat door de beperkte hoeveelheid reserves in de wortels, er een sterkere afhankelijkheid zal zijn van de fotosynthetische assimilaten, wat de snelle respons van E_B op het ringen verklaart.

Op basis van het verschil in E_B van geringde en controleplots kan een schatting gemaakt worden van het autotrofe aandeel van bodem CO_2 efflux (R_{auto}), wat reeds gebruikt werd als standaard methode in voorgaande studies. In deze studies werd de bijdrage van R_{auto} aan E_B geschat tussen 16 en 44 % (Hogberg et al., 2001; Bhupinderpal et al., 2003; Binkley et al., 2006; Frey et al., 2006; Subke et al., 2011). In deze studie droeg R_{auto} volgens de standaard methode op dagelijkse basis 27.09% bij tot de totale E_B. Verschillende auteurs geven aan dat enerzijds de aanwezigheid van wortelreserves en anderzijds het afsterven van wortels na ringen aanleiding kan geven tot onderschatting van de werkelijk R_{auto} (Hogberg et al., 2001; Maier et al., 2010). Bhupinderpal et al. (2003) vond dat R_{auto} één jaar na het ringen, wanneer wortelreserves volledig uitgeput waren, tot $65\,\%$ van $\rm R_{eco}$ kon uitmaken. Echter, in onze studie werd verondersteld dat deze wortelreserves beperkt waren. Daarnaast was de observatieperiode binnen de twee weken na het ringen, wat aangeeft dat de invloed van het afsterven van wortels op de substraatbeschikbaarheid in de bodem, en bijgevolg ook op de schatting van R_{auto} , beperkt was. Daarentegen is het mogelijk dat R_{auto} eerder overschat werd, aangezien het ringen een negatieve invloed heeft op wortelexudaten (Binkley et al., 2006; Kuzyakov & Larionova, 2006; Subke et al., 2006). Dit verschil zal waarschijnlijk beperkt geweest zijn aangezien Frey et al. (2006) suggereerden dat de invloed van het ringen op de substraattoevoer naar de microbiële gemeenschap beperkt is.

5.2 Het verband tussen intern CO_2 transport en wortelrespiratie

Recent werd gesuggereerd dat een aanzienlijk deel van de CO_2 afgeleid van wortelrespiratie in het wortelstelsel blijft waar het opwaarts in de stam kan getransporteerd worden via de transpiratiestroom (Aubrey & Teskey, 2009; Grossiord & Epron, 2012). De afname in $[CO_2]$ in de stam van de bomen van de geringde plot, waargenomen na het ringen en gemeten juist boven het bodemoppervlak, zijn de eerste experimentele resultaten die bevestigen dat een substantieel deel van het CO_2 intern aan de basis van de boom afgeleid is van wortelrespiratie. De daling in $[CO_2]$ in de stam was gelijklopend in de tijd met de daling in E_B voor de geringde plot. Tevens was de afname van beide fluxen op 5 dagen na ringen van dezelfde grootteorde (21.4 % ± 1.1 % en 21.8 % ± 3.7 % voor $[CO_2]$ in de stam en E_B , respectievelijk). Bijgevolg bevestigt deze nieuwe

methode dat naast radiale diffusie naar de bodem, tot recent algemeen aangenomen als enige CO_2 flux uit de wortels, CO_2 afgeleid van wortelrespiratie ook via een interne opwaartse flux (F_T) de wortels kan verlaten. Door middel van het ringen kon de bijdrage van CO₂ afkomstig van wortelrespiratie aan F_T en E_B bepaald worden. In deze studie bedroeg op DOY 222 de hoeveelheid CO_2 afkomstig van wortelrespiratie dat opwaarts getransporteerd werd $1/4^{de}$ van de hoeveelheid dewelke diffundeerde naar de bodem. Dit stemt overeen met resultaten bekomen door Grossiord & Epron (2012) die op indirecte wijze F_T relateerden met een daling in de bijdrage van R_{auto} aan E_B tijdens de dag. In een studie uitgevoerd door Aubrey & Teskey (2009) werd het aandeel van CO_2 afkomstig van wortelrespiratie dat opwaarts getransporteerd werd op het dubbele van het gediffundeerde aandeel geschat. In deze studie werd echter wortelgerelateerde respiratie niet gemeten, maar enkel geschat op basis van de stelling dat in bossen gemiddeld 50 % van E_B afkomstig is van autotrofe bronnen (Hanson et al., 2000). Bij Aubrey & Teskey (2009) werd bovendien gebruik gemaakt van Populus deltoides, welke gekenmerkt wordt door hoge sapstroomsnelheden (Valentini, 2003), wat aanleiding geeft tot een groter opwaarts transport. Dit geeft ook aan dat inschatting van F_T relatief ten opzichte van diffusie van CO_2 afgeleid van wortelrespiratie naar de bodem, afhankelijk is van de gebruikte boomsoort en gebruikte methode voor het inschatten van E_B .

Twee andere observaties wijzen daarnaast indirect op de aanwezigheid van het opwaarts transport van wortelgerelateerde CO_2 doorheen de stam. Ten eerste, in de geringde bomen werd een iets sterker verband tussen $[CO_2]$ en stamtemperatuur (T_S) waargenomen dan in de controlebomen (de lineaire regressiecoëfficiënt (\mathbb{R}^2) zijnde respectievelijk 0.13 en 0.005 voor de geringde en controlebomen). In de controlebomen draagt zowel stam- als wortelrespiratie bij tot $[CO_2]$. Beide processen worden beïnvloed door verschillende omgevingsfactoren, waardoor er bijna geen verband is tussen $[CO_2]$ en T_S . Dit in tegenstelling tot de geringde bomen waar hoofdzakelijk stamrespiratie bijdraagt aan $[CO_2]$, waardoor de invloed van T_S op $[CO_2]$ duidelijker naar voor komt.

Ten tweede was $[CO_2]$ aan de basis van de stam (op 5 cm van het bodemoppervlak) groter dan deze gemeten op een hoogte van 26 cm. Dit werd eerder waargenomen door Teskey & McGuire (2007). Naast F_T vanuit de wortels, kan een plaatselijk hogere respiratiesnelheid hier mogelijks aan de basis liggen. Ceschia et al. (2002) vonden dat variatie in respiratiesnelheid voornamelijk bepaald wordt door verschillen in stamtemperatuur, groeisnelheid en distributie van de levende cellen. Omwille van een gelijkaardige stamtemperatuur en -opbouw van beide meetpunten kan een verschil in respiratiesnelheid door deze factoren uitgesloten worden. Teskey & McGuire (2007) voerden tevens stamrespiratiemetingen uit volgens een massabalansmethode en vonden dat stamrespiratie niet significant verschilt volgens een hoogtegradiënt. Bijgevolg kan de hogere $[CO_2]$ op

5 cm dan op 26 cm gerelateerd worden aan het opwaarts transport van CO_2 afgeleid van wortelrespiratie. Dit onderschrijft de bevinding dat een fractie van de CO_2 aanwezig in de basis van de stam wordt aangevoerd en zijn oorsprong in de wortels vindt.

In de geringde bomen nam F_T sterk af, maar niet volledig. De CO_2 welke nog vanuit de wortels opwaarts getransporteerd wordt, kan toegeschreven worden aan het gebruik van de wortelreserves voor onderhoud van het wortelmetabolisme enerzijds en CO_2 opgenomen uit de bodemoplossing anderzijds. In een experiment uitgevoerd voor dezelfde plantage als in deze studie werden drie bomen geringd op een zelfde tijdstip en werden de koolstofreserves in de fijne wortels van deze geringde bomen vergeleken met koolstofreserves in wortels van controlebomen. Elf dagen na het ringen werd in de wortelstalen van de geringde bomen een sterke daling van oplosbare suikers (glucose, fructose en sucrose) geobserveerd ten opzichte van de controlebomen. Sucrose vormt een belangrijk transportmolecule in het floëem (Atkins & Smith, 2007; Kuhn & Grof, 2010) en de sterke daling in sucroseconcentratie in de geringde bomen relatief ten opzichte van stalen van de controlebomen wijst op de invloed van ringen op de aanvoer van nieuwe fotosynthetische assimilaten naar de wortels. Na het ringen werd glucose en fructose sterker verbruikt als reserve voor wortelmetabolisme, wat hun daling in de geringde bomen kan verklaren. De periode tussen het ringen en staalname van de wortels was te beperkt om reeds een daling in zetmeelconcentratie waar te nemen. Verschillende studies vermelden pas een significante daling in zetmeelconcentratie na 1 à 2 maanden (Bhupinderpal et al., 2003; Olsson et al., 2005; Frey et al., 2006; Hogberg et al., 2009). Tevens kan de opname van CO_2 opgelost via het bodemwater bijdragen aan F_T in de geringde bomen. Gezien de beperkte bijdrage van dit CO_2 aan de koolstofassimilatie in de plant (Ford et al., 2007) wordt verwacht dat deze bijdrage aan F_T beperkt is, zoals vermeld in de literatuurstudie en aangegeven door Aubrey & Teskey (2009).

5.3 Bepaling autotrofe bodemrespiratie: nieuwe methode

Standaardmethodes waarbij R_{auto} wordt geschat op basis van E_B metingen in geringde en controleplots baseren hun methodologie op het paradigma dat CO_2 afkomstig van wortelrespiratie enkel via de bodem naar de atmosfeer diffundeert. Analoog volgens deze standaardmethode werd R_{auto} bepaald voor de plantage in Zwijnaarde, waarbij een beperkte dagelijkse variatie in R_{auto} werd waargenomen. Opvallend was dat er een depressie werd waargenomen in R_{auto} gedurende de dag en dit voornamelijk tijdens dagen met hoge een hoge dampdrukdeficit (VPD), dewelke niet gerelateerd was aan variaties in T_B . Dergelijke depressies in wortelrespiratie werden reeds waargenomen tijdens studies waarbij wortelrespiratie direct werd geschat door het plaatsen van cuvettes op wortels (Adachi et al., 2009; Bekku et al., 2009). Beide studies hadden echter geen sluitende verklaring voor deze waargenomen depressie in wortelrespiratie gedurende de dag.

Aangezien CO_2 afkomstig van wortelrespiratie echter deels intern getransporteerd kan worden, is het zeer plausibel dat deze standaardmethoden R_{auto} onderschatten. F_T is sterk gerelateerd aan sapstroomsnelheid (f_s), waardoor de hoeveelheid intern getransporteerd CO_2 afgeleid van wortelrespiratie dagelijks variaties in f_s volgt. Bijgevolg zijn dagelijkse variaties in de reële R_{auto} veel sterker dan geschat volgens de standaard methode. 's Middags worden maximale waarden in F_T bekomen en zal een substantieel deel van de CO_2 afkomstig van wortelrespiratie opwaarts worden getransporteerd in plaats van uit het wortelstelsel naar de bodem te diffunderen. Dit verklaart de depressie in R_{auto} gedurende de dag, waargenomen bij het bepalen van R_{auto} volgens de standaardmethode. Dit effect is sterker tijdens dagen met een hoge VPD, aangezien dan een grotere hoeveelheid CO_2 wordt getransporteerd met een grotere hoeveelheid sapstroom.

De standaardmethode schatte R_{auto} op dagelijkse basis in op $27\% \pm 2\%$. Wanneer echter rekening wordt gehouden met zowel F_T als E_B, dan bedroeg R_{auto} op dagelijkse basis gemiddeld $36\% \pm 0.9\%$. De standaardmethode onderschatte in deze studie R_{auto} aldus met $25\% \pm 1\%$. 's Middags, gedurende periodes van hoge f_s en dus F_T, kon de onderschatting van R_{auto} via de standaardmethode oplopen tot $45\% \pm 1\%$. Slechts één andere studie trachtte de invloed van F_T op R_{auto} in te schatten. Grossiord & Epron (2012) vonden dat het niet in rekening brengen van ${\rm F_{T}}$ leidde tot een onderschatting van ${\rm R_{auto}}$ van 17 % op dagelijkse basis. Hiervoor werd de wortelrespiratie bepaald door middel van de ¹³C-methode. Deze methode steunt op de verschillende inbouw van ${}^{13}C$ door C₃- en C₄-planten, wat leidt tot een verschillende isotopische signatuur van de weefsels. Door het opgroeien van een C_3 -plant op een bodem waar vroeger C_4 -planten werden gekweekt of omgekeerd kan zo wortelrespiratie van de heterotrofe bodemrespiratie onderscheiden worden (Boutton et al., 1998). Begroeiing van een C_4 -bodem door een C_3 -plant moet echter zelf in stand gebracht worden en neemt een lange tijd in. De complexiteit van de data-analyse en kostprijs van de proefopzet vormen bijkomende nadelen (Hanson et al., 2000; Kuzyakov, 2006; Trumbore, 2006). De door ons voorgestelde methode voor het exact bepalen van R_{auto} is echter veel gebruiksvriendelijker en kan op korte termijn uitgevoerd worden. De destructieve aard van het ringen vormt echter een nadeel. Hierbij kan het beschaduwen van de kruin in plaats van het ringen van de boomstam een oplossing bieden.

5.4 Bovengrondse efflux van intern CO_2 afgeleid van wortelrespiratie

Het transport van CO_2 uit de wortels naar de stam kan de bovengrondse fysiologie van de boom beïnvloeden. Het opwaarts getransporteerde CO_2 kan hergebruikt worden bij fotosynthese in bladen houtig weefsels en zo deel uitmaken van een inwendig recyclagemechanisme (Pfanz et al., 2002;

Teskey & McGuire, 2002; Saveyn et al., 2010). Refixatie van CO_2 kan de productiviteit van de plant verhogen door beperking van waterverlies (Cernusak & Marshall, 2000) en resulteert in een grotere carbon use efficiency (*CUE*), de ratio van netto primaire productie op totale fotosynthese (Pfanz et al., 2002). Tevens kan een gedeelte van het opwaarts getransporteerde CO_2 afgeleid van respiratie in lager gelegen stamdelen en het wortelstelsel diffunderen naar de atmosfeer via de stam en takken.

Effluxmetingen worden vaak gebruikt als schatting van de respiratiesnelheid van het beschouwde weefsel (McGuire & Teskey, 2004; Kuzyakov, 2006). Echter, metingen van E_A en E_B zijn niet representatief voor schattingen van stam-, tak- en wortelrespiratie, zoals voor deze laatste werd aangetoond in de vorige sectie. Door oplossing en transport van CO_2 in het xyleem komt de plaats van diffusie naar de atmosfeer niet noodzakelijk overeen met de plaats van respiratie. Dit betekent dat de respiratiesnelheid van bepaalde weefsels overschat kan worden, terwijl dit onderschat wordt bij andere weefsels (Teskey & McGuire, 2002; Gansert & Burgdorf, 2005; Bowman et al., 2005). Uit deze studie blijkt dat F_{T} een belangrijke flux vertegenwoordigt die in rekening moet gebracht worden wanneer men boven- en ondergrondse respiratie schat. CO₂ afkomstig van wortelrespiratie kan opwaarts getransporteerd worden en bijdragen tot E_A , waardoor het foutievelijk als stamgerespireerd CO₂ wordt aanzien (Teskey & McGuire, 2007). De bijdrage van CO₂ afkomstig van wortelrespiratie aan E_A (E_{A,wortel}) varieerde sterk gedurende de dag wat verklaard kan worden door variaties in de sapstroom. Op een dagelijkse basis bedroeg $E_{A,wortel}$ 55.2 % \pm 9.2 %. Deze waarde stemt overeen met een eerder resultaat bekomen door Teskey & McGuire (2007). In deze studie werd de bijdrage van getransporteerd CO₂ aan E_A in Platanus occidentalis geschat op 45 %. Deze waarde werd bepaald door opstelling van een empirische vergelijking tussen E_A van getransporteerd CO_2 en $[CO_2]$ gemeten in de stam. Vergelijking tussen resultaten van onze studie en de studie van Teskey & McGuire (2007) dient echter voorzichtig te gebeuren. De relatieve bijdrage van F_T aan E_A kent waarschijnlijk een seizoenale variaties en wordt beïnvloedt door verschillende factoren zoals boomsoort en -leeftijd, f_s en T_S (Teskey & McGuire, 2007).

Enkele kanttekeningen kunnen gemaakt worden bij deze studie omtrent het belang van de interne CO_2 flux bij de meting van autotrofe bovengrondse stamrespiratie. De bepaling van $E_{A,wortel}$ steunt op de aanname dat elke CO_2 molecule aanwezig in de stam dezelfde kans op diffusie of transport heeft, onafhankelijk van de plaats van oorsprong. Deze aanname verwaarloost de mogelijke invloed van CO_2 afkomstig van wortelrespiratie op de verhouding $\frac{E_A}{F_T}$ voor stamgerespireerde CO_2 . Ter hoogte van de stam bevindt het opwaarts getransporteerd CO_2 zich in opgeloste toestand in tegenstelling tot het gasvormige CO_2 afkomstig van lokaal respireerde CO_2 limiteren indien xyleemconcentraties te hoog worden. Door beide effecten zal CO_2 afkomstig van stamrespiratie
Hoofdstuk 5. Discussie

mogelijk eerder diffunderen naar de atmosfeer dan oplossen in het xyleemsap en vormt $E_{A,wortel}$ een overschatting van de bijdrage van CO_2 afkomstig van wortelrespiratie aan E_A . Het is echter duidelijk dat de impact van CO_2 afgeleid van wortelrespiratie op E_A niet te onderschatten is.

5.5 Belang accurate bepaling bodemrespiratie voor metingen en modelleren op grote schaal

De inschatting van koolstoffluxen op het niveau van bosecosystemen is van essentieel belang voor het inschatten van het effect van klimaatsverandering op bossen. De resultaten in deze studie geven aan dat bodemrespiratie in vroegere studies (Hogberg et al., 2001; Bhupinderpal et al., 2003; Binkley et al., 2006; Frey et al., 2006; Subke et al., 2011) onderschat wordt, met name dat de autotrofe component en koolstofallocatie naar de bodem groter is dan voorheen aangenomen. Een gedeelte van het wortelgerespireerd CO_2 verlaat de plant bovengronds, waardoor bovengrondse respiratie van houtige weefsels, geschat op 30 % van R_{eco} (Damesin et al., 2002), dan weer wordt overschat. Naast het belang voor de interpretatie van R_{eco} is het meten van F_{T} essentieel wanneer bijdrages van boven- en ondergrondse respiratie aan R_{eco} worden gekwantificeerd.

Eveneens bij het modelleren van koolstoffluxen op zowel ecosysteem- als globaal niveau is een gegronde kennis van de processen in de koolstofcyclus essentieel (Gillman, 1997). Deze modellen bieden ons de mogelijkheid om de invloed van wijzigende omgevingsfactoren op de interacties tussen bio- en atmosfeer in te schatten. Hierbij is modelvalidatie een essentieel onderdeel van modelontwikkeling, waarbij datasets worden gebruikt om het model te testen op zijn accuraatheid. De data van boven- en ondergrondse respiratie in deze datasets houden echter geen rekening met het bestaan van een interne CO_2 flux en vormen dan ook geen correcte weerspiegeling van de realiteit. Bijgevolg wordt modelvalidatie dan ook met foutieve data uitgevoerd. De implementatie van F_T in deze datasets is dan ook cruciaal voor een correcte voorspelling van de koolstofhuishouding van bosecosystemen.

Hoofdstuk 6

Conclusie

Uit deze studie blijkt het belang van intern CO_2 transport bij bepaling van boven- en ondergrondse respiratie. Huidige methodes ter inschatting van weefselrespiratie steunen op effluxmetingen van het beschouwde weefsel. Een gedeelte van de CO_2 afgeleid van wortelrespiratie kan echter opwaarts getransporteerd worden en bovengronds naar de atmosfeer diffunderen. In deze studie bleek het niet in rekening brengen van de interne component van wortelrespiratie dit respiratieproces op een dagelijkse basis met $25.1\% \pm 0.5\%$ te onderschatten. 's Middags gedurende periodes van hoge sapstroom liep deze onderschatting op tot $44.9\% \pm 0.7\%$. Tijdens periodes van hoge sapstroom kan een groter aandeel van CO_2 afgeleid van wortelrespiratie opwaarts getransporteerd worden, wat de overdag geobserveerde depressie in bodem CO_2 efflux kan verklaren.

Daarnaast kan dit intern CO_2 afgeleid van wortelrespiratie bijdragen aan stam CO_2 efflux. Over een 24 h periode bedroeg deze bijdrage $50.4\% \pm 5.5\%$. Het niet in rekening brengen van intern CO_2 transport leidt aldus tot een overschatting van stam- en takrespiratie en een onderschatting van de wortelrespiratie. Om de boven- en ondergrondse respiratie en de koolstofomloop in ecosystemen correct in te schatten, moet bijgevolg zowel intern CO_2 transport als boven- en ondergrondse CO_2 efflux beschouwd worden.

Studies geven aan dat een verhoogde atmosferische CO₂ concentratie gepaard kan gaan met een grotere koolstofallocatie naar de wortels (Norby et al., 2004; Heath et al., 2005) en een toename in wortelrespiratie (Zak et al., 2000; Selsted et al., 2012). Tevens leidt een toename in atmosferische CO₂ concentratie tot een verhoging van de bodem CO₂ concentratie, waardoor intern CO₂ in de wortels een sterke diffusielimitatie naar de bodem kent (Karberg et al., 2005). Gezien de voorspelde stijging in atmosferische CO₂ concentratie kan in de toekomst het belang van het opwaartse transport van CO₂ afgeleid van wortelrespiratie toenemen. Bepaalde studies observeren onder verhoogde atmosferische CO₂ concentraties echter een daling in sapstroom (Wang et al., 2005; Wertin et al., 2010) wat intern CO₂ transport negatief beïnvloedt. Tevens kan naargelang boomsoort, omgeving en seizoen het relatieve belang van intern CO₂ transport variëren. Verder onderzoek naar de invloed van deze parameters op intern CO₂ transport is nodig en zal leiden tot het vergroten van de kennis van de koolstofcyclus in bomen en ecosystemen (Grossiord & Epron, 2012).

- Adachi, M., Ishida, A., Bunyavejchewin, S., Okuda, T., & Koizumi, H. (2009). Spatial and temporal variation in soil respiration in a seasonally dry tropical forest, thailand. *Journal of Tropical Ecology*, 25, 531–539.
- Amiro, B. D. & Ewing, L. L. (1992). Physiological conditions and uptake of inorganic C¹⁴ by plant-roots. *Environmental and Experimental Botany*, 32(3), 203–211.
- Amthor, J. S. (2000). The McCree-de Wit-penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany, 86(1), 1–20.
- Amundson, R. G. & Davidson, E. A. (1990). Carbon-dioxide and nitrogenous gases in the soil atmosphere. Journal of Geochemical Exploration, 38(1-2), 13–41.
- Arteca, R. N. & Poovaiah, B. W. (1982). Absorption of CO_2 - C^{14} by potato roots and its subsequent translocation. Journal of the American Society for Horticultural Science, 107(3), 398–401.
- Aschan, G. & Pfanz, H. (2003). Non-foliar photosynthesis a strategy of additional carbon acquisition. *Flora*, 198(2), 81–97.
- Atjay, G., Ketner, P., & Duvigneaud, P. (1979). Terrestrial primary production and photomass, (pp. 129–182.). Chichester: Wiley.
- Atkin, O., Bruhn, D., & Tjoelker, M. (2005). Response of Plant Respiration to Changes in Temperature: Mechanisms and Consequences of Variations in Q₁₀ Values and Acclimation, chapter 7. Dordrecht: Springer.
- Atkins, C. A. & Smith, P. M. C. (2007). Translocation in legumes: Assimilates, nutrients, and signaling molecules. *Plant Physiology*, 144(2), 550–561.
- Aubrey, D. P., Boyles, J. G., Krysinsky, L. S., & Teskey, R. O. (2011). Spatial and temporal patterns of xylem sap ph derived from stems and twigs of Populus deltoides L. *Environmental* and Experimental Botany, 71(3), 376–381.
- Aubrey, D. P. & Teskey, R. O. (2009). Root-derived CO₂ efflux via xylem stream rivals soil CO₂ efflux. *New Phytologist*, 184(1), 35–40.
- Baath, E. & Wallander, H. (2003). Soil and rhizosphere microorganisms have the same Q_{10} for respiration in a model system. *Global Change Biology*, 9(12), 1788–1791.
- Baldocchi, D. (2008). Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. *Australian Journal of Botany*, 56(1), 1–26.

- Bekku, Y. S., Sakata, T., Nakano, T., & Koizumi, H. (2009). Midday depression in root respiration of Quercus crispula and Chamaecyparis obtusa: its implication for estimating carbon cycling in forest ecosystems. *Ecological Research*, 24(4), 865–871.
- Bekku, Y. S., Sakata, T., Tanaka, T., & Nakano, T. (2011). Midday depression of tree root respiration in relation to leaf transpiration. *Ecological Research*, 26(4), 791–799.
- Bhupinderpal, S., Nordgren, A., Lofvenius, M. O., Hogberg, M. N., Mellander, P. E., & Hogberg, P. (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal scots pine forest: extending observations beyond the first year. *Plant Cell and Environment*, 26(8), 1287–1296.
- Binkley, D., Stape, J. L., Takahashi, E. N., & Ryan, M. G. (2006). Tree-girdling to separate root and heterotrophic respiration in two Eucalyptus stands in brazil. *Oecologia*, 148(3), 447–454.
- Bird, J. A., Herman, D. J., & Firestone, M. K. (2011). Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil. Soil Biology & Biochemistry, 43(4), 718–725.
- Bonkowski, M. (2004). Protozoa and plant growth: the microbial loop in soil revisited. New *Phytologist*, 162(3), 617–631.
- Boone, R. D., Nadelhoffer, K. J., Canary, J. D., & Kaye, J. P. (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. *Nature*, 396(6711), 570–572.
- Borken, W., Savage, K., Davidson, E. A., & Trumbore, S. E. (2006). Effects of experimental drought on soil respiration and radiocarbon efflux from a temperate forest soil. *Global Change Biology*, 12(2), 177–193.
- Boutton, T. W., Archer, S. R., Midwood, A. J., Zitzer, S. F., & Bol, R. (1998). delta C¹³ values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. *Geoderma*, 82(1-3), 5–41.
- Bowman, W. P., Barbour, M. M., Turnbull, M. H., Tissue, D. T., Whitehead, D., & Griffin, K. L. (2005). Sap flow rates and sapwood density are critical factors in within- and between-tree variation in CO₂ efflux from stems of mature dacrydium cupressinum trees. *New Phytologist*, 167(3), 815–828.
- Buckley, T. N. (2005). The control of stomata by water balance. New Phytologist, 168(2), 275–291.
- Butler, J. (1991). Carbon dioxide equilibria and their applications. Lewis Publishers.
- Carbone, M. S. & Vargas, R. (2008). Automated soil respiration measurements: new information, opportunities and challenges. New Phytologist, 177(2), 295–297.

- Cerasoli, S., McGuire, M. A., Faria, J., Mourato, M., Schmidt, M., Pereira, J. S., Chaves, M. M., & Teskey, R. O. (2009). CO₂ efflux, CO₂ concentration and photosynthetic refixation in stems of Eucalyptus globulus (labill.). *Journal of Experimental Botany*, 60(1), 99–105.
- Cernusak, L. A. & Marshall, J. D. (2000). Photosynthetic refixation in branches of western white Pine. Functional Ecology, 14(3), 300–311.
- Ceschia, E., Damesin, C., Lebaube, S., Pontailler, J. Y., & Dufrene, E. (2002). Spatial and seasonal variations in stem respiration of beech trees (Fagus sylvatica). Annals of Forest Science, 59(8), 801–812.
- Cheng, W. (2009). Rhizosphere priming effect: Its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biology & Biochemistry, 41(9), 1795–1801.
- Cheng, Y. H., Arakawa, O., Kasai, M., & Sawada, S. (2008). Analysis of reduced photosynthesis in the apple leaf under sink-limited conditions due to girdling. *Journal of the Japanese Society* for Horticultural Science, 77(2), 115–121.
- Colmer, T. D. (2003). Long-distance transport of gases in plants: a perspective on internal aeration and radial oxygen loss from roots. *Plant Cell and Environment*, 26(1), 17–36.
- Conant, R. T., Ryan, M. G., Agren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., Hopkins, F. M., Hyvonen, R., Kirschbaum, M. U. F., Lavallee, J. M., Leifeld, J., Parton, W. J., Steinweg, J. M., Wallenstein, M. D., Wetterstedt, J. A. M., & Bradford, M. A. (2011). Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward. *Global Change Biology*, 17(11), 3392–3404.
- Conen, F. & Smith, K. A. (2000). An explanation of linear increases in gas concentration under closed chambers used to measure gas exchange between soil and the atmosphere. *European Journal of Soil Science*, 51(1), 111–117.
- Couteaux, M. M., Mousseau, M., Celerier, M. L., & Bottner, P. (1991). Increased atmospheric CO₂ and litter quality - decomposition of sweet chestnut leaf litter with animal food webs of different complexities. *Oikos*, 61(1), 54–64.
- Crill, P. M., Keller, M., Weitz, A., Grauel, B., & Veldkamp, E. (2000). Intensive field measurements of nitrous oxide emissions from a tropical agricultural soil. *Global Biogeochemical Cycles*, 14(1), 85–95.
- Cutler, D., Botha, C., & Stevenson, D. (2008). *Plant Anatomy: an applied approach*. Blackwell Publishing.

- Dalsgaard, L., Mikkelsen, T. N., & Bastrup-Birk, A. (2011). Sap flow for beech (Fagus sylvatica l.) in a natural and a managed forest-effect of spatial heterogeneity. *Journal of Plant Ecology-Uk*, 4(1-2), 23–35.
- Damesin, C., Ceschia, E., Le Goff, N., Ottorini, J. M., & Dufrene, E. (2002). Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytologist, 153(1), 159–172.
- Daudet, F. A., Ameglio, T., Cochard, H., Archilla, O., & Lacointe, A. (2005). Experimental analysis of the role of water and carbon in tree stem diameter variations. *Journal of Experimental Botany*, 56(409), 135–144.
- Davidson, E., Belk, E., & Boone, R. (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. *Global Change Biology*, 4(2), 217–227.
- Davidson, E. & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. *Nature*, 440(7081), 165–173.
- Davidson, E., Richardson, A., Savage, K., & Hollinger, D. (2006). A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. *Global Change Biology*, 12(2), 230–239.
- Davidson, E., Savage, K., Verchot, L., & Navarro, R. (2002). Minimizing artifacts and biases in chamber-based measurements of soil respiration. Agricultural and Forest Meteorology, 113(1-4), 21–37. 6.
- De Schepper, V., Steppe, K., Van Labeke, M.-C., & Lemeur, R. (2010). Detailed analysis of double girdling effects on stem diameter variations and sap flow in young oak trees. *Environmental* and Experimental Botany, 68(2), 149–156.
- De Vries, F. W. T. & Penning (1975). The cost of maintenance processes in plant cells. Annals of Botany, 39(1), 77–92.
- Domec, J. C. & Pruyn, M. L. (2008). Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees. *Tree Physiology*, 28(10), 1493–1504.
- Enoch, H. Z. & Olesen, J. M. (1993). Plant-response to irrigation with water enriched with carbon-dioxide. *New Phytologist*, 125(2), 249–258.
- Fahn, A. (1982). Plant Anatomy: Third Edition. Pergamon Press.

- Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2005). Similar response of labile and resistant soil organic matter pools to changes in temperature. *Nature*, 433(7021), 57–59.
- Fenn, K. M., Malhi, Y., & Morecroft, M. D. (2010). Soil CO₂ efflux in a temperate deciduous forest: Environmental drivers and component contributions. Soil Biology & Biochemistry, 42(10), 1685–1693.
- Fisher, F. M. & Gosz, J. R. (1986). Effects of trenching on soil processes and properties in a new-mexico mixed-conifer forest. *Biology and Fertility of Soils*, 2(1), 35–42.
- Flores, H. E., Vivanco, J. M., & Loyola-Vargas, V. M. (1999). 'Radicle' biochemistry: the biology of root-specific metabolism. *Trends in Plant Science*, 4(6), 220–226.
- Ford, C. R., Wurzburger, N., Hendrick, R. L., & Teskey, R. O. (2007). Soil DIC uptake and fixation in pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. *Tree Physiology*, 27(3), 375–383.
- Frey, B., Hagedorn, F., & Giudici, F. (2006). Effect of girdling on soil respiration and root composition in a sweet chestnut forest. Forest Ecology and Management, 225(1-3), 271–277.
- Gansert, D. & Burgdorf, M. (2005). Effects of xylem sap flow on carbon dioxide efflux from stems of birch (Betula pendula Roth). *Flora*, 200(5), 444–455.
- Gartner, B. L., Moore, J. R., & Gardiner, B. A. (2004). Gas in stems: abundance and potential consequences for tree biomechanics. *Tree Physiology*, 24 (11), 1239–1250.
- Gillman, M.; Hails, R. (1997). An Introduction to Ecological Modelling: Putting Practice Into Theory. Oxford: Blackwell Science.
- Goulden, M. L., Munger, J. W., Fan, S. M., Daube, B. C., & Wofsy, S. C. (1996). Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability. *Science*, 271 (5255), 1576–1578.
- Greenway, H., Armstrong, W., & Colmer, T. D. (2006). Conditions leading to high CO2 (5 kpa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany, 98(1), 9–32.
- Gregory, P. J. (2006). Roots, rhizosphere and soil: the route to a better understanding of soil science? *European Journal of Soil Science*, 57(1), 2–12.
- Grossiord, C., M. L. & Epron, D. (2012). Transpiration alters the contribution of autotrophic and heterotrophic components of soil CO₂ efflux. *New Phytologist*.

- Hanson, P. J., Edwards, N. T., Garten, C. T., & Andrews, J. A. (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations. *Biogeochemistry*, 48(1), 115–146.
- Hari, P., Nygren, P., & Korpilahti, E. (1991). Internal circulation of carbon within a tree. Canadian Journal of Forest Research-Revue Canadianne De Recherche Forestiere, 21(4), 514–515.
- Heath, J., Ayres, E., Possell, M., Bardgett, R. D., Black, H. I. J., Grant, H., Ineson, P., & Kerstiens, G. (2005). Rising atmospheric CO2 reduces sequestration of root-derived soil carbon. *Science*, 309(5741), 1711–1713.
- Heinemeyer, A., Di Bene, C., Lloyd, A. R., Tortorella, D., Baxter, R., Huntley, B., Gelsomino, A., & Ineson, P. (2011). Soil respiration: implications of the plant-soil continuum and respiration chamber collar-insertion depth on measurement and modelling of soil CO₂ efflux rates in three ecosystems. *European Journal of Soil Science*, 62(1), 82–94.
- Hogberg, P., Bhupinderpal, S., Lofvenius, M. O., & Nordgren, A. (2009). Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. *Forest Ecology and Management*, 257(8), 1764–1767.
- Hogberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A., Hogberg, M. N., Nyberg, G., Ottosson-Lofvenius, M., & Read, D. J. (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. *Nature*, 411(6839), 789–792.
- Horwath, W. R., Pregitzer, K. S., & Paul, E. A. (1994). CO₁₄ allocation in tree soil systems. *Tree Physiology*, 14(10), 1163–1176.
- Hutsch, B. W., Augustin, J., & Merbach, W. (2002). Plant rhizodeposition an important source for carbon turnover in soils. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 165(4), 397–407.
- Huxman, T. E., Snyder, K. A., Tissue, D., Leffler, A. J., Ogle, K., Pockman, W. T., Sandquist, D. R., Potts, D. L., & Schwinning, S. (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. *Oecologia*, 141(2), 254–268.
- Insam, H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime. Soil Biology & Biochemistry, 22(4), 525–532.
- Irvine, J., Law, B. E., & Kurpius, M. R. (2005). Coupling of canopy gas exchange with root and rhizosphere respiration in a semi-arid forest. *Biogeochemistry*, 73(1), 271–282.

- Janssens, I., Lankreijer, H., Matteucci, G., Kowalski, A., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore, S. abd Rebmann, C., Moors, E. J., Grelle, A., Rannik, U., Ceulemans, R., & Valentini, R. (2001). Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. *Global Change Biology*, 7(3), 269–278.
- Jassal, R., Black, A., Novak, M., Morgenstern, K., Nesic, Z., & Gaumont-Guay, D. (2005). Relationship between soil CO2 concentrations and forest-floor CO2 effluxes. Agricultural and Forest Meteorology, 130(3-4), 176–192.
- Jones, H., G. (1992). Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press.
- Jordan, M. O. & Habib, R. (1996). Mobilizable carbon reserves in young peach trees as evidenced by trunk girdling experiments. *Journal of Experimental Botany*, 47(294), 79–87.
- Karberg, N. J., Pregitzer, K. S., King, J. S., Friend, A. L., & Wood, J. R. (2005). Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone. *Oecologia*, 142(2), 296–306.
- Kharouk, V. I., Middleton, E. M., Spencer, S. L., Rock, B. N., & Williams, D. L. (1995). Aspen bark photosynthesis and its significance to remote-sensing and carbon budget estimates in the boreal ecosystem. *Water Air and Soil Pollution*, 82(1-2), 483–497.
- Knohl, A., Schulze, E. D., Kolle, O., & Buchmann, N. (2003). Large carbon uptake by an unmanaged 250-year-old deciduous forest in central germany. Agricultural and Forest Meteorology, 118(3-4), 151–167.
- Knorr, W., Prentice, I. C., House, J. I., & Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. *Nature*, 433(7023), 298–301.
- Kramer, P. & Boyer, J. (1995). Water Relations of Plants and Soils. San Diego: Academic Press, Inc.
- Kuhn, C. & Grof, C. P. L. (2010). Sucrose transporters of higher plants. Current Opinion in Plant Biology, 13(3), 288–298.
- Kunert, N., Schwendenmann, L., & Holscher, D. (2010). Seasonal dynamics of tree sap flux and water use in nine species in Panamanian forest plantations. Agricultural and Forest Meteorology, 150(3), 411–419.
- Kuzyakov, Y. (2002). Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil, 165(4), 382–396.

- Kuzyakov, Y. (2006). Sources of CO₂ efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38(3), 425–448.
- Kuzyakov, Y. & Gavrichkova, O. (2010). Review: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. *Global Change Biology*, 16(12), 3386–3406.
- Kuzyakov, Y. & Larionova, A. (2006). Contribution of rhizomicrobial and root respiration to the CO2 emission from soil (a review). *Eurasian Soil Science*, 39(7), 753–764.
- Law, B. E., Ryan, M. G., & Anthoni, P. M. (1999). Seasonal and annual respiration of a ponderosa pine ecosystem. *Global Change Biology*, 5(2), 169–182.
- Lawlor, D. (2001). *Photosynthesis. Third edition.* (Third Edition ed.). Oxford: BIOS Scientific Publishers Ltd.
- Lee, M., Nakane, K., Nakatsubo, T., & Koizumi, H. (2003). Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. *Plant and Soil*, 255(1), 311–318.
- Lee, X., Wu, H., Sigler, J., Oishi, C., & Siccama, T. (2004). Rapid and transient response of soil respiration to rain. *Global Change Biology*, 10(6), 1017–1026.
- Levy, P. E., Meir, P., Allen, S. J., & Jarvis, P. G. (1999). The effect of aqueous transport of CO₂ in xylem sap on gas exchange in woody plants. *Tree Physiology*, 19(1), 53–58.
- Li, C. Y., Weiss, D., & Goldschmidt, E. E. (2003). Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees. Annals of Botany, 92(1), 137–143.
- Litton, C. M., Raich, J. W., & Ryan, M. G. (2007). Carbon allocation in forest ecosystems. Global Change Biology, 13(10), 2089–2109.
- Liu, Q., Edwards, N. T., Post, W. M., Gu, L., Ledford, J., & Lenhart, S. (2006). Temperatureindependent diel variation in soil respiration observed from a temperate deciduous forest. *Global Change Biology*, 12(11), 2136–2145.
- Livingston, G. & Hutchinson, G. (1995). Enclosure-based measurement of trace gas exchange: applications and sources of error. Cambridge: Blackwell Science.
- Lloyd, J. & Taylor, J. A. (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323.

- Longdoz, B., Yernaux, M., & Aubinet, M. (2000). Soil CO₂ efflux measurements in a mixed forest: impact of chamber disturbances, spatial variability and seasonal evolution. *Global Change Biology*, 6(8), 907–917.
- Lund, C. P., Riley, W. J., Pierce, L. L., & Field, C. B. (1999). The effects of chamber pressurization on soil-surface CO₂ flux and the implications for NEE measurements under elevated CO2. *Global Change Biology*, 5(3), 269–281.
- Luyssaert, S., Ciais, P., Piao, S. L., Schulze, E. D., Jung, M., Zaehle, S., Schelhaas, M. J., Reichstein, M., Churkina, G., Papale, D., Abril, G., Beer, C., Grace, J., Loustau, D., Matteucci, G., Magnani, F., Nabuurs, G. J., Verbeeck, H., Sulkava, M., van der Werf, G. R., Janssens, I. A., & Team, C.-I. S. (2010). The european carbon balance. part 3: forests. *Global Change Biology*, 16(5), 1429–1450.
- Maier, C. A. & Clinton, B. D. (2006). Relationship between stem CO₂ efflux, stem sap velocity and xylem CO₂ concentration in young loblolly pine trees. *Plant Cell and Environment*, 29(8), 1471–1483.
- Maier, C. A., Johnsen, K. H., Clinton, B. D., & Ludovici, K. H. (2010). Relationships between stem CO(2) efflux, substrate supply, and growth in young loblolly pine trees. New Phytol, 185(2), 502–13.
- Martin, T. A., Teskey, R. O., & Dougherty, P. M. (1994). Movement of respiratory CO₂ in stems of loblolly-pine (Pinus-taeda l) seedlings. *Tree Physiology*, 14(5), 481–495.
- McDowell, N. G., Balster, N. J., & Marshall, J. D. (2001). Belowground carbon allocation of rocky mountain douglas-fir. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 31(8), 1425–1436.
- McGuire, M. A. & Teskey, R. O. (2002). Microelectrode technique for in situ measurement of carbon dioxide concentrations in xylem sap of trees. *Tree Physiology*, 22(11), 807–811.
- McGuire, M. A. & Teskey, R. O. (2004). Estimating stem respiration in trees by a mass balance approach that accounts for internal and external fluxes of CO₂. *Tree Physiology*, 24(5), 571–578.
- Moyano, F. E., Kutsch, W. L., & Rebmann, C. (2008). Soil respiration fluxes in relation to photosynthetic activity in broad-leaf and needle-leaf forest stands. Agricultural and Forest Meteorology, 148(1), 135–143.
- Murakami, P. F., Schaberg, P. G., & Shane, J. B. (2008). Stem girdling manipulates leaf sugar concentrations and anthocyanin expression in sugar maple trees during autumn. *Tree Physiology*, 28(10), 1467–1473.

- Murray, P., Ostle, N., Kenny, C., & Grant, H. (2004). Effect of defoliation on patterns of carbon exudation from Agrostis capillaris. Journal of Plant Nutrition and Soil Science-Zeitschrift Fur Pflanzenernahrung Und Bodenkunde, 167(4), 487–493.
- Nardi, S., Concheri, G., Pizzeghello, D., Sturaro, A., Rella, R., & Parvoli, G. (2000). Soil organic matter mobilization by root exudates. *Chemosphere*, 41(5).
- Nasr, Z., Woo, S. Y., Zineddine, M., Khaldi, A., & Rejeb, M. N. (2011). Sap flow estimates of Quercus suber according to climatic conditions in north Tunisia. *African Journal of Agricultural Research*, 6(20), 4705–4710.
- Nobel, P. (1999). Physicochemical and environmental plant physiology. Academic Press.
- Norby, R. J., Ledford, J., Reilly, C. D., Miller, N. E., & O'Neill, E. G. (2004). Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. *Proceedings of the National Academy of Sciences of the United States of America*, 101(26), 9689–9693.
- O'Brien, J. J., Oberbauer, S. F., & Clark, D. B. (2004). Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. *Plant Cell and Environment*, 27(5), 551–567.
- Olsson, P., Linder, S., Giesler, R., & Hogberg, P. (2005). Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. *Global Change Biology*, 11(10), 1745–1753.
- Perry, T. (1982). The ecology of tree roots and the practical significance thereof. *Journal of* Arboriculture, 9, 197–211.
- Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C., & Loose, M. (2002). Ecology and ecophysiology of tree stems: corticular and wood photosynthesis. *Naturwissenschaften*, 89(4), 147–162.
- Pregitzer, K. S., King, J. A., Burton, A. J., & Brown, S. E. (2000). Responses of tree fine roots to temperature. New Phytologist, 147(1), 105–115.
- Prentice, I., Farquhar, G., Fasham, M., Goulden, M., Heimann, M., Jaramillo, V., Kheshgi, H., Le Quere, C., Scholes, R., & Wallace, D. (2001). The carbon cycle atmospheric carbon dioxide, chapter 3. Cambridge: Cambridge University Press.
- Pumpanen, J., Ilvesniemi, H., Peramaki, M., & Hari, P. (2003). Seasonal patterns of soil CO₂ efflux and soil air CO₂ concentration in a scots pine forest: comparison of two chamber techniques. *Global Change Biology*, 9(3), 371–382.

- Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinisto, S., Lohila, A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J. C., Grunzweig, J. M., Reth, S., Subke, J. A., Savage, K., Kutsch, W., Ostreng, G., Ziegler, W., Anthoni, P., Lindroth, A., & Hari, P. (2004). Comparison of different chamber techniques for measuring soil CO₂ efflux. *Agricultural and Forest Meteorology*, 123(3-4), 159–176.
- Qi, J., Marshall, J., & Mattson, K. (1994). High soil carbon-dioxide concentrations inhibit root respiration of douglas-fir. New Phytologist, 128(3), 435–442.
- Qi, Y. & Xu, M. (2001). Separating the effects of moisture and temperature on soil CO₂ efflux in a coniferous forest in the sierra nevada mountains. *Plant and Soil*, 237(1), 15–23.
- Raich, J. W. & Schlesinger, W. H. (1992). The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate. *Tellus Series B-Chemical and Physical Meteorology*, 44(2), 81–99.
- Rasse, D. P., Rumpel, C., & Dignac, M. F. (2005). Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. *Plant and Soil*, 269(1-2), 341–356.
- Regier, N., Streb, S., Zeeman, S. C., & Frey, B. (2010). Seasonal changes in starch and sugar content of poplar (Populus deltoides x nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots. *Tree Physiology*, 30(8), 979–987.
- Ryan, M. G. (1990). Growth and maintenance respiration in stems of Pinus-contorta and Piceaengelmannii. Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 20(1), 48–57.
- Ryan, M. G. & Law, B. E. (2005). Interpreting, measuring, and modeling soil respiration. *Biogeochemistry*, 73(1), 3–27.
- Savage, K. & Davidson, E. (2003). A comparison of manual and automated systems for soil CO₂ flux measurements: trade-offs between spatial and temporal resolution. *Journal of Experimental Botany*, 54 (384), 891–899.
- Savage, K., Davidson, E., & Richardson, A. (2008). A conceptual and practical approach to data quality and analysis procedures for high-frequency soil respiration measurements. *Functional Ecology*, 22(6), 1000–1007.
- Saveyn, A., Steppe, K., & Lemeur, R. (2007). Daytime depression in tree stem CO₂ efflux rates: Is it caused by low stem turgor pressure? Annals of Botany, 99(3), 477–485.

- Saveyn, A., Steppe, K., & Lemeur, R. (2008). Report on non-temperature related variations in CO2 efflux rates from young tree stems in the dormant season. *Trees-Structure and Function*, 22(2), 165–174.
- Saveyn, A., Steppe, K., Ubierna, N., & Dawson, T. E. (2010). Woody tissue photosynthesis and its contribution to trunk growth and bud development in young plants. *Plant Cell and Environment*, 33(11), 1949–1958.
- Saxton, K. E. & Rawls, W. J. (2006). Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70(5), 1569–1578.
- Schimel, D. S., Braswell, B. H., Holland, E. A., McKeown, R., Ojima, D. S., Painter, T. H., Parton, W. J., & Townsend, A. R. (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. *Global Biogeochemical Cycles*, 8(3), 279–293.
- Schmidt, J., Batic, F., & Pfanz, H. (2000). Photosynthetic performance of leaves and twigs of evergreen holly (Ilex aquifolium L.). *Phyton-Annales Rei Botanicae*, 40(1), 179–190.
- Schuur, E. A. G. & Trumbore, S. E. (2006). Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon. *Global Change Biology*, 12(2), 165–176.
- Selsted, M. B., van der Linden, L., Ibrom, A., Michelsen, A., Larsen, K. S., Pedersen, J. K., Mikkelsen, T. N., Pilegaard, K., Beier, C., & Ambus, P. (2012). Soil respiration is stimulated by elevated CO₂ and reduced by summer drought: three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE). *Global Change Biology*, 18(4), 1216–1230.
- Sorz, J. & Hietz, P. (2006). Gas diffusion through wood: implications for oxygen supply. Trees-Structure and Function, 20(1), 34–41.
- Sperry, J. S. (2003). Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164(3), S115–S127.
- Sprugel, D., Ryan, M., Brooks, J., Vogt, K., & Martin, T. (1995). Respiration from organ level to the stand. San Diego, CA, USA: Academic Press.
- Steppe, K., De Pauw, D. J. W., Doody, T. M., & Teskey, R. O. (2010). A comparison of sap flux density using thermal dissipation, heat pulse velocity and heat field deformation methods. *Agricultural and Forest Meteorology*, 150(7-8), 1046–1056.
- Steppe, K., Saveyn, A., McGuire, M. A., Lemeur, R., & Teskey, R. O. (2007). Resistance to radial CO2 diffusion contributes to between-tree variation in CO2 efflux of Populus deltoides stems. *Functional Plant Biology*, 34(9), 785–792.

- Stoyan, H., De-Polli, H., Bohm, S., Robertson, G. P., & Paul, E. A. (2000). Spatial heterogeneity of soil respiration and related properties at the plant scale. *Plant and Soil*, 222(1-2), 203–214.
- Stumm, W. & Morgan, J. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Third Edition. New York: John Wiley & Sons, Inc.
- Subke, J. A., Hahn, V., Battipaglia, G., Linder, S., Buchmann, N., & Cotrufo, M. F. (2004). Feedback interactions between needle litter decomposition and rhizosphere activity. *Oecologia*, 139(4), 551–559.
- Subke, J. A., Inglima, I., & Cotrufo, M. F. (2006). Trends and methodological impacts in soil CO₂ efflux partitioning. *Global Change Biology*, 12(9), 1813–1813.
- Subke, J.-A., Voke, N. R., Leronni, V., Garnett, M. H., & Ineson, P. (2011). Dynamics and pathways of autotrophic and heterotrophic soil CO2 efflux revealed by forest girdling. *Journal* of Ecology, 99(1), 186–193.
- Sulzman, E. W., Brant, J. B., Bowden, R. D., & Lajtha, K. (2005). Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO₂ efflux in an old growth coniferous forest. *Biogeochemistry*, 73(1), 231–256.
- Taiz, L. & Zeiger, E. (2006). Plant Physiology: Fourth Edition. Sinauer Associates, Inc.
- Teskey, R. O. & McGuire, M. A. (2002). Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and branches of trees. *Plant Cell and Environment*, 25(11), 1571–1577.
- Teskey, R. O. & McGuire, M. A. (2007). Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots. *Plant Cell and Environment*, 30(5), 570–579.
- Teskey, R. O., Saveyn, A., Steppe, K., & McGuire, M. A. (2008). Origin, fate and significance of CO2 in tree stems. New Phytologist, 177(1), 17–32.
- Thornton, B., Paterson, E., Midwood, A. J., Sim, A., & Pratt, S. M. (2004). Contribution of current carbon assimilation in supplying root exudates of Lolium perenne measured using steady-state C13 labelling. *Physiologia Plantarum*, 120(3), 434–441.
- Trumbore, S. (2006). Carbon respired by terrestrial ecosystems recent progress and challenges. Global Change Biology, 12(2), 141–153.
- Valentini, R. (2003). Fluxes of Carbon, Water and Energy of European Forests. Berlin: Springer.

- Vande Walle, I., Samson, R., Looman, B., Verheyen, K., & Lemeur, R. (2007). Temporal variation and high-resolution spatial heterogeneity in soil CO₂ efflux in a short-rotation tree plantation. *Tree Physiology*, 27(6), 837–848.
- Verstraeten, W. W., Veroustraete, F., & Feyen, J. (2008). Assessment of evapotranspiration and soil moisture content across different scales of observation. Sensors, 8(1), 70–117.
- Vose, J. M. & Ryan, M. G. (2002). Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. *Global Change Biology*, 8(2), 182–193.
- Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. *Plant Physiology*, 132(1), 44–51.
- Wang, C. K. & Yang, J. Y. (2007). Rhizospheric and heterotrophic components of soil respiration in six chinese temperate forests. *Global Change Biology*, 13(1), 123–131.
- Wang, K. Y., Kellomaki, S., Zha, T. S., & Peltola, H. (2005). Annual and seasonal variation of sap flow and conductance of pine trees grown in elevated carbon dioxide and temperature. *Journal* of Experimental Botany, 56 (409), 155–165.
- Wertin, T. M., McGuire, M. A., & Teskey, R. O. (2010). The influence of elevated temperature, elevated atmospheric CO(2) concentration and water stress on net photosynthesis of loblolly pine (pinus taeda l.) at northern, central and southern sites in its native range. *Global Change Biology*, 16(7), 2089–2103.
- Winston, G. C., Sundquist, E. T., Stephens, B. B., & Trumbore, S. E. (1997). Winter CO₂ fluxes in a boreal forest. *Journal of Geophysical Research-Atmospheres*, 102(D24), 28795–28804.
- Wu, J., Brookes, P. C., & Jenkinson, D. S. (1993). Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biology & Biochemistry, 25(10), 1435–1441.
- Xu, X. L., Kuzyakov, Y., Wanek, W., & Richter, A. (2008). Root-derived respiration and nonstructural carbon of rice seedlings. *European Journal of Soil Biology*, 44(1), 22–29.
- Yavitt, J. B., Fahey, T. J., & Simmons, J. A. (1995). Methane and carbon-dioxide dynamics in a northern hardwood ecosystem. Soil Science Society of America Journal, 59(3), 796–804.
- Zak, D. R., Pregitzer, K. S., King, J. S., & Holmes, W. E. (2000). Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. *New Phytologist*, 147(1), 201–222.