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I. Introduction  
Human cooperation is a truly puzzling subject that has managed to both fascinate 

and confuse researchers from various backgrounds. Punishment has been put 

forward as one of the explanations for man’s high levels of cooperation; however this 

behaviour itself seems to raise even more questions. The first sections (1-3) of this 

introduction will allow the reader to get acquainted with the study of human 

behaviour and human cooperation. Next, an experimental framework commonly 

used to study human cooperation is introduced (section 4). Finally, we further 

expand on punishment and its proposed explanations (section 5). In section 6, we 

specify the aims of our study. 

1 Approaches in the study of human behaviour  

Human behaviour is currently attracting a lot of interest in diverse fields, ranging 

from biology, psychology, economics, philosophy, anthropology, and several others. 

Consequently, different approaches to the study of human behaviour have emerged, 

each offering a different framework for interpretation. Two of those approaches, 

evolutionary psychology and human behavioural ecology, try to explain human 

behaviour from an adaptationist point of view, but give a different emphasis and 

have some theoretical and methodological differences. A third approach we will 

discuss is game theory, which is used as a conceptual and mathematical framework 

to make predictions about optimal behavioural outcomes by economists as well as 

biologists. To conclude this brief overview, dual inheritance theory is introduced. 

This theory emphasises the importance of cultural processes and suggests that they 

alter the process of selection. 

1.1 Evolutionary psychology 

Evolutionary psychology is a relatively recent term, but the foundations of 

evolutionary psychology (and behavioural ecology, for that matter) have been laid 

out centuries ago with the introduction of the Darwinian way of thinking (Daly and 

Wilson, 2004). Evolutionary psychology is usually solely concerned with the study of 

Homo sapiens and focuses on the psychological mechanisms that evolved for 

specific situations, as well as on the evolutionary context in which they evolved 

(Pinker et al., 1992; Daly and Wilson, 2004). According to evolutionary 

psychologists, the outcome of evolution is a modular brain where each module 

evolved to deal with a certain fitness problem. Also, when identifying the relevant 

selective pressures involved in the evolution of the brain modules, these researchers 
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think in terms of the ancestral evolutionary environment (AEE) (Bowlby, 1969; Smith 

et al., 2000). By consequence, they argue that most of our modern-day society 

environments differ so radically from the AEE that ‘misfiring’ of our brain should be 

very common. This means that a lot of our behaviour will probably be maladaptive in 

our current environment because of the evolutionary time lag; our brain’s modules 

are optimized for the ancient or Pleistocene environment, but not for the current one. 

This provides an explanation for the fact that we learn to fear spiders and snakes 

more readily than guns, even though guns are a much bigger source of danger in 

our modern society: Our psychological machinery for fear is stuck in the past in 

which poisonous snakes and spiders posed a substantial threat (Öhman and 

Mineka, 2001). A downside of this approach is that evolutionary psychologists 

hypothesize about brain processes, but can only test this by looking at behavioural 

outcomes. However, often these behaviours are thought to be the result of a 

complex combination of modules and their corresponding brain processes and 

drawing any inferences will be difficult unless there is a one to one mapping. In 

addition, it is not possible to get to know exactly all of those selective pressures that 

were acting in the past, which means we can never be certain about what 

behaviours would really have been adaptive in the AEE (Foley, 1995). 

1.2 Human behavioural ecology 

In human behavioural ecology, behavioural outcomes are investigated instead of 

psychological mechanisms. In contrast with evolutionary psychology, behavioural 

ecology measures the current adaptiveness of a behavioural trait by studying 

individual differences in reproductive success. Behavioural ecology focuses on 

explaining behaviour as a function of ecological and social context (Smith et al., 

2001). For humans, the same models as for other animals are used to discover the 

factors that play a role for a certain behaviour’s fitness. A behavioural ecologist 

assumes a fitness optimisation model, which is another point of contention between 

them and evolutionary psychologists, who instead assume an optimal adaptation to 

an AEE but not to the modern world. Real biological data often tends to confirm 

these optimization models. For example, optimisation models succeed to predict 

how a mother’s workload would influence the time between two births (Jones and 

Sibly, 1978). Humans have evolved many ways of social learning and knowledge 

transition and human behavioural ecologists make the assumption that humans can 

behave very flexible in response to new environments (Smith et al., 2000). 
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1.3 Game theory 

The foundations of game theory were laid out by Von Neumann and Morgenstern 

(1944), offering a mathematical tool to predict the outcomes of strategic interactions 

(Fudenberg and Tirole, 1991; Osborne and Rubinstein, 1994; Camerer, 2004). Very 

rapidly, this tool was applied to the field of economics (I, 1.3.1) and later on, it also 

became a powerful method in biology (I, 1.3.2).  

1.3.1  Classical game theory 

Game theory studies situations in which people have to make decisions of which the 

consequences, also formulated as the payoff or the outcome, depend on decisions 

made by others. This situation can be presented as a game, where all persons 

involved in the game are players and where the decisions that players need to make 

can be seen as strategic choices. The desirability of the outcome of their 

behavioural strategy is referred to as utility, which is calculated as a utility function 

(Camerer, 2004). In the standard theory, this utility function corresponds to the 

expected payoff (Page et al., 2000). Since all decisions in the game are made 

simultaneously, information on fellow-players’ strategic choices is lacking and 

players will have to apply iterated reasoning. An assumption made in classical 

economical game theory is that humans act rationally and are aware of each others’ 

rationality: all players will have certain beliefs regarding the strategies that other 

players will adopt and they themselves will choose a strategy so that, given those 

beliefs, their expected utility is maximized (Crawford, 1997). John Nash (1950) 

predicted that the game would have a stable point at which rational players would no 

longer adjust their strategy, because any change in strategic play would give rise to 

a lower utility (Nash Jr, 1950). This point is called the Nash equilibrium and is a key 

concept in game theory (Camerer, 2004).  

1.3.2 Evolutionary game theory 

Actually, this game analogy is applicable to a wider range of situations. Other than 

persons, the players could for example be genes, firms or nations, whereas 

strategies could be genetically coded instincts, bidding behaviours, legal strategies 

or wartime battle plans. Outcomes represent anything that players value, for 

example mating opportunities, power, food, prestige, money or territory (Camerer 

and Fehr, 2004). Inspired by classical game theory, Maynard Smith adapted the 

theory to analogous ‘game situations’ in nature where different behavioural 

strategies exist in a population and the success of those strategies depend on the 
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frequency of other strategies (Smith, 1982; Smith, 1986). A first important difference 

with classical game theory is that instead of utility, fitness is maximized. Also, natural 

selection is the process that drives this optimization, not rationality. Consequently, 

an equilibrium situation does not require any assumption about human rationality. In 

fact, Maynard Smith argues that since it is hard to decide on what is rational, we 

cannot suppose people to act rationally. With the Hawk-dove game as a classic 

example, evolutionary game theory was born. This theory can be used to analyse 

cases in which the fitness of a phenotype is dependent on the frequency of its own 

and other phenotypes in the population. Also, Smith introduced the concept of an 

“evolutionary stable strategy” (ESS), a concept analogous to the Nash equilibrium. 

One can state that a strategy is evolutionary stable if a population displaying a 

certain phenotype or behavioural strategy cannot be invaded by a rare mutant 

adopting a different strategy (Smith and Price, 1973).  

1.4 Dual inheritance theory 

Boyd and Richardson’s (2009) statement: “Something makes our species different, 

… that something is cultural adaptation” seeks to affirm a common sense notion that 

man distinguishes itself from all other animals. To investigate the validity of this 

notion, it is crucial to find out in what ways culture works to establish this presumed 

difference. Importantly, rather than suggesting a false dichotomy between nature 

and culture, it must be emphasised that culture itself is an adaptive product of 

genetic evolution, enabling humans to acquire adaptive traits trough social learning 

(Boyd and Richerson, 1988). Culture can be defined as those aspects of “thought, 

speech, behaviour and artefacts”, which can be socially learned and transmitted 

(Cavalli-Sforza and Feldman, 1981). However, once culture has been established 

through social learning mechanisms and the appropriate psychological machinery, 

as argued by dual inheritance theorists, it becomes a potent evolutionary force itself. 

Cultural evolution can alter the selective environment and interact with genetic 

evolution, leading to a process referred to as gene-culture coevolution (Henrich and 

Henrich, 2007). For example, a study on the post-marriage residential cultural 

practices of the Sino-Tibetan-speaking hill tribes of Thailand unveils that the genetic 

diversity of mitochondrial DNA (which is passed on trough the mother) is much 

greater in the patrilocal villages than in the matrilocal villages, providing evidence 

that cultural evolution can influence genetic evolution (Oota et al., 2001).  

Social learning gives rise to a new system of inheritance of cultural traits (also called 

‘memes’ by R. Dawkins (1983)), which are passed with a certain amount of error, 
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just like genes are. Some argue, though, that cultural evolution is different from 

genetic evolution because the possible modes of transmission are more diverse, 

ranging from purely vertical (from parents to offspring), to oblique (from members of 

the parental generation other than the parents) or horizontal (between individuals of 

the same generation), whereas genes are usually only passed on vertically. 

Departing from this line of thought, new models were developed to include cultural 

transmission. Among others, this was done by Richerson and Boyd (2004), arguing 

that social learning can speed up the evolutionary process, rendering group 

selection scenarios plausible (Richerson and Boyd, 2004; Boyd and Richerson, 

2009; Boyd et al., 2011). In section I, 3.1, we offer a brief introduction to kin and 

group selection theory and in section I, 5.3.2, we will discuss cultural group selection 

models further. 

2 Cooperation and prosocial behaviour in human soci eties  

Human societies can appear to be rather special in comparison to other animal 

societies. Humans communicate through spoken language, go to concerts for 

diversion, practice religion, live by certain moral standards and function in complex 

and highly organized communities. Also, humans are often described as ‘hyper-

sociable’ (Boyd and Richerson, 2009). We support and care for the weak members 

of society, engage in trades, have large scale conflicts in which individual soldiers 

can sacrifice their lives, establish systems for norm enforcement and offer help to 

unrelated strangers. Unlike in other social species, cooperation can sometimes 

thrive under circumstances where the established evolutionary explanations would 

not seem to suffice (section In 5.1).  

A cooperator is defined as someone who bestows a fitness benefit to one or more 

individuals at his own dispense. A defector is an individual who does not cooperate 

(or cooperates less than his fair share), but is potentially able to gain the benefit of 

others cooperating. West and Griffin (2007a) describe cooperation as “a behaviour 

which provides a benefit to another individual (recipient), and which is selected for 

because of its beneficial effect on the recipient”, to emphasize that cooperative 

behavior includes all altruistic and some (but not all) mutually beneficial behaviours. 

Cooperation has since long been an evolutionary puzzle and specifically, the above-

mentioned patterns of human cooperation constantly create new question marks. If 

one takes Darwin’s original evolutionary theory as a starting point, where an 

individual maximizes its own fitness by maximizing its survival and reproduction, it 
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seems difficult to explain why individuals would engage in any altruistic behaviour. In 

other words, naively one would predict Darwinian adaptation to always lead to selfish 

individuals (Nowak, 2006). As we will see, however, this is not quite the case, as 

many theories and mechanisms have been proposed that can promote cooperation 

and prosocial behaviour.  

3 Mechanisms for promoting prosocial behaviour  

In the following paragraphs, we will present some of the most influential theories 

which have been proposed to promote prosocial behaviour. In order to explain 

cooperation and other behavioural traits, evolutionary biologists are guided by one 

ground rule: If a form of behaviour is adaptive, then it must, directly or indirectly, 

bestow a fitness benefit to the actor (Fig. 1). Below, in section I, 3.1, we will discuss 

theories based on indirect fitness benefits, whereas in sections I. 3.2, I. 3.3 and I. 

3.4 we will review various theories based on direct fitness benefits.  

 
 

3.1 Kin and Group selection 

Inclusive fitness theory, also known as kin selection theory (Maynard Smith, 1964), 

highlighted the fact that that the indirect benefits of increasing the fitness of strongly 

Figure 1: A classification for the explanations of cooperation as proposed by West Griffin et al. (200 7a), 

by categorizing the mechanisms according to whether  they provide direct or indirect fitness benefits.  



7 

 

related individuals could possibly outweigh the direct costs of reducing one’s own 

fitness (Haldane, 1955). This idea led to a revision of the Darwninian concept of 

fitness, which had traditionally always been formulated in terms of personal 

reproduction or survival. W. D. Hamilton redefined it as inclusive fitness, which is the 

sum of direct and indirect fitness, and where indirect fitness gains can be obtained 

by helping related individuals, who carry copies of the actor's own genes (Hamilton, 

1964). Hamilton also introduced what is now known as Hamilton’s rule, “r.br > ca”, 

which expresses the net condition under which an altruistic gene would be able to 

spread in the population. In this rule, r is the degree of relatedness, br is the 

reproductive benefit to the recipient of the behaviour and ca is the reproductive cost 

to the actor that displays the (altruistic) behaviour. Hamilton’s rule states that the 

relatedness must exceed the cost-to-benefit ratio of the altruistic act (r>c/b) for the 

altruistic behaviour to evolve. 

Like kin selection theory, group selection emanates from the idea that selection 

operates on more than just the level of the individual. Selection can occur on the 

level of genes (kin selection), but also on higher-order units such as social groups, 

species and multispecies communities (Wilson, 1997). Traditionally, group selection 

is thought to help the evolution of  cooperation trough differential extinction between 

groups (Wynne-Edwards, 1963). For instance, a group of selfish individuals would 

go extinct faster because they would overexploit their environment, or in a conflict 

between rivalling groups, the group that masters cooperative warfare would be the 

strongest competitor. This theory often led to the general misconception that 

behaviours would develop for the good of the group, population or even species. 

Also, there are several problems with this kind of group selection, such as the 

requirement that dispersion is extremely low or non-existent and the fact that altruist 

groups would be very susceptible to social parasitism. In the late seventies, 

however, a number of group selection theoreticians emerged who insisted that group 

selection should not written off (Price, 1972; Wilson, 1975; Colwell, 1981; West et 

al., 2007a). They redefined the concept of a group as a (temporary) within-

population association of individuals and emphasised that selection was active on 

multiple, not necessarily equally important, levels (Wilson, 1997). Nevertheless, it 

has been shown that this new approach to group selection is just a different way of 

splitting up the process of natural selection than kin selection theory (Hamilton, 

1975; Grafen, 1984; Wenseleers et al., 2010), and that it's predictions are always 

exactly identical. This is because in the case of group selection, altruistic traits can 

only be favoured if there is sufficiently high between-group genetic variance in this 
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trait, which from a kin selection angle is only the case if within groups individuals are 

genetically related. 

3.2 Direct reciprocity  

When looking at human society, other species, and even across species, it becomes 

clear that cooperation does not only take place between related individuals. To 

explain this, Trivers (1971) put forward the idea of reciprocal altruism, suggesting 

that individuals who repeatedly interact can take turns in helping each other. Of 

course, such reciprocal behaviours are only altruistic in the short term: fitness 

benefits should be obtained during a person’s life span for any reciprocal helping to 

be able to evolve. By consequence, ‘direct reciprocity’ is preferred as a label for 

these repeated interactions (Alexander, 1974; West et al., 2007b). Every interaction 

leaves the interactants with a choice of strategy: will they cooperate or defect? Such 

situations are also known as repeated Prisoner’s Dilemmas in game theory (we will 

elaborate more on this in I. 4.2.2). In this game, the selfish option of defecting 

provides a higher payoff than cooperation regardless of what the other person does. 

Yet a situation in which 2 people cooperate earns them both a higher payoff than a 

situation in which 2 people defect, which means that cooperating might be fruitful 

(Axelrod and Hamilton, 1981). As with kin selection, the evolution of cooperation is 

only possible when a certain factor exceeds the cost-to-benefit ratio of the altruistic 

act. In the case of direct reciprocity, that factor has been shown to be w (Henrich 

and Henrich, 2007), which is defined as the probability of another encounter 

between the same two individuals.  

The remark can be made that direct reciprocity is not free of constraints: there must 

be some mechanisms for recognition and discrimination of previous interactants, for 

determining the next action as a function of the previous interactions and for 

estimating the probabilities of future interactions. There is evidence for reciprocal 

interactions in non-human primates, for instance grooming (Silk, 2005). This fuels 

the already circulating question to what extent these constraining conditions have to 

be met in order for direct reciprocity to operate. Additionally, other studies point out 

that humans as well as other animals have a more implicit, emotional capacity for 

probability estimation (Loewenstein et al., 2001). 
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3.3 Indirect reciprocity 

Kin selection and direct reciprocity both still fail to explain that people sometimes 

offer help to strangers in need or donate money to a charitable cause. Offering help 

does not always result in a reciprocated action, let alone you could foretell for sure if 

you will meet someone again in the future. All things being equal, the formation of a 

reputation is a mechanism that allows for future reciprocal services even though 

your direct interaction partner is not reciprocating. Being an exceptional cooperator 

can earn you the good reputation that might encourage others to provide you a 

‘reward’ later (Alexander, 1985; Boyd and Richerson, 1989). Indirect reciprocity 

requires high levels of information processing (for image scoring) and a capacity to 

pass on this information (language) and is not often described in non-human 

species. Therefore it is sometimes thought that this mechanism has played a 

decisive role in the evolution of intelligence, morality and social norms, setting us 

apart from other species. Again a simple rule can be established: indirect reciprocity 

can only enable the evolution of cooperation if the probability of knowing someone’s 

reputation is bigger than the cost to benefit ratio of the trait (Henrich and Henrich, 

2007).  

Several have noted that indirect reciprocity can only be an evolutionary stable 

mechanism in small groups (Boyd and Richerson, 1989). However, an equilibrium is 

established when the display of costly actions is followed by a pair-wise cooperative 

interaction (Roberts, 1998). This can be categorized under another conceptual 

evolutionary framework, referred to as costly signalling theory (Smith and Bliege 

Bird, 2005). 

3.4 Costly signalling            

Costly signalling theory arose from the observation that some creatures incur such 

great costs on displaying some behavioural or morphological trait while, from an 

evolutionary perspective, it seems gobsmacking that such a ‘handicap’ could have 

evolved (Zahavi, 1975). One theory is that these expensive traits are signals 

conveying honest information about the signaler’s qualities as a potential social 

interactant, where honest information requires that the cost experienced by the 

signaler is linked to the quality that is being advertised. A quality is a trait that is 

usually difficult to assess directly, like good health, solidarity, leadership ability or 

commitment to an on-going cause (Smith and Bird, 2000). For costly signalling to be 

maintained by selection, both signalers and interactants must benefit from this 

sharing of information. Applied to cooperation, for example, an act of cooperation 
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could provide group members with a reliable signal about a quality of the signaler 

and by consequence those group members might prefer them, for purely selfish 

reasons, as a mate or an ally. An important difference with indirect reciprocity is thus 

that the benefits delivered by costly signalling do not necessarily have to be the 

result of a subsequent pair-wise interaction: the benefits might be obtained from 

avoiding conflict with the signaller or through the display of the signal itself. This 

framework also offers insight on why we take such interest in gossip: we want to 

discover who it might be beneficial to interact with and also who we have to avoid to 

all extent (Smith and Bird, 2000).  

3.5 Punishment 

Both theoretical and experimental work point out that punishment of selfish 

individuals is a potent mechanism for promoting the evolution of cooperation in 

humans (Boyd and Richerson, 1992; Fehr and Gachter, 2002; Sigmund, 2007). 

Punishment is also a focus of interest in the study of other social animals and it has 

been shown that this type of negative reciprocal behavior occurs frequently and for 

various numbers of reasons. One of those reasons, which is of special interest to us, 

is to coerce cooperative behavior (Clutton-Brock and Parker, 1995). Recent findings 

even indicate that inclusive fitness theory on its own is not a satisfactory explanation 

for the (sometimes extreme) levels of altruism observed in many modern insect 

societies and that enforcement is a key factor in maintaining this altruistic behavior 

(Ratnieks and Wenseleers, 2008). So generally, punishment is considered 

‘prosocial’ because it facilitates evolution of cooperation. Public goods games also 

reveal the existence of antisocial punishment, which is the punishment of 

cooperators (Rand and Nowak, 2011). In this literature study, we chose to further 

elaborate on theories of prosocial punishment. 

That being said, punishment requires time, energy and risk, and thus the ultimate 

question “how does such costly behaviour evolve?” still lingers. In dyadic 

interactions, the punisher is sole beneficiary but in larger groups, those benefits are 

shared by others who didn’t pay the costs. Hence, punishment poses a second-

order public goods problem that increases as the costs of punishing others get 

higher (Boyd et al., 2003). In section I. 5, we discuss prosocial punishment to a 

much larger extend and we try to give an overview of the proposed explanations to 

the second-order public goods problem.  
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4 Experimental and behavioural economics  

While game theory provides us with the mathematical language for describing 

strategic interactions between players and making predictions about the outcomes of 

those interactions as well as the emergence of Nash equilibria, the predictions that 

followed those mathematical models were still to be tested in the field. As a 

consequence, economists began to run laboratory experiments, using 

undergraduate students as subjects. From the early 1980s on, a number of 

experimental games were developed, of which we will give a few important 

examples in section 4.2. A lot of the research done in behavioural economics 

involves ‘revealed preferences’, a term used to refer to the choices people make.  

4.1 Experimental game theory 

Typically, experimental game theory experiments entail economic decision-making 

with real, often substantial, monetary stakes (Camerer and Fehr, 2004). There are 

some other standard experimental conditions: subjects are anonymous, only play 

once and cannot communicate with other people. The description of the game 

usually stays quite abstract, with numbers and letters being used to represent 

strategies rather than elaborate strategy descriptions (Camerer and Fehr, 2004). 

Such conditions are not claimed to represent lifelike situations and therefore require 

careful interpretation (Levitt and List, 2007), but they provide a baseline for 

investigating the effect that certain factors have on the players’ strategic decisions. 

For instance, framing effects can be looked into, since players usually behave 

differently as a distinctive context is created by the game’s descriptions. Also, 

economists are very interested in finding stable strategies (the Nash equilibrium), so 

games will commonly be played repeatedly to allow for learning and equilibration to 

occur. According to standard procedure, subjects are usually asked to answer some 

comprehensive questions concerning their payoff calculations before the start of the 

game. Experimental economists insist on actually paying their subjects’ earnings 

from the game, plus a small show-up fee. 

4.2 Examples of games 

In the following subsections, we present three common examples of economic 

games: the ultimatum game, the prisoner’s dilemma game and the public goods 

game. 
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4.2.1 Ultimatum game 

The ultimatum game is played with two players who have to agree on the division of 

a sum of money. One player gets assigned the role of the proposer and has to 

decide what part of that sum he wants to keep for himself and what part he wants to 

donate to the other player. This second player is the responder and has the 

opportunity to either accept the offer or reject it. When the offer is accepted, both 

players get paid accordingly. When it is rejected, both players get nothing. The 

ultimatum game is played anonymously, so neither player has a reputation to gain or 

to maintain. In the standard view of game theory, the rational solution of the 

ultimatum game is that the proposer will offer the responder a very small fraction of 

the money, while the responder will take whatever he can get since getting some 

money would be preferred over getting none at all (Güth et al., 1982). However, 

empirical data obtained from such games undermines this prediction: proposers 

mostly offer up to 50% of the available sum and responders often reject low offers, 

with half of the responders rejecting shares of less than one-third of the sum (Thaler, 

1988; Nowak et al., 2000). Biologically speaking, these games could represent 

situations in which individuals try to agree on the future division of a reward of 

cooperative hunting, or the formation of an alliance, or a dilemma of food sharing 

(Page et al., 2000). 

4.2.2 Prisoner’s dilemma  

The prisoner’s dilemma game reflects a situation in which the 2 persons  that are 

interacting both have a choice to cooperate or to defect (Rapoport and Chammah, 

1965). The payoff matrix of this game is given in table 1. In the prisoner’s dilemma, it 

is always individually the best strategy to defect: given that your opponent 

cooperates, you get the highest possible payoff (T) by defecting while your opponent 

gets the lowest possible payoff (S); if your opponent defects, you earn more by also 

defecting (P) than by cooperating (S). However, if both players defect their payoffs 

(P) will be lower than when both players would have cooperated (R). This becomes 

clearer when considering the payoff matrix of this game, of which the payoffs fulfil 

the following relations: T > R > P > S and R > (T+S)/2. In this game, mutual 

defection is the only Nash equilibrium. 
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Table 1: Payoff matrix of the prisoner’s dilemma gam e. ‘P’ stands for punishment, ‘R’ stands for reward,  

‘S’ stands for sucker and ‘T’ for temptation.  

Person 1/person 2 Cooperate Defect 

Cooperate R, R S, T 

Defect T, S P,P 

4.2.3 Public goods game 

Much of human cooperation involves large numbers of individuals and public goods 

games supply an appropriate tool for studying such n-person interactions, including 

prosocial behaviour in a group context (Camerer and Fehr, 2004). The public goods 

game structure is similar to that of the prisoner’s dilemma in the sense that 

individually, a given player is best off not to contribute anything to the public good, 

whereas from the group’s perspective, contributing all ones money would be the 

most beneficial (Hardin, 1971). This situation results in the problem of common 

goods: when mechanisms to provide a direct or indirect fitness benefit (section 1.3) 

to the cooperator are absent, cooperation is not a stable outcome of the game. The 

game itself follows a fixed set of steps: each of the n group member get a number of 

tokens (these could be units of money) and they can freely choose whether and how 

much of this endowment they want to invest in the group’s public good. The money 

invested in the public good is multiplied by a factor r > 1 and then evenly 

redistributed over n group members. For each token invested in the common good, 

each person gets a share α (0 < α < 1). Since every player benefits from the 

investments of others, free riding is possible. After all, if a subject keeps all of his 

endowment x whilst the other subject contribute their whole endowment to the public 

good, then this defector will get the total sum of x + α while the cooperators only get 

α. 

Both the prisoner’s dilemma and the public goods game are representative of 

situations in which, for example, a depletable resource has to be shared among a 

group of people, while free-riders cannot easily be excluded from sharing. The 

shared good could be a number of things, such as clean air, fresh water or common 

fishing grounds (Ostrom, 2000). This dilemma over the use of common resources is 

often referred to as ‘the tragedy of the commons’ (Hardin, 1968) and describes how 



14 

 

people will ultimately deplete a common resource because of selfish motives: they 

refuse to limit their consumption of the resource because this provides them with 

immediate benefits, while in the long run this behaviour actually yields the worst 

outcome. 

5 Altruistic punishment  

Cooperation is a costly action that benefits others and we already mentioned how, 

historically, this has been a hard nut to crack for many biologists. Researchers have 

summoned upon many theories to make evolutionary sense out of this behaviour (I. 

3), but modern society still continues to baffle us. Cooperation levels are very high 

and the tragedy of the commons isn’t always realized. When defection yields the 

largest personal payoff, involving punishment can drastically change the outcomes 

of interactions: If punishment of non-cooperators is possible, then this in itself can 

be an incentive for individuals to cooperate so as to avoid the costly consequences 

of a penalty (I. 3.5). In our society, social norms are enforced by laws, free- riders 

are discouraged by government institutions that implement taxations and by informal 

mechanisms like ostracism of cheaters. Such established mechanisms can provide 

a remedy for a lack of voluntary cooperation (Camerer and Fehr, 2004; Sigmund, 

2007).  

In order to investigate whether punishment would raise cooperation levels in public 

goods games, Fehr and Gächter (2000; 2002) conducted a public goods experiment 

with the opportunity for punishment. Subjects remained anonymous throughout the 

experiment and were never matched with the same players in the different trials. 

Participants were well informed about these anonymous, one-shot conditions, so 

Fehr and Gächter argue that the game is absent of the selfish motives of reputation 

building and reciprocity. It turns out that the grand majority of punishment in the 

laboratory experiment was executed by cooperators and imposed onto defectors. 

The latter are defined respectively as above-average contributors and as below-

average contributors. Their results also indicate that punishment significantly 

increases cooperation levels and can maintain cooperation under conditions in 

which pure selfishness would otherwise lead to an inevitable breakdown of 

cooperation (Fig. 2). Fehr and Gächter (2002) label the subjects who punish as 

‘altruistic punishers’: they impose penalties on free riders even though this is costly 

and yields no material gain for themselves, whereas the future group members of 

the punishee could potentially benefit from the punishment that was executed. This 

benefit could be obtained if the punished subject reacts to the penalty by raising its 



15 

 

contributions in the next rounds as to avoid future acts of punishment. As mentioned 

in section I. 3.5, however, punishment also leads to second-order public goods 

problem in the sense that punishment itself is costly to the actors. Fehr an Gächter 

(2002) claim that this second-order problem is solved “if enough people have a 

tendency for altruistic punishment”. It is clear, however, that this statement does not 

offer an ultimate explanation for why altruistic punishment would occur and how it 

could evolve. In the next section, we will situate altruistic punishment as a part of a 

broader behavioural tendency that has been put forward by game theoreticians, 

namely ‘strong reciprocity’. In section I. 5.2, we will then start providing possible 

explanations for the occurrence of altruistic punishment.  

 

  

Figure 2: The effect of punishment on cooperation l evels in Fehr and Gächter’s 

experiment (2002).  
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5.1 Strong reciprocity and morality 

Strong reciprocity is used as a more inclusive expression for a behavioural strategy 

that involves the willingness to reinforce cooperative behaviour by reciprocating 

accordingly, even if this is costly and doesn’t offer any (present or future) rewards to 

the reciprocator (Fehr et al., 2002). Fehr and Henrich (2003) define this in a clear 

manner: “A person is a strong reciprocator if he is willing (i) to sacrifice resources to 

bestow benefits on those who have bestowed benefits (= strong positive reciprocity) 

and (ii) to sacrifice resources to punish those who are not bestowing benefits in 

accordance with some social norm (= strong negative reciprocity)”.  

Since the focus of this thesis is on strong negative reciprocity, it must be mentioned 

that people don’t only punish those who have treated them unfairly in a one-shot 

game, but also those who have treated others unfairly (Fehr et al., 2002; Gintis et 

al., 2008). These experimental findings oppose the view, shared by the behavioural 

sciences and much evolutionary thinking, that all behaviour should ultimately be self-

interested. Gintis (2008) argues that this strengthens the belief that strong reciprocity 

has been the missing puzzle piece in explaining high levels of cooperation and 

altruism in humans, as it supplies a powerful device for enforcing norms that 

prescribe, for example, food sharing or collective action (Fehr et al., 2002).  

Strong reciprocity is put forward as one of the building blocks of human morality, 

along with other-regarding emotions such as empathy, shame and envy and 

personality traits such as honesty, trustworthiness, and others (Gintis et al., 2008). 

However, there is an on-going discussion concerning the adaptiveness of strong 

reciprocity and human morality which we will further elaborate on in section I. 5.4.1 

(Gintis et al., 2008; Price, 2008). 

5.2 Proximate mechanisms 

Fehr and Gächter (2002) use hypothetical investment scenarios to elicit the 

underlying reasons for punishing. They hypothesize that the particular pattern of 

punishment that is observed, namely co-operators punishing defectors, may be 

explained at the proximate level by an analogous emotional pattern. The results 

point out that altruistic punishers indeed experience negative emotions towards the 

subjects that free ride on their contributions in the public goods game. Moreover, 

most people expect these emotions, which explains why the threat of punishment 

alone has an immediate positive influence on cooperation levels (Fehr and Gachter, 
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2002). Neuroscientific evidence for emotional patterns associated with punishment 

comes from the recently emerging field of neuro-economics. 

In a neuroscientific study, de Quervain et al. investigated the neural basis of altruistic 

punishment by scanning the subjects’ brains while these subjects learned about the 

defectors’ unfair behaviour and decided on what punitive measures to inflict on the 

defectors (de Quervain et al., 2004). They were able to pinpoint the activation of the 

anterior dorsal stratium, in which the caudate is located. This is a brain region 

associated with the making of decisions or taking of actions that are motivated by 

anticipated rewards. Moreover, they discovered a positive correlation between 

peoples willingness to pay a higher cost of punishment and activation of the dorsal 

stratium. This neuroscientific result reinforces the view that people punishing those 

violating fairness norms are proximally driven by emotions. In this case, the 

satisfaction that they get out of ‘justice being served’ seems to motivate acts of 

punishment. 

5.3 Ultimate explanations 

Given that people seemingly evolved proximate mechanisms for the punishment of 

free-riders, why would the evolution of strongly reciprocal behaviour be favoured if 

there is no personal gain to be obtained? In the subsequent sections, we attempt to 

give an overview of the ultimate explanations that have been given for altruistic 

punishment. Although this thesis mostly deals with punishment, sometimes more 

inclusive terms such as ‘strong reciprocity’, ‘other-regarding utility function’ or 

‘internal altruistic norms’ will be used instead of ‘altruistic punishment’. Please note 

that this is not to imply that these expressions are synonymous to each other. 

Rather, this is a consequence of the fact that the search for ultimate explanations of 

these concepts often runs in parallel in the literature. For the sake of simplicity and 

correctness, we use the same designations as in the literature that we cite.  

5.3.1 Inequity averse utility functions 

Classical game theoreticians assume that preferences are self-regarding and 

outcome oriented. This assumption is reflected in the utility function, where the 

outcome yielding the biggest payoff corresponds with the biggest utility. However, 

empirical evidence emphasises that people do attach importance to a fair division of 

the goods and the previously introduced form of the utility function does not take into 

account any social preferences such as fairness or equality (Fehr and Schmidt, 
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1999). This lead to the development of an inequity averse utility function, which 

gives rise to a new concept of rationality: People act rationally, not simply by 

maximizing their own outcome, but by pursuing a minimal difference between 

payoffs of both players engaged in the game (Fehr and Schmidt, 1999). However, 

this new utility function again shifts the problem: Human preferences are thought to 

be ‘other-regarding’ and utility is redefined so that theoreticians did not have to drop 

their assumption of human rationality. Yet even if utility now takes into account social 

or cultural preferences, we still have to consider what adaptive benefits these 

preferences confer. 

5.3.2 Cultural group selection  

The basic idea of group selection was introduced in I. 3.1 and states that altruistic 

traits might evolve through differential extinction rates of groups with different 

numbers of altruists due to inter-group conflicts. For example, cooperative groups 

might be better at warfare or dealing with food resources. Even though group 

selection has historically proven to not be devoid of pitfalls, theoreticians still turn to 

this idea in order to ultimately explain strong reciprocal behaviour. Several authors 

(Bowles and Gintis, 2003; Boyd et al., 2003; Fehr and Fischbacher, 2003) have 

involved the concept of cultural group selection to explain the evolution of altruistic 

punishment and ‘other-regarding’ utility functions (I. 5.3.1). Cultural traits can be 

transmitted in ways that are distinct from those of genes and such cultural processes 

play a crucial role in the evolution of human behaviour.  

We want to remind the reader that punishment creates a second-order problem: 

Having altruistic punishers in the group might make cooperation a less costly 

strategy than defection, but this cooperative state will never hold, since punishers 

will be outcompeted by co-operators who don’t bear the extra costs of punishing. 

Boyd, Gintis et al. (2003) believe that the puzzle of altruistic cooperation can truly be 

solved by the involvement of altruistic punishment because there is a key difference 

between these  two phenomena: The relative payoff disadvantage of a co-operator 

is not dependent  on the number of defectors in the group, while the relative cost of 

being an altruistic  punisher is. When altruistic punishers are common in the group, 

defectors become scarce because of the effective punishment, which in its turn 

ascertains that acts of punishment are rarely needed anymore. So in effect, ‘many 

hands make light work’ for altruistic punishers. Group level selection will create great 

benefits for groups with a lot of altruistic punishers and, on the level of the individual 

punisher, only a very small disadvantage. Henrich and Boyd developed an 
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evolutionary model where strong reciprocal norms are adopted through payoff-

biased transmission (imitation of the most successful individuals in the group) and 

conformist transmission (imitation of high frequency behaviour in the group) (Henrich 

and Boyd, 2001). Boyd, Gintis et al.’s (2003) cultural group selection model includes 

payoff-biased transmission that maintains the between-group differences needed for 

group selection to work and shows how punishment can be maintained when 

common. A remaining challenge, however, is to explain how a strong reciprocator 

strategy can invade into a population initially consisting only of defectors. 

5.3.3 Hitchhiking of altruistic norms 

If you think of a person with good moral values, you will probably imagine someone 

whose altruistic behaviour is not dependent on some external threat of punishment 

or reward. The adjective ‘good’ will rather reflect the fact that this person wants to 

behave altruistically (Gintis, 2003). This behaviour is due to ‘internal norms’, which 

are cultural norms that are enforced from within the individual by feelings such as 

guilt, shame or responsibility. At some point in man’s evolutionary past, we must 

have gained this ability for internalization of norms. Gintis (2003) proposes a model 

in which the capacity for internalization of norms is given by an allele at a specific 

genetic locus, while different norms only manifest themselves on a phenotypic level. 

He claims that this genetic trait is overall fitness-enhancing because it gives humans 

the advantage of rapid cultural adaptation. If there is a selfish internal norm that 

ensures a sufficiently big increase in fitness, it can invade a population of normless 

phenotypes. Costly altruistic norms can then ‘hitchhike’ on the trait’s general 

beneficial characteristics: they can become internalized as well, without the genetic 

trait of norm internalization being selected against. From here on, cultural group 

selection is thought to ensure the maintenance of prosocial internal norms through 

differential group success. To conclude his argument, Gintis also points out that 

norms prescribing behaviour that is much alike personally fitness-enhancing 

behaviour, would be easier to internalize. It seems plausible that at first, punishing 

defectors was beneficial through reputation building, and then later on became an 

internalized moral principle. 

5.4 Opposition to prevailing explanations of altruistic punishment 

As far as ultimate explanations of altruistic punishment are concerned, it is clear that 

there is still no consensus in the literature as to what represents the most likely 



20 

 

theory. In this section, we present three alternative schools of thought that question 

the previously introduced theories. 

5.4.1 Misfiring hypothesis 

Earlier on, we briefly introduced evolutionary psychologists’ view on the human brain 

and our behaviour. They consider the selection process as the optimizing engine for 

behaviour, rather than the brain itself, and argue that our bodies house a stone age-

mind (I. 1.1). Since our minds are executors of adaptations, rather than maximizers, 

they will not be adapted to certain aspects of the novel environments modern society 

and laboratory experiments expose them to. As a consequence, our brain 

sometimes ‘misfires’ and some of our human behaviour will be maladaptive in the 

specific experimental conditions that researchers place their subjects in. Although 

researchers that believe in the misfiring hypothesis do not deny the presence or 

importance of strong reciprocity and moral norms in everyday life, they offer a critical 

standpoint on the context that is created in economical experiments. They interpret 

strong reciprocal behaviour, and human morality in general, with respect to the 

relevant interactions ancestral evolutionary environment and find that the big 

discrepancy between this environment and that of the experiments lies in the 

prevalence of anonymous, one-shot encounters (Gintis et al., 2008; Price, 2008). 

5.4.1.1 The artificiality of one-shot, anonymous encounters 

The main focus in the misfiring theoreticians’ argumentation concerns the 

anonymous, one-shot conditions in experimental games. They believe that these 

conditions constitute such an artificial environment that this causes the brain to 

misfire, as in man’s evolutionary past, both interactions with strangers and 

anonymous interactions would have been very rare. 

a) One-shot encounters 

A prime argument of many evolutionary psychologists is that in hunter-gatherer 

societies, encountering a stranger was a very rare event. Therefore, our Pleistocene 

brain is not well adapted to interactions with people other than close acquaintances 

or kin. Researchers who treat strong reciprocity as an adaptation argue that there is 

ethnographic evidence for one shot encounters (Fehr and Henrich, 2003). However, 

opponents respond to their evidence in three ways (Hagen and Hammerstein, 2006). 

First, in case of such an encounter, how can it be known if the probability of future 

encounters will be zero (or near zero)? For example, when one group raids another, 

the prospect of a counter-raid would not seem unrealistic. The second concern 
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unveils a more basic problem with economic games in general. Basically, even if 

one-shot encounters were common enough in our evolutionary history to allow an 

adaptive response, it would be less than obvious that our brain would never misfire 

in a game situation, which is always artificial. The third response is probably the 

most destructive and shows a contradiction between the ultimate explanation of 

strong reciprocity and its proximate description. The proposed model for the 

evolution of strong reciprocity and these other-regarding norms is a (cultural) group 

selection model, implying that this behaviour is selected for as within-group 

behaviour by between-group selection. However, if we assume one-shot encounters 

were common in the evolutionary past, almost by definition this would have took 

place between groups. This seems to leave the followers of the strong reciprocity 

theory with a gap in their argumentation. Additional knowledge, such as whether the 

players in the game regard their fellow players as in-group or out-group, becomes 

crucial (Hagen and Hammerstein, 2006). 

b) Anonymous encounters 

Likewise, the concept of real anonymity raises a big question mark. Researchers 

that believe in the misfiring hypothesis presume that anonymous interactions and 

encounters were extremely rare and that there would always be some incentive for 

reputation formation. Our psychological mechanisms must therefore be adapted for 

situations in which reputation is at stake, hence our limited brains would never really 

consider a situation in which we are not being watched and evaluated (Price, 2008). 

Hard ethnographic evidence for anonymous interplay is indeed lacking, even though 

it has been shown that people behave differently in anonymous relative to non-

anonymous games (Fehr and Henrich, 2003). This pro-adaptation argument is also 

applicable to the discussion on one-shot interactions: people can (emotionally) 

distinguish between strangers and partners and seem to grab the meaning of these 

one-shot circumstances. Yet the new question can be posed how penetrable these 

underlying emotions are (Hagen and Hammerstein, 2006). For example, a man can 

get an erection from a picture in Playboy magazine. Even though he surely grabs the 

fact that this woman is not there with him in the flesh (so his erection is quite 

pointless), he nevertheless gets excited. Hence, in this case, it is clear that the 

underlying, cognitively impenetrable mechanism is not triggered correctly, and the 

same might well apply for experiments using anonymous one-shot interactions. 

5.4.1.2 Misfiring in other animals 

Strong reciprocity theorists hold another argument against the misfiring hypothesis: 

The brain of non-human primates does not appear to misfire. In other words, their 
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brain does not trick them into displaying strong reciprocal behaviour, even though 

they can also experience ‘artificial’ environments analogous to human modern 

societies (Fehr and Henrich, 2003). Indeed, in a study where a mini-ultimatum game 

is played with chimpanzees (Pan troglodytes), our closest living relatives, it was 

shown that chimpanzees display rational behaviour (Jensen et al., 2007). 

Chimpanzees were found to act according to traditional economic models of self-

interest, generally accepting any above-zero offer, regardless of the offer being fair 

or not. These results are contrary to those of similar experimental games played with 

humans, in which it was found that people behave according to fairness and other-

regarding norms. However, we believe that this is no more an argument for strong 

reciprocal behaviour being an adaptation than it is for being a maladaption. 

To conclude the misfiring debate, we would like to point out that the interpreting of 

experimental games should always be done with caution. Nevertheless, even games 

with anonymous, one-shot interactions can offer insight into the proximate 

mechanisms that control human behaviour. 

5.4.2 Criticism of cultural group selection models 

Without claiming to be complete, we will introduce two important sources of critique 

on cultural group selection as an ultimate account for altruistic punishment. The first 

one concerns the phenomenon of ‘parochial altruism’ and draws attention to the fact 

that altruistic norms are not confined to ones' own group. The second line of critique 

fundamentally questions whether culture really alters or speeds up the evolution of 

strong reciprocity.  

If one follows the group selection reasoning, norm violations should be negatively 

enforced only within groups, since the group can only benefit from the individually 

costly punishment behaviour if it is used to establish an internal, group-beneficial 

social norm. This norm could for example apply to food sharing, collective hunting, 

participation in warfare, or other traits that can make the group come out on top in 

inter-group conflicts (Bernhard et al., 2006). Such predictions, however, are not 

supported by Bernhard, Fishbacher et al.’s experiments, which instead demonstrate 

that human altruism follows a parochial pattern. Parochialism is defined as a 

preference for in-group members and that group could be defined for example on 

one’s ethnicity, race or language. This is nicely illustrated in the experiment, where a 

dictator gets to divide a sum of money between himself and a receiver, and a third 

person gets to decide whether the dictator should be punished or not. Parochialism 
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manifests itself as the third person that punishes in- as well as out-group members if 

the person that was treated unfairly is an ingroup to this third person. Thus, certain 

social norms seem to extend the boundaries of one’s own group. These findings 

point out the lack of consideration of other factors in cultural group selection models. 

By punishing outsiders who harm an ingroup individual, the group might create a 

‘don’t mess with us’-reputation that increases their overall security by preventing 

attacks. 

The second source of critique on cultural group selection models comes from 

Lehmann et al. (2007), who argue that it is not clear how cultural transmission could 

lead to different selective pressures on the evolution of strong reciprocity than 

traditional genetic evolution. In support of this, Lehmann et al. constructed a 

mathematical model to thoroughly investigate which conditions would allow the 

invasion and evolution of a helping strategy and punishing strategy (strong 

reciprocity), focusing on the effect of spatial structure (limited dispersal), linkage of 

both traits (strong reciprocity as a single Mendelian trait) and different modes of 

cultural transmission. Importantly, they found that different types of cultural 

transmission cause the selective pressure on strong reciprocity to increase, 

decrease or not change at all compared to that under genetic transmission. They 

also conclude that punishing non-cooperators cannot be favoured unless the two 

traits are linked. Finally, they remind us that even if cultural group selection is active, 

this kind of evolution would not favour strongly reciprocal behaviour towards 

strangers (I. 5.4.1.1). The model results indicate that strong reciprocal behaviour will 

evolve through mechanisms of genetic or cultural kinship, and that the concept of 

strong reciprocity should not be misinterpreted as an ultimate mechanism in itself 

but that instead it should still ultimately have a purely selfish basis. Their results tend 

to support the view that punishment would quality as a spiteful behaviour, since 

punishment in their model is carried out to reduce competition between group 

members (induce fitness costs). In addition, their results indicate that the critiques 

(Hagen and Hammerstein, 2006; West et al., 2010) that have been made on the 

interpretation of experimental games can in no case be neglected. Boyd, Richerson 

et al. (2011) respond to Lehmann et al. (2007), stating that the authors reach such 

conclusions by making different and less realistic assumptions in their model. It is 

thus essential to find out what assumptions best fit the empirical data about human 

learning, cultural diffusion and human cooperation. Lehmann et al. assume that 

adaptive forces in cultural evolution are weak compared to migration. However, 

empirical evidence of cultural transmission in humans have shown that considerable 
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cultural changes can occur and go to fixation in sometimes less than one generation 

(Boyd et al., 2011). 

5.4.3 Selfish punishment 

Up until this point, the kind of prosocial punishment that we discussed was 

considered altruistic, supposedly arising from man’s altruistic, inequity averse nature 

that motivates his behaviour. It is not surprising that one would draw such 

conclusions, since experiments show subjects who engage in costly punishment 

only to benefit others. Eldakar et al. (2007), however, unveil another possible 

incentive for prosocial punishment. Their results, gained from model simulations and 

fictional scenarios, indicate that cheaters also engage in costly punishment, affecting 

other cheaters. Eldakar et al. name this phenomenon ‘selfish punishment’. In 

contrast with altruistic punishers, a selfish punisher acts selfishly in the context of the 

first-order public good (that of cooperation) and acts altruistically only in the context 

of the second-order public good (that of punishment) (Eldakar and Wilson, 2008). 

The motive for a cheater to punish ‘one of his own’ is quite straightforward: a 

cheater’s fitness will increase when other group members contribute more to the 

public good. If everyone would start cheating, not enough altruists would be left to 

exploit. Cheaters can undermine each other in yet another way: the probability that 

cheating is detected by the group members gets bigger when there are more 

cheaters present in the group, which increases the probability that the cheater will 

get punished. In brief, defectors are in constant competition with each other and are 

therefore inclined to punish (Eldakar et al., 2007).   

5.4.4 Theoretical models on selfish punishment 

In Eldakar et al.’s (2007) model, altruism is considered directly proportional to the 

part of the endowment allocated to the group fund. Throughout the simulation runs, 

both the parameter for altruism and the propensity to punish (P) are varied from 0 to 

1 in all possible combinations to see what correlations arise between altruism and 

punishment. Their model shows a stable equilibrium between altruistic non-

punishers and selfish punishers. They also varied a number of other parameters and 

concluded that the cost of punishment presumably plays an important role in the 

evolution of punishment and cooperation: when the cost is small, the correlation 

between punishment and altruism is close to zero, however this correlation becomes 

increasingly negative as the punishment cost increases. These findings reflect the 

fact that, unlike altruistic punishers, selfish punishers are able to compensate for the 
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cost of punishment through their selfish behaviour in the first-order public good (by 

taking advantage of the cooperators in the group) (Eldakar et al., 2007). Such a 

situation can be regarded as a division of labour (Eldakar and Wilson, 2008). Thus 

one would expect selfish punishment to be a very relevant concept, especially if 

punishing cheaters is costly. Nakamaru et al.’s (2006) models show that under 

certain conditions, selfish punishment promotes the spread of an altruistic punisher 

strategy. By consequence, selfish punishment could provide an ultimate explanation 

for the evolution and maintenance of high levels of altruism, whereas according to 

their models, altruistic punishment in its own cannot (Nakamaru and Iwasa, 2006). 

6 Aims of the thesis and hypotheses  

In the existing literature, punishment is put forward as one of the driving forces 

behind human (and non-human) cooperation because it can be used to impose 

costs on those who don’t cooperate (section I. 3.5, I. 5). However, the focus of the 

research on prosocial punishment has mainly concerned altruistic punishment, a 

strategy that has proved hard to ultimately explain. Since other strategies and 

interactions between strategies have been mentioned in the literature (Eldakar et al., 

2007)((Rand and Nowak, 2011)((Nakamaru and Iwasa, 2006), we want to further 

investigate punishment. To do this, we will conduct an anonymous, one-shot, 

optional public goods game with a manipulated opportunity for punishment and cost 

of punishment. In analogy with Fehr and Gächter (2000, 2002), we hypothesize that 

punishment will significantly raise the average contribution level. From the same 

literature, we derive the hypothesis that the chance that a person will punish his 

interactant will be positively correlated to the actor’s degree of altruism 

(contribution). In particular, we will focus on the possibility that other punisher 

strategies are also present. We hypothesize that a significant part of prosocial 

punishment will be executed by selfish punishers as a strategy to reduce competition 

between(a) defectors or (b) defectors and loners (Eldakar, Farell et al. 2007; (Rand 

and Nowak, 2011). This would lead to a selfish, hypocritical vision of the person who 

punishes rather than a purely altruistic, morally responsible punisher, like Fehr 

suggested. We will also investigate Eldakar’s related model predictions (Eldakar, 

Farell et al., 2007) concerning punishment costs. In accordance with those 

predictions, we hypothesize that as the costs of punishment increases, the amount 

of prosocial punishment that can be accounted for by a selfish punishment strategy 

will increase. We also postulate that punishing will not be the winning strategy 

(Dreber et al., 2008). 
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Participation in our public goods game is optional, which means that any participant 

can choose to either play the public goods game, or opt out for a fixed sum.  

We are interested in investigating scenarios where cooperation is optional for a 

number of reasons. First of all, not that much research has been done using optional 

public goods games. However, when considering human’s evolutionary past, it 

seems plausible that in many scenarios there are more options than just defecting 

and cooperating. This could be the case with hunting on big-game (Gintis, 2005), 

where one could choose a safe source of income by hunting alone, on smaller prey, 

instead of joining a hunting party. These non-participators or ‘loners’ are considered 

risk-averse: they neither take the chance of ending up empty-handed in case the 

risky hunt is unsuccessful, nor do they risk being cheated on by defectors in their 

hunting group, even though the potential personal gains of hunting big-game are 

substantial. It is important to remark that the difference between a loner and a 

defector is that the loner neither receives any benefits nor pays the costs of the 

common good (Hauert et al., 2002; Fowler, 2005). A second, but equally important, 

reason is that sometimes an optional game turns out necessary to make sense of 

the observed behavior. In their study, Rand & Nowak (2011) concluded that the 

antisocial punishment they observed in compulsory public goods games was carried 

out by defectors. However, in the optional version of the game, these antisocial 

punishers predominantly chose a loner strategy, which led to the conclusion that 

loners are the ones inclined to punish cooperators, not defectors. The observed 

antisocial punishment strategy of loners is an ESS according to the model presented 

in their paper (Rand and Nowak, 2011). This example raises the suspicion that 

carrying out a compulsory public goods game could lead to a distorted image: a 

considerable part of defectors (that would choose a loner strategy if available) could 

be involved in the punishment of cooperators, instead of in the punishment of 

defectors or loners. In our experiment, such ‘hidden’ effects might alter the degree to 

which selfishness (defecting) in the first round and punishing in the second round 

are correlated, since loners, if given the option, would not have participated in the 

game and would have accounted for neither being selfish or altruistic punishers. The 

third argument for conducting an optional public goods game involves the 

information on the role of loners in prosocial punishment. Following Eldakar, Farell et 

al.’s (2007) prediction on antisocial punishment, we hypothesize that loners would 

not be involved in the punishment of defectors, yet would be involved in the 

punishment of cooperators. 
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II. Materials and methods  
First, we provide the reader with the specifics of the experimental setup. We then 

summarize the course of the game by offering an overview of the steps that a 

participant in the game had to go through. Next, we supply some information on how 

the experiment was programmed and finally, we describe the methods used for data 

analysis. 

1 Experimental setup  

 A total of 96 persons from the database of the marketing research group of the 

KULeuven were gathered for this experiment, all of which were students. The 

experiment consisted of 6 sessions with 16 participants per session. The optional 

public goods game itself was mediated by a computer program and all game 

interactions thus took place through this program; instructions and other players’ 

decisions were shown on the participants’ computer screens. The sessions took 

place in 4 separate computer labs and every lab room housed 4 participants that 

were each in a different corner of the room, to make sure their game decisions were 

invisible to the other participants in the room. Participants received either a show-up 

fee of 5 euro, or their average payoff earned in the game in case this payoff 

exceeded this 5 euro.  

Every session, 16 persons played an optional public goods game made up of 12 

rounds. Those rounds were evenly distributed over the 3 different experimental 

conditions (4 rounds/condition): a control condition, where a public goods game was 

played without opportunity for punishment; a first treatment condition with 

punishment opportunity where the cost of punishing was low (1:3 ratio, which 

indicates that the punishee pays three times as much as the person that punishes); 

and a second treatment condition where the cost of punishing was high ( 2:3 ratio). 

Practically, this implies that in the low cost condition, punishing one person cost 2 

euro while in the high cost condition, this cost was 4 euro. In both conditions, the 

punishee lost 6 euro per punishment that he or she received. From here on, we will 

refer to the first treatment condition as the low cost condition and to the second 

treatment condition as the high cost condition. 

Every session, all 16 players got to play 4 rounds in all 3 experimental conditions.  

Every round, 4 new groups of 4 participants were formed. Before the start of the 

experiment all participants were informed that the game was played anonymously. 
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Also, in one and the same condition all interactions were one-shot, meaning that no 

two players would interact with each other more than once. Between conditions, the 

participants’ player numbers were randomly redistributed so that no reputation 

formation was possible. 

1.1  Game course 

At the start of the experiment, subjects read a set of instructions on their computer 

screen. To make sure the participants fully understood the purpose of the 

experiment, they took a test and were allowed to proceed only if they answered all 

questions correctly. At the beginning of each round, the computer assigned each 

player to groups of 4. First, every player had to decide whether to opt in and play the 

game, or to opt out and receive a fixed 12 euro payoff. If the player opted in he 

received a starting budget of 10 euro and was allowed to decide how much of this 10 

euro to invest in a common good. This contribution could be any natural number 

ranging from 0 to 10. All the money contributed to the public good was multiplied by 

a multiplication factor 2, which is common in the literature (e.g. Fehr, 2002). After 

this multiplication, the money from the common good was evenly distributed over all 

group members that opted in. Hence, participants that opted out of the game (also 

called ‘loners’) did not contribute to the group’s common good, but also did not take 

any returns from it either.  

In the control condition, a round only consisted of participation and contribution 

decisions. At the end of each round, each player got to see his earnings made in the 

respective round. Payoffs for non-loners were calculated as 

 , where conti is the contribution of person i and 

n represents the number of persons that are participating in the game. The payoff 

for loners was fixed at 12 euro. 

In the treatment conditions, the contribution phase was followed by a second phase 

where participants got to see the decisions taken by their group members in the first 

phase of the game. This information was released so that an informed choice 

concerning the punishment of a certain group member could be made. Every 

participant in the game got to make this choice for each of his 3 group members. 

This meant that loners (individuals that chose to opt out of the game in the first 

phase) could also punish and be punished. Both this content and the information on 

the cost of punishment was contained in the instructions that were shown at the start 

of the treatment conditions. As previously mentioned, an act of punishment caused 
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the punishee a cost of 6 euro while the punisher paid a price of 2 or 4 euro, 

depending on the condition that had to be played.  

1.2 Programming and data analysis 

We programmed our optional public goods game using Adobe Macromedia 

Authorware version 7.0®. Authorware is a commonly used tool for programming 

visually strong economical experiments. We wrote a program that allowed for real-

time interactions between the participants in the 4 different rooms by writing all the 

information to separate files on a common network hard drive. In supplementary 

figure 1, we give a taste of how the flowline of our program looks like in Authorware.  

All of our data analysis was performed using R i368 2.15.0. The R code is added in 

the appendix. 

Since we were interested in the nature of the punishment behaviour, we wanted to 

investigate the probability that a person punishes an interactant given certain 

predictor variables. The response variable is discrete and takes on the value of 1 

when a player punished his interactant in the respective dyadic interaction of the 

game, and the value of 0 when the player did not punish his interactant. In the 

description of the results, we will also refer to the player having to make the 

punishment decision as the actor. Because of the categorical (in this case, binary) 

nature of the outcome variable, we use the glm() function to fit a logistic regression 

model to estimate the contribution of factors and variables to punishment behavior 

(McCullagh and Nelder, 1989). Since logistic regression is used to predict binary 

outcomes, the natural logarithm of the odds (representing the ratio of the two 

probabilities: those of getting 1 against those of getting 0) is used to fit the model for 

the predictor variables through regression analysis. Because we have more than 

one predictor variable, we actually fit a logistic curve in a procedure known as 

multiple logistic regression. The probabilities and regression coefficients were 

obtained using maximum likelihood estimation. In contrary to a linear regression 

model, where an analytical solution can be found through least squares methods, 

maximum likelihood estimates are found through an iterative process until 

convergence is achieved. To test the statistical significance of the fitted regression 

coefficients we used Wald statistics. These are the ratios of the fitted coefficients 

over the squared standard errors for those coefficients; these statistics follow a Chi-

square distribution on which we can test significant deviance relative to the null 

hypothesis, where the coefficient would be zero. 
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Table 2: Name and description of variables used for  statistical modelling 

NAME OF VARIABLE DESCRIPTION 

COST 

CONTAINS INFORMATION ABOUT THE COST OF PUNISHMENT, WHICH 

BECOMES 2 IN THE LOW COST CONDITION AND 4 IN THE HIGH COST 

CONDITION. 

CONDITION 

A DISCRETE VARIABLE REFLECTING THE CONDITION AND CAN TAKE ON 

THE VALUES OF ‘CONTROL CONDITION’, ‘LOW COST CONDITION’ AND 

‘HIGH COST CONDITION’. 

CONTRIBUTION 
INDIVIDUAL CONTRIBUTION OF THE PLAYER WHICH CAN BE ANY 

NATURAL NUMBER IN THE RANGE [0,10]. 

CONTRIBUTION_INTERACTANT 
INDIVIDUAL CONTRIBUTION OF THE PLAYER’S INTERACTANT, WHICH 

CAN BE ANY NATURAL NUMBER IN THE RANGE [0,10]. 

LONER 
A BINARY VARIABLE PROVIDING INFORMATION ON WHETHER THE 

PLAYER LONED (1) OR PARTICIPATED (0). 

LONER_INTERACTANT 
A BINARY VARIABLE PROVIDING INFORMATION ON WHETHER THE 

PLAYER’S INTERACTANT LONED (1) OR PARTICIPATED (0). 

PAYOFF 
A CONTINUOUS VARIABLE THAT CONTAINS THE INFORMATION ON THE 

PLAYER’S INDIVIDUAL PAYOFF. 

PAYOFF_GROUP 
A CONTINUOUS VARIABLE THAT CONTAINS THE INFORMATION ON THE 

GROUP’S PAYOFF. 

PUNISHMENT 

A BINARY VARIABLE THAT DENOTES WHETHER A PLAYER PUNISHES HIS 

INTERACTANT. IF IT TAKES ON THE VALUE OF 1, THE INTERACTANT IS 

PUNISHED. IF IT TAKES ON THE VALUE OF 0, THE INTERACTANT IS NOT 

PUNISHED. 

ROUND 

A DISCONTINUOUS VARIABLE DEPICTING WHAT ROUND OF THE 

CONDITION IS BEING PLAYED AND CAN TAKE ON THE VALUE OF ANY 

NATURAL NUMBER FROM 1 TO 4. 

SESSION 
A VARIABLE THAT STANDS FOR THE SESSION OF THE EXPERIMENT AND 

CAN TAKE ON THE VALUE OF ANY NATURAL NUMBER FROM 1 TO 6. 
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Based on our hypotheses that we wanted to test, there were some variables and 

interactions that we definitely wanted to include in our model. We give an overview 

of the variables that we used in our models, briefly define them and denote what 

values they take on in a table (Table 2). We started out fitting a very comprehensive 

logistic regression model with PUNISHMENT as the dependent variable and 

SESSION, COST, CONTRIBUTION, CONTRIBUTION_INTERACTANT, LONER, 

LONER_INTERACTANT as independent predictor variables. We also tested for two-

way interaction effects between COST and CONTRIBUTION, CONTRIBUTION and 

CONTRIBUTION_INTERACTANT, CONTRIBUTION and LONER_INTERACTANT, 

COST and LONER, LONER and CONTRIBUTION_INTERACTANT, LONER and 

LONER _INTERACTANT and for three-way interaction effects between COST, 

CONTRIBUTION and CONTRIBUTION_INTERACTANT and between COST, 

CONTRIBUTION and LONER _INTERACTANT. 

Because we were interested in getting the most predictive and powerful model, we 

used a number of algorithms that search for the best model automatically given 

certain criteria. First, we utilized the bestglm package to select the best model 

according to the AIC criteria (McLeod and Xu, 2010). AIC stands for “Aikake 

information criterion” and provides a relative measure on the amount of valuable 

information versus the complexity of a model. This bestglm() function left us with a 

model with only 4 explanatory variables: COST, CONTRIBUTION, 

CONTRIBUTION_INTERACTANT and LONER_INTERACTANT. Although this 

simple model gives the best balance between predictive power and complexity, in 

order to test predictive variables with less outspoken effects, we expanded this 

model with additional variables and interactions. For this more extensive model, 

there were a number of terms in the model that are not significant. To find out if we 

would be better off using a more simple model, we then also ran a stepwise 

(backward, forward) analysis on this model using the Rcmdr package (Fox, 2004). 

Over the course of carrying out our analyses, it became clear that not punishing 

occurred much more frequently than punishing. Because of this sample bias, known 

as "zero inflation", we were afraid that our model would weigh not punishing heavier 

than punishing, therefore underestimating coefficients in the maximum likelihood 

estimation procedure. To try to resolve this, we used the logistf package and the 

Zelig package in R to form a model that takes this zero inflated nature of our data 

into account (Firth, 1993; Ploner et al., 2006; Imai et al., 2009). This package fits the 

regression model taking into account the prior distribution of the negative and 

positive examples in order to fit non-biased estimates of the regression coefficients. 
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We also made effect plots using the effects package in R, in order to the nature of 

the impact that each significant term of the model had on the outcome variable (Fox, 

2003). 

Another thing we wanted to take into account is which reference people take for 

making their punishment decision. One possibility is that people punish according to 

some absolute measure or norm of contribution, but another option could be that 

people punish others according to some relative measure, for example by comparing 

them to the average contribution of the group. To test this, we also built a model that 

took group average contribution as an extra predictor variable.  

In addition, we performed an analysis of how levels of cooperation (individual 

contribution) developed over the course of the experiment. First, we used a 

Wilcoxon signed rank test to see if cooperation levels differ significantly between 

conditions (Wilcoxon, 1945). The null hypothesis of the Wilcoxon signed rank test 

assumes that the distributions of x and y differ by a location shift of µ and the 

alternative is that they differ by a significantly different location shift. Second, we 

performed a Kruskal-Wallis rank test in order to test if the sequence of the 

conditions has an effect on the cooperation in those conditions (Kruskal and Wallis, 

1952). The null hypothesis of the test is that k independent samples were drawn 

from identical populations and the alternative hypothesis is that the samples were 

drawn from populations sharing the same shape but with different central 

tendencies. The Kruskal-Wallis test compared the two sessions in which the control 

condition came first in the experiment, with the two sessions in which the control 

condition came second and with those two where the control came third. We carried 

out the same analysis for the low and high cost punishment conditions.  

We also built three linear regression models: one to predict individual contribution, 

one for individual payoff and another for the group’s payoff. For the first two models, 

we again employed the bestglm() function of the bestglm-package to test which 

variables had the best predictive power (McLeod and Xu, 2010). We investigated 

how the group’s payoff changed over the different conditions and over the different 

rounds of the game. Because we wanted to see if a raise in contribution levels would 

imply a raise the group’s payoff, the linear regression model with GROUP_PAYOFF 

as a dependent variable was composed of the same predictor variables as used in 

the model for contribution to ease this comparison, which are SESSION, 

CONDITION and ROUND.  
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III. Results  

1 Descriptive analysis of punishment behaviour  

Throughout all the sessions of the experiment, we observed 266 acts of punishment, 

which correspond to approximately 11.5% of all punishment opportunities being 

used (266 acts of punishment out of 2304 opportunities: 96 persons, each playing 2 

punishment conditions with 4 rounds per condition, where they were able to punish 3 

persons each round). Out of all the participants, 70.8% punished at least once, 

whereas 51% punished at least twice, 21.7% punished at least 5 times and only 

6.1% punished more than 7 times (Fig. 3). The number of times that players 

punished others followed a Poisson distribution (λ= 2.56). Poisson distributions are 

usually used to model count data which results from a series of independent 

Bernoulli trials. These distributions are defined by a single parameter, λ, which 

represents the population mean and variance. One participant seemed to punish 

unusually frequently (22 out of 24 times), whilst all others punished less than 12 

times. Based on the cumulative probability function for a Poisson distribution, the 

chance of that participant belonging to this same distribution was only p= 8.78e-15. 

Based on this, we considered this individual an outlier and removed it from all our 

other analyses.  

 

Figure 3: Distribution of the number of times that subjects punished other group members 
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2 Descriptive analysis of individual contribution  

The average level of cooperation was higher in the treatment sessions, where 

punishment was possible, than in the control condition (Fig. 4). In fact, the mere 

threat of being punished raised the average contribution by about 3 euros. Under all 

conditions, the amount of money contributed to the common good decreased in the 

four consequent rounds. This suggests that at first, beliefs were that others would 

make relatively high contributions, but that when payoffs appeared to be lower than 

expected, people became less willing to invest in the common good. For both 

conditions where a punishment stage was included, punishment could not maintain 

the high cooperation levels of the first round. The decline in the high cost condition 

looks slightly steeper (Fig. 4). In the low cost condition, the cooperation level might 

have stabilized from the third round on. However, more rounds would be necessary 

to see if a steady level of cooperation would eventually be reached. To formally test 

for a difference in cooperation levels between different conditions, we used a 

Wilcoxon rank sum test with continuity correction. Contributions in the low cost 

condition were significantly higher than in the control condition with a p-value < 2.2e-

16 and a W=27134.5. Contributions in the high cost condition were also significantly 

higher than in the control condition with a p-value < 2.2e-16 and a W=29264. There 

was no significant difference in cooperation level between the low and high cost 

punishment of condition (p-value=0.38 and W=59872.5).  

 

Figure 4: Evolution of individual contribution over the 4 rounds for each condition. We conducted 6 

sessions, all with the above mentioned conditions a nd in all possible orders. 
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To find out if the sequence of treatments had an effect on the level of cooperation in 

each condition, we carried out a Kruskal-Wallis rank sum test. For the control 

condition, we reject the null hypothesis with a significance level of p=0.008 and a 

test statistic of 9.63. Analyses for the low cost condition (Kruskal-Wallis χ2 = 9.97 df 

= 2, p-value = 0.0068) and the high cost condition (Kruskal-Wallis chi-squared = 

38.037, df = 2, p-value = 5.5e-09) also led us to reject the null hypothesis. 

Consequently, we suspect that the sequence of treatments has an effect on the level 

of cooperation in the respective treatments. We do think that we should be careful 

when it comes to interpreting these results, because all six sessions had a different 

order of treatments and thus we had no replicas for the different sequences. To 

analyze these results in more detail, however, we also performed a multiple 

regression analysis of individual contribution. 

3 Multiple regression analysis of individual contri bution  

Our linear regression model had CONTRIBUTION as the dependent variable and 

SESSION, ROUND and CONDITION as predictor variables. Contributions were 

significantly higher in the punishment conditions compared to the control condition 

(Multiple linear regression, p= >2e-16, Table 3, Supplementary Fig. 3), but that the 

low and high cost condition did not induce a significant difference in contribution 

(Multiple linear regression, p=0.72, Table 4, Supplementary Fig. 3). To see whether 

the contribution over rounds might decrease more in the high cost than in the low 

cost condition we also built a model in which the two-way interaction between round 

and condition was included. Nevertheless, this interaction turned out not to be 

significant (Multiple linear regression, p=0.617, Table 5). To distinguish whether the 

difference in contributions across sessions is really due to the sequence of 

treatments or due to sampling effects we also included the interaction between 

session and condition in our model. Given that this interaction effect was not 

significant, it seems likely that differences between sessions were mostly due to 

sampling effects (Multiple linear regression, Supplementary Fig. 4 & 5).  



36 

 

Table 3: The linear regression results for the mode l of individual contribution. ‘ConditionH’ is short  for 

the high cost of  punishment condition and ‘conditi onL’ for the low cost of punishment condition. Both  

session and condition are considered factors in the  model. ConditionH and conditionL are both being 

compared to the control condition. Significance code s:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.  

 ESTIMATE STD. ERROR Z VALUE PR(>|Z|) SIGNIF. CODE 

(INTERCEPT) 4.621710 0.26335 17.550 < 2E-16 *** 

SESSIE2 -3.238840 0.22051 -14.688 < 2E-16 *** 

SESSIE3 -0.296880 0.22051 -1.346 0.178  

SESSIE4 -1.352680 0.22051 -6.134 9.83E-10 *** 

SESSIE5 -1.428570 0.22051 -6.479 1.10E-10 *** 

SESSIE6 -1.668450 0.22415 -7.443 1.32E-13 *** 

ROUND -0.445110 0.05723 -7.777 1.05E-14 *** 

CONDITIONH 2.600000 0.19549 13.300 < 2E-16 *** 

CONDITIONL 2.650000 0.19549 13.556 < 2E-16 *** 

 

Table 4: The linear regression results for the fact or CONDITION in the model of contribution where the  

control condition and high cost condition are being  compared to the low cost condition. Significance 

codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 

 

ESTIMATE STD. ERROR Z VALUE PR(>|Z|) SIGNIF. CODE 

CONDITIONC -2.65000 0.19549 -13.556 2E-16 *** 

CONDITIONH -0.05000 0.13823 -0.362 0.718 

 

 



37 

 

Table 5: The linear regression results for the two way interaction between predictor variable ROUND an d 

factor CONDITION in the model of contribution. Signi ficance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 

1. 

 

ESTIMATE STD. ERROR Z VALUE PR(>|Z|) SIGNIF. CODE 

ROUND:CONDITIONC 0.08737 0.17490 0.500 0.617 

 

ROUND:CONDITIONH -0.05579 0.12367 -0.451 0.652 

 

4 Multiple logistic regression analysis of punishme nt behaviour  

We ran a stepwise (backward, forward) analysis on our comprehensive, initial model 

with PUNISHMENT as the dependent variable (output values for this model are 

given in Table 6). Three terms were exluded from this initial model: SESSION, the 

two-way interaction COST and LONER and the three-way interaction COST, 

CONTRIBUTION and LONER_INTERACTION. The new logistic regression model 

that we obtained included COST, CONTRIBUTION, 

CONTRIBUTION_INTERACTANT, LONER, LONER_INTERACTANT as 

independent predictor variables and two-way interaction effects between COST and 

CONTRIBUTION, CONTRIBUTION and CONTRIBUTION_INTERACTANT, 

CONTRIBUTION and LONER_INTERACTANT, LONER and 

CONTRIBUTION_INTERACTANT, LONER and LONER _INTERACTANT, as well 

as the three-way interaction between COST,CONTRIBUTION and 

CONTRIBUTION_INTERACTANT. This new model’s output values are shown in 

Table 7. 

The resulting estimates from the logistf and the zelig model search function (Table 

8) were very similar to those of the logistic regression model computed with the glm() 

function. In fact, the only difference is that the interaction between LONER and 

CONTRIBUTION_INTERACTANT was almost significant (p=0.057) for the zelig 

model, while in the normal glm model, it actually was significant (p=0.045) (Table 7). 

This could be explained by the fact that sampling biases did not have any significant 

impact on coefficient estimates while the estimation of prior distributions for both 

sample groups reduced the available degrees of freedom, which resulted in a very 

slight drop in statistical power. 
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Table 6: Logistic regression results for the model of punishment 

 

ESTIMATE 
STD. 

ERROR 

Z 

VALUE 
PR(>|Z|) 

SIGNIF. 

CODE 

(INTERCEPT) -2,854750 0,439098 -6,501 7,96E -11 *** 

SESSION2 0,462981 0,272557 1,699 0,08938 . 

SESSION3 -0,075751 0,274021 -0,276 0,78221 

 

SESSION4 -0,269674 0,275092 -0,980 0,32694 

 

SESSION5 0,115515 0,258810 0,446 0,65536 

 

SESSION6 0,257002 0,263995 0,974 0,33030 

 

COST4 -1,135080 0,381953 -2,972 0,00296 ** 

CONTRIBUTION 0,397514 0,056477 7,039 1,94E-12 *** 

CONTRIBUTION_INTERACTANT -0,000121 0,064954 -0,002 0,99851 

 

LONER1 1,287091 0,627653 2,051 0,04030 * 

LONER_INTERACTANT1 1,000913 0,538428 1,859 0,06303 . 

CONTRIBUTION:CONTRIBUTION_INTERACTANT -0,053648 0,010428 -5,145 2,680000E-07 *** 

CONTRIBUTION:LONER_INTERACTANT1 -0,398835 0,085033 -4,690 2,73E-06 *** 

COST4:CONTRIBUTION -0,004870 0,059436 -0,082 0,93470 

 

CONTRIBUTION_INTERACTANT:LONER1 -0,238800 0,122782 -1,945 0,05179 . 

LONER1:LONER_INTERACTANT1 -2,309832 0,928520 -2,488 0,01286 * 

COST4:LONER1 -0,242659 0,766250 -0,317 0,75148 

 

COST4:CONTRIBUTION:CONTRIBUTION_INTERACTAN

T 
0,020581 0,008196 2,511 0,01204 * 

COST4:CONTRIBUTION:LONER_INTERACTANT1 0,080259 0,073922 1,086 0,27760 
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Table 7: Output values for the stepwise built down logistic regression model for punishment 

 

ESTIMAT

E 

STD. 

ERROR 

Z 

VALUE 
PR(>|Z|) 

SIGNIF. 

CODE 

(INTERCEPT) -2,643717 0,374331 -7,063 1.64E-12 *** 

COST4 -1,226934 0,328193 -3,738 0,000185 *** 

CONTRIBUTION 0,364701 0,052772 6,911 4,82E-012 *** 

CONTRIBUTION_INTERACTANT -0,015895 0,063562 -0,250 0,802531 

 

LONER1 1,401487 0,573066 2,446 0,014461 * 

LONER_INTERACTANT1 1,166487 0,530942 2,197 0,028020 * 

CONTRIBUTION:CONTRIBUTION_INTERACTANT -0,049646 0,009977 -4,976 6.48E-07 *** 

CONTRIBUTION:LONER_INTERACTANT1 -0,370470 0,077924 -4,754 1.99E-06 *** 

COST4:CONTRIBUTION 0,031261 0,051834 0,603 0,546452 

 

CONTRIBUTION_INTERACTANT:LONER1 -0,243151 0,121105 -2,008 0,044667 * 

LONER1:LONER_INTERACTANT1 -2,451810 0,917470 -2,672 0,007532 ** 

COST4:CONTRIBUTION:CONTRIBUTION_INTERACTANT 0,016513 0,007457 2,215 0,026793 * 

 

Table 8: Output values for the zelig model for puni shment. 

 

ESTIMATE 
STD. 

ERROR 

Z 

VALUE 
PR(>|Z|) 

SIGNIF. 

CODE 

(INTERCEPT) -2.625285 0.374331 -7.013 2.33E-012 *** 

COST4 -1.209289 0.328193 -3.685 0.000229 *** 

CONTRIBUTION 0.361199 0.052772 6.844 7.68E-012 *** 

CONTRIBUTION_INTERACTANT -0.014878 0.063562 -0.234 0.814935 
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LONER1 1.411675 0.573066 2.463 0.013764 * 

LONER_INTERACTANT1 1.177133 0.530942 2.217 0.026619 * 

CONTRIBUTION:CONTRIBUTION_INTERACTANT -0.049190 0.009977 -4.931 8.20E-07 *** 

CONTRIBUTION:LONER_INTERACTANT1 -0.366749 0.077924 -4.706 2.52E-06 *** 

COST4:CONTRIBUTION 0.030619 0.051834 0.591 0.554715 

 

CONTRIBUTION_INTERACTANT:LONER1 -0.230506 0.121105 -1.903 0.056993 . 

LONER1:LONER_INTERACTANT1 -2.332555 0.917470 -2.542 0.011010 * 

COST4:CONTRIBUTION:CONTRIBUTION_INTERACTANT 0.016359 0.007457 2.194 0.028250 * 
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Figure 5: Effect plot of cost 

An increase in the cost of punishment significantly decreased the probability of 

punishment (multiple logistic regression, Table 7, p=0.00019, Fig. 5). Contribution 

was positively correlated to punishment (multiple logistic regression, Table 7, 

p=4.82e-012, Fig. 6). In other words, cooperators punished more than defectors did. 

There was a significant effect of being a loner, however examination of the effect 

plot led us to believe loners punish almost as much as non-loners (multiple logistic 
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regression, Table 7, p=0.014, Fig. 7). We think that it is possible that the assumption 

of heteroskedasticity was not fulfilled and therefore we got seemingly conflicting 

results for our multiple logistic regression. Loners had less chance to be punished 

than the people who participated in the game (multiple logistic regression, Table 7, 

p=0.028, Fig. 8). The two-way interaction between CONTRIBUTION and 

CONTRIBUTION_INTERACTANT was highly significant (multiple logistic regression, 

Table 7, p=6.48e-07). When the interactant’s contribution was 0, his chance of being 

punished was positively correlated with the actor’s contribution (Fig. 9, left panel). 

The high contributers became less and less inclined to punish their interactant as 

the interactant’s contribution was higher (Fig. 9, middle and right panel). Non-loners 

(left panel) were mainly punished by high contributors (multiple logistic regression, 

Table 7, p=1.99e-06, Fig. 10). The chance that a low contributor, let’s say someone 

who contributed nothing, would punish a participant that opted into the game was 

very small. When the player’s interactant was a loner, there was a chance that this 

loner would be punished if the player was a defector (left panel). However this 

chance was practically nonexistent if the player had cooperated (right panel). When 

loners punished non-loners, they punished those people whose contributions were 

low (multiple logistic regression, Table 7, p=0.045, Fig. 11). Loners did not punish 

other loners (multiple logistic regression, Table 7, p=0.0075, Fig. 12, right panel). 

Low contributors were punished relatively more by high contributors when the 

punishment cost was low (multiple logistic regression, Table 7, p=0.027, Fig. 13). 
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Figure 6: Effect plot of contribution of the player who needs to make the punishment decision 
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loner effect plot
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Figure 7: Effect plot of the loner strategy of the p layer that is making the decision on punishment. If  loner 

is 1, the interactant opted out of the game (x-axis ). 
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Figure 8: The effect plot for the loner strategy of  the interactant. 
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Figure 9: Effect plot of the two-way interaction bet ween the actor’s contribution (x-axis) and the 

contribution of the interactant. The left panel sho ws the chances of punishment given your contributio n 

and given a fixed contribution 0 euro from  your in teractant. In the middle panel the fixed contributi on of 

the interactant is 5 euro and in the right panel th is interactant’s contribution is 10 euro. 
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Figure 10: Effect plot of the two-way interaction be tween the actor’s contribution (x-axis) and the lon er 

strategy of the interactant. The left panel shows h ow the chances of punishing an interactant are alte red 

with the actor’s contribution, given that  your int eractant opted into the game. In the right panel th e same 

is shown for when the interactant is a loner. 
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Figure 11: Effect plot of the two-way interaction be tween the loner strategy of the actor and the 

contribution of the interactant. The panel on the r ight shows the chance that, given that the actor is  a 

loner, the interactant will be punished for each po ssible value of that interactant’s contribution. 
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Figure 12: Effect plot of the two-way interaction be tween the loner strategy of the actor and that of t he 

interactant. The panel on the right shows the chanc e that, given that the interactant is a loner, the actor 

will punish this loner for both the strategy where the actor opts in (0 on the x-axis) and where the a ctor is 

a loner himself (1 on the x-axis). 
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Figure 13: The effect plot for the three-way intera ction between cost, contribution of the actor and 

contribution of the interactant. In the upper panel s, the cost is always fixed at 4 euro and in the lo wer 

panels, cost is fixed at 2 euro. In all the left ha nd panels the contribution of the interactant is fi xed at 0 

euro, in the middle panels this is fixed at 5 euro and at the right it’s fixed at 10 euro. 

The average contribution of the group did not turn out to be a significant predictor 

variable in our multiple logistic regression model that took up 

CONTRIBUTION_GROUP as an extra predictor variable (Table 9, p=0.61) . 
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Table 9: The logistic regression results for the pu nisment model including the relative measure of 

average group contribution 

 

 

ESTIMATE STD. ERROR Z VALUE PR(>|Z|) 
SIGNIF. 

CODE 

(INTERCEPT) -2.958136 0.483300 -6.121000 9.32E-10 *** 

SESSIE2 0.503671 0.283662 1.776000 0.07580 . 

SESSIE3 -0.085038 0.274501 -0.310000 0.75672 

 

SESSIE4 -0.251391 0.277327 -0.906000 0.36468 

 

SESSIE5 0.134485 0.261509 0.514000 0.60707 

 

SESSIE6 0.268025 0.264838 1.012000 0.31152 

 

COST4 -1.127782 0.382065 -2.952000 0.00316 ** 

CONTRIBUTION_GROUP 0.032081 0.062506 0.513000 0.60777 

 

CONTRIBUTION 0.390199 0.058181 6.707000 1.99E-11 *** 

CONTRIBUTION_INTERACTANT -0.007939 0.066700 -0.119000 0.90526 

 

LONER1 1.265254 0.629194 2.011000 0.04433 * 

LONER_INTERACTANT1 0.969661 0.542057 1.789000 0.07364 . 

CONTRIBUTION:CONTRIBUTION_INTERACTANT -0.053765 0.010438 -5.151000 2.60E-07 *** 

CONTRIBUTION:LONER_INTERACTANT1 -0.402854 0.085450 -4.715000 2.42E-06 *** 

COST4:CONTRIBUTION -0.006018 0.059458 -0.101000 0.91938 

 

CONTRIBUTION_INTERACTANT:LONER1 -0.243534 0.123334 -1.975000 0.04831 * 

LONER1:LONER_INTERACTANT1 -2.340208 0.930561 -2.515000 0.01191 * 

COST4:LONER1 -0.258597 0.766628 -0.337000 0.73588 

 

COST4:CONTRIBUTION:CONTRIBUTION_INTERACTANT 0.020650 0.008207 2.516000 0.01187 * 

COST4:CONTRIBUTION:LONER_INTERACTANT1 0.080998 0.073974 1.095000 0.27354 
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5 Multiple linear regression analysis of individual  payoffs  

The model we got as a result of the bestglm() function for predicting a player’s 

individual payoff contained the predictor variables SESSION, CONTRIBUTION, 

CONTRIBUTION_INTERACTANT, LONER, LONER_INTERACTANT and 

PUNISHMENT.   

The payoff calculation was based on the player’s own contribution, his costly 

punishment behaviour and that of his group members. Also, adopting a loner 

strategy translated into getting a fixed payoff of 12 euro. In conclusion, when 

intepreting the effect plots we should take into account which effects are only logical 

consequences of the payoff calculation structure. Session was a significant factor in 

the model, because the payoff is very dependent on contribution and contributions 

were significantly different in different sessions (multiple linear regression, Table 10). 

The payoff of someone contributing all his money was approximately 0.7 euro lower 

than that of someone not contributing at all (multiple linear regression, Table 10, 

p=0.015, Fig. 14). Logically, a player’s payoff increased when his interactant 

contributed more to the common good (multiple linear regression, Table 10, p=< 2e-

16, Fig. 15). Adopting a loner strategy turned out less beneficial than opting into the 

game (multiple linear regression, Table 10, p=< 2e-16, Fig. 16). When the player’s 

interactant was a loner, their payoff was on average over 2 euro higher than when 

their interactant did not chose to opt out (multiple logistic regression, Table 10, 

p=8.79e-13, Fig.17). The payoff of someone who punished his interactant was much 

lower (M = 4.4 euro) than the payoff of someone that did not punish (multiple linear 

regression, Table 10, p=< 2e-16, Fig.18). 
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Figure 14: The effect plot of contribution for the payoff model 
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Table 10: The logistic regression results for the p ayoff model.  

 

ESTIMATE STD. ERROR Z VALUE PR(>|Z|) SIGNIF. CODE 

(INTERCEPT) 11.932280 0.35672 33.450 < 2E-16 *** 

SESSIE2 -1.760320 0.33432 -5.265 1.53E-07 *** 

SESSIE3 0.723680 0.30441 2.377 0.01752 * 

SESSIE4 -0.127120 0.30604 -0.415 0.67791 

 

SESSIE5 -0.562820 0.30518 -1.844 0.06528 . 

SESSIE6 -1.676690 0.31872 -5.261 1.57E-07 *** 

COST4 0.475340 0.17601 2.701 0.00697 ** 

LONER1 -3.279340 0.31995 -10.250 < 2E-16 *** 

CONTRIBUTION -0.072780 0.02992 -2.433 0.01505 * 

LONER_INTERACTANT1 2.323400 0.32316 7.190 8.79E-13 *** 

CONTRIBUTION_INTERACTANT 0.295590 0.03045 9.707 < 2E-16 *** 

INTERACTANTPUNISHED1 -4.661610 0.29741 -15.674 < 2E-16 *** 
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Figure 15: The effect plot of the interactant’s con tribution for the payoff model 
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Figure 16: The effect plot of loner for the payoff model 

 

loner_interactant

pa
yo

ff

12

12.5

13

13.5

14

14.5

0 1

 

Figure 17: The effect plot of the interactant’s lon er behaviour for the payoff model 
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Figure 18: The effect plot of punishment for the pa yoff model 

6 Multiple linear regression analysis of the group’ s total payoff  

In both the low and high cost punishment condition, the group’s total payoff was 

lower than in the control condition (Multiple linear regression, Table 11, Fig.19). In 

the low cost condition, the effect was truly spectacular: The drop in the group’s 

payoff, compared to the control condition, was about 4 euro (p=5.94e-15). In the 

high cost condition, this drop was less than 1 euro (p=0.051). 

Tabel 11: The linear regression results for the gro up payoff model. 

 

ESTIMATE STD. ERROR Z VALUE PR(>|Z|) SIGNIF. CODE 

(INTERCEPT) 55.561800 0.7279 76.329 < 2E-16 *** 

SESSIE2 -10.145800 0.6974 -14.548 < 2E-16 *** 

SESSIE3 0.854200 0.6974 1.225 0.22074 

 

SESSIE4 -2.208300 0.6974 -3.167 0.00156 ** 

SESSIE5 -4.375000 0.6974 -6.273 3.98E-10 *** 

SESSIE6 -7.402800 0.7089 -10.442 < 2E-16 *** 

ROUND -0.427700 0.1810 -2.363 0.01819 * 
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CONDITIONH -0.965800 0.4957 -1.948 0.05147 . 

CONDITIONL -3.886800 0.4957 -7.841 5.94E-15 *** 
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Figure 19: Effect plot of the condition in the group ’s payoff 
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IV. Discussion  

We conducted an experimental game in order to investigate prosocial punishment in 

more detail. In the literature, this has mostly been done while focusing heavily on 

altruistic punishment. Our study was aimed at revealing additional patterns of 

(prosocial) punishment, like those executed by defectors or even loners. This way, 

we hoped to get a better view on punishment and its effect on cooperation as a 

whole. Concretely, a one-shot, anonymous, optional public goods game with 

manipulated punishment opportunity and punishment cost was executed with 96 

participants, spread over six sessions. Every participant was subjected to all 

following three conditions: a control condition, a low cost condition and a high cost 

condition.  

1 The effect of punishment on cooperation levels  

In the control condition, the average amount of money contributed to the common 

good decreased over the successive rounds, indicating that cooperation is not a 

stable outcome in a game without punishment opportunity. Logically, cooperation 

falls apart because there is no mechanism that prevents defectors from taking 

advantage of cooperators. These findings are in line with those of Fehr and Gachter 

(2002) and reflect the problem of common goods discussed in the literature (section 

II.2.3). We hypothesized that introducing the opportunity for punishment into the 

game would allow for cooperation to flourish. While punishment did significantly 

raise the individual contributions in both conditions where punishment was possible, 

the initially high cooperation levels did not hold over subsequent rounds. This is not 

what we expected. In Fehr and Gachter’s (2002) study, cooperation increased over 

rounds and eventually stabilized, indicating that the actual execution of punishment 

raised cooperation levels even more than the mere threat of it. To determine 

whether a stable level of cooperation would be reached in our punishment 

conditions, we would need to include more rounds in our experimental design. 

However considering the experimental data that we managed to collect, we infer that 

the threat of punishment appeared to be very effective, yet the experience of 

punishment was somehow not convincing enough to maintain high cooperation 

levels. In order to explain the incapacity of punishment to maintain cooperation in 

our study, we consider two aspects of punishment: 1) its observed frequency and 2) 

the observed punishment strategies. The first of these two aspects is discussed here 

and the second one will be discussed in section IV.3.  
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It seems plausible that the frequency of punishment was not sufficient, when 

considering that during our experiment, 11.5% of all punishment opportunities were 

put into use, while in Fehr and Gachter’s (2002) experiment, this amounted to 29.4% 

(1270 acts of punishment out of 4320 opportunities: 240 persons, each playing 6 

rounds of a punishment condition, where they were able to punish 3 persons each 

round). We postulate that the cost of punishment is to blame for the relatively low 

occurrence of punishment observed in our experiment (section IV.2). We reckon that 

the observed lack of a stable cooperation level illustrates that if not enough 

punishers are around to split the (in our case, high) costs, punishment would fail to 

ensure the ‘group benefit’ that should be obtained through high cooperation levels 

(section I.3.3.2). 

2 The effects of the cost of punishment  

2.1  Frequency of punishment 

As expected, we observed that as the cost of punishment increased, punishment 

became less frequent: the augmented cost to the actor renders it harder to 

compensate for the same benefit to be obtained through a higher level of 

cooperation. Unexpectedly, even though punishment decreased in the high cost 

condition, cooperation levels did not significantly differ between the low and high 

cost conditions. A possible explanation would be that both frequencies of 

punishment could have led to the same pattern of cooperation over rounds because 

some threshold frequency of punishment exists which was not reached in our 

experiment. An alternative explanation is that participants were simply unaware of 

the real frequency of punishment and were not estimating (or sensing) the 

probability of being punished in function of the variable cost. As a consequence, 

they would just display some generic level of cooperation because they knew that 

they were at risk of being punished.  

In section IV.1, we mentioned our suspicion that the lower frequency of punishment 

was responsible for the inability to maintain cooperation. This lower frequency, in its 

turn, could possibly be accounted for by our high cost of punishment: 2 euros in the 

low cost condition (20% of the endowment of 10 euro) and 4 euros (40% of the 

endowment) in the high cost condition. In Fehr and Gachter’s (2002) experiment, the 

cost of punishment was not fixed; the cost of punishing a group member could be as 

little as 5% of the endowment (and as more money was spent on punishment, the 

financial loss for the punishee rose accordingly). Our decision to use high, fixed 
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costs was motivated by predictions, resulting from Eldakar’s model (2007), that 

stated that selfish punishment would become obvious as the cost of punishment 

becomes about 40% of the endowment.  

2.2  Profile of the punisher 

There was no shift in the punisher’s profile in the different cost conditions, so the 

hypothesis that selfish punishers take on the task of punishing when the costs are 

high is not confirmed in this study. It seems like our high cost condition, instead of 

revealing new patterns of punishment, merely supresses punitive behaviour. This 

would then imply that the costs of punishment were set too high in our experiment. 

We consider the previously mentioned observations concerning the cost of 

punishment (IV.2.1 and IV.2.2) an indication that it would be desirable to include an 

extra treatment condition with a lower cost of punishment (for example 1 euro or 

even 0.5 euro) in follow-up experiments. This suggestion for further research will 

also be expressed in some of the sections that follow. 

3 Observed punishment strategies  

In general, the great majority of punishment in our experiment was imposed onto 

defectors and we observed no antisocial punishment. Since most punishment was 

prosocial, the noted lack of a stable cooperation level (IV.1) cannot be accounted for 

by the observed punishment strategies. 

We think that it is worth mentioning that the average contribution of the group did not 

significantly influence punishment. This led us to believe that people base their 

punishment decisions on some absolute idea of how much a person should 

contribute and not on the others’ contributions relative to the group’s norm. In the 

following subsections, we discuss the observed punishment strategies into detail. 

3.1 Cooperators as punishers 

The most prominent punishers in our experiment were cooperators that punished 

defectors. This observation confirms the altruistic punishment hypothesis (Fehr and 

Gachter, 2002). It has been (and still is) a real challenge for theoreticians to 

ultimately explain altruistic punishment (section I.3). We believe that our results 

might be partially influenced by some constraints of the experiment itself, since 

subtle reputation cues have been suggested to account for altruistic behaviour 
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observed in anonymous experiments (Hagen and Hammerstein, 2006). For 

example, participants may still have felt like their reputation was at stake because of 

the presence of the researcher or because they knew that the experimental data 

was subject to careful examination. An alternative way to organize the experiment 

would be to let participants participate via the internet, like they do in Rand and 

Nowak’s (2011) study. However we suspect that this method would have yet other 

downsides, like neither being able to control nor know the participant’s environment 

and its associated cues. 

3.2  Loners as punishers 

Loners also played a considerable role as punishers: they punished defectors, but 

not other loners or cooperators. So whereas on one hand loners could be 

interpreted as people who are (at least partially) asocial, they also seemed to display 

prosocial behaviour. These results go against the antisocial punishment hypothesis, 

which states that loners would be prone to punish cooperators, as models predict 

that cooperators could invade a group of loners (Rand and Nowak, 2011). Instead, 

loners enforce society’s norms by engaging in prosocial punishment, even though 

they are not fully conforming to certain standards themselves (by not acting as 

cooperating participants). One possible explanation is that loners do not really lack 

interest in the game. They may actually want to participate, yet could be observing 

how the situation progresses, as a by-product of their risk-aversive nature. In 

particular, loners could be punishing defectors in an attempt to raise levels of 

cooperation before they then opt into the game. The loner’s behaviour could also 

potentially be due to the existence of some sort of division of prosocial labour 

between loners who punish and cooperators who do not punish: Loners are reluctant 

to take part in the first common good (because they do not risk being exploited by 

defectors), but engage in the costs for the second common good, while cooperators 

who do not punish exhibit the reversed behavioural pattern. However, loners’ payoffs 

turned out to be a lot lower than that of cooperators and point out that a division of 

labour is highly unlikely.  

3.3  Defectors as punishers 

Albeit fictional scenarios and mathematical models predicted that defectors would 

punish other defectors (Eldakar et al., 2007), we did not detect this type of selfish 

punishment in our experiment. This also implies that, for now, we have no reason to 
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believe that the evolution of altruistic punishment was facilitated by selfish 

punishment strategies (Nakamaru and Iwasa, 2006). 

Defectors also did not punish cooperators, however they did punish loners to a 

limited degree. We do not believe this tendency to be due to a general, anti-

everything mentality of defectors because we expect a more random pattern of 

punishment if defectors are just overall spiteful participants. However, the fact that 

loners are specifically targeted is consistent with predictions that arose from 

theoretical models from Rand and Nowak’s study (2011). The predictions denoted 

that it would be an evolutionary stable strategy for defectors to punish loners, 

because loners could possibly outcompete a group of defectors. Besides, it is 

possible that defectors have some tendency to punish loners in order to guarantee a 

large enough group to exploit.  

4 The relative success of different strategies  

The payoff of a full cooperator was lower than that of a defector, however this 

difference in payoff was relatively small. This could be accounted for by the fact that 

defectors were the the most common punishees and that this effectively diminished 

the expected difference in payoffs between cooperators and defectors. However, 

defecting came out as the winning strategy, most likely because not enough 

punishment was carried out (section IV.1). This difference in payoffs again indicates 

why cooperation could not withstand over subsequent rounds under these 

conditions. Adopting a loner strategy turned out to be the least beneficial strategic 

choice of all. Although a loner received a fixed payoff of 12 euro for opting out, his 

average payoff was much lower because loners could also punish and be punished. 

We believe that researching why people adopt a loner strategy is an important task 

for future research. Investing whether there are game circumstances (for example, 

games with a different cost of punishment or a distinct fixed payoff for loners) in 

which it would be beneficial to display risk-aversive strategies could be a valid 

starting point to acclomplish that task. Additionally, analyzing how other factors, like 

average contribution in the game, can influence the likelihood of loning would permit 

a deeper insight into the profile a loner. 

A punisher’s payoff was much lower than the payoff of someone that didn’t punish, 

which confirms the expectation that winners don’t punish (Dreber et al., 2008). On a 

different note, we noticed two curious things about the results that we otained. First, 

the difference in payoff was larger than the highest possible cost (4 euro) of 
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punishment. A possible cause for this result is that people could punish up to 3 

interactants per round. Yet we have reason to believe that this situation was rather 

exceptional since the frequency of punishment in our experiment was not that high. 

Secondly, the session (which is interdependent with contribution) turned out to be a 

significant variable, even though we controlled for contribution in our model. These 

findings led us to conclude that there was some underlying variation in the 

experiment that our model did not account for.  

We believe that it is a constriction of our analysis that payoff was defined at the level 

of the round in this particular linear regression model of individual payoff. People 

might display behavioural patterns that would only become clear over the sequence 

of rounds, since the strategy they choose in one round could very well be influenced 

by their experiences in the previous rounds. It would be interesting to construct a 

model with a new dependent variable for individual payoff that holds information on 

the average payoff of the whole game, and with a new predictor variable for 

punishment that tells us something about the total number of times that a person 

punished during the experiment. That way, we should be able to distinguish wether 

the most succesfull strategy is to punish a lot, punish a little or not punish at all. 

5 The effect of punishment on the success of the gr oup  

Surprisingly, the group’s total payoff was significantly lower when there was the 

possibility for punishment than when there was not. So although punishment 

managed to effectively bring about (temporarily) higher cooperation levels, the group 

was not able to reap any payoff benefits. This contradicts the idea that group 

selection would lead to the selection of altruistic punishment (sections I.3.1 and 

I.5.3.2), since punishment seems to cost the group more than it yields. Off course, 

we must not forget that in this game, money is the employed approximation for 

fitness and this does not allow for us to test how, for example, cooperation would 

lead to better abilities for warfare and thus produce an advantage. 

Remarkably, the group’s total payoff suffered mostly in the low cost condition. 

Cooperation levels in both the high and low cost condition were approximately the 

same, yet much less punishment acts took place in the high cost condition. It is very 

likely that the group’s payoff benefited from the fact that lesser punishment acts led 

to lesser total costs. If punishment is much more common in lower cost conditions, 

one can wonder whether this would create a net benefit for the group through 
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increased cooperation, or a net loss though the costs of frequent punishment. This 

provides another argument to investigate games with a wider range of cost 

conditions. 

6 Concluding remarks  

Our optional public goods game with an opportunity for punishment provided 

evidence for prosocial punishment, but not for antisocial punishment. Our 

experiment did not show that punishment could maintain stable cooperation levels 

and the payoff of the group even seemed to suffer from the presence of punishment 

acts. Off course, this does not imply that punishment is not a potent mechanism to 

promote the evolution of cooperation. Since we think that the high costs of 

punishment in our study influenced many of our results, this should be taken into 

account in the design of further experiments.  

Altruistic punishment was the most documented punishment strategy in our 

experiment. The most intriguing result, however, is that we found a new kind of 

prosocial punisher. This punisher is not a defector (also called selfish punisher), but 

a loner who punishes defectors. We find this puzzling for several reasons. For one, 

the loner chooses to enforce prosocial norms of the game, but on the other hand is 

at least partially reluctant to participate in the game. In particular, it is unclear how 

evolution would turn out a loner-punisher strategy, since loning and punishing 

yielded the lowest payoffs. In conclusion, we are left with more questions than 

answers and we believe that future research should focus on finding explanations 

for a loner-punisher strategy, while remaining alert for the possible interactions 

between the different strategies. 
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V. Summary  
 

Modern human society is characterized by an exceptional amount of cooperative 

behavior, such as the established support systems for the weak members of society 

and the fact that people are often gladly willing to help even strangers. This 

‘hypersociality’ has long puzzled evolutionary biologists, psychologists and game 

theorists. Cooperation poses a public goods problem, yet still thrives under 

circumstances where established evolutionary theories, such as kin selection, direct 

reciprocity, indirect reciprocity and costly signaling, do not seem to suffice as an 

explanation. However it has been suggested that punishment of defectors, also 

named prosocial punishment, can maintain cooperation even in anonymous, one-

shot interactions. This, in turn, raises the question of how punishment would be 

evolutionary stable, since it creates a second-order public goods problem. In the 

literature, the focus of the research on prosocial punishment has mainly been 

restricted to altruistic punishment, which is the punishment of defectors by 

cooperators. To this very day, there is no consensus about the ultimate explanation 

of altruistic punishment. In this study we investigated whether other punishment 

strategies are present, in order to obtain a more comprehensive understanding of 

the ways in which distinct punishment strategies could together affect cooperation 

levels. To do this, we conducted a one-shot, anonymous, optional public goods 

game with a manipulated punishment opportunity and cost of punishment. Our study 

revealed that although altruistic punishers were common, they were not the only 

ones participating in prosocial punishment: not defectors (selfish punishers), but 

loners engaged in a substantial share of this kind of enforcement. Despite the 

punishment of defectors that was observed, cooperation was not maintained in our 

experiment. Further investigation will clarify how cooperation, different punishment 

strategies and factors such as the cost of punishment are correlated.  
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VI. Samenvatting  
 

De moderne samenleving van de mens wordt gekarakteriseerd door een 

uitzonderlijke hoeveelheid coöperatie, denk maar aan de gevestigde systemen voor 

het ondersteunen van de zwakke leden van de samenleving, of aan het feit dat 

mensen vaak met plezier bereid zijn om iemand hulp te bieden, zelfs als die iemand 

een volslagen vreemde is. Deze ‘hypersocialiteit’ heeft reeds lang vele onderzoekers 

in de ban gehouden, vermits coöperatie een probleem van gedeelde goederen 

creëert en er toch nog in slaagt om te zegevieren onder omstandigheden waar 

gevestigde evolutionaire theorieën, zoals kin selectie, theorieën van directe en 

indirecte reciprociteit en ‘costly signalling’, niet lijken te volstaan als verklaring. Het is 

echter geopperd dat het straffen van defectoren, ook prosociaal strafgedrag 

genaamd, het behoud van coöperatie kan verzekeren zelfs in anonieme, eenmalige 

interacties. Op zijn beurt dringt zich de vraag op of straffen evolutionair stabiel kan 

zijn, aangezien dit strafgedrag ons confronteert met een tweede-orde probleem van 

gedeelde goederen. In de literatuur wordt de focus van het onderzoek naar 

prosociaal strafgedrag vooral gevestigd op altruïstisch strafgedrag, wat gedefinieerd 

is als het straffen van defectoren door coöperatoren. Tot de dag van vandaag is er 

geen consensus over de verklaring voor dit altruïstisch strafgedrag. In deze studie 

hebben we onderzocht of er andere strafstrategieën aanwezig zijn. We hopen 

hiermee bij te dragen aan een beter begrip van de manier waarop verschillende 

strafstrategieën samenspelen in het bepalen van het niveau van coöperatie. Hiertoe 

hebben we een ‘one-shot’, anoniem, optioneel gedeelde goederen spel met 

gemanipuleerde optie tot straffen en kost van straffen uitgevoerd. Onze studie toont 

aan dat altruïstische straffers het meest voorkomend zijn, maar ook dat zij zeker niet 

als enigen deelnemen aan prosociaal strafgedrag: niet defectoren (zelfzuchtige 

straffers), maar loners nemen een substantieel deel van dit strafgedrag op zich. 

Ondanks het waargenomen strafgedrag blijkt coöperatie niet stabiel in onze studie. 

Verder onderzoek moet uitwijzen hoe coöperatie, verschillende strafstrategieën en 

andere factoren, zoals de kost van straffen, gecorreleerd zijn. 
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VIII. Addendum  

 

 

 

 

 

 

 

 

 

 
 

Supplementary Figure 1: Screenshot of the program mad e in Authorware for the first session 
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Supplementary Figure 2: The effect plot of round for  the contribution model 

 

 

Supplementary Figure 3: The effect plot of condition  for the contribution model 
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Supplementary Figure 4: The effect plot of session f or the contribution model. The sequence of 

conditions for each session: Session 1: CHL; session  2: LCH; session 3: LHC; session 4: HCL; session 

5: HLC; session 6 CLH. Conditions are labelled with  abbreviations: C = control condition, L = low cost  

punishment condition, H = high cost punishment cond ition. 
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Supplementary Figure 5: The effect plot of the inter action between session and condition for the 

contribution model. Conditions are labelled with ab breviations: C = control condition, L = low cost 

punishment condition, H = high cost punishment cond ition. 
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R Code 
mydata = read.table("C:\\Users\\Loren\\Dropbox\\PGG\\data analyse\\file.txt", header=TRUE, fill=TRUE)    

lol <- cast(mydata2, interactantpunished ~ filenr*sessie) 

counts <- t(lol)[,2] 

fitdistr(counts, "Poisson") 

ppois(22,lambda=2.5684211,lower.tail=FALSE) 

 

### Wilcoxon signed rank test: 

Ccontr <- mydata[mydata$condition =="C" & mydata$loner ==1,"contribution"] 

Hcontr <- mydata[mydata$condition =="H" & mydata$interactant == 1 & mydata$loner ==1,"contribution"] 

Lcontr <- mydata[mydata$condition =="L" & mydata$interactant == 1 & mydata$loner ==1,"contribution"] 

wilcox.test(Ccontr, Lcontr) 

wilcox.test(Ccontr, Hcontr) 

wilcox.test(Lcontr, Hcontr) 

### Kruskal-wallis test: 

Ccontr1e <- mydata[(mydata$sessie == 1 | mydata$sessie == 6) & mydata$condition == "C", "contribution"] 

Ccontr2e <- mydata[(mydata$sessie == 2 | mydata$sessie == 4) & mydata$condition == "C", "contribution"] 

Ccontr3e <- mydata[(mydata$sessie == 3 | mydata$sessie == 5) & mydata$condition == "C", "contribution"] 

Lcontr1e <- mydata[(mydata$sessie == 2 | mydata$sessie == 3) & (mydata$condition == "L" & mydata$interactant == 1), "contribution"] 

Lcontr2e <- mydata[(mydata$sessie == 5 | mydata$sessie == 6) & (mydata$condition == "L" & mydata$interactant == 1), "contribution"] 

Lcontr3e <- mydata[(mydata$sessie == 1 | mydata$sessie == 4) & (mydata$condition == "L" & mydata$interactant == 1), "contribution"] 

Hcontr1e <- mydata[(mydata$sessie == 4 | mydata$sessie == 5) & (mydata$condition == "H" & mydata$interactant == 1), 

"contribution"] 

Hcontr2e <- mydata[(mydata$sessie == 1 | mydata$sessie == 3) & (mydata$condition == "H" & mydata$interactant == 1), 

"contribution"] 

Hcontr3e <- mydata[(mydata$sessie == 2 | mydata$sessie == 6) & (mydata$condition == "H" & mydata$interactant == 1), 

"contribution"] 

kruskal.test(list(Ccontr1e, Ccontr2e, Ccontr3e)) 

kruskal.test(list(Lcontr1e, Lcontr2e, Lcontr3e)) 

kruskal.test(list(Hcontr1e, Hcontr2e, Hcontr3e)) 

 

mydata$loner <- mydata$loner - 1  

mydata$loner_interactant <- mydata$loner_interactant - 1 

mydata2 <- mydata[mydata$condition == "L" | mydata$condition == "H",] 

mydata2$sessie <- as.factor(mydata2$sessie) 

mydata2$cost <- as.factor(mydata2$cost) 

mydata2$loner <- as.factor(mydata2$loner) 

mydata2$loner_interactant <- as.factor(mydata2$loner_interactant) 

### Relogit with zelig (to take an eventual bias into account): 

library(Zelig) 

z.out <- zelig(interactantpunished ~ sessie + cost + contribution + contribution_interactant + loner + loner_interactant + 

contribution:contribution_interactant + contribution:loner_interactant + contribution:cost + loner:contribution_interactant + 

loner:loner_interactant + loner:cost + contribution:contribution_interactant:cost + contribution:loner_interactant:cost, model="relogit", 

data = mydata2, tau=244/2280) 

summary(z.out) 

###Relogit with zelig on the built down model: 

library(Zelig) 

z.out <- zelig(interactantpunished ~ cost + contribution + contribution_interactant + loner + loner_interactant + 

contribution:contribution_interactant + contribution:loner_interactant + contribution:cost + loner:contribution_interactant + 

loner:loner_interactant + contribution:contribution_interactant:cost, model="relogit", data = mydata2, tau=244/2280) 

summary(z.out) 

x.out <- setx(z.out) 

s.out <- sim(z.out, x = x.out) 

summary(s.out) 

plot(s.out) 

 

#### Logistic regression model for punishment: 

interactantpunished.glm <- glm(formula = interactantpunished ~ sessie + cost + contribution + contribution_interactant + loner + 

loner_interactant + contribution:contribution_interactant + contribution:loner_interactant + contribution:cost + 
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loner:contribution_interactant + loner:loner_interactant + loner:cost + contribution:contribution_interactant:cost + 

contribution:loner_interactant:cost, family = binomial, data = mydata2) 

summary(interactantpunished.glm) 

### Stepwise (backward, forward) model selection: 

library(Rcmdr) 

stepwise(interactantpunished.glm, direction = c("backward/forward"), criterion = c("AIC")) 

## Built down model (3 predictor variables less): 

interactantpunished.glm <- glm(formula = interactantpunished ~ cost + contribution + contribution_interactant + loner + 

loner_interactant + contribution:contribution_interactant + contribution:loner_interactant + contribution:cost + 

loner:contribution_interactant + loner:loner_interactant + contribution:contribution_interactant:cost, family = binomial, data = mydata2) 

summary(interactantpunished.glm) 

## Plots: 

plot(effect("cost",interactantpunished.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("contribution",interactantpunished.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("loner",interactantpunished.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("loner_interactant",interactantpunished.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("contribution:contribution_interactant",interactantpunished.glm, default.levels=3),ylab="Probability that interactant is 

punished",layout=c(3,1),rescale.axis=F,asp=1) 

plot(effect("contribution:loner_interactant",interactantpunished.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("contribution_interactant:loner",interactantpunished.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("loner:loner_interactant",interactantpunished.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("cost:contribution:contribution_interactant ",interactantpunished.glm, default.levels=3),ylab="Probability that interactant is 

punished",x.var="contribution",perm.cond=c(2,1),rescale.axis=F,asp=1) 

### Automated model selection:  

library(bestglm) 

mydata3 <- mydata2[,c('sessie','cost','loner','contribution','loner_interactant','contribution_interactant','interactantpunished')] 

interactantpunished.bestglm <- bestglm(mydata3, family = binomial, IC = "AIC", method = "exhaustive")        

interactantpunished.bestglm 

# Plots: 

interactantpunishedauto.glm <- glm(formula = interactantpunished ~ cost + contribution + loner_interactant + contribution_interactant, 

family = binomial, data = mydata3) 

plot(effect("cost",interactantpunishedauto.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("contribution",interactantpunishedauto.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("contribution_interactant",interactantpunishedauto.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("loner_interactant",interactantpunishedauto.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1)   

### Using BIC rather than AIC as the information criterion for automated search: 

interactantpunished.bestglm <- bestglm(mydata3, family = binomial, IC = "BIC", method = "exhaustive") 

interactantpunished.bestglm 

summary(interactantpunished.bestglm) 

### Stepwise forward model selection: 

library(Rcmdr) 

interactantpunishedforward.glm <- glm(formula = interactantpunished ~ sessie + cost + contribution + contribution_interactant + loner 

+ loner_interactant, family = binomial, data = mydata2) 

stepwise(interactantpunishedforward.glm, direction = c("forward"), criterion = c("AIC")) 

 

### Logistic regression with relative contributions: 

mydataRel = read.table("C:\\Users\\Loren\\Dropbox\\PGG\\data analyse\\RelativeFile.txt", header=TRUE, fill=TRUE) 

mydataRel$loner <- mydataRel$loner - 1  

mydataRel$loner_interactant <- mydataRel$loner_interactant - 1 

mydata2Rel <- mydataRel[mydataRel$condition == "L" | mydataRel$condition == "H",] 

mydata2Rel$sessie <- as.factor(mydata2Rel$sessie) 

mydata2Rel$cost <- as.factor(mydata2Rel$cost) 

mydata2Rel$loner <- as.factor(mydata2Rel$loner) 

mydata2Rel$loner_interactant <- as.factor(mydata2Rel$loner_interactant) 

relative.glm <- glm(formula = interactantpunished ~ sessie + cost + relcontrib + relcontrib_interactant + loner + loner_interactant + 

relcontrib:relcontrib_interactant + relcontrib:loner_interactant + relcontrib:cost + loner:relcontrib_interactant + 

loner:loner_interactant + loner:cost + relcontrib:relcontrib_interactant:cost + relcontrib:loner_interactant:cost, family = binomial, data = 

mydata2Rel) 

summary(relative.glm) 

### Stepwise (backward, forward) model selection: 
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library(Rcmdr) 

stepwise(relative.glm, direction = c("backward/forward"), criterion = c("AIC")) 

## Reduced model (5 predictor variables less): 

relativeshort.glm <- glm(formula = interactantpunished ~ sessie + cost + relcontrib + relcontrib_interactant + loner + loner_interactant 

+ relcontrib:relcontrib_interactant + cost:relcontrib + cost:relcontrib:relcontrib_interactant, family = binomial, data = mydata2Rel) 

summary(relativeshort.glm) 

## Plots: 

plot(effect("cost",relative.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("relcontrib",relative.glm),xlab="relative contribution",ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("relcontrib_interactant",relative.glm),xlab="relative contribution interactant",ylab="Probability that interactant is 

punished",rescale.axis=F,asp=1) 

plot(effect("loner",relative.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("loner_interactant",relative.glm),ylab="Probability that interactant is punished",rescale.axis=F,asp=1) 

plot(effect("relcontrib:relcontrib_interactant",relative.glm, default.levels=3),xlab="relative contribution",ylab="Probability that interactant 

is punished",zlab="relative contribution interactant",layout=c(3,1),rescale.axis=F,asp=1) 

plot(effect("cost:relcontrib:relcontrib_interactant ",relative.glm, default.levels=3),xlab="relative contribution",ylab="Probability that 

interactant is punished",zlab="relative contribution interactant",x.var="relcontrib",perm.cond=c(2,1),rescale.axis=F,asp=1) 

 

#### Including the group’s average contribution as a predictor variable in the model:  

mydataGem = read.table("C:\\Users\\Loren\\Dropbox\\PGG\\data analyse\\file3.txt", header=TRUE, fill=TRUE) 

mydataGem$loner <- mydataGem$loner - 1  

mydataGem$loner_interactant <- mydataGem$loner_interactant - 1 

mydata2Gem <- mydataGem[mydataGem$condition == "L" | mydataGem$condition == "H",] 

mydata2Gem$sessie <- as.factor(mydata2Gem$sessie) 

mydata2Gem$cost <- as.factor(mydata2Gem$cost) 

mydata2Gem$loner <- as.factor(mydata2Gem$loner) 

mydata2Gem$loner_interactant <- as.factor(mydata2Gem$loner_interactant) 

Gem.glm <- glm(formula = interactantpunished ~ sessie + cost + GemContrib + contribution + contribution_interactant + loner + 

loner_interactant + contribution:contribution_interactant + contribution:loner_interactant + contribution:cost + 

loner:contribution_interactant + loner:loner_interactant + loner:cost + contribution:contribution_interactant:cost + 

contribution:loner_interactant:cost, family = binomial, data = mydata2Gem) 

summary(Gem.glm) 

### Bestglm: 

library(bestglm) 

mydataBestGem <- 

mydata2Gem[,c('sessie','cost','loner','GemContrib','contribution','loner_interactant','contribution_interactant','interactantpunished')] 

Gem.bestglm <- bestglm(mydataBestGem, family = binomial, IC = "AIC", method = "exhaustive") 

 

### Bestmodel search for individual payoff: 

mydata4 <- mydata2[,c('sessie','cost','loner','contribution','loner_interactant','contribution_interactant','interactantpunished','payoff')] 

mydata4$interactantpunished <- as.factor(mydata4$interactantpunished) 

payoff.bestglm <- bestglm(mydata4, family = gaussian, IC = "AIC", method = "exhaustive") 

summary(payoff.bestglm) 

## Plots: 

payoff.glm <- glm(formula = payoff ~ sessie+ cost + loner + contribution + loner_interactant + contribution_interactant + 

interactantpunished, family = gaussian, data = mydata4) 

plot(effect("contribution",payoff.glm, default.levels=3),rescale.axis=F,asp=1) 

plot(effect("sessie",payoff.glm, default.levels=6),rescale.axis=F,asp=1) 

plot(effect("interactantpunished",payoff.glm),rescale.axis=F,asp=1) 

plot(effect("contribution_interactant",payoff.glm, default.levels=3),rescale.axis=F,asp=1) 

plot(effect("loner",payoff.glm),rescale.axis=F,asp=1) 

 

### Bestmodel search for individual contribution: 

mydata$sessie <- as.factor(mydata$sessie) 

mydata$condition <- as.factor(mydata$condition) 

mydata$round <- as.numeric(mydata$round) 

mydata5 <- mydata[,c('sessie','condition','round','contribution')] 

contribution.bestglm <- bestglm(mydata5, family = gaussian, IC = "AIC", method = "exhaustive") 

contribution.glm <- glm(formula= contribution ~ sessie + round + condition, family = gaussian, data = mydata5) 

summary(contribution.glm) 
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mydata5$condition<-relevel(mydata5$condition, ref="L")  

contributionL.glm <- glm(formula= contribution ~ sessie + round + condition, family = gaussian, data = mydata5) 

summary(contributionL.glm) 

## Testing interaction between condition and round: 

contributioninter.glm <- glm(formula= contribution ~ sessie + round + condition + condition:round, family = gaussian, data = mydata5) 

summary(contributioninter.glm) 

## Plots: 

plot(effect("sessie",contribution.glm),rescale.axis=F,asp=1) 

plot(effect("round",contribution.glm),rescale.axis=F,asp=1) 

plot(effect("condition",contribution.glm),rescale.axis=F,asp=1) 

 

## Firth’s method: 

fit<-logistf(interactantpunished ~ sessie + cost + contribution + contribution_interactant + loner + loner_interactant + 

contribution:contribution_interactant + contribution:loner_interactant + contribution:cost + loner:contribution_interactant + 

loner:loner_interactant + contribution:contribution_interactant:cost, data=mydata2) 

fit 

summary(fit) 

fit<-logistf(interactantpunished ~ sessie + cost + contribution + contribution_interactant + loner + loner_interactant, data=mydata2) 

fit2 <- logistf(formula=interactantpunished ~ sessie + cost + contribution + contribution_interactant + loner + loner_interactant + 

contribution:contribution_interactant + contribution:loner_interactant + contribution:cost + loner:contribution_interactant + 

loner:loner_interactant + loner:cost + contribution:contribution_interactant:cost, data=mydata2, family=binomial) 

 

### Model for the group’s total payoff: 

payoffdata = read.table("C:\\Users\\Loren\\Dropbox\\PGG\\data analyse\\Payoffbestand.txt", header=TRUE, fill=TRUE)        

payoffdata$condition <- as.factor(payoffdata$condition) 

payoffdata$sessie <- as.factor(payoffdata$sessie) 

payoffgroup.glm <- glm(formula = Payoff_group ~ sessie + round + condition, family = gaussian, data = payoffdata) 

summary(payoffgroup.glm) 

## Plots: 

plot(effect("sessie",payoffgroup.glm),ylab="The group's payoff",rescale.axis=F,asp=1) 

plot(effect("round",payoffgroup.glm),ylab="The group's payoff",rescale.axis=F,asp=1) 

plot(effect("condition",payoffgroup.glm),ylab="The group's payoff",rescale.axis=F,asp=1) 

 

 

 


