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Samenvatting

Mobiele ECG-metingen worden een steeds belangrijkere biomedische toepassing,
aangezien het aantal mensen met hartafwijkingen stijgt door de vergrijzing van de
bevolking en het verslechteren van de algemene levensstijl. Door de ECG bij de
patiënt zelf, thuis of onderweg, te meten en ze naar een ziekenhuis te zenden, vormt
het een alternatief voor continue meting in het ziekenhuis, wat tijdrovend en duur
is voor patiënt en ziekenhuis. De toestellen die hierbij gebruikt worden beschikken
vaak over een beperkte hoeveelheid energie en kunnen daardoor slechts beperkte
hoeveelheden data opslaan, verwerken en verzenden. Gecomprimeerde metingen
bieden hier een oplossing door data te comprimeren tijdens de meting.

Het is gebaseerd op twee concepten: willekeurig samplen en de spaarse voorstelling
van een signaal. Bij willekeurig samplen worden verschillende willekeurige lineaire
combinaties van de waarden van het originele signaal opgeslagen in een vector kleiner
dan de vector van het kritiek gesamplede signaal. Bij een spaarse voorstelling, wordt
een signaal voorgesteld door een vector met veel nullen, wat een vereiste is voor het
correct reconstrueren van het originele signaal uit de meting. Bij de traditionele,
spaarse aanpak, gebeurt dit door het signaal voor te stellen als een lineaire combinatie
van een aantal basisfuncties die in een zogenaamd ’woordenboek’ worden opgeslagen.
Dit resulteert in een coefficiëntenvector met veel nullen. Recent onderzoek heeft
geleid tot een cospaarse methode, waarbij een analysematrix wordt vermenigvuldigd
met de waarden van het signaal om een spaarse voorstelling te bekomen.

Gebaseerd op beide soorten spaarse voorstellingen, zijn er in het verleden ver-
schillende algoritmes voor signaalreconstructie ontwikkeld. Daarnaast bestaan er
algoritmes die meerdere signalen met vergelijkbare karakteristieken tegelijkertijd
reconstrueren. Dit is nuttig voor mobiele ECG-metingen, aangezien een ECG-meting
uit meerdere kanalen kan bestaan.

In deze thesis worden bestaande algoritmes vergeleken en wordt een cospaars
algoritme voor meerkanaals reconstructie met betere resultaten op vlak van snelheid
en precisie, ontwikkeld. Bij het vergelijken van woordenboeken en analysematrices,
blijken een woordenboek gebaseerd op wavelets en een analysematrix, gebaseerd op
afgeleiden van de tweede orde, de beste resultaten op te leveren. Vervolgens worden
een spaars en cospaars algoritme aangepast voor meer robuuste reconstructie wanneer
de coefficiënten voor het willekeurig samplen en de meting zelf ruis bevatten. Ten
slotte wordt een inleidende studie gepresenteerd over het nut van de gereconstrueerde
signalen voor klinische diagnose, als basis voor toekomstig onderzoek.
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Abstract

Mobile ECGmonitoring is steadily becoming a more important biomedical application,
as the number of people suffering from cardiac disorders increases due to the aging
of the world population and worsening of our lifestyle. By recording data at the
patient’s location and transmitting it to the hospital, it provides an alternative to
continuous monitoring in a hospital environment, which is both time consuming
and expensive for the patient and the hospital. The devices used to perform this
task are often limited in energy resources and therefore limited in the amount of
data they can store, process and transmit. Compressive sensing can improve the
energy efficiency of a mobile ECG monitor by compressing the data while it is being
recorded.

Compressive sensing is based on two concepts: random sampling and sparse
representation of the signal. In random sampling, several random linear combinations
of the original signal values are stored in a vector that is smaller in size than the
critically sampled signal would be. In sparse representation, a signal is represented
as a vector with many zeros, which is a requirement for the correct reconstruction
of the original signal from the compressive measurement. In the traditional, sparse
approach, this is done by representing the signal as a linear combination of a limited
number of basis functions stored in a dictionary, which leads to a coefficient vector
with many zeros. Recent research has led to a cosparse approach where a so-called
analysis matrix is multiplied with the signal values to obtain a sparse representation.

Algorithms for signal reconstruction, based on one of these types of sparse repre-
sentation, have been developed. Additionally, methods to measure and reconstruct
multiple signals with similar characteristics at once, have been proposed. This is
useful for mobile ECG monitoring, since an ECG measurement can consist of multiple
channels, i.e. recordings from different positions on the body.

In this thesis, several previously developed algorithms are compared and a single-
channel cosparse algorithms is generalised to a multi-channel algorithm with better
performance than any of the other algorithms in terms of reconstruction accuracy
and processing time. It is found that a dictionary based on wavelets and an analysis
matrix based on second order derivatives lead to the most accurate reconstructions.
The cosparse method is also found to be independent of the type of random sampling
that is used. Next, a sparse and cosparse algorithm are adjusted for more robust
performance when the coefficients for random sampling and the measurement itself
are corrupted by noise. Finally, an introductory study on the usefulness of the
reconstructed signals for clinical diagnosis is presented as a basis for future research.
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Chapter 1

Introduction

1.1 Biomedical Context

1.1.1 Data Storage in Biomedical Applications

Vast amounts of data are often acquired, transmitted and stored in applications
based on biomedical signal and image processing, in order to capture and retain as
much detail as possible to ensure a correct diagnosis based on these data types. In
several imaging modalities, examining only a single patient may already require a lot
of storage space. Magnetic Resonance Imaging (MRI) and Computed Tomography
(CT), for example, store a scan of the whole body of a patient as a series of slices
that show the contents of the body, perpendicular to a certain axis and at different
positions along that axis. In case of a CT scan this may require more than 100
megabytes and in case of an MRI scan, more than a gigabyte of storage may even be
required. In those cases, compression is useful to reduce the amount of data that
has to be stored.[3]

This thesis focuses on applying compression to Electrocardiogram (ECG) signals.
Although these signals do not necessarily require a lot of storage space, compression
may be useful when only small amounts of data can be transmitted, for example due
to limited energy resources in mobile ECG monitoring devices.

1.1.2 Mobile ECG Monitoring

Two major factors contribute to the current increase in the relative quantity of people
that suffer from cardiac disorders: the aging of the world population and the fact
that our eating and lifestyle habits are worsening. This places a huge pressure on
the existing healthcare facilities, since those people that are prone to critical heart
conditions such as congestive heart failure (CHF) or an acute myocardial infarction
(AMI) should be monitored continously to spot early symptoms of such events. Since
hospitals often lack the space to let every one of those patients stay over and the
costs for doing so are too high, this is simply impossible.

Mobile ECG monitoring devices provide a solution to this problem. They can be
placed at a patients home or even worn on the body, so as to not interfere with their

1



1. Introduction

daily activities. The data recorded by such a monitoring system is subsequently sent
to a healthcare facility for analysis. The available energy in mobile ECG monitoring
devices often limits the amount of data that can be recorded and transmitted. [19, 17]

Signal compression is an essential improvement for such a system. By compressing
the data in the ECG monitor before sending it to the healthcare facility, the amount
of data to be sent over the network is reduced. At the healthcare facility, the data
can then be decompressed and analysed. This approach does, however, still require
the ECG monitor to record the complete signal at a high sampling rate, store it
temporarily and finally compress it before sending it over the network.

Compressive sensing (CS) eliminates the need to temporarily store the uncom-
pressed signal by essentially performing the recording (sensing) and compression
at the same time. By applying CS, the critical sampling rate defined in the classic
Nyquist-Shannon sampling theorem is no longer a limitation on the minimum number
of samples in a measurement. The complete ECG signal is thus never stored in
the device, but instead an already compressed signal is written to memory before
transmission. [5]

1.2 ECG Signals

1.2.1 Characteristics

An ECG is a recording of the activity of the heart. By measuring potential differences
between two points on the human body, the propagation of the electrical waves that
originate at the heart as a result of the different cardiac contractions can be measured.
A projection of the electrical cardiac activity in the direction of the electrode is
measured and visualised on a monitor.

In multi-channel ECG, signals are measured between several electrode pairs placed
at different positions on the human body. By combining the information from each
of the electrodes, the origin of the electrical activity can be located more precisely.
Because each electrode records a projection of the same wave, the characteristics of
the signals registered at all of these electrodes will be similar, a feature that will be
used when reconstructing all channels from a multi-channel ECG at once. [30]

As described in [28], an ECG signal consists of 7 major characteristic parts. The
P,Q,R,S and T peaks and 2 iso-electric parts that separate the P and T peak from
the large QRS complex. These 7 parts are indicated in figure 1.1.

1.2.2 ECG Signal Simulator

An ECG signal simulator is used for some of the experiments that are part of this
thesis. For the creation of a simple ECG signal model, knowledge of the possible
dimensions of the characteristic peaks and iso-electric parts is required. In Table 1.1,
the possible dimensions of the simulated ECG signal, defined as amplitude and
duration intervals of each of the 7 characteristic parts, are given. The values in this
table are based on those given in [28].
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Figure 1.1: The 7 characteristic parts of an ECG in a simulated signal.

Amplitude (mV) Duration (ms)
Min Max Min Max

P 0.1 0.2 60 80
ISO1 0 0 60 80
Q 0.06 0.08 20 30
R 0.9 1.1 30 40
S 0.06 0.08 20 30

ISO2 0 0 100 120
T 0.1 0.3 120 160

Table 1.1: Intervals of the dimensions of the characteristic parts of an ECG signal

The values in Table 1.1 are used to randomly generate ECG signals with peaks and
iso-electric parts that have dimensions that are randomly picked from the intervals
given in the table. All peaks are simulated as Gaussian peaks with a maximum that
is randomly selected between the minimum and maximum amplitude and a support
between the minimum and maximum duration. Of course this will not lead to a
simulation of the full range of all possible ECG signals, but at least a basic dataset
of clean signals can be generated.

Figure 1.2 shows an example of a 10 second ECG signal with a heart rate of
60 bpm at a sample rate fs = 360Hz, simulated using this method. The random
variation in the dimensions can clearly be seen from this example.

1.3 Compressive Sensing

The measurement y of a signal x is formulated in a discrete setting as the product
of a sensing (or measurement) matrix φφφ and the signal x in equation (1.1). In
reality the measurement will not be an actual matrix multiplication, but rather the
hardware equivalent thereof. However, for notation purposes, this matrix form is
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1. Introduction

Figure 1.2: A 10 second ECG signal at fs = 360Hz, generated with the simulator
built for this thesis.

more convenient
y = φφφx (1.1)

with y ∈ Rn×1, φφφ ∈ Rn×N and x ∈ RN×1. If n < N , y is a compressed version of x.
A requirement for a successful reconstruction of the original signal from the

compressive measurement, is sparsity. This means that it must be possible to
represent the signal as a sparse sequence (i.e. a vector that contains many zeros).
This can be done in a sparse fashion (discussed in section 1.3.1) and a cosparse
fashion (section 1.3.2). The importance of the sparsity lies in the fact that it reduces
the number of possible signals that can be reconstructed from the measurement
by assuming that the signal with the most sparse sequence corresponding to the
measurement is the actual signal that was measured. For a multi-channel ECG, the
sparse sequence of each channel will contain zeros at similar locations.

1.3.1 Sparse Reconstruction

In the sparse approach for signal reconstruction, it is assumed that a signal x can be
represented as a linear combination of a number of (simple) functions. A collection
of such functions is stored as the columns of a matrix referred to as a dictionary ψψψ.
If this dictionary can be used to represent every function in a certain set (e.g. the set
RN×1 that contains all real functions of length N) then that dictionary is referred to
as a basis for that set. The representation of x in a dictionary ψψψ ∈ RN×M can be
written as

x = ψψψs (1.2)

where s ∈ RM×1 is a vector of coefficients used to create a linear combination of the
elements in ψψψ. If s contains many zeros, it is said to be sparse and the previously
stated condition is fulfilled. Equations (1.1) and (1.2) can be combined to represent
y as a function of s

y = φφφψψψs (1.3)

4
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A second condition required for accurate reconstruction of a signal from its
measurement is incoherence between φφφ and ψψψ. This incoherence can be characterised
by calculating the mutual coherence between φφφ and ψψψ as

µ(φφφ,ψψψ) =
√
N max

1≤k,j≤N
| < φk, ψj > | (1.4)

If this mutual coherence is low, then φφφ and ψψψ are incoherent.[20] The importance of
this incoherence is demonstrated in figure 1.3, which is a visual representation of
equation (1.3). The matrix in figures 1.3a and 1.3b is the product φψφψφψ. This matrix
is then multiplied by the long and sparse vector s (black squares are zeros) to obtain
the shorter measurement vector y.

(a) (b)

Figure 1.3: Measuring a sparse coefficient vector using (a) an incoherent and (b) a
coherent sensing matrix and dictionary combination.

In figure 1.3a, φφφ and ψψψ are incoherent, which is why the values (represented as gray
values) in their product are seemingly randomly distributed. The vector y contains
values that are random combinations of the values in s due to this randomness (and
therefore due to the incoherence). Each element in y thus contains some information
about each element in s.

If the product of both matrices is coherent, one might obtain a situation like the
one in figure 1.3b; although possibly less extreme. In this example, each element in
y contains information about a single element from s. It can be seen that some of
the values of s are not captured in the measurement and this information is lost. [4]

When both the sparsity and the incoherence condition are satisfied, the following
`0-minimisation can be used to retrieve the original signal x.

min
s
||s||0 s.t. y = φφφψψψs (1.5)

The desire for sparsity is expressed by the minimisation of ||s||0 that counts the
number of nonzero elements in s. In practice, an `1- or `2-minimisation will be used
in the optimisation for computational feasibility.

1.3.2 Cosparse Reconstruction

Instead of using a sparse coefficient vector to represent the signal in a dictionary, the
cosparse approach obtains sparsity by transforming the signal into a sparse sequence

5
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ααα. This sparse sequence is the product of an analysis matrix ΩΩΩ ∈ RP×N and the
signal x. [22]

ααα = ΩΩΩx (1.6)

If ααα is in fact sparse, then an `0-minimisation can be used to find x from y, similar
to the sparse approach.

min
x
||ΩΩΩx||0 s.t. y = φφφx (1.7)

Again, in practical implementations an `1- or `2-minimisation will be used in the
optimisation for computational feasibility.

Note that incoherence is not an issue in the cosparse approach, as it is the original
signal that is measured and not the sparse sequence. The only requirement is that φφφ
measures sufficient information of x.

1.3.3 Multi-Channel Reconstruction

All of the previous paragraphs applied to the CS model for a single signal. It can easily
be extended to a model for simultaneous measurement and reconstruction of several
signals. This is convenient for, among others, multi-channel ECG applications where
all channels could be compressed and reconstructed at once, instead of processing
each channel one by one. Equation (1.1) can easily be adjusted to represent the
measurement of multiple signals by replacing all the vectors by matrices with C
columns, where each column contains a single signal.

Y = φφφX (1.8)

Similarly, this can be done for equations (1.2) and (1.6) and the `0-minimisation
problems (1.5) and (1.7) to obtain the original signal matrix X, measurements matrix
Y, the coefficients matrix S and the sparse sequence matrix A (the multi-channel
equivalent of ααα).

In order to be able to solve a multi-channel `0-minimisation problem, either sparse
or cosparse, it is required that the coefficients of all signal channels have a similar
support, since this common support will be sought when solving these problems. As
discussed in section 1.2 this is the case for the signals from a multi-channel ECG,
since they are projections of the activity of a single source (i.e. the heart).

1.4 Signal Reconstruction from Noisy Compressive
Sensing Measurements

In the previous section, it was assumed that the measurement is free of any noise
(formula (1.1)), although this will seldom be the case in practical applications. Two
types of noise may be present in the measurement. First, there is additive noise which
is superimposed on the measurement. Several articles have already been written
about additive noise and the algorithms that can be used to reliably reconstruct the
original signal from the noisy measurement. [9, 16, 15]
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The second type, multiplicative noise, disturbs the sensing matrix and thus
the original signal is multiplied with this noise when it is measured. This may be
problematic if the receiver assumes that the measurement was made with a certain
known sensing matrix. At the moment, little research on this topic has happened.
[15]

In chapter 4, two algorithms for more robust signal reconstruction from a noisy
measurement are developed: one for the sparse approach and one for the cosparse
approach.

1.5 Influence of Signal Reconstruction Accuracy on
ECG Feature Detection

Since CS measurements store the information about a signal in less samples than
the original signal, it can be expected that if too much compression is applied,
valuable information will be lost and the original signal can no longer be completely
reconstructed from the measurements. This may be problematic for a clinical
diagnosis, where a loss of information may mean that a wrong conclusion is drawn
from the data.

In chapter 5, the correlation between the amount of compression and the ability
to perform certain analysis tasks on the reconstructed signal is sought, in order to
determine when too much compression is applied to reliably perform a diagnosis
based on the reconstructed signal. It is also investigated if there is a correlation
between some accuracy metrics (to quantify the similarity between the original and
reconstructed signal) and the detection of these features.

1.6 Contributions
The first major contribution of this thesis is the investigation of the possibilities
of using the cosparse approach for signal reconstruction, which is still a relatively
new topic in CS. Secondly, the speed and accuracy of multi-channel reconstruction
algorithms is compared to those of their single-channel counterparts, to verify whether
these are useful for application to multi-channel ECG reconstruction. The effect
of using a binary matrix instead of a Gaussian one for the measurement on the
computational requirements and reconstruction accuracy is also investigated. A
fourth contribution is the adaptation of a sparse and a cosparse algorithm for the
recovery of signals from measurements that have been altered by additive and
multiplicative noise. Finally, a brief introductory study is made about the influence
of the amount of compression that is applied to a signal on the ability of an algorithm
to detect certain features in the reconstructed signal.

The rest of the thesis is structured as follows. In chapter 2, several existing
methods to recover signals from CS measurements (both single- and multi-channel)
are discussed. Next, in chapter 3, a cosparse algorithm is generalised for the
reconstruction of all channels of a multi-channel ECG at once. In the second part
of the chapter, reconstruction results of the methods discussed in chapter 2 and
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SGAP are compared. In chapter 4 the influence of noise on the CS measurements is
described and possible adaptations of a sparse and a cosparse algorithm to achieve
better reconstruction quality from these noisy measurements are suggested. In
chapter 5, the influence of the compression ratio on the ability to retrieve features
from the reconstructed signal, is demonstrated. Finally, a conclusion about the thesis
is drawn in chapter 6.
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Chapter 2

Prior Work in Compressive
Sensing

In this chapter, existing methods studied during the thesis are introduced in order to
gain a better understanding of the contributions of the thesis. What will be referred
to as a ’method’ in the rest of the text consists of a sensing matrix, a dictionary and
an algorithm for signal reconstruction in case of the sparse approach and a sensing
matrix, an analysis matrix and an algorithm in case of the cosparse approach.

Sensing matrices are discussed in the first part of the chapter. The same sensing
matrices were used for the sparse and cosparse methods, since the measurement phase
is independent of the signal reconstruction. Next, the dictionaries and algorithms for
sparse reconstruction are introduced and finally, the analysis matrices and algorithms
used in cosparse methods are discussed.

Three major types of algorithms can be distinguished. The first group are the
convex optimisation algorithms that convert the optimisation problem to a convex
linear program. A popular algorithm of this type, Basis Pursuit (BP) was tested in
this thesis. Secondly, there are greedy algorithms that iteratively estimate the support
(sparse approach) or cosupport (cosparse approach) of s and ααα, respectively, and
calculate the optimal coefficients corresponding to this estimate by solving a linear
least-squares problem. The third type of algorithms are thresholding algorithms that
iteratively adjust the coefficients by calculating an approximation of s and keeping
only the larger values. The last algorithms that are discussed are the Block Sparse
Bayesian Learning (BSBL) algorithms. They can not be categorised as any of the
main types. BSBL algorithms assume that groups of coefficients are distributed
according to a Gaussian distribution and learns the parameters of these distributions.

2.1 Sensing Matrices

It has been found that Gaussian and other random matrices are very suitable to
perform compressive measurements, since there is a very high probability of such a
matrix being incoherent with a dictionary or basis. [8] Two such random matrices
were tested in this thesis.
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Gaussian This is the most frequently used sensing matrix in compressive sensing.
Its elements are selected randomly from a standard Gaussian distribution (µ = 0,
σ = 1). In order to reduce the computational complexity, the matrix can be made
sparse. This means that a random selection of elements is kept equal to 0, while
the others are still drawn randomly from a standard Gaussian distribution. A small
example of a Gaussian sensing matrix with 50% sparsity that measures a 6-sample
signal as a 4-sample vector is given in equation (2.1).

φφφGauss =


0.925 0 0 0.225 −0.846 0

0 0.081 −1.474 0 0 −0.717
−0.805 0 1.779 0 −0.585 0

0 −0.236 1.074 0 0.510 0

 (2.1)

Binary The binary sensing matrix is created by setting a random selection of
elements to zero and the other elements to 1. This type of random matrix can be
implemented more easily in a hardware device than the Gaussian matrix due to its
binary nature. In equation (2.2) the binary equivalent of the matrix in equation (2.1)
is shown.

φφφbinary =


1 0 0 1 1 0
0 1 1 0 0 1
1 0 1 0 1 0
0 1 1 0 1 0

 (2.2)

2.2 Sparse Reconstruction

Sparse reconstruction methods require a dictionary in which the signal is sparse (i.e.
coefficient vector s contains many zeros) and an algorithm to reconstruct s. Equation
(1.2) is subsequently used to reconstruct the signal from the recovered coefficients.

2.2.1 Dictionaries

There are several possible dictionaries that can represent a signal as a sparse coefficient
vector. Some of the more popular dictionaries were tested in this thesis. Elements
from the Discrete Cosine Transform dictionary and Discrete Fourier Transform
dictionary both have infinite support in the time domain, while the Discrete Wavelet
Transform, B-spline and Gabor dictionaries are localised both in space and in time.
An example of a typical element from each of the dictionaries is shown in figure 2.1

Discrete Cosine Transform (DCT) The DCT dictionary is based on the concept
of the Discrete Cosine Transform that transforms a signal into a set of cosine functions
of different frequencies, based on the fact that any real signal can be represented
as a linear combination of cosine functions. Each column ψψψk in the dictionary is a
cosine function of a different frequency, defined as

ψψψk(t) = cos(πkt) (2.3)
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(a) (b)

(c) (d)

(e)

Figure 2.1: An example of a single element from each dictionary: (a) DCT (b) DFT
(real part in blue, imaginary part in red) (c) DWT (d) B-spline and (e) Gabor

where k is the number of the column ψψψk in the dictionary and t is a variable ranging
from 0 to 1 in N steps. If the largest value of k equals N , then ψψψ is said to be
complete, if it is larger than N , then ψψψ is over-complete. [20, 2]

Discrete Fourier Transform (DFT) The DFT dictionary is based on the Dis-
crete Fourier Transform, a transformation that is quite similar to the DCT in that it
transforms a signal into a series of functions with full support in the time domain.
The main difference is that in case of the DFT, complex exponentials are used where
the DCT uses cosine functions. The dictionary contains these complex exponentials
of different frequencies in its columns and is defined as [20]

ψψψk(t) = ei2πkt (2.4)
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By using Euler’s Identity
eit = cos(t) + isin(t) (2.5)

it can be seen that the dictionary is even more similar to the DCT dictionary than
equation (2.4) would suggest, since each element is actually a combination of a cosine
and sine multiplied by the imaginary unit i.

Discrete Wavelet Transform (DWT) Different from the basis functions used
in the DCT and DFT, wavelets are localised not only in space but also in time.
This means that when a signal is transformed to the wavelet domain, each of the
coefficients will correspond to information that is both located at a certain position
in the signal and describes a limited range of frequencies in the signal.

Figure 2.2: Example of a 3-level multi-resolution filter.

The concept of wavelet transforms can be represented by a multi-resolution filter.
A signal x is first filtered with a high-pass filter and a low-pass filter that divide the
frequency content in two parts of equal bandwidth. Both parts are subsequently
downsampled by a factor 2 (as indicated by the arrows in figure 2.2). A schematic
representation of a 3-level multi-resolution filter is shown in figure 2.2. The coefficients
on the right side (d1,d2,d3,a1) are the so-called detail and approximation coefficients
that are the result of the (consecutive) filter(s).

In the wavelet transform, the detail and approximation coefficients are used to
represent the signal as a linear combination of translated and dilated versions of a
scaling function and wavelet functions. The scaling function is constructed using

φj,n(t) = 1√
2j
φ( t− n2j ) (2.6)

where j is the level, which determines the scale (and thus the frequency content) of
the wavelet and n is the shift, which determines the position of the wavelet on the
time axis. The wavelet functions, on the other hand, are constructed as

ψj,n(t) = 1√
2j
φ( t− 2jn

2j ) (2.7)

The wavelet transform can be formulated in matrix notation, where the rows of
the transformation matrix are shifted and scaled wavelet and scaling functions. A
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small example of how a signal can be represented in a wavelet dictionary is given in
equation (2.8). Note that coefficients that no longer fit in a row are reflected to the
first elements of that row.

x = ψψψDWT .s

=⇒



x1
x2
x3
x4
x5
x6
x7


=



h2,1 h2,2 h2,3 h2,4 0 0 0
h2,4 0 0 0 h2,1 h2,2 h2,3
−h2,1 −h2,2 h2,3 h2,4 0 0 0
h2,4 0 0 0 −h2,1 −h2,2 h2,3
−h1,1 h1,2 0 0 0 0 0

0 0 −h1,1 h1,2 0 0 0
0 0 0 0 −h1,1 h1,2 0
h1,2 0 0 0 0 0 −h1,1



T

.



a2,1
a2,2
d2,1
d2,2
d1,1
d1,2
d1,3
d1,4


(2.8)

B-spline A spline is a parameterised polynomial, defined as the combination of
a number of simple polynomials between a series of points (called knots). In a
dictionary, these B-spline elements will look like small smooth waves with a limited
support on the time axis. As a consequence, they are located both in time and
frequency. A B-spline dictionary is constructed as

ψψψk(∆ : ∪lj=1∆j) := ∪lj=1{B
j
m,k : k = 1, ...,m+ #∆j} (2.9)

where the ∆j , j = 1, ..., l are partitions of ∆ := ti
N+1
i=0 , N ∈ N, s.t.c = t0 < t1 < ... <

tN < tN+1 = d. Each B-spline Bm,j is recursively built as
B1,k(t) =

{
1, bk ≤ t < bk+1

0, otherwise
Bm,k(t) = t−pj

pj+m−1−pj
Bm−1,j(t) + pj+m−t

pj+m−pj+1Bm−1,j+1(t)
(2.10)

where m is the step number in the recursive formula, bk and bk+1 are border points
associated with the B-spline for the first iteration and the p values are the knots
defined as pm+i = ti, i = 1, ..., N, t1 < ... < tN . [29]

Gabor A Gabor dictionary consists of Gabor atoms that are cosine functions
defined within a Gaussian window to make them localised in time. The atoms in the
dictionary are defined as

ψψψk(t) = 1√
2πσk

e−(t−µk)2/σ2
kcos(ωkt+ θk) (2.11)

where µ and σ > 0 are the mean and standard deviation of the Gaussian window,
respectively; and ω = 2πf ≥ 0 and θ ∈ [0, 2π] are the frequency and phase of the
cosine within the Gaussian window, respectively. [1]
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2.2.2 Algorithms

The algorithms for the sparse approach that were tested for this thesis include
Basis Pursuit (BP), greedy algorithms for single-channel reconstruction (Orthogonal
(Multi) Matching Pursuit (O(M)MP) and Compressive Sampling Matching Pursuit
(CoSaMP)), Iterative Hard Thresholding (IHT) and Block Sparse Bayesian Learning
(BSBL).

Basis Pursuit (BP) The basis pursuit algorithm converts equation (1.5) into a
linear program in order to solve it. The standard form of the primal of a linear
program is

min cT s s.t. φψφψφψs = y (2.12)

If c = [1 1 . . . 1]T then this corresponds to an `1-minimisation equivalent of equation
(1.5).

According to duality theory, this problem can be written in an equivalent dual
form [10]

max yT s s.t. φψφψφψT s− 2v = −c, 0 ≤ v ≤ c (2.13)

This dual problem is then solved using the interior-point method implemented in
MATLAB R© through the linprog-command. [11]

Greedy Algorithms, Single-Channel Three different types of greedy algorithms
were tested for this thesis: Orthogonal Matching Pursuit (OMP) [26, 31], Orthogonal
Multi-Matching Pursuit (OMMP) [33] and Compressive Sampling Matching Pursuit
(CoSaMP) [12]. OMP is the basic algorithm, while OMMP and CoSaMP both are
variations thereof.

In OMP, the index of the element from ψψψ that corresponds most to y, according
to the estimate (ψφψφψφ)Ty, is added to the current estimate of the support Ωk. Next, a
least-squares optimisation is used to calculate the optimal value of the coefficient at
that position in the support. Finally a residual rk = y −φψφψφψsk is calculated. In the
following iterations, rk−1 is used instead of y to find the next element to add to the
support Ω and all coefficients are recalculated whenever an index is added to the
support.

The OMMP and CoSaMP algorithms both make small adjustments to OMP. In
OMMP, several indices are added to Ω during each iteration, instead of just one,
in order to have the greedy algorithm converge to a solution faster. CoSaMP does
this as well but only keeps a predetermined amount of the largest coefficients in the
estimate sk and sets the rest to 0 at the end of each iteration. Ideally, the amount of
coefficients that is kept corresponds to the actual sparsity of the coefficient vector.

The stopping criterions are used to check whether the residual is small enough,
compared to the original measurement (e.g. 5% of its size) and whether this relative
size is smaller than that of the previous residual. This last criterion is based on the
fact that the decrease in error ||rk||2 becomes gradually smaller as the number of
iterations increases. So if the residuals size (i.e. 2-norm), relative to the measurement,
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starts to increase compared to the previous iteration, then this is an indication that
the optimal solution was found in the previous iteration.

Algorithm 1: OMP, OMMP & CoSaMP

In: y, φφφ, ψψψ
Out: x̂

Initialisation (k = 0)

• Initialise Support: Ω̂k = ∅
• Initialise Residual: rk = y

Iterations k → k + 1

• Update Support: Ω̂k = Ω̂k−1 ∪ {argmax
i/∈Ω̂k−1

|(φψφψφψ)T rki|}

– (OMP) add maximising i to Ω̂k−1
– (OMMP/CoSaMP): add number of most maximising i’s’ to

Ω̂k−1

• Update Solution: ŝk = argmax
s
||y− (φψφψφψ)Ωk

x||2
• (CoSaMP) Set smallest values in s to 0.
• Calculate Residual: rk = y−φψφψφψsk

Stopping Criteria

• ||rk||2
||y||2 < 0.05 =⇒ sk is optimal

• ||rk||2
||y||2 ≤

||rk−1||2
||y||2 =⇒ sk−1 is optimal

Greedy Algorithms, Multi-Channel All of the aforementioned greedy algo-
rithms can be generalised to enable simultaneous reconstruction of multiple channels.
This requires two adjustments to be made to the existing algorithms.

First of all, the algorithm should locate the elements in ψψψ that correlate strongly
to all or most of the measurements. This can be achieved by finding the largest
elements in the row wise summation of (φψφψφψ)TRk−1, where Rk−1 is now a matrix
with residuals in its columns, corresponding to each of the channels.

Ω̂k = Ω̂k−1 ∪ {argmax
i/∈Ω̂k−1

|(φψφψφψ)TRki[1 1 . . . 1]T (2.14)
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Secondly, the stopping criteria should be altered, since there is now a residual
matrix Rk instead of a residual vector rk. A vector containing the relative residual
norm ||rk||2/||y||2 for each of the c channels can be calculated as

rMCk
=
[
||R̂k||2,col(1)
||Ŷ||2,col(1) ,

||R̂k||2,col(2)
||Ŷ||2,col(2) , . . . ,

||R̂k||2,col(c)
||Ŷ||2,col(c)

]T
(2.15)

where ||C||2,col(i) is the i-th element in a vector that contains the column-wise norms
of a matrix C, calculated as

||C||2,col =

√√√√√√√√√
[
1 1 . . . 1

]


Ĉ2
1,1 Ĉ2

1,2 . . . Ĉ2
1,c

Ĉ2
2,1 Ĉ2

2,2 . . . Ĉ2
2,c

... . . . ...
Ĉ2
N,1 Ĉ2

N,2 . . . Ĉ2
N,c

 (2.16)

It can then be verified that a) if each element in rMCk
is smaller than 0.05,

the current solution is optimal or b) if any one element in rMCk
is larger than the

corresponding element in rMCk−1 , then the previous solution is the optimal solution.

Iterative Hard Thresholding (IHT) The concept behind Iterative Hard Thresh-
olding (IHT) is that a coefficient vector can be recovered from a measurement by
calculating an estimate of the original signal and then thresholding the result of this
estimate by setting all but s values to zero, where s is (an estimate of) the sparsity
of s. An iteration of the IHT algorithm can be expressed mathematically as

sk+1 = Hs(sk + (φψφψφψ)T (y −φψφψφψsk)) (2.17)

where k is the iteration number of the previous iteration and Hs is the thresholding
operator that sets all but s values in the estimate to zero. The main drawback of
this algorithm is that the value s should be known beforehand, which is not always
the case. [6]

Block Sparse Bayesian Learning (BSBL), Single-Channel The Block Sparse
Bayesian Learning algorithm assumes that a coefficient vector is divided into g blocks,
with only some of these blocks containing nonzero elements. BSBL assumes that
each block satisfies a parameterised multivariate Gaussian distribution

p(s; γi,Bi) ∼ N (0, γiBi), i = 1, ..., g (2.18)

where Bi is a positive definite matrix that represents the correlation within the
i-th block and γi ≥ 0 controls the sparsity within the i-th block. If γi = 0 then all
coefficients in the i-th block are equal to 0. The parameters will then be learned,
based on the observed measurement. [35]

Three algorithms, each with its own set of learning rules for the parameters Bi

and γi, are presented in [35]. Two of those algorithms, the Expectation-Maximisation
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based BSBL-EM [34] and the Bounded-Optimisation based BSBL-BO were tested
for the thesis.

The learning rules in BSBL-EM are based on the concepts of Expectation-
Maximisation, where the coefficient vector is calculated, based on a certain set of
parameters (Expectation) and based on this vector, the parameters are updated to
maximise the probability of getting this result in the presence of a certain measurement
(Maximisation).

In BSBL-BO, the learning rules are derived from Bounded Optimisation methods,
where a cost function is optimised in the presence of a set of constraints. The learning
rule for Bi is the same as the one used in BSBL-EM, while the learning rule for γi is
different, resulting in faster performance.

Since this is quite a complex algorithm and the source code1 was made available
by the author of [34], this code was used to test the algorithm.

2.3 Cosparse Reconstruction

The cosparse approach for signal reconstruction is rather new and up until today,
only a few algorithms exist in this domain. In this thesis, three analysis matrices
and a greedy algorithm are studied. This greedy algorithm is also generalised for
simultaneous reconstruction of multiple signals in chapter 3.

2.3.1 Analysis Matrices

First Order Derivative This type of matrix can be used to calculate the first
order derivative of a signal, based on the finite difference formula. It is defined as

Ω1 =



1 −1 0 0 . . . 0
0 1 −1 0 . . . 0
... . . . ...
... . . . 0
... 1 −1
0 . . . . . . 0 0 1


(2.19)

so that each row in the matrix calculates the difference between a sample and the
subsequent sample in the signal it is multiplied with. The resulting sequence is sparse
in the sense that the differences between two subsequent samples are often very small
or equal to zero. The last row only contains a 1 in the last position, which allows for
an easy calculation of the original signal x from the product ΩΩΩ1x. The inverse of
ΩΩΩ1 is simply an upper triangular matrix with all nonzero elements equal to 1 and is
therefore very easy to calculate.

1https://sites.google.com/site/researchbyzhang/software
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Second Order Derivative Since the second order derivative of a function is the
first order derivative of its first order derivative, the matrix for such an operation
can be calculated as the product of two first order derivative matrices.

Ω2 = Ω2
1 (2.20)

Like ΩΩΩ1, the inverse of ΩΩΩ2 has a very simple form.

Ω−1
2 =



1 2 3 . . . N
0 1 2 . . . N − 1
... . . . ...
... 1 2
0 . . . . . . 0 1


(2.21)

Wavelet The wavelet analysis matrix is based on the DWT dictionary that was
defined in section 2.2.1. In equation (1.2), the dictionary is used as a synthesis
matrix, which is why the analysis matrix can be calculated as the (pseudo)inverse of
the dictionary matrix.

ΩΩΩDWT = ψψψ†DWT (2.22)

2.3.2 Algorithms

Due to good experiences with greedy algorithms for the sparse approach and a lack
of existing algorithms for the cosparse, only one greedy algorithm, called Greedy
Analysis Pursuit, was tested.

Greedy Analysis Pursuit (GAP), Single-Channel Greedy Analysis Pursuit
is a greedy algorithm that is somewhat similar to the OMP and OMMP algorithms
discussed in section 2.2.2.

The signal reconstruction in GAP is based on knowledge of two things: the
measurement made by compressive sensing with a known sensing matrix and the
fact that the co-support of the cosparse sequence ΩΩΩx should contain only zeros. The
former is defined in equation (1.1), while the latter can be defined as

ΩΩΩΛx = 0 (2.23)

where ΩΛ is the analysis matrix with the rows whose indices are not in the co-support
Λ removed. Both facts can be combined into the following system in matrix form.[

φφφ
ΩΩΩΛ

]
x =

[
y
0

]
(2.24)

Which can be solved using a Moore-Penrose pseudoinverse to find x.
The co-support is initially unknown, but is iteratively estimated from the projec-

tion of the signal estimate αααk = ΩΩΩx̂k−1 by determining the locations of the largest
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elements in αααk and removing these from the co-support. Ideally this gives a better
estimate of the co-support in each subsequent iteration, which aids in refining x̂k in
each iteration and allows for detection of smaller elements outside of the co-support
in later iterations. The complete algorithm is shown in Algorithm 2. [22, 24]

Algorithm 2: GAP

In: y, φφφ, ΩΩΩ
Out: x̂

Initialisation (k = 0)

• Initialise Co-Support: Λ̂k = {1, 2, 3, ..., p}

• Initialise Solution: x̂k =
[
φφφ√
λΩΩΩ

]† [
y
0

]

Iterations k → k + 1

• Project: αααk = ΩΩΩx̂k−1
• Update Co-Support: Λ̂k = Λ̂k−1\{argmax

i∈Λ̂k−1

|αααi|}

• Update Solution: x̂k =
[

φφφ√
λΩΛ̂k

]† [
y
0

]

Stopping Criteria

• k < Kmax

• rk > rk−1

rk = |1− ||x̂k||
||x̂k−1|| |

2.4 Discussion
A selection of the reconstruction algorithms that have been developed over the years
was discussed in this chapter. All three major groups (basis pursuit, thresholding
and greedy algorithms) are represented and an additional more complex algorithm
(BSBL) is included. Several dictionaries and analysis matrices for the sparse and
cosparse approach, respectively, have been discussed as well. In the next chapter, the
GAP algorithm is generalised to a cosparse greedy algorithm that can reconstruct
multiple signals simultaneously and its performance is compared to that of the
methods presented in this chapter.
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Chapter 3

Simultaneous Greedy Analysis
Pursuit: Algorithm and
Comparison to Other Methods

A new cosparse greedy algorithm for simultaneous reconstruction of multiple signals
is developed in this chapter. It is based on the knowledge about the generalisation
of sparse greedy algorithms for simultaneous signal reconstraction and about greedy
algorithms for cosparse reconstruction,

Afterwards, the performance of the newly developed algorithm is compared to
the methods discussed in chapter 2. Based on the results of a number of numerical
experiments, a selection of the best algorithms, dictionaries, analysis matrices and
sensing matrices for fast and accurate reconstruction of ECG signals is made.

Most importantly, this chapter provides evidence on why the use of the cosparse
approach may be beneficial in terms of reconstruction accuracy and why using
multi-channel reconstruction will decrease the total processing time. It is also shown
why cosparse algorithms are more suitable for hardware implementation using a
binary sensing matrix.

3.1 Simultaneous Greedy Analyis Pursuit
Based on a series of experiments (see also section 3.2), it seems that the cosparse
approach is very successful at accurately reconstructing signals from measurements
obtained by CS. However, it is a relatively new concept and so very little research
has been done on the topic. While the concept of simultaneous reconstruction has
already been explored in the sparse approach, it has barely been touched upon in
the cosparse approach.

Similar to the shared support in sparse methods, it is required by this algorithm
that the sparse sequences of all signals share a similar (co-)support. The research in
this thesis focuses on ECG signals, for which this is definitely the case when using
the presented analysis matrices. Due to its general nature, the algorithm could be
applied to other groups of signals with similar (co-)support as well.
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Algorithm 3: SGAP

In: Y ∈ Rn×c, φφφ ∈ Rn×N , ΩΩΩ ∈ Rp×N

Out: X̂ ∈ RN×c

Initialisation (k = 0)

• Initialise Co-Support: Λ̂k = {1, 2, 3, ..., p}
• Precalculations

– φφφφ = φφφTφφφ
– φφφY = φφφTY

• Initialise Solution: X̂k = (φφφφ + λΩTΩ)−1φφφY

Iterations k → k + 1

• Project: A = Ωx̂k−1

• Row-Wise Summation: ααα = A.
[
1 1 . . . 1

]T
• Update Co-Support: Λ̂k = Λ̂k−1\{argmax

i∈Λ̂k−1

|αααi|}

• Update Solution: x̂k = (φφφφ + λΩT
Λ̂k

ΩΛ̂k
)−1φφφY , where ΩΛ̂k

is Ω
with the rows with row numbers not in Λ̂k set to 0

Stopping Criteria

• k < Kmax

• rk(i) > rk−1(i) for i ∈ {1, ..., c}

rk =


1− ||x̂k||2,col(1)

||x̂k−1||2,col(1)

1− ||x̂k||2,col(2)
||x̂k−1||2,col(2)
. . .

1− ||x̂k||2,col(c)
||x̂k−1||2,col(c)



||x̂k||2,col =

√√√√√√√√√


1
1
. . .
1


T


x̂2
k,11 x̂2

k,12 . . . x̂2
k,1c

x̂2
k,21 x̂2

k,22 . . . x̂2
k,2c

... . . . ...
x̂2
k,N1 x̂2

k,N2 . . . x̂2
k,Nc


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3.1.1 Methods

In order to improve the computational efficiency of the GAP algorithm before
generalising it, precalculations of some matrices that were previously calculated in
each iteration but that did not change their values from iteration to iteration were
included. According to [24], the solution update in GAP can be calculated as

x̂k =
[

φφφ√
λΩΩΩΛ̂k

]† [
y
0

]
= (φφφTφφφ+ λΩT

Λ̂k
ΩΛ̂k

)−1φφφTy (3.1)

where λ is a small positive constant that ensures that φφφTφφφ + λΩT
Λ̂k

ΩΛ̂k
is a well

conditioned matrix and can therefore be inverted without any problems.
Matrix φφφ and vector y are fixed over the course of the algorithm and so their

products φφφTφφφ and φφφTy will be, as well. Calculation of these matrix products can be
done in the initialisation phase of the algorithm, and its stored result can be used in
each iteration instead. These precalculations are included in the SGAP algorithm as
well.

It is known from section 1.3.3 that the coefficients of the different channels of
a multi-channel ECG in certain dictionaries share a similar support. Similarly, it
can be shown that the sparse sequences (1.6) of such signals share a similar support
and consequently a similar co-support. This is because of the fact that the signals
themselves share (inversely) correlated levels of activity in corresponding sections,
although their exact values may differ.

The generalisation of GAP to an algorithm that can process multiple signals at
once requires two major changes. First of all, the projection Ak = Ω ˆXk−1 is now no
longer a vector, but a matrix with the projections of the different channels stored in
its columns. Instead of searching the locations that correspond to positions outside
of the co-support estimate by finding large values in αααk, positions of large values in
all or most columns of Ak need to be found. This can be achieved by performing a
row-wise summation on the matrix Ak

αααk = Ak.
[
1 1 . . . 1

]T
(3.2)

which results in a vector ααα not unlike the one obtained in GAP. This ααα has large
values at locations that are not part of the co-support of most channels and can
therefore be removed from the co-support estimate.

The second stopping criterion is changed as well. A column-wise norm calculation
is applied to the current signal estimate matrix in order to obtain a vector that
contains the norms of each signal. Each element of this vector is compared to the
corresponding value in the norm vector calculated from the previous signal estimate
matrix to quantify the amount of change in signal estimate norm. If the change in
norm for any signal is larger than that of the previous iteration, this indicates that
the reconstruction accuracy is deteriorating and the previous estimate is returned as
the final reconstruction. [3] The complete SGAP algorithm is presented in Algorithm
3.
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3.2 Experiments
In the following paragraphs, the approach for the comparison of the methods discussed
in chapter 2 and the newly developed SGAP algorithm, are discussed. The data
that was used for the experiments are presented first. Next the different metrics for
the quantification of the reconstruction accuracy and computational requirements
are discussed. Finally, the settings that were used for the various parameters of the
methods are described.

3.2.1 Data

All of the results are based on signals from the MIT-BIH Arrhythmia Database
[21, 14], an ECG database that is commonly used in research. It contains 2-channel
ECG recordings from 48 patients, with a 360 Hz sample rate. The first 29520 samples
(82 seconds) of both channels of the first 23 patients in the database were split
into segments of 720 samples (2 seconds). In this way, 943 2-channel, 2-second
segments were obtained. These segments were compressed according to equation
(1.1) and subsequently reconstructed using different combinations of dictionaries and
algorithms. Segments of 2 seconds were used to keep the processing times low enough
for the slower algorithms.

The compression Compression Ratio (CR) is expressed as the ratio between the
number of samples in the compressed signal n and the number of samples in the
original signal N .

CR = n

N
(3.3)

Eight different compression ratios, ranging from 0.9 to 0.2 in steps of 0.1, are used
in the experiments to study the influence of the amount of compression on the
reconstruction quality.

3.2.2 Reconstruction Accuracy Metrics

Four metrics are calculated to compare the quality of the reconstructions at different
compression ratios. Three of these (Peak Root-mean-square Difference, Normalised
Mean Absolute Error and Normalised Mean Square Error) are existing measures
that are commonly used. The fourth measure (Structural Similarity) was originally
developed to compare 2D-images based on three characteristics, but can just as well
be used to compare signals.

Percentage Root-mean-square Difference (PRD) The first and most impor-
tant measure is the Percentage Root-mean-square Difference (PRD). It calculates
the 2-norm of the difference between the original signal x and reconstruction x̂. [19]

PRD = ||x− x̂||2
||x||2

(3.4)

The PRD is an important measure because researches have established threshold
values of the metric that indicate the clinical usefulness of a reconstructed signal.
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Values of the PRD below 2% have been reported as ’very good’, while values between
2% and 9% are still ’good’. All values above this 9% were found to be unacceptable
for clinical diagnosis. [36, 19, 27]

Normalised Mean Absolute Error (NMAE) The Normalised Mean Absolute
Error (NMAE) is used to give a more straightforward idea of what the actual error
on the signal is. [13]

NMAE =

1
N

∑
i

|xi − x̂i|

xmax − xmin
(3.5)

Normalised Mean Square Error (NMSE) The Normalised Mean Square Error
(NMSE) is similar to the NMAE, but is a better indicator for the presence of large
errors due to its quadratic nature. [18]

NMSE =
1
N ||x− x̂||

2
2

1
N ||x||

2
2

(3.6)

Structural Similarity (SSIM) For this thesis, the Structural Similarity (SSIM)
that was originally developed in [32] to compare two 2D-images, is used to compare
two signals. The SSIM is a linear combination of the results of three separate
comparisons. The constants C1, C2 and C3 in the following formulas are very small
values to avoid division by zero. For the exact values that were used for these
constants, please refer to [32].

First, the luminance of both images is compared. The luminance simply corre-
sponds to the mean value µ of the image, so the mean of the signals can be used
instead.

l = 2µxµx̂ + C1
µ2
x + µ2

x̂ + C1
(3.7)

The second equation compares the contrast in two images. For signals this can be
seen as a comparison between the internal variation (characterised by the standard
deviation σ) in both signals.

c = 2σxσx̂ + C2
σ2
x + σ2

x̂ + C2
(3.8)

The third measure compares the structure similarity between both images, i.e.
the correlation after removal of bias (the mean values) and after normalisation for
variance.

s = σxx̂ + C3
σxσx̂ + C3

(3.9)

where σxx̂ is the correlation coefficient between x and x̂, calculated as

σxx̂ = 1
N − 1

N∑
i=1

(xi − µx)(x̂i − µx̂) (3.10)
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The three comparisons are finally combined into a single metric to obtain the
SSIM, which will have a value between 0 and 1 where 0 indicates a complete lack
of similarity and 1 indicates perfect similarity. For simplicity and to assure equal
contributions of l, c and s to the final SSIM, the weighting factors were set to
α = β = γ = 1.

SSIM = lαcβsγ (3.11)

3.2.3 Computational Requirements

To quantify the computational requirements of the algorithms, the required com-
putation time and number of iterations until convergence were measured. In or-
der to compare single-channel algorithms to their multi-channel counterparts, the
single-channel algorithms were used to reconstruct each channel separately. The
reconstruction times for both channels were then added to obtain an estimate of
the total required reconstruction time. The same thing was done for the number of
required iterations.

All of the experiments were performed in MATLAB R© 2013a, on a quad core
3.10GHz Intel R© CoreTMi5-3450 system with 8GB of memory, running the CentOS
6.4 operating system with Linux kernel version 2.6.32.

3.2.4 Parameter Settings

A 50% sparse Gaussian sensing matrix is used in all of the following experiments.
There is hardly any difference in reconstruction accuracy when using a complete
matrix (i.e. no 0 values) and this would only increase the computational complexity.
In section 3.3.5, the effect of using a binary sensing matrix on the reconstruction
accuracy and processing time is discussed.

Both the DWT matrix for sparse reconstruction and the wavelet analysis matrix
are based on a level 4 wavelet decomposition with Daubechies-4 wavelets. That
this is the optimal wavelet type and decomposition level for the dataset in these
experiments, has been determined empirically through smaller scale experiments (i.e.
using a selection of the signal segments discussed in section 3.2.1).

The number of elements t to be added to the support estimate or removed from
the co-support estimate in OMMP and GAP, respectively, was also determined
empirically. In OMMP, optimal results are obtained when adding t = 4 elements to
the support in each iteration. GAP requires the removal of t = 10 elements from
the co-support per iteration for optimal reconstruction. The maximum number of
iterations in SGAP and GAP is set to Kmax = (p− t)/t in order to avoid removing t
elements when less than t are left in the co-support.

A disadvantage of IHT and CoSaMP is the difficulty in deciding upon the required
sparsity of the sought coefficient vector, since the sparsity will differ for each signals
and dictionary. It is therefore necessary to determine an average sparsity for which
the support estimates of some signals will contain too much elements, while others will
contain too few. For the dataset in this thesis it was found empirically that setting
the required number of nonzero elements in the coefficient vector to 75 returned the
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best average PRD values possible, while numbers higher and lower than 75 lead to
deterioration of the mean PRD, especially at lower CR. Results for CoSaMP were
excluded, since alternatives (OMP & OMMP) are available that do not require the
sparsity to be known beforehand.

3.3 Results

(a) (b)

(c) (d)

(e) (f)

Figure 3.1: Sparsity of an example signal (a) in each dictionary: (b) DCT (c) DFT
(d) DWT (e) B-spline and (f) Gabor

The following sections discuss the results of the experiments described above.
To avoid displaying an abundance of information, the results in each section are
presented with the previous results in mind. This means that in the first section, the
dictionaries and analysis matrices are discussed and a single dictionary and analysis
matrix is decided upon as the best one for sparse and cosparse methods, respectively.
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The remaining dictionaries and analysis matrices are no longer considered in the
subsequent sections. In the following section, some of the algorithms that are either
too slow or too inaccurate are discussed and excluded from further results. The next
two sections contain a comparison of single- and multi-channel algorithms, including
the (dis)advantages of multi-channel algorithms, compared to their corresponding
single-channel versions. In the final section, the (dis)advantages of using a binary
sensing matrix instead of a Gaussian one are discussed.

Most of the results are presented as boxplots containing 5 values. These are,
in increasing order of magnitude: lower whisker (LOW ), 25th percentile (P25),
median (MED), 75th percentile (P75) and higher whisker (HIGH), where LOW =
P25 − w.(P75 − P25) and HIGH = P75 + w.(P75 − P25), with w = 1.5. The
boxplots show outliers (values outside the [LOW,HIGH] range) as crosses. Exact
values for all algorithms are included in appendix A.

3.3.1 Dictionaries & Analysis Matrices

The dictionaries that are not useful for ECG CS are first excluded. Next, the
remaining useful dictionaries and analysis matrices are compared in terms of recon-
struction quality to settle upon one dictionary and analysis matrix for the rest of
the experiments.

Useless Dictionaries for ECG

In order to exclude some of the proposed dictionaries from further experiments, the
sparsity of ECG signals in each of the dictionaries is first investigated. Figure 3.1
shows an example of a 2-second ECG signal and its corresponding coefficient vector
in each of the dictionaries. These coefficient vector representations were investigated
for several signals, with similar results.

The DCT, DFT and DWT dictionaries prove to be very useful in creating a
sparse representation of an ECG signal. All three have only a few nonzero values.
Note how the DFT has complex coefficients with a real part (blue in figure 3.1) and
an imaginary part (red in figure 3.1).

The B-spline dictionary seems to be hardly useful in creating a sparse repre-
sentation of and ECG, since the coefficient vector is only a smoothed version of
the original signal that contains barely any zeros (unless the original signal would
contain many zeros to begin with). The resulting representation depends strongly
on the parameters used to create the B-spline dictionary. The smoothness of the
resulting representation varies with different parameter settings but it never becomes
sufficiently sparse. This also leads to the algorithms converging to solutions that are
often very poor in accuracy or not converging at all.

The Gabor dictionary presents another problem. It is a highly redundant dictio-
nary (i.e. much more elements in the dictionary than there are samples in the signal),
since it contains elements that account for variations in the different parameters
in (2.11) (different phases and frequencies of the cosine and different widths of the
Gaussian window). On top of this redundant nature, no settings for the parameters
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would generate really sparse coefficient vectors. This can be seen in the example
in figure 3.1f that contains many smooth peaks (corresponding to series of nonzero
coefficients) instead a number of spikes. The combination of the redundancy and the
presence of many nonzero coefficients makes methods using the Gabor dictionary
converge slowly, if they will even converge to a decent solution at all.

Best Dictionary and Analysis Matrix

(a) (b)

Figure 3.2: PRD values for the (a) 1st and (b) 2nd order derivative using the GAP
algorithm. Numbers above the plots indicate the corresponding channel number.

(a) (b)

Figure 3.3: Mean PRD values of the DCT, DFT and DWT dictionaries and 1st and
2nd order derivative and wavelet matrices for (a) channel 1 and (b) channel 2.

There are now three dictionaries left that can be used for ECG CS. In figure 3.3
the mean PRD values resulting from the reconstruction of CS measurements using
these dictionaries and the most basic greedy algorithm (OMP) are presented.

Comparing the mean values of the accuracy metrics, the DFT dictionary proves
to be slightly better than the DCT dictionary, although both are still worse than
the DWT dictionary. The DWT dictionary also results in much less variation in
the results, though it could be argued that it has more outliers with higher PRD
and NMAE values at higher CR values (0.9 through 0.6). Since the interest of this
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thesis is in obtaining as much compression as possible (i.e. 0.5 and below) while still
retaining good reconstruction accuracy, the use of the DWT dictionary is preferable
to the others.

(a) (b)

(c) (d)

Figure 3.4: Examples of sparse sequences for a signal using different analysis matrices:
(a) original Signal (b) 1st order derivative (c) 2nd order derivative and (d) wavelet

For the cosparse case, the most basic greedy algorithm (GAP) was used to
compare the analysis matrices. Figure 3.3 presents the mean PRD values resulting
from these analysis matrices. The wavelet analysis matrix can immediately be
excluded, since its PRD is significantly higher than that of the other 2 analysis
matrices. This can be explained by looking at the sparse sequences of an example
signal in figure 3.4. Here it can be seen that the first and second order derivative
analysis matrix actually result in a more sparse sequence than the wavelet analysis
matrix. The reconstruction accuracy obtained using the wavelet analysis matrix
in the cosparse approach and using the DWT dictionary in the sparse approach is
remarkably similar.

Deciding between the first and second order derivative matrix is much more
difficult, but since the mean PRD values corresponding to the second order derivative
matrix are slightly lower (figure 3.3) and its outliers generally have lower values
(figure 3.2) , this analysis matrix was used in the rest of the experiments.

In conclusion, it can be seen that the DWT matrix is the best dictionary for
sparse methods, while the second order derivative matrix is the best analysis matrix
for cosparse methods. These two matrices will be used in further experiments for
the comparison of the algorithms themselves.
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3.3.2 Slow and Inaccurate Algorithms

(a) (b)

Figure 3.5: Mean PRD values of the different algorithms using the best dictionary
and analysis matrix, at different CR values for (a) channel 1 and (b) channel 2.

(a) (b)

Figure 3.6: Mean processing times of the OMP, OMMP, SOMP, SOMMP, GAP and
SGAP algorithms using the best dictionary/analysis matrix, at different CR values.
Single-channel algorithm times are the sum of the processing times for each channel.
(b) is a detail of (a).

The BP algorithm is the most problematic of all algorithms. Even for a signal of
half the length (360 samples) and a very low maximum number of iterations (e.g.
20), it takes more than ten seconds before it finishes. Needless to say that when
convergence is desired, much more iterations are needed and the restoration of a
single signal would require possibly hundreds of iterations. Since the goal of this
thesis is not only to have an accurate reconstruction, but a reasonably fast one as
well. the BP algorithm was abandoned.

Since it was found in earlier experiments that the BSBL algorithms perform
much slower and less accurate than the other algorithms, the experiments using
these algorithms were performed on a smaller dataset in order to save time. Only the
mean PRD values and processing times of these algorithms are included in figures 3.5
and 3.6. It can be seen that their processing times (especially those of BSBL-EM)
are well above those of the other algorithms. On top of that, the PRD values of both
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algorithms are much higher than those of the other algorithms as well. This could
be explained by the fact that the algorithm divides the coefficient vector in fixed
blocks (it would be impossible to manually indicate the borders of each block in
each signal, even though the algorithm allows the user to do this). These blocks may
not correspond to the actual borders of the blocks. BSBL was further abandoned in
order to focus the research on the other faster and more accurate algorithms.

The mean PRD and processing time of the IHT algorithm at each CR value are
also included in figures 3.5 and 3.6 for reference. Its performance is not discussed in
further detail, as it can be seen that it is inferior in reconstruction accuracy to the
greedy sparse and cosparse algorithms. The reason behind this is that the sparsity
could not be determined for each of the signals seperately. It could be argued that
its speed is one of its main advantages, but in figure 3.6 it can be seen that the total
IHT processing time for both channels is similar to that of the SGAP algorithm and
is even higher than that of OMMP/SOMMP at lower CR.

3.3.3 Algorithm Comparison: Single-Channel

(a) (b)

(c) (d)

Figure 3.7: Accuracy and computational requirements of the OMP algorithm using
a Wavelet Dictionary: (a) PRD (c) NMAE (b) processing time and (d) Iterations.
Numbers above the plots indicate the corresponding channel number.

The only algorithms left that are both fast and accurate enough are the different
greedy algorithms. For single-channel reconstruction, these are the sparse algorithms
OMP and OMMP and the cosparse algorithm GAP. Two accuracy measures (PRD
& NMAE), the processing times and the number of iterations for each algorithm
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(a) (b)

(c) (d)

Figure 3.8: Accuracy and computational requirements of the OMMP algorithm using
a Wavelet Dictionary: (a) PRD (c) NMAE (b) Time and (d) Iterations

are presented in figure 3.7 (OMP), figure 3.8 (OMMP) and figure 3.9 (GAP). The
mean processing times and mean PRD values are included in figures 3.6 and 3.5,
respectively.

The main advantage of using OMMP instead of OMP is immediately clear. The
processing time is significantly shorter, because of the reduced amount of iterations
required for convergence. Most importantly, there is hardly any loss in accuracy as a
consequence of speeding up the algorithm. Note that only 4 elements were selected
in each OMMP iteration and the algorithm may therefore be sped up even more by
selecting a larger amount of elements per iteration, though this will be at the cost of
having a worse reconstruction accuracy.

The quality measures of the GAP algorithm are all significantly better (lower
PRD, NMAE and NMSE; higher SSIM) than those of the OMP and OMMP algorithm.
This is the case for all CR values, with a reduction in accuracy at lower CR values
similar to that of OMP and OMMP. This reduction is natural for all algorithms, since
the same amount of information is stored in less samples at lower CR. It should also
be noted that OMP and OMMP result in more outliers with bad accuracy compared
to GAP.

In terms of mean processing time, the GAP algorithm is more consistent than
the OMP and OMMP algorithms over the whole range of CR values. This makes
that it is faster at high CR, but starting at CR=0.5, the sparse greedy algorithms
will outperform GAP in terms of mean processing time. There is, however, much
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(a) (b)

(c) (d)

Figure 3.9: Accuracy and computational requirements of the GAP algorithm using a
2nd order derivative analysis matrix results: (a) PRD (c) NMAE (b) Time and (d)
Iterations

variation in the processing times of the sparse algorithms that is not at all present in
the GAP algorithm. Many outliers with values up to 3 seconds were noted in OMP,
with extreme outliers up to 10 seconds; while in OMMP there were many outliers
with values up to 1.5 seconds and some extreme cases with processing times up to
about 5 seconds. In GAP, the highest processing time that was found was smaller
than 0.5 seconds.

This consistency can be explained by looking at the number of iterations of
each algorithm. The number of iterations of SOMMP decreases with increasing CR
because its stopping criterion depends on the residual norm, which reduces with each
iteration. The residual is based on the original measurement, and will initially be
smaller and reduce to a sufficiently small value faster at lower CR. In SGAP, the
number of iterations remains similar for each CR value, because its stopping criterion
is based on the amount of change between the previous and current reconstruction,
which will not be different for lower CR.

Each iteration of GAP takes up more time than those of OMMP. This is due to
the fact that OMMP solves a smaller inversion problem in each iteration than GAP,
since it slowly builds a support starting from an empty one, while GAP removes
elements from an initially full co-support and therefore has to solve large systems
in the first iterations of the algorithm. On the other hand, GAP requires much
less iterations to converge, because it removes more elements from the co-support
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estimate than OMMP adds to the support estimate. GAP can do this, because
the co-support estimate is only a constraint on the inversion problem of which the
least-squares solution is sought. If some co-support elements are thought to be a
part of the support, the constraint is less rigid, but nonetheless a decent solution
can be found.

3.3.4 Algorithm Comparison: Multi-Channel

(a) (b)

(c) (d)

Figure 3.10: Accuracy and computational requirements of the SOMMP algorithm
using a Wavelet Dictionary: (a) PRD (c) NMAE (b) Time and (d) Iterations

To compare the multi-channel greedy algorithms to their single-channel equiva-
lents, the results of SOMMP (figure 3.10) and SGAP (figure 3.11) are presented here.
An individual figure for SOMP is omitted due to its similarity to SOMMP in terms
of accuracy. The mean processing times and mean PRD values of all multi-channel
algorithms (including SOMP) are also included in figures 3.6 and 3.5, respectively.

In case of sparse greedy algorithms, there is no real reduction in mean processing
time (simultaneous reconstruction by SOMP is even slightly slower than separate
reconstruction by OMP, while OMMP and SOMMP processing times are nearly
equal), but there are less outliers with large processing times present. On the other
hand, it is indicated by all four similarity metrics that the reconstruction accuracy
of multi-channel algorithms is similar to that of the corresponding single-channel
algorithms, though it should be noted that some of the outliers in SOM(M)P have
worse accuracy values than the worst outliers in OM(M)P.

35



3. Simultaneous Greedy Analysis Pursuit: Algorithm and Comparison
to Other Methods

(a) (b)

(c) (d)

Figure 3.11: Accuracy and computational requirements of the SGAP algorithm using
a 2nd order derivative analysis matrix results: (a) PRD (c) NMAE (b) Time and (d)
Iterations

In the cosparse greedy algorithms, there is a vast improvement in processing time
when using SGAP instead of GAP. The total time is nearly halved, compared to
separate reconstruction by GAP. Like the GAP algorithm, the processing time of
SGAP hardly changes with the CR, for similar reasons. In terms of reconstruction
accuracy, there is, like in the sparse approach, hardly any difference between GAP
and SGAP. This is very interesting in that one could easily use a faster multi-channel
algorithm, without barely any loss in reconstruction accuracy.

3.3.5 Binary Sensing Matrix

The results of using a binary sensing matrix instead of a Gaussian one in SOMMP and
SGAP are discussed here, but the conclusions similarly apply to their single-channel
versions OM(M)P and GAP.

It is remarkable how different the effect of using a different sensing matrix on
sparse and cosparse methods is. In SOMMP, the reconstruction accuracy degrades
dramatically while the processing time also decreases. In SGAP, on the other hand,
there is hardly any change at all (the lines for GAP and SGAP in the graphs overlap),
neither in terms of reconstruction accuracy nor in terms of processing speed. This
indicates that SGAP could easily be implemented in hardware using this much
simpler sensing matrix.
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(a) (b)

(c)

Figure 3.12: Mean PRD values of the reconstruction of (a) channel 1 and (b) channel
2, when the measurement was obtained using a binary or a Gaussian sensing matrix;
(c) corresponding processing times.

The reason for this large difference in reconstruction accuracy is the difference in
how both algorithms handle the estimation of the (co-)support elements. (S)OM(M)P
searches for the largest value(s) in (φψφψφψ)T rk−1, which depends strongly on the size
of the values in φφφ and ψψψ. When a Gaussian sensing matrix is used, its 2-norm is
similar in size to that of a dictionary (provided that the columns of the dictionary
have been normalised). On the other hand, when a binary sensing matrix is used to
obtain the measurement, the 2-norm of the sensing matrix will be much larger than
that of the dictionary. This results in a severe deformation of the vector (φψφψφψ)T rk−1,
making it difficult to select the correct indices to add to the support estimate. In
(S)GAP, the values of the projection αααk = Ωx̂k−1 are completely independent of the
sensing matrix, which is why the binary matrix can be used as a substitute for the
Gaussian matrix, despite its larger values.

3.4 Discussion
A generalisation of the GAP algorithm for simultaneous signal reconstruction (SGAP)
was proposed. Like in the sparse methods for simultaneous reconstruction, two
adjustments are made to the cosparse algorithm to allow it to reconstruct mulitple
signals at once. The first one being the way it looks for elements that are part of the
support and the second one being the adjusted stopping criteria.
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The wavelet dictionary was found to be superior to the other four tested dictio-
naries for sparse reconstruction methods for ECG signals. In the cosparse methods,
the second order derivative matrix was found to be the best candidate for an analysis
matrix, although the reconstruction accuracy of the first order derivative matrix was
nearly equal to that of the second order derivative matrix.

Some algorithms were immediately excluded based on overlong processing times
(BP), poor quality in unsupervised circumstances (BSBL) and poor reconstruction
quality (IHT). This leaves only the greedy algorithms that satisfy both desired
requirements: fast processing times and good reconstruction quality.

Concerning cosparse algorithms, it can be concluded that it is definitely beneficial
for the reconstruction accuracy to consider using such algorithms over traditional
sparse algorithms. Despite their better accuracy, they do not require much more
processing time than sparse greedy algorithms (even less at higher CR values). The
processing times of (S)GAP were found to be nearly the same at all CR values.

It was also found that the use of multi-channel algorithms for greedy sparse
algorithms lead to slower (SOMP) or equal (SOMMP) processing times while pro-
viding similar reconstruction accuracy. In greedy cosparse algorithms, simultaneous
processing leads to faster processing times and similar reconstruction accuracy, which
makes SGAP and ideal alternative for separate processing of all signals using GAP.

(S)GAP also seems more convenient for implementation in hardware than the
sparse greedy algorithms, as there is no difference in performance, neither in terms
of reconstruction accuracy, nor in terms of processing time, when a binary sensing
matrix is used instead of a Gaussian one. This is because the sensing matrix and
analysis matrix are used independently in (S)GAP, whereas (S)O(M)MP uses the
multiplication of the two to estimate the coefficient vector support, returning a
completely different result for both types of sensing matrices.
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Chapter 4

Signal Reconstruction from
Measurements with
Multiplicative Noise

In the previous chapters, it was assumed that measurements are free of any noise.
Although this may be true for simulated measurements, this is not always the case
for real measurements in hardware. Additive noise may be placed on top of the
measurement, thereby altering the values stored inside. Multiplical noise is more
complex, it alters the values of the implemented sensing matrix, so that it will
not contain the exact values that are expected at the receiver side. Both types of
noise will thus alter the measurement values and make it difficult for the receiver to
reconstruct the original signal, because to him it will seem as though these values
are the result of measuring a different signal with the known sensing matrix.

In this chapter, possible adjustments for the most basic greedy algorithms of the
sparse (OMP) and cosparse (GAP) approaches are suggested, in order to make them
more robust to the influence of both additive and multiplicative noise. Naturally,
these approaches can be implemented in more complex variations on these greedy
algorithms as well.

4.1 Noise types

A distinction is made between additive and multiplicative noise, depending on whether
the noise is added to the measurement or whether the sensing matrix φφφ itself is noisy.
Many types of noise exist, depending on the setting where the measurements happen.
For this thesis, it is assumed that the additive and multiplicative noise are both
random, with a certain maximum value.

4.1.1 Additive and Multiplicative Noise

Additive Noise Additive noise causes - as its name suggests - perturbations in
the measurements by being added to the measurement samples. The model for a
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measurement with additive noise is defined as

yA = φφφx + ηηηA (4.1)

where ηηηA is a vector containing the values of the additive noise.
Several noise aware sparse reconstruction algorithms aimed at additive noise have

already been developed for CS. In [7], it was suggested that the 2-norm of the noise
can be used as a limit for the residual in each iteration, i.e. if ||rk|| ≤ ||ηηηA|| then the
best possible solution has been found and the algorithm should stop. This follows
from the fact that at this point, OMP would start reconstructing the noise if it is
not stopped. It has been found that IHT is also robust to additive noise [6] and
in [16] a method based on Bayesian learning that accounts for additive noise was
developed. Due to relatively recent development of cosparse methods, there has been
little research on cosparse reconstruction from measurements with additive noise,
though in [23] a noise-aware version of the GAP algorithm was suggested.

Multiplicative Noise It is essential for a correct reconstruction of the signal
from the measurement that the receiver knows exactly what sensing matrix was
used at the site where the compressive sensing took place. When the random
measurement process is implemented in hardware, the measurement process will not
use a matrix of exactly quantised values, but rather the electrical equivalent thereof,
possibly resulting in small deviations from the expected sensing matrix values. These
perturbated values will be multiplied with the signal to obtain the measurement and
the receiver will thus receive a measurement that does correspond to the supposedly
known sensing matrix. The model for a measurement with multiplicative noise is

yM = φφφMx (4.2)

where φφφM is a noisy sensing matrix defined as

φφφM = φφφ+ ηηηM (4.3)

with ηηηM a matrix of noise values that are added to the sensing matrix.
In a real situation, both types of noise might be present, which results in even

further perturbations of the measurement values. Combining equations (4.1) and
(4.2) leads to a model of the full noise situation.

yN = φφφMx + ηηηA (4.4)

In [15] the concept of multiplicative noise was discussed, but overall there is little
research on the topic of multiplicative noise in the literature and no algorithms aimed
specifically at this type of noise were found.

4.1.2 Noise Characteristics

Two characteristics are used to define the noise. They are used as prior knowledge
for the noise-aware sparse and cosparse algorithms discussed below. The first
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characteristic is the 2-norm of the total noise that is present in the noisy measurement,
characterising the size of the noise.

ε = ||y− yN ||2 (4.5)

Secondly, the covariance matrix P is used to characterise the uncertainty caused
in the measurement by the multiplicative noise.

P = E[(V− E[V])(V− E[V])T ] (4.6)

In the sparse approach V = (φφφ + ηMηMηM )ψψψ. The multiplication with ψψψ is used to
characterise the noisy measurement of s instead of that of x. In the cosparse
approach V = (φφφ + ηMηMηM ). The multiplication by ψψψ is not necessary because the
algorithm directly reconstructs x from y.

4.2 Methods

4.2.1 Noise Aware OMP

As it was stated in [7] that the stopping criterion can be used to stop OMP before it
starts to reconstruct based on a residual that consists mostly of noise, the stopping
criterion that was suggested in that research can be adapted to be applicable to
multiplicative noise as well. The new stopping criterion is defined as

sTk P sk + ||rk||2 ≤ ε (4.7)

where the second term is the 2-norm of the residual that was already used in [7]. The
additional term sTk P sk is used to characterise the uncertainty in the measurement,
caused by the perturbated sensing matrix.

4.2.2 Noise Aware GAP

Contrary to OMP, the GAP algorithm searches the values of the signal x that satisfy
the constraint that ||ΩΩΩΛx||22 should be zero (or at least as small as possible) instead
of iteratively finding more and more elements that belong to the support of the
sparse sequence. Because an approximation of the complete signal, satisfying this
constraint, is created at each iteration, the 2-norm of the residual ||rk||22 = ||y−φφφx||2
will become very small, even in the earliest iterations. This means that the residual
can not be used as part of a stopping criterion.

Two adjustments can be made to make the GAP algorithm more robust to
additive and multiplicative measurement noise. First of all, the inverse problem that
was used in the original GAP algorithm is altered. This is done by starting from a
new optimisation problem that includes constraints based on the noise characteristics
that were already used in equation (4.7).

min||ΩΩΩΛx||22 s.t. xTPx + ||y−φφφx||22 ≤ ε (4.8)
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Algorithm 4: Noise Aware GAP

In: y, φφφ, ΩΩΩ
Out: x̂

Initialisation (k = 0)

• Initialise Co-Support: Λ̂k = {1, 2, 3, ..., p}
• Precalculations

– φφφφ = φφφTφφφ
– φφφY = φφφTY

• Initialise Solution: x̂k = (2ΩΩΩTΩΩΩ + P + PT + 2φφφφ)†(φφφTy + yTφφφ)

Iterations k → k + 1

• Project: ααα = Ωx̂k−1
• Update Co-Support: Λ̂k = Λ̂k−1\{argmax

i∈Λ̂k−1

|αααi|}

• Update Solution: x̂k = (2ΩΩΩT
Λ̂k

ΩΩΩΛ̂k
+ P + PT + 2φφφφ)†(φφφTy + yTφφφ)

• Calculate Sparse Signal: x̂s,k = (ΩΩΩ)†SΛk
(ΩΩΩx̂k)

• Calculate Residual: rk = y−φφφx̂s,k

Stopping Criteria

• xTs,kPxs,k + ||rk|| ≤ ε =⇒ xs,k is optimal

This optimisation problem can be written as the Lagrangian

L = xTΩΩΩT
ΛΩΩΩΛx + xTPx + (yT − xTφφφT )(y−φφφx)

= xTΩΩΩT
ΛΩΩΩΛx + xTPx + yTy− yTφφφx− xTφφφTy + xTφφφTφφφx

(4.9)

The goal of the optimisation is to find a signal x that satisfies the constraints in
the optimisation problem defined above. In order to find an equation that can be
used to optimise x the derivative of the Lagrangian with respect to x is taken. By
setting this derivative equal to zero, a linear equation is found.

∂L
∂x

= 2xTΩΩΩT
ΛΩΩΩΛ + xT (P + PT )− (φφφTy + yTφφφ) + 2xTφφφTφφφ = 0 (4.10)

The linear problem resulting from the derivative of the Lagrangian can be written in
standard form as

Ax = K, where

{
A = 2ΩΩΩT

ΛΩΩΩΛ + P + PT + 2φφφTφφφ
K = φφφTy + yTφφφ (4.11)
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which is a linear problem that can be solved just like the original set of equations in
(2.24).

The second adjustment that has to be made has to do with the use of ||rk||22 in
the stopping criterion. In OMP, the residual is based on a signal approximation
using a sparse series of coefficients for a certain dictionary, while in GAP the signal
approximation is not based on a series of coefficients at all. To make the residual
calculation more similar to that of OMP, a sparse approximation based on the current
signal estimate is calculated in each iteration. This is accomplished by calculating
the projection ααα, setting the elements in this projection that are in the current
co-support estimate to zero and finally recreating a sparse signal estimate based
on this altered projection using the pseudo-inverse of ΩΩΩ. The whole process can be
summarised as

x̂s,k = (ΩΩΩ)†SΛk
(ΩΩΩx̂k) (4.12)

where SΛk
is an operator that sets the elements of the vector in its argument that

are part of the current co-support estimate Λk to zero.
The whole algorithm still uses the complete estimate x̂k in the rest of each

iteration, like in the original algorithm, but this sparse estimate xs,k is now used to
estimate a residual that is used as a part of the stopping criterion. The complete
algorithm is summarised in Algorithm 4.

Out of the three analysis matrices studied in this thesis, the approach is only
valid for the wavelet analysis matrix, as it is the only matrix that can be used to
create a sparse version of the signal based on a limited number of coefficients by
inverting it. This is not possible when using the 1st and 2nd order derivative matrix,
since each value in the sparse sequences created using these matrices depend on the
value of the following element, essentially making all of the elements depend on all
of the following elements. This is a shame, as it was shown in chapter 3 that the
wavelet analysis matrix was actually the worst of the analysis matrices.

4.3 Experiments
Two datasets are used in these experiments. The first one consists of the first channels
of the 943 2-second 2-channel ECG segments from the MIT-BIH Arrhythmia Database
used in chapter 3. In these signals, it might be difficult to distinguish between noise
that is left in the signal due to poor performance of the noise-aware reconstruction
algorithm or noise that was already present in the signal because of the recording
equipment. Therefore, a second dataset was used, consisting of 100 simulated 2-
second segments created using the simulator described in section 1.2.2 with the same
sample rate fs = 360Hz as the signals from the MIT-BIH Database and beats per
minute (BPM) varying between 50 and 75. Only 100 simulated signals were used
since there is less variation between these signals than between the real signals. The
same similarity measures as the ones described in section 3.2.2 were used here to
compare signal reconstructions.

Two reconstructions are made for the sparse and cosparse methods. First, a
measurement containing noise is reconstructed using the original algorithm to see
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(a) (b) (c)

(d) (e)

Figure 4.1: PRD values of noisy signal reconstruction of real signals at CR values
with a fixed noise size (maximum size equal to 5% of the signal maximum) using
(a) OMMP (b) Noise Aware OMMP (c) GAP and (d) Noise Aware GAP. (e) is an
overview of mean PRD values. The horizontal axis shows the random noise maximum
as a percentage of the signal maximum.

how large the damage done by the presence of noise is. Next, a reconstruction using
the new adapted algorithm is performed to see the improvement in reconstruction
accuracy, compared to the reconstruction from a noisy measurement with the original
algorithm. To speed the processing up, an OMMP and Noise Aware OMMP algorithm
were used instead of an OMP algorithm and its Noise Aware variation, as it was
proven in chapter 2 that both are equally accurate.

To find out what the influence of the noise level and CR is on the reconstruction
quality, the experiments were performed for a fixed value of CR = 0.5 and a varying
noise level (random noise with a maximum size equal to 1%, 2%, 5%, 10% and 20%
of the signal maximum, for both ηηηM and ηηηA) and also for a fixed random noise with
a maximum size equal to 5% of the signal maximum (again for both ηηηM and ηηηA)
and a varying CR (0.9 to 0.2 in steps of 0.1).

Since the goal of these experiments is solely to confirm the usefulness of the
adapted algorithms, the 2-norm of the noise and the covariance was derived directly
from the known noise. In real applications, these values would of course have to be
derived in some other way.
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(a) (b) (c)

(d) (e)

Figure 4.2: PRD values of noisy signal reconstruction of real signals at fixed CR=0.5
using (a) OMMP (b) Noise Aware OMMP (c) GAP and (d) Noise Aware GAP at
different noise sizes. (e) is an overview of mean PRD values. The horizontal axis
shows the random noise maximum as a percentage of the signal maximum.

4.4 Results

To save space, the only accuracy metric presented here is the PRD value, since it
leads to the same conclusions as the other metrics. For an overview of all metric
values from this chapter, please refer to appendix B.

In figure 4.1, the PRD values for the reconstruction of the noisy signal with a
fixed noise size at different CR values is shown. It can be seen that the reconstruction
accuracy is greatly improved when using Noise Aware OMMP (OMMPn) instead
of the regular OMMP algorithm, at least for higher CR values. At lower CR, the
advantages of using a noise aware algorithm seem to be cancelled out as the two
PRD values of both algorithms start to converge.

For Noise Aware GAP (GAPn), it seems that there is little advantage in using
the noise aware version of the algorithm. It should be noted, however, that the GAP
algorithm is already much more resistant to noisy measurement than OMMP and
this slight improvement makes it nearly as accurate as OMMPn at higher CR and
even more accurate at lower CR. Since the results are based on the use of the wavelet
analysis matrix, it is not unthinkable that if a better analysis matrix - that can be
used to create a sparse signal approximation - is used instead, the results might
improve. However, no such matrices were developed in this thesis.

Figure 4.2e also shows the mean PRD values of a noise-free reconstruction of the
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(a) (b) (c)

(d) (e)

Figure 4.3: Processing times of noisy signal reconstruction of simulated signals at
different noise sizes using (a) OMMP (b) Noise Aware OMMP (c) GAP and (d)
Noise Aware GAP. (e) is an overview of mean processing times. The horizontal axis
shows the random noise maximum as a percentage of the signal maximum.

same signals (using GAP and a second order derivative analysis matrix). It can be
seen that the PRD values obtained using the noise-aware algorithms are still much
higher than those of their equivalent noise-free reconstructions and so there is ample
room for improvement, both in the sparse and in the cosparse methods.

When the amount of noise that is present in the measurement is changed while the
compression is kept constant (as in figure 4.1), it can be seen that the PRD quickly
grows larger than the critical 9% value. At low noise levels, GAPn outperforms the
other algorithms, though it is quickly surpassed by OMMPn. The latter does shows
some oddly large PRD values at the lowest noise level, which may be attributed
to the stopping criterion that forces the algorithm to continue iterating until the
norm of its residual has reached an extremely low value (lower than the 5% stopping
criterion used in the original OMP algorithm and its variations) and thus to force
it to start picking elements from the dictionary that may not be part of the actual
support. This could easily be fixed by adding an additional check on the size of the
stopping criterion in the noise aware algorithm and replacing it with the previously
used 5% if it is smaller than that 5%.

Figures 4.3 and 4.4 show the processing times of the regular and noise-aware
algorithms. It is remarkable that there is hardly any difference in mean processing
time between the reconstruction of a clean signal using OMMP and reconstruction
from a noisy signal using OMMPn at any CR. GAPn on the other hand is much slower
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(a) (b) (c)

(d) (e)

Figure 4.4: Processing times of noisy signal reconstruction of simulated signals
using (a) OMMP (b) Noise Aware OMMP (c) GAP and (d) Noise Aware GAP at
different noise sizes. (e) is an overview of mean processing times (Or = original
(noise-free) reconstruction). The horizontal axis shows the random noise maximum
as a percentage of the signal maximum.

due to the additional computations that are required for the sparse approximation
of the signal estimate.

For the simulated signal experiments, the results are shown in figure 4.5 as the
mean PRD and processing time values only. Most of the results are quite similar to
those obtained from the real signals, although it should be noted that the odd high
PRD values at higher CR values in figure 4.2 are not present in figure 4.5b. This
could be explained by the fact that the simulated signal is much simpler, making the
stopping criterion based on the noise size and covariance not too strict at low noise
sizes to reconstruct the whole signal.

OMMPn also works remarkably better, compared to its performance on the real
signals. This can be explained by the simple nature of the simulated signal as well,
since it can be represented by a very sparse coefficient vector.

4.5 Discussion

From the results of the experiments, it can be seen that the adjusted algorithms
improve the reconstruction quality in the presence of additive and multiplicative
noise in the measurements. In case of OMP (and OMMP), where the reconstruction
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(a) (b)

(c) (d)

Figure 4.5: Mean PRD values for the simulated data when varying (a) the CR and
(b) the maximum noise size; mean processing time when varying (c) the CR and (d)
the maximum noise size.

accuracy is very low when using an algorithm that is not noise-aware, the noise-
awareness provides a vast improvement. With GAP, the difference in accuracy
is smaller, although the regular GAP algorithm is already quite resistant to the
influence of noise.

Another problem here is the fact that the wavelet analysis matrix was used by
lack of a better alternative. Developing a better analysis matrix that can also create
a sparse approximation of the signal estimate in the GAPn algorithm (which the 1st
and 2nd order derivative could not) could drastically improve the results.
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Chapter 5

Influence of Signal
Reconstruction Accuracy on
ECG Feature Detection

The signals that are reconstructed from the compressive sensing measurement of
an ECG will be used for clinical diagnosis. In order to draw a correct conclusion
from the received signal, certain relevant information will have to be reconstructed
accurately. What information is required will depend on the application.

In this chapter, QRS-complex detection is introduced as an example of a simple
application of ECG signals. A slightly modified version of the classic Pan-Tompkins
algorithm is used to perform this detection. Through numerical experiments, it is
verified whether there is a correlation between the detected locations of the Q-,R-
and S-peaks and the amount of compression.

This chapter is only a brief introduction to what could be a complete research on
the usefulness of CS in several ECG applications. It should therefore be seen more as
a starting ground for possible future research than as a complete study of the topic.

5.1 QRS-complex Detection
The detection of R-peaks in the ECG signal is most important for the calculation of
the heart rate. The heart rate is a count of the number of ECG cycles in a given
time period and can therefore be characterised as the number of R-peaks in that
time period.

5.1.1 The Pan-Tompkins algorithm

The Pan-Tompkins algorithm is a classic R-peak detection algorithm. It consists of
five steps that eventually lead to the detection of the R-peak locations. In the first
and second step, the signal is filtered using a low-pass filter with transfer function

H(z) = (1− z−6)2

(1− z−1)2 (5.1)
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and a high pass filter with transfer function

H(z) = −1 + 32z−16 + z−32

1 + z−1 (5.2)

These two filter form a bandpass filter with a pass region between 5 and 15 Hz. This
removes the effects of the electrical net interference (50 or 60 Hz, depending on the
geographical location where the ECG was recorded), muscle noise influence, baseline
wander and interference from the T-wave in the ECG signal.

The third step of the algorithm is a differentiation that emphasises strong slopes
in the bandpass filtered signal, such as the one present in the QRS-complex. This is
accomplished by using the filter with the following transfer function for signals with
sampling period T

H(z) = 1
8T (−z−2 − 2z−1 + 2z + z2) (5.3)

In the fourth step, the value of each sample of the signal is squared to make all
values positive and to make higher values in the output of the third step stand out
more. Finally, a moving-window integration defined as

y(nT ) = 1
W

(5.4)

is applied to the signal to smooth out smaller peaks. Here W is the width of the
integration window and was set to 150 ms. [25]

Different from the method proposed in [25], the signal resulting from the fifth
step is thresholded using a threshold value that is equal to the product of the mean
and maximum values in the signal resulting from the fifth step. The algorithm was
also extended to determine Q- and S-peaks, based on the location of the R-peak.
This was achieved by simply searching for local minima in a small interval to the left
and right of the R-peak.

For this thesis, existing source code1 was used with some alterations to make the
algorithm more robust at the first and last samples of the signal.

5.2 Experiments
The goal of the experiments is to find a correlation a) between the compression ratio
CR and the difference in peak locations from those in the original signal (denoted as
’shift’) and b) between the quality measures and the shift.

This is achieved by first applying the Pan-Tompkins algorithm to the original
signal and storing the locations of the Q-, R- and S-peaks that are found there.
Next, the signal is compressed using different CR values (0.9 to 0.2 in steps of 0.1
like in chapter 3) and reconstructed. The reconstructed signals are subsequently
processed using the Pan-Tompkins algorithm as well and the found locations are
compared to those found earlier in the original signal. The absolute differences in

1http://matlabz.blogspot.be/2011/04/contents-cancellation-dc-drift-and.html
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(a) (b) (c) (d)

Figure 5.1: Difference in number of detected peaks as function of (a) PRD (b) SSIM
(c) NMAE and (d) NMSE

the locations between the original and reconstructed signals are stored for each CR
value so they can be compared. Since it is possible that the algorithm may detect a
different amount of peaks in the reconstructed signals, the difference in the amount
of registered peaks was counted as well and in case of a difference, only the locations
of the peaks closest to those in the original signal were compared. Since the detection
of Q and S peaks depends on the detection the corresponding R peak, an equal
amount of Q, R and S peaks will always be detected.

The signals used are the 82 first seconds of the second channel of the first
23 patients in the MIT-BIH Arrhythmia Database. For the reconstructions, the
original signal is split into 2-second segments like before, but after the reconstruction,
the 41 reconstructed segments are combined again to form a complete 82-second
reconstructed signal.

For brevity, only the best method for single-channel reconstruction (GAP with a
Second Order Derivative analysis matrix) is used for these experiments.

5.3 Results

The difference in the amount of detected peaks is plotted as a function of the four
accuracy metrics in figure 5.1. What stands out immediately, is that there are
always maximally two peaks detected more or less than in the original signal, if
there is any difference at all. It is interesting that even a rudimentary algorithm
like Pan-Tompkins is able to detect a nearly equal number of peaks in the original
signal and even the poorer reconstructions thereof. This means that the heart rate
could even be detected from signals that were reconstructed from highly compressed
measurements. Although there are some differences in the number of detected peaks
even at the better values of the metrics (low PRD, NMAE & NMSE and high SSIM),
it can be seen that at those better values, there are more signals where there was no
difference in the number of detected peaks than at the worse values of the metrics.

In figure 5.5a the average number of peak differences is shown at each CR
value. It can be seen that these mean values are generally quite low, as was already
concluded from figure 5.1, and that there is hardly a correlation between the amount
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(a) (b) (c) (d)

Figure 5.2: Shift in the detected Q peak location (as a number of samples) as a
function of (a) PRD (b) SSIM (c) NMAE and (d) NMSE

(a) (b) (c) (d)

Figure 5.3: Shift in the detected R peak location (as a number of samples) as a
function of (a) PRD (b) SSIM (c) NMAE and (d) NMSE

(a) (b) (c) (d)

Figure 5.4: Shift in the detected S peak location (as a number of samples) as a
function of (a) PRD (b) SSIM (c) NMAE and (d) NMSE

of compression and the mean difference in the number of detected peaks.
Figures 5.2, 5.3 and 5.4 show scatter plots with the four accuracy metrics on

the horizontal axis and the shift, expressed as a number of samples, on the vertical
axis for the Q (5.2), R (5.3) and S (5.4) peaks. The range of both axes is limited to
exclude some extreme outliers and make the plots clearer.

The maximum shift is reasonably low in all three cases, with most of them
being smaller than 15 samples. Considering that the sample rate fs = 360Hz,
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(a) (b) (c) (d)

Figure 5.5: Difference in (a) number of detected peaks (b) Q peak location (c) R
peak location and (d) S peak location as a function of the CR.

this means that most of the peak locations are detected at less than 0.05 seconds
from the locations they are detected at in the original signal, even in really poor
reconstructions.

Despite the fact that there is no really clear correlation between the metrics and
the amount of shift of each peak, the lowest shifts are mostly concentrated around
the better accuracy metric values, which may mean that these metrics may serve as
an indicator to decide if a signal reconstruction is still useful for a certain application.
However, this should of course be verified by comparing the metric values to ratings
of the signal quality that are given by a professional cardiologist, something that
was not possible for this thesis.

Finally, figures 5.5b, 5.5c & 5.5d show the mean shifts as a function of the CR.
It is clear that with lower CR values (i.e. more compression), it becomes harder to
detect the peak close to its original position, as poor reconstruction may lead to
deformation of the peaks and therefore a shift of the position of the local extrema.

5.4 Discussion
The aim of this chapter was to find a correlation between (a) the accuracy metrics and
the ability to detect the Q, R and S peaks at the same position as in an uncompressed
signal and (b) the rate of compression and this ability.

No clear correlation was found between the accuracy metrics and the shift of the
peaks in the reconstructed signals. Although it should be noted that at low PRD,
NMAE & NMSE and high SSIM values, low shifts are much more common. On
the other hand, there is an obvious correlation between the CR and the mean peak
shifts. Logically, more compression leads to a more deformed reconstructed signal
and therefore to a higher chance of detecting the peaks at a more different position.

This chapter was merely an introduction to this topic. With the help of profes-
sional signal quality ratings and a much larger dataset of reconstructed signals, it
could be further investigated if there could after all be some correlation between the
accuracy measures and the usefulness of the signals for certain applications and how
much compression could be allowed for those applications.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Several conclusions can be drawn from the work in this thesis. Most importantly,
the usefulness of cosparse algorithms for ECG was proven. The results from the
conducted experiments indicate that cosparse algorithms do in fact lead to better
reconstruction accuracy than their sparse counterparts. Three analysis matrices were
tested for the cosparse approach, of which the second order derivative matrix was
found to be the best one in terms of reconstruction accuracy. For the sparse approach,
the DWT dictionary was found to lead to the best possible reconstructions.

Secondly, it was proven that simultaneous reconstruction of multiple ECG chan-
nels is beneficial in terms of processing time for the cosparse approach. The sparse
approach did not show an improvement, but processing times stayed similar to those
of the single-channel algorithms. For both approaches, the reconstruction accuracy
remained the same, whether a single- or multi-channel algorithm was used. This
means that, if the coefficient vectors or cosparse sequences of several signals have a
similar (co-)support (as is the case in multi-channel ECG recordings), multi-channel
algorithms can be used to reconstruct these signals in the same amount of time
(sparse approach) or faster (cosparse approach).

Next, the sparse OM(M)P and cosparse GAP algorithm were adjusted to account
for the presence of additive and multiplicative noise. Noise aware OM(M)P showed
a vast improvement in accuracy, compared to a reconstruction from a noisy measure-
ment using the original algorithm. In GAP, the improvement was smaller, but GAP
itself proved to be quite robust to noise already. In real signals, the reconstruction
accuracy of both algorithms was similar, while OMMPn was more accurate when
applied to a basic set of simulated signals.

Finally, the shift, i.e. the difference in the position where the Q, R and S peaks
were detected in the reconstructed signals compared to their positions in the original
signal, was investigated. No clear correlation between the values of the accuracy
metrics and the amount of shift was found, although most low shifts were found in
signals with good accuracy metrics. On the other hand, it was found that when more
compression is applied, on average the shift will be larger.
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6.2 Future Work
The contents of chapters 4 and 5 may serve as the basis for further research on their
respective topics. Although it was shown that it is possible to adjust the greedy
sparse and cosparse algorithms to improve their performance in the presence of
additive and multiplicative noise, there is still much room for improvement, since
neither the sparse, nor the cosparse algorithms were able to achieve PRD values
suitable for decent clinical analysis (i.e. below 9% according to the literature) except
at the lowest noise levels. An important part of this work could be the search for a
decent analysis matrix that is able to create a sparse approximation of the signal
estimate in the GAPn-algorithm, but with better resulting reconstruction accuracy
than the wavelet analysis matrix.

The second topic for possible future work is the testing of the applicability of
compressive sensing for actual applications. A minor example was already shown
in chapter 5, but this could be expanded to other applications than QRS-detection.
By having a professional rate a series of reconstructed signals in terms of their
usefulness for certain applications and correlating these ratings to the accuracy
metrics, threshold values for each metric could be found so that the metrics could be
used as indicators of signal usefulness for certain applications instead of only using
them as measures of similarity to the original signal.

56



Appendices

57





Appendix A

Method Result Tables

The following tabels summarize the five characteristic values of a boxplot (see
section 3.3) for all of the methods indicated in table Table A.1.

Dictionary Analysis Matrix
DCT DFT DWT 1st Order

Derivative
2nd Order
Derivative

Wavelet

BSBL-BO G
BSBL-EM G

IHT G
OMP G G G
OMMP G G G
SOMP G G G
SOMMP G G G/B
GAP G G G
SGAP G G/B G

Table A.1: Overview of the methods for which the results are included in appendix A.
’G’ indicates results for a Gaussian sensing matrix, ’B’ indicates results for a binary
sensing matrix.
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A. Method Result Tables

A.1 BSBLBO / Gaussian / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .065 .192 .229 .276 .403 0 .130 .170 .254 .441
.8 .060 .194 .234 .282 .415 0 .131 .173 .253 .437
.7 .060 .196 .233 .287 .422 0 .138 .185 .264 .454
.6 .063 .201 .235 .292 .430 0 .143 .205 .285 .498
.5 .067 .213 .251 .310 .457 0 .144 .216 .292 .513
.4 .060 .218 .266 .323 .481 0 .146 .223 .298 .527
.3 .017 .227 .278 .368 .578 0 .152 .234 .327 .590
.2 .109 .280 .333 .395 .566 0 .165 .252 .342 .607

NMAE
.9 .007 .021 .025 .031 .045 0 .021 .034 .058 .112
.8 .007 .022 .026 .032 .047 0 .022 .035 .057 .111
.7 .009 .023 .028 .032 .046 0 .025 .036 .058 .108
.6 .010 .024 .028 .033 .047 0 .030 .039 .059 .103
.5 .013 .026 .030 .035 .049 0 .032 .041 .060 .103
.4 .015 .028 .032 .037 .050 0 .035 .043 .061 .101
.3 .018 .032 .036 .041 .055 0 .038 .048 .063 .101
.2 .024 .039 .043 .049 .064 0 .039 .051 .069 .115

NMSE
.9 0 .037 .052 .076 .136 0 .017 .029 .065 .136
.8 0 .037 .055 .080 .143 0 .017 .030 .064 .135
.7 0 .038 .054 .082 .148 0 .019 .034 .070 .146
.6 0 .040 .055 .085 .153 0 .020 .042 .081 .172
.5 0 .045 .063 .096 .173 0 .021 .047 .085 .182
.4 0 .048 .071 .104 .190 0 .021 .050 .089 .191
.3 0 .052 .077 .135 .261 0 .023 .055 .107 .233
.2 0 .079 .111 .156 .271 0 .027 .063 .117 .251

SSIM
.9 .743 .859 .895 .936 1.051 .355 .713 .793 .951 1.309
.8 .721 .846 .892 .930 1.055 .317 .698 .797 .951 1.332
.7 .709 .837 .894 .922 1.051 .353 .690 .771 .914 1.251
.6 .666 .818 .884 .920 1.072 .329 .661 .742 .883 1.216
.5 .629 .800 .880 .914 1.086 .311 .650 .727 .876 1.214
.4 .603 .785 .867 .906 1.088 .362 .645 .711 .834 1.118
.3 .565 .759 .845 .888 1.081 .338 .596 .669 .767 1.025
.2 .286 .624 .752 .850 1.188 .310 .553 .620 .714 .957

Table A.2: BSBLBO accuracy (Gaussian sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .257 .953 1.135 1.417 2.113
.8 .225 .810 .933 1.199 1.784
.7 .232 .620 .701 .880 1.268
.6 .190 .508 .584 .720 1.038
.5 .157 .415 .489 .587 .846
.4 .179 .355 .407 .473 .650
.3 .107 .302 .355 .432 .627
.2 .024 .282 .339 .454 .713

ITERS
.9 8.2 36 42 54.5 82.2
.8 12 36 42 52 76
.7 11.5 35.5 41 51.5 75.5
.6 2.5 34 42 55 86.5
.5 9.5 35 43 52 77.5
.4 9.2 37 43.5 55.5 83.2
.3 0 36 46 60.5 97.2
.2 0 42 59 92 167

Table A.3: BSBLBO computations (Gaussian sensing / DWT dictionary)
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A.2 BSBLEM / Gaussian / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .081 .109 .145 .242 .002 .104 .137 .171 .273
.8 0 .088 .123 .165 .280 .021 .114 .144 .175 .268
.7 0 .099 .141 .181 .305 .012 .122 .155 .195 .305
.6 0 .111 .158 .202 .339 .019 .143 .177 .226 .350
.5 0 .123 .184 .226 .379 .008 .151 .193 .246 .389
.4 .010 .155 .212 .251 .396 0 .161 .226 .286 .475
.3 .085 .217 .251 .306 .438 0 .179 .264 .339 .578
.2 .064 .361 .435 .558 .855 0 .354 .545 .743 1.327

NMAE
.9 5.2e-4 .011 .014 .017 .028 0 .015 .024 .052 .108
.8 2.9e-4 .012 .015 .020 .031 0 .017 .027 .055 .112
.7 7.4e-4 .013 .017 .021 .034 0 .018 .029 .057 .116
.6 0 .015 .020 .025 .040 0 .023 .035 .058 .109
.5 .004 .017 .022 .026 .039 0 .028 .036 .059 .104
.4 .009 .021 .026 .029 .042 0 .035 .042 .063 .106
.3 .007 .027 .033 .039 .059 0 .038 .048 .067 .109
.2 0 .048 .068 .089 .151 0 .052 .095 .231 .499

NMSE
.9 0 .007 .012 .021 .043 0 .011 .019 .029 .057
.8 0 .008 .015 .027 .056 0 .013 .021 .031 .058
.7 0 .010 .020 .033 .068 0 .015 .024 .038 .073
.6 0 .012 .025 .041 .084 0 .020 .031 .051 .097
.5 0 .015 .034 .051 .104 0 .023 .037 .061 .117
.4 0 .024 .045 .063 .122 0 .026 .051 .082 .166
.3 0 .047 .063 .093 .163 0 .032 .070 .115 .239
.2 0 .130 .189 .312 .584 0 .125 .297 .553 1.193

SSIM
.9 .922 .962 .976 .988 1.028 .546 .812 .930 .989 1.255
.8 .906 .953 .972 .984 1.030 .514 .796 .908 .984 1.266
.7 .892 .944 .965 .980 1.032 .437 .762 .869 .978 1.302
.6 .856 .926 .952 .973 1.043 .396 .731 .836 .955 1.291
.5 .824 .908 .942 .964 1.048 .419 .714 .808 .911 1.206
.4 .796 .888 .921 .949 1.040 .377 .666 .752 .859 1.147
.3 .719 .835 .873 .912 1.028 .332 .607 .694 .791 1.066
.2 .098 .501 .654 .769 1.172 0 .217 .473 .642 1.279

Table A.4: BSBLEM accuracy (Gaussian sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .755 1.906 2.238 2.674 3.826
.8 .749 1.679 1.907 2.299 3.230
.7 .436 1.250 1.404 1.792 2.606
.6 .443 1.098 1.231 1.535 2.191
.5 .495 1.169 1.322 1.619 2.294
.4 .152 1.269 1.477 2.014 3.132
.3 0 1.667 2.324 3.024 5.059
.2 .366 2.494 3.055 3.912 6.040

ITERS
.9 0 35.5 45.5 63 104.2
.8 0.5 38 49 63 100.5
.7 0 39 49 65 104
.6 0 43 55.5 79 133
.5 0 56 71 98 161
.4 0 76 98 157.5 279.8
.3 0 137 208 326 609.5
.2 0 235.5 374 506.5 913

Table A.5: BSBLEM computations (Gaussian sensing / DWT dictionary)
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A.3 IHT / Gaussian / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .038 .056 .079 .139 0 .045 .066 .100 .183
.8 0 .041 .058 .083 .146 0 .046 .067 .104 .191
.7 0 .042 .060 .085 .149 0 .048 .070 .107 .196
.6 0 .045 .063 .090 .158 0 .051 .074 .114 .207
.5 0 .044 .065 .093 .166 0 .054 .080 .120 .220
.4 0 .053 .078 .112 .200 0 .062 .091 .133 .239
.3 0 .074 .106 .150 .265 0 .083 .125 .185 .338
.2 0 .180 .240 .316 .522 0 .163 .229 .324 .566

NMAE
.9 5.2e-4 .008 .010 .013 .020 0 .009 .012 .018 .033
.8 0 .008 .011 .014 .022 0 .009 .012 .019 .034
.7 4.7e-5 .008 .011 .014 .022 0 .010 .013 .020 .034
.6 0 .009 .012 .015 .024 0 .010 .014 .021 .037
.5 6.0e-5 .009 .012 .015 .025 0 .011 .015 .022 .038
.4 0 .011 .015 .019 .031 0 .013 .017 .025 .043
.3 0 .016 .020 .027 .043 0 .018 .024 .035 .061
.2 0 .036 .047 .061 .097 0 .035 .044 .060 .097

NMSE
.9 0 .001 .003 .006 .013 0 .002 .004 .010 .022
.8 0 .002 .003 .007 .015 0 .002 .004 .011 .024
.7 0 .002 .004 .007 .015 0 .002 .005 .011 .025
.6 0 .002 .004 .008 .017 0 .003 .006 .013 .028
.5 0 .002 .004 .009 .019 0 .003 .006 .014 .032
.4 0 .003 .006 .013 .027 0 .004 .008 .018 .038
.3 0 .005 .011 .023 .048 0 .007 .016 .034 .075
.2 0 .032 .057 .100 .202 0 .026 .053 .105 .223

SSIM
.9 .983 .991 .994 .996 1.004 .952 .978 .990 .996 1.023
.8 .981 .990 .994 .996 1.005 .948 .977 .990 .996 1.025
.7 .980 .990 .993 .996 1.005 .945 .975 .989 .996 1.026
.6 .978 .988 .992 .995 1.005 .938 .972 .988 .995 1.029
.5 .977 .988 .992 .995 1.006 .932 .969 .987 .994 1.031
.4 .967 .982 .989 .993 1.008 .915 .961 .982 .992 1.039
.3 .939 .968 .980 .987 1.016 .852 .932 .971 .985 1.065
.2 .708 .847 .900 .940 1.079 .597 .806 .903 .945 1.154

Table A.6: IHT accuracy (Gaussian sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .079 .119 .130 .146 .186
.8 .069 .100 .109 .121 .152
.7 .082 .113 .121 .133 .165
.6 .076 .101 .107 .117 .141
.5 .066 .090 .097 .106 .129
.4 .048 .071 .078 .086 .109
.3 .048 .077 .086 .097 .126
.2 .035 .058 .066 .074 .098

ITERS
.9 17 29 32 37 49
.8 20.5 31 33 38 48.5
.7 21.5 32 35 39 49.5
.6 22.5 33 37 40 50.5
.5 24 36 40 44 56
.4 26.5 40 44 49 62.5
.3 34 49 54 59 74
.2 28 49 57 63 84

Table A.7: IHT computations (Gaussian sensing / DWT dictionary)
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A.4 OMP / Gaussian / DCT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .042 .059 .064 .070 .087 .036 .058 .063 .073 .095
.8 .038 .059 .065 .074 .095 .031 .059 .066 .079 .107
.7 .036 .062 .068 .080 .106 .027 .064 .072 .089 .126
.6 .024 .065 .075 .093 .134 .010 .066 .076 .102 .158
.5 0 .073 .090 .135 .229 0 .073 .090 .142 .247
.4 0 .086 .147 .265 .533 0 .084 .130 .237 .466
.3 0 .151 .287 .457 .917 0 .137 .223 .410 .819
.2 0 .293 .437 .647 1.179 0 .238 .381 .585 1.104

NMAE
.9 0 .010 .013 .016 .027 0 .009 .012 .019 .034
.8 0 .010 .013 .017 .028 0 .010 .013 .020 .036
.7 0 .011 .014 .019 .031 0 .010 .015 .023 .042
.6 0 .012 .016 .022 .037 0 .011 .017 .026 .048
.5 0 .016 .021 .028 .046 0 .014 .023 .032 .061
.4 0 .024 .033 .045 .076 0 .020 .033 .050 .095
.3 0 .040 .061 .077 .133 0 .038 .059 .075 .131
.2 .024 .075 .091 .108 .158 .017 .067 .087 .101 .152

NMSE
.9 .001 .003 .004 .005 .007 4.5e-4 .003 .004 .005 .008
.8 6.5e-4 .004 .004 .005 .008 0 .004 .004 .006 .010
.7 1.5e-4 .004 .005 .006 .010 0 .004 .005 .008 .014
.6 0 .004 .006 .009 .015 0 .004 .006 .011 .020
.5 0 .005 .008 .018 .038 0 .005 .008 .020 .043
.4 0 .007 .022 .070 .164 0 .007 .017 .056 .130
.3 0 .023 .082 .209 .489 0 .019 .050 .168 .391
.2 0 .086 .191 .419 .918 0 .057 .145 .342 .769

SSIM
.9 .971 .986 .991 .996 1.011 .947 .977 .991 .997 1.027
.8 .968 .985 .991 .996 1.012 .943 .975 .989 .997 1.029
.7 .962 .982 .989 .995 1.015 .923 .967 .986 .996 1.040
.6 .949 .976 .986 .994 1.021 .907 .960 .983 .995 1.048
.5 .916 .961 .979 .990 1.034 .842 .932 .972 .993 1.083
.4 .771 .896 .950 .980 1.105 .619 .837 .944 .983 1.201
.3 .357 .710 .840 .945 1.298 .202 .649 .796 .948 1.395
.2 0 .455 .641 .780 1.268 0 .415 .574 .843 1.484

Table A.8: OMP accuracy (Gaussian sensing / DCT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .139 .207 .414 .827
.8 0 .167 .245 .438 .846
.7 0 .145 .218 .396 .773
.6 0 .130 .188 .343 .661
.5 0 .106 .157 .287 .558
.4 0 .086 .128 .219 .419
.3 0 .057 .077 .110 .188
.2 .011 .031 .038 .044 .064

ITERS
.9 0 146 181 252.7 412.9
.8 0 146 179 250 406
.7 0 142 176 243 394.5
.6 0 142 174 240.7 388.9
.5 0 137 169 230.7 371.4
.4 14.5 139 167 222 346.5
.3 41 125 147 181 265
.2 53.5 97 110 126 169.5

Table A.9: OMP computations (Gaussian sensing / DCT dictionary)
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A.5 OMP / Gaussian / DFT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .040 .057 .062 .069 .086 .032 .058 .064 .076 .102
.8 .037 .059 .064 .073 .095 .026 .059 .066 .081 .113
.7 .040 .064 .070 .080 .104 .019 .061 .068 .088 .130
.6 .028 .063 .072 .087 .123 .012 .064 .074 .098 .150
.5 .015 .069 .080 .105 .159 0 .069 .083 .123 .202
.4 0 .073 .094 .158 .285 0 .077 .103 .171 .312
.3 0 .105 .202 .336 .683 0 .110 .180 .308 .606
.2 0 .211 .365 .535 1.022 0 .186 .295 .489 .944

NMAE
.9 0 .009 .012 .016 .027 0 .009 .012 .019 .035
.8 0 .010 .012 .017 .028 0 .010 .013 .020 .035
.7 0 .010 .014 .019 .032 0 .010 .014 .021 .039
.6 0 .011 .015 .020 .034 0 .011 .016 .023 .042
.5 0 .013 .017 .024 .040 0 .013 .019 .027 .050
.4 0 .016 .022 .030 .052 0 .016 .024 .037 .067
.3 0 .029 .043 .058 .100 0 .028 .044 .060 .110
.2 .003 .055 .076 .090 .141 0 .050 .070 .084 .136

NMSE
.9 .001 .003 .004 .005 .007 0 .003 .004 .006 .009
.8 5.4e-4 .003 .004 .005 .008 0 .003 .004 .006 .011
.7 6.4e-4 .004 .005 .006 .010 0 .004 .005 .008 .014
.6 0 .004 .005 .008 .013 0 .004 .005 .010 .018
.5 0 .005 .006 .011 .021 0 .005 .007 .015 .030
.4 0 .005 .009 .025 .054 0 .006 .011 .029 .064
.3 0 .011 .041 .113 .266 0 .012 .032 .095 .219
.2 0 .044 .133 .286 .649 0 .035 .087 .239 .546

SSIM
.9 .970 .986 .992 .996 1.012 .943 .975 .991 .997 1.028
.8 .968 .985 .991 .996 1.012 .944 .975 .990 .996 1.028
.7 .961 .981 .989 .995 1.015 .936 .972 .988 .996 1.032
.6 .956 .979 .988 .994 1.017 .926 .968 .985 .995 1.036
.5 .937 .971 .984 .993 1.026 .899 .956 .980 .993 1.050
.4 .904 .955 .977 .989 1.040 .803 .914 .970 .988 1.100
.3 .611 .826 .915 .969 1.185 .421 .750 .908 .970 1.299
.2 .095 .563 .741 .876 1.344 0 .522 .692 .913 1.501

Table A.10: OMP accuracy (Gaussian sensing / DFT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .559 .905 1.762 3.566
.8 0 .547 .896 1.638 3.275
.7 0 .454 .740 1.365 2.731
.6 0 .394 .616 1.159 2.307
.5 0 .318 .504 .887 1.740
.4 0 .266 .412 .683 1.309
.3 0 .188 .284 .423 .777
.2 .020 .091 .112 .138 .209

ITERS
.9 0 182 233 322 532
.8 0 181 233 316.7 520.4
.7 0 175 226 307 505
.6 0 175 222 300 487.5
.5 0 168.2 213 285 460.1
.4 11.5 169 208 274 431.5
.3 42.5 155 190 230 342.5
.2 78 129 145 163 214

Table A.11: OMP computations (Gaussian sensing / DFT dictionary)
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A.6. OMP / Gaussian / DWT

A.6 OMP / Gaussian / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .047 .056 .058 .062 .070 .025 .054 .058 .073 .102
.8 .040 .052 .056 .060 .073 .027 .056 .060 .076 .105
.7 .044 .055 .059 .063 .074 .021 .056 .062 .080 .116
.6 .038 .055 .060 .066 .083 .018 .059 .063 .086 .126
.5 .040 .058 .063 .070 .088 .011 .059 .065 .092 .140
.4 .042 .065 .070 .080 .102 .009 .064 .073 .102 .157
.3 .033 .071 .080 .097 .135 0 .071 .082 .120 .192
.2 0 .089 .114 .173 .300 0 .093 .127 .200 .361

NMAE
.9 0 .008 .010 .015 .026 0 .008 .012 .018 .032
.8 0 .008 .010 .015 .025 0 .009 .012 .018 .033
.7 0 .008 .010 .016 .026 0 .009 .013 .019 .034
.6 0 .009 .011 .016 .026 0 .009 .014 .021 .038
.5 0 .009 .011 .017 .029 0 .010 .014 .022 .040
.4 0 .010 .013 .019 .032 0 .011 .015 .024 .045
.3 0 .012 .015 .022 .036 0 .012 .018 .028 .051
.2 0 .018 .024 .032 .053 0 .019 .027 .041 .073

NMSE
.9 .002 .003 .003 .004 .005 0 .003 .003 .005 .009
.8 .001 .003 .003 .004 .005 0 .003 .004 .006 .010
.7 .002 .003 .003 .004 .005 0 .003 .004 .006 .011
.6 .001 .003 .004 .004 .006 0 .003 .004 .007 .013
.5 .001 .003 .004 .005 .007 0 .004 .004 .008 .016
.4 9.0e-4 .004 .005 .006 .010 0 .004 .005 .010 .020
.3 0 .005 .006 .009 .016 0 .005 .007 .014 .028
.2 0 .008 .013 .030 .063 0 .009 .016 .040 .087

SSIM
.9 .971 .986 .993 .997 1.012 .951 .979 .991 .998 1.026
.8 .975 .988 .993 .997 1.010 .945 .977 .990 .997 1.029
.7 .972 .987 .993 .997 1.011 .941 .975 .990 .997 1.031
.6 .973 .987 .992 .996 1.010 .930 .970 .988 .997 1.037
.5 .970 .985 .991 .996 1.012 .924 .968 .988 .997 1.041
.4 .961 .981 .989 .995 1.015 .906 .960 .985 .996 1.050
.3 .954 .977 .986 .993 1.016 .884 .950 .980 .994 1.061
.2 .908 .952 .972 .982 1.026 .779 .903 .958 .986 1.110

Table A.12: OMP accuracy (Gaussian sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .107 .160 .374 .773
.8 0 .110 .163 .354 .719
.7 0 .099 .138 .276 .541
.6 0 .086 .127 .229 .444
.5 0 .085 .114 .183 .329
.4 0 .061 .085 .131 .236
.3 0 .047 .059 .081 .133
.2 .018 .036 .042 .049 .067

ITERS
.9 0 120 147 201.7 324.4
.8 0 120 147 200 320
.7 12.4 120 146 191.7 299.4
.6 18.9 119 144 185.7 285.9
.5 30.5 119 143 178 266.5
.4 42.5 116 137 165 238.5
.3 53 113 131 153 213
.2 77 116 128 142 181

Table A.13: OMP computations (Gaussian sensing / DWT dictionary)
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A. Method Result Tables

A.7 OMMP / Gaussian / DCT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .042 .059 .064 .070 .087 .036 .058 .063 .073 .095
.8 .036 .059 .064 .073 .096 .030 .059 .065 .078 .107
.7 .031 .061 .067 .080 .110 .025 .062 .070 .087 .124
.6 .019 .063 .073 .093 .138 .006 .065 .076 .104 .163
.5 0 .071 .088 .127 .211 0 .071 .091 .145 .256
.4 0 .089 .140 .259 .514 0 .085 .129 .232 .453
.3 0 .149 .276 .427 .843 0 .139 .211 .391 .770
.2 0 .281 .433 .605 1.091 0 .236 .374 .570 1.070

NMAE
.9 0 .009 .013 .016 .027 0 .009 .012 .020 .035
.8 0 .010 .013 .017 .028 0 .009 .013 .020 .036
.7 0 .011 .014 .019 .031 0 .010 .015 .022 .041
.6 0 .012 .016 .022 .037 0 .011 .017 .025 .047
.5 0 .014 .020 .027 .045 0 .013 .022 .032 .060
.4 0 .023 .033 .043 .074 0 .021 .033 .048 .089
.3 0 .040 .058 .073 .122 0 .038 .057 .072 .122
.2 .026 .071 .087 .101 .147 .020 .066 .082 .096 .142

NMSE
.9 .001 .004 .004 .005 .007 5.1e-4 .003 .004 .005 .008
.8 4.8e-4 .003 .004 .005 .008 0 .004 .004 .006 .010
.7 0 .004 .005 .006 .011 0 .004 .005 .008 .013
.6 0 .004 .005 .009 .016 0 .004 .006 .011 .021
.5 0 .005 .008 .016 .033 0 .005 .008 .021 .045
.4 0 .008 .020 .067 .156 0 .007 .017 .054 .124
.3 0 .022 .076 .182 .422 0 .019 .044 .153 .354
.2 0 .079 .187 .366 .796 0 .056 .140 .324 .728

SSIM
.9 .970 .986 .991 .996 1.012 .945 .976 .991 .997 1.029
.8 .969 .985 .991 .996 1.012 .944 .976 .989 .997 1.029
.7 .962 .982 .989 .995 1.015 .927 .969 .987 .996 1.038
.6 .952 .977 .987 .994 1.019 .910 .961 .983 .995 1.047
.5 .928 .966 .981 .991 1.029 .843 .933 .973 .993 1.083
.4 .792 .904 .952 .979 1.091 .635 .843 .944 .982 1.190
.3 .375 .715 .844 .941 1.281 .246 .668 .809 .949 1.371
.2 5.5e-4 .479 .653 .798 1.276 0 .423 .579 .842 1.470

Table A.14: OMMP accuracy (Gaussian sensing / DCT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .063 .089 .148 .275
.8 0 .066 .090 .145 .263
.7 0 .062 .086 .134 .243
.6 0 .057 .076 .124 .224
.5 0 .049 .065 .101 .178
.4 0 .043 .057 .083 .142
.3 .006 .035 .043 .054 .082
.2 .012 .022 .025 .028 .037

ITERS
.9 0 36.2 45 63 103.1
.8 0 37 45 63 102
.7 0 37 45 62 99.5
.6 0 36 45 62 101
.5 0 36 43 60 96
.4 3 36 44 58 91
.3 13 34 40 48 69
.2 15 27 31 35 47

Table A.15: OMMP computations (Gaussian sensing / DCT dictionary)
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A.8. OMMP / Gaussian / DFT

A.8 OMMP / Gaussian / DFT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .038 .058 .063 .071 .090 .033 .060 .066 .079 .106
.8 .039 .060 .065 .074 .096 .023 .058 .064 .081 .116
.7 .037 .062 .068 .079 .104 .019 .062 .070 .090 .133
.6 .020 .060 .070 .087 .127 .003 .062 .074 .102 .162
.5 .016 .071 .082 .107 .161 0 .067 .084 .130 .224
.4 0 .076 .103 .174 .323 0 .082 .116 .192 .356
.3 0 .108 .218 .367 .755 0 .113 .193 .348 .701
.2 0 .233 .398 .593 1.132 0 .204 .322 .546 1.059

NMAE
.9 0 .009 .012 .017 .028 0 .009 .013 .020 .036
.8 0 .010 .013 .018 .030 0 .009 .013 .020 .035
.7 0 .010 .014 .019 .032 0 .010 .015 .022 .039
.6 0 .011 .015 .021 .035 0 .011 .016 .024 .043
.5 0 .013 .018 .025 .043 0 .013 .020 .028 .052
.4 0 .017 .024 .032 .055 0 .018 .027 .041 .076
.3 0 .030 .047 .062 .112 0 .030 .048 .067 .122
.2 .005 .062 .083 .101 .158 0 .055 .080 .097 .160

NMSE
.9 8.3e-4 .003 .004 .005 .007 0 .004 .004 .006 .010
.8 7.1e-4 .004 .004 .006 .008 0 .003 .004 .007 .011
.7 3.6e-4 .004 .005 .006 .010 0 .004 .005 .008 .015
.6 0 .004 .005 .008 .013 0 .004 .006 .010 .020
.5 0 .005 .007 .011 .021 0 .004 .007 .017 .035
.4 0 .006 .011 .030 .067 0 .007 .014 .037 .082
.3 0 .012 .048 .135 .319 0 .013 .037 .121 .284
.2 0 .054 .159 .351 .796 0 .042 .103 .298 .682

SSIM
.9 .969 .985 .991 .996 1.012 .940 .974 .990 .996 1.030
.8 .966 .984 .990 .995 1.013 .946 .976 .990 .996 1.026
.7 .961 .981 .989 .995 1.016 .936 .972 .987 .996 1.032
.6 .957 .979 .988 .994 1.017 .925 .967 .984 .995 1.037
.5 .933 .969 .983 .992 1.028 .888 .951 .980 .993 1.056
.4 .889 .948 .973 .987 1.047 .748 .890 .962 .985 1.127
.3 .567 .807 .907 .966 1.206 .349 .717 .888 .963 1.332
.2 0 .505 .699 .863 1.399 0 .456 .641 .902 1.572

Table A.16: OMMP accuracy (Gaussian sensing / DFT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .195 .295 .541 1.059
.8 0 .178 .264 .457 .876
.7 0 .151 .224 .390 .748
.6 0 .137 .198 .341 .648
.5 0 .112 .165 .271 .510
.4 0 .094 .136 .216 .401
.3 0 .080 .108 .148 .249
.2 .022 .050 .059 .069 .097

ITERS
.9 0 45 58 81 135
.8 0 46 58 79 128.5
.7 0 45 57 78 127.5
.6 0 46 57 77 123.5
.5 0.5 44 55 73 116.5
.4 2.5 43 53 70 110.5
.3 7.5 39 49 60 91.5
.2 21.5 35 39 44 57.5

Table A.17: OMMP computations (Gaussian sensing / DFT dictionary)
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A. Method Result Tables

A.9 OMMP / Gaussian / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .037 .050 .054 .059 .072 .026 .054 .058 .072 .099
.8 .037 .051 .056 .061 .076 .027 .054 .059 .072 .099
.7 .035 .051 .057 .062 .078 .018 .053 .059 .077 .112
.6 .030 .050 .055 .063 .082 .017 .055 .061 .080 .117
.5 .038 .057 .062 .069 .088 .012 .058 .065 .088 .133
.4 .029 .056 .064 .074 .101 .004 .061 .071 .100 .157
.3 .032 .068 .079 .092 .128 0 .070 .083 .120 .195
.2 0 .086 .115 .162 .276 0 .090 .120 .183 .321

NMAE
.9 0 .008 .009 .014 .023 0 .008 .011 .017 .030
.8 0 .008 .010 .014 .024 0 .008 .012 .017 .030
.7 0 .008 .010 .014 .023 0 .008 .012 .018 .033
.6 0 .008 .010 .014 .024 0 .009 .012 .019 .035
.5 0 .009 .011 .016 .027 0 .009 .014 .021 .038
.4 0 .010 .011 .017 .028 0 .010 .015 .023 .042
.3 0 .012 .014 .020 .034 0 .012 .018 .027 .049
.2 0 .018 .023 .031 .051 0 .018 .025 .037 .065

NMSE
.9 .001 .002 .003 .003 .005 0 .003 .003 .005 .008
.8 9.8e-4 .003 .003 .004 .005 0 .003 .003 .005 .009
.7 7.5e-4 .003 .003 .004 .006 0 .003 .003 .006 .010
.6 3.0e-4 .002 .003 .004 .006 0 .003 .004 .006 .011
.5 8.6e-4 .003 .004 .005 .007 0 .003 .004 .008 .014
.4 0 .003 .004 .006 .009 0 .004 .005 .010 .019
.3 0 .005 .006 .009 .014 0 .005 .007 .014 .029
.2 0 .007 .013 .026 .055 0 .008 .014 .033 .071

SSIM
.9 .979 .990 .994 .997 1.008 .953 .980 .992 .998 1.025
.8 .978 .989 .994 .997 1.008 .952 .979 .992 .998 1.025
.7 .978 .989 .994 .997 1.008 .949 .978 .991 .998 1.027
.6 .979 .990 .994 .997 1.007 .942 .975 .990 .997 1.031
.5 .972 .987 .992 .996 1.010 .934 .972 .989 .997 1.035
.4 .974 .987 .992 .995 1.009 .920 .966 .987 .996 1.042
.3 .958 .979 .987 .993 1.015 .890 .953 .981 .994 1.057
.2 .911 .954 .973 .984 1.027 .821 .921 .963 .987 1.087

Table A.18: OMMP accuracy (Gaussian sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .053 .076 .167 .338
.8 0 .054 .072 .135 .255
.7 0 .051 .068 .137 .266
.6 0 .048 .064 .128 .247
.5 0 .041 .053 .107 .208
.4 0 .035 .045 .079 .145
.3 0 .028 .035 .051 .085
.2 .002 .021 .026 .034 .054

ITERS
.9 1.0 30.2 37 49.7 79.0
.8 5.5 31 37 48 73.5
.7 5.5 31 37 48 73.5
.6 7 31 37 47 71
.5 9 30 36 44 65
.4 12 30 35 42 60
.3 14 29 33 39 54
.2 19.5 30 33 37 47.5

Table A.19: OMMP computations (Gaussian sensing / DWT dictionary)
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A.10. SOMP / Gaussian / DCT

A.10 SOMP / Gaussian / DCT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .035 .050 .062 .103 .032 .055 .062 .071 .095
.8 0 .038 .055 .066 .110 .030 .057 .064 .075 .103
.7 0 .040 .056 .068 .110 .024 .057 .064 .078 .111
.6 0 .045 .061 .076 .123 .016 .060 .069 .089 .132
.5 0 .054 .074 .101 .171 0 .064 .078 .113 .187
.4 0 .072 .107 .225 .455 0 .076 .107 .208 .407
.3 0 .137 .239 .416 .834 0 .119 .201 .413 .853
.2 0 .279 .431 .625 1.144 0 .240 .374 .631 1.217

NMAE
.9 0 .007 .010 .013 .021 0 .008 .011 .018 .032
.8 0 .008 .011 .014 .022 0 .009 .012 .019 .034
.7 0 .008 .011 .014 .023 0 .009 .013 .019 .034
.6 0 .009 .012 .016 .026 0 .010 .015 .021 .038
.5 0 .011 .015 .020 .033 0 .011 .018 .026 .048
.4 0 .017 .025 .038 .070 0 .017 .027 .042 .080
.3 0 .034 .054 .073 .131 0 .032 .055 .074 .137
.2 .020 .073 .092 .108 .161 .007 .067 .091 .106 .166

NMSE
.9 0 .001 .003 .004 .008 7.6e-5 .003 .004 .005 .008
.8 0 .001 .003 .004 .009 0 .003 .004 .006 .009
.7 0 .002 .003 .005 .009 0 .003 .004 .006 .010
.6 0 .002 .004 .006 .012 0 .004 .005 .008 .014
.5 0 .003 .005 .010 .021 0 .004 .006 .013 .026
.4 0 .005 .011 .051 .119 0 .006 .011 .043 .100
.3 0 .019 .057 .173 .404 0 .014 .040 .170 .405
.2 0 .078 .186 .391 .860 0 .058 .140 .398 .908

SSIM
.9 .983 .992 .995 .998 1.007 .954 .980 .992 .998 1.024
.8 .981 .991 .995 .998 1.008 .949 .978 .991 .997 1.026
.7 .979 .990 .995 .997 1.008 .951 .979 .990 .997 1.025
.6 .973 .987 .993 .997 1.010 .937 .973 .987 .996 1.032
.5 .955 .979 .989 .995 1.019 .904 .959 .983 .995 1.050
.4 .829 .925 .972 .989 1.085 .720 .881 .961 .988 1.148
.3 .410 .741 .871 .961 1.292 .250 .676 .833 .960 1.387
.2 0 .475 .653 .798 1.283 0 .404 .561 .848 1.514

Table A.20: SOMP accuracy (Gaussian sensing / DCT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .156 .240 .474 .952
.8 0 .136 .210 .422 .852
.7 0 .130 .201 .382 .761
.6 0 .108 .169 .330 .663
.5 0 .093 .152 .299 .607
.4 0 .079 .132 .242 .488
.3 0 .057 .087 .133 .246
.2 .006 .031 .038 .048 .073

ITERS
.9 0 93 115 163 268
.8 0 91.2 113 162 268.1
.7 0 94 114 162.7 265.9
.6 0 92 113 159 259.5
.5 0 90 109 155 252.5
.4 0 88 110 152.7 249.9
.3 17.9 85 106 129.7 196.9
.2 41 71 81 91 121

Table A.21: SOMP computations (Gaussian sensing / DCT dictionary)
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A. Method Result Tables

A.11 SOMP / Gaussian / DFT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .038 .056 .064 .103 .021 .052 .062 .072 .102
.8 0 .040 .057 .067 .108 .018 .053 .063 .077 .112
.7 0 .044 .063 .074 .118 .018 .057 .069 .084 .123
.6 0 .047 .065 .078 .126 .011 .059 .070 .092 .140
.5 0 .055 .074 .092 .148 .002 .065 .079 .107 .171
.4 0 .062 .086 .126 .221 0 .069 .089 .133 .230
.3 0 .089 .152 .259 .514 0 .097 .142 .226 .421
.2 0 .176 .312 .458 .882 0 .160 .254 .434 .844

NMAE
.9 0 .007 .010 .012 .020 0 .008 .011 .016 .027
.8 0 .007 .010 .013 .021 0 .009 .012 .017 .028
.7 0 .008 .011 .015 .024 0 .010 .013 .019 .032
.6 0 .009 .012 .015 .025 0 .010 .014 .020 .034
.5 0 .010 .014 .019 .031 0 .012 .016 .024 .041
.4 0 .013 .017 .023 .038 0 .014 .019 .028 .050
.3 0 .022 .032 .044 .078 0 .022 .032 .046 .083
.2 0 .045 .064 .080 .133 0 .041 .062 .078 .133

NMSE
.9 0 .001 .003 .004 .008 0 .003 .004 .005 .009
.8 0 .002 .003 .005 .009 0 .003 .004 .006 .010
.7 0 .002 .004 .005 .011 0 .003 .005 .007 .013
.6 0 .002 .004 .006 .012 0 .004 .005 .008 .016
.5 0 .003 .005 .009 .017 0 .004 .006 .012 .022
.4 0 .004 .007 .016 .034 0 .005 .008 .018 .037
.3 0 .008 .023 .067 .156 0 .009 .020 .051 .114
.2 0 .031 .097 .210 .479 0 .026 .065 .188 .432

SSIM
.9 .980 .991 .995 .998 1.008 .961 .983 .993 .997 1.018
.8 .978 .990 .995 .998 1.009 .960 .982 .992 .997 1.018
.7 .973 .987 .994 .997 1.011 .949 .977 .991 .996 1.024
.6 .970 .986 .993 .997 1.012 .948 .977 .989 .995 1.024
.5 .957 .980 .990 .995 1.018 .924 .966 .985 .994 1.036
.4 .934 .970 .986 .993 1.029 .892 .952 .980 .992 1.051
.3 .752 .891 .952 .984 1.122 .623 .838 .941 .982 1.197
.2 .250 .648 .808 .914 1.312 .032 .574 .773 .936 1.477

Table A.22: SOMP accuracy (Gaussian sensing / DFT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .543 .867 1.777 3.628
.8 0 .443 .749 1.455 2.974
.7 0 .372 .596 1.093 2.174
.6 0 .365 .592 .900 1.703
.5 0 .269 .419 .634 1.181
.4 0 .229 .321 .475 .845
.3 0 .140 .205 .290 .516
.2 0 .061 .078 .102 .164

ITERS
.9 0 105 139 199 340
.8 0 104 138 191 321.5
.7 0 99 131 181 304
.6 0 101 131 170 273.5
.5 6 96 123 156 246
.4 22.5 96 118 145 218.5
.3 28.5 81 97 116 168.5
.2 30.5 62 72 83 114.5

Table A.23: SOMP computations (Gaussian sensing / DFT dictionary)
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A.12. SOMP / Gaussian / DWT

A.12 SOMP / Gaussian / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .033 .046 .057 .092 .015 .050 .056 .072 .107
.8 2.4e-4 .035 .047 .058 .092 .013 .050 .056 .075 .112
.7 3.6e-4 .036 .049 .060 .096 .010 .051 .058 .079 .120
.6 .004 .040 .053 .064 .100 .010 .054 .061 .084 .129
.5 .004 .042 .054 .067 .106 1.7e-5 .054 .062 .090 .144
.4 .005 .048 .061 .077 .120 0 .060 .070 .103 .167
.3 0 .055 .069 .092 .147 0 .065 .077 .120 .202
.2 0 .078 .108 .168 .304 0 .085 .115 .184 .334

NMAE
.9 0 .006 .009 .012 .021 0 .008 .011 .017 .030
.8 0 .006 .009 .012 .021 0 .008 .012 .017 .031
.7 0 .007 .009 .013 .022 0 .008 .012 .018 .033
.6 0 .007 .010 .014 .023 0 .009 .013 .020 .036
.5 0 .008 .010 .014 .024 0 .009 .013 .020 .037
.4 0 .009 .011 .016 .027 0 .010 .016 .023 .042
.3 0 .011 .013 .018 .029 0 .012 .017 .026 .047
.2 0 .017 .022 .030 .050 0 .017 .025 .038 .070

NMSE
.9 0 .001 .002 .003 .006 0 .002 .003 .005 .009
.8 0 .001 .002 .003 .006 0 .002 .003 .006 .010
.7 0 .001 .002 .004 .007 0 .003 .003 .006 .011
.6 0 .002 .003 .004 .008 0 .003 .004 .007 .013
.5 0 .002 .003 .005 .009 0 .003 .004 .008 .016
.4 0 .002 .004 .006 .011 0 .004 .005 .011 .021
.3 0 .003 .005 .008 .017 0 .004 .006 .014 .029
.2 0 .006 .012 .028 .062 0 .007 .013 .034 .074

SSIM
.9 .983 .992 .996 .998 1.007 .959 .982 .992 .998 1.021
.8 .983 .992 .996 .998 1.007 .954 .980 .992 .998 1.024
.7 .982 .992 .995 .998 1.008 .950 .979 .991 .998 1.026
.6 .979 .990 .995 .998 1.009 .940 .974 .990 .997 1.032
.5 .978 .990 .995 .997 1.009 .936 .972 .989 .997 1.033
.4 .974 .987 .993 .996 1.010 .919 .965 .986 .996 1.042
.3 .967 .983 .991 .995 1.011 .902 .958 .983 .995 1.050
.2 .919 .959 .977 .986 1.026 .799 .912 .966 .988 1.101

Table A.24: SOMP accuracy (Gaussian sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .103 .157 .466 1.011
.8 0 .101 .175 .500 1.099
.7 0 .081 .161 .461 1.032
.6 0 .070 .117 .307 .663
.5 0 .062 .105 .241 .510
.4 0 .050 .079 .162 .330
.3 0 .038 .054 .090 .169
.2 .002 .030 .037 .048 .076

ITERS
.9 0 67 92 159.7 298.9
.8 0 67 91 155 287
.7 0 67 89 147 267
.6 0 65 85 133.7 236.9
.5 0 66 87 129 223.5
.4 0 64 82 115 191.5
.3 1.9 63 79 103.7 164.9
.2 25.5 63 74 88 125.5

Table A.25: SOMP computations (Gaussian sensing / DWT dictionary)
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A. Method Result Tables

A.13 SOMMP / Gaussian / DCT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .034 .048 .060 .098 .027 .052 .059 .069 .094
.8 0 .036 .050 .063 .103 .024 .053 .060 .072 .100
.7 0 .040 .055 .067 .108 .021 .055 .064 .078 .112
.6 0 .046 .063 .077 .124 .015 .060 .070 .090 .135
.5 0 .054 .075 .104 .179 0 .065 .079 .113 .186
.4 0 .070 .108 .217 .437 0 .073 .107 .202 .397
.3 0 .130 .234 .394 .791 0 .115 .202 .399 .823
.2 0 .282 .431 .597 1.069 0 .242 .377 .598 1.133

NMAE
.9 0 .007 .009 .012 .020 0 .008 .011 .017 .030
.8 0 .007 .010 .013 .021 0 .008 .011 .017 .030
.7 0 .008 .011 .014 .023 0 .009 .013 .019 .033
.6 0 .009 .013 .016 .026 0 .010 .015 .022 .041
.5 0 .012 .015 .020 .033 0 .011 .018 .026 .048
.4 0 .017 .024 .036 .065 0 .017 .027 .041 .077
.3 0 .032 .051 .068 .122 0 .031 .053 .072 .133
.2 .021 .072 .089 .105 .155 .010 .066 .087 .104 .160

NMSE
.9 0 .001 .002 .004 .007 0 .003 .003 .005 .008
.8 0 .001 .003 .004 .008 0 .003 .004 .005 .009
.7 0 .002 .003 .005 .009 0 .003 .004 .006 .011
.6 0 .002 .004 .006 .012 0 .004 .005 .008 .015
.5 0 .003 .006 .011 .023 0 .004 .006 .013 .026
.4 0 .005 .012 .047 .110 0 .005 .011 .041 .095
.3 0 .017 .055 .156 .363 0 .013 .041 .159 .377
.2 0 .080 .186 .356 .771 0 .059 .142 .358 .807

SSIM
.9 .985 .993 .996 .998 1.006 .960 .983 .993 .998 1.020
.8 .983 .992 .996 .998 1.007 .959 .982 .992 .997 1.021
.7 .980 .990 .995 .997 1.008 .952 .979 .990 .997 1.024
.6 .971 .986 .993 .997 1.012 .931 .970 .987 .996 1.036
.5 .954 .978 .989 .995 1.019 .897 .956 .981 .995 1.053
.4 .848 .933 .973 .989 1.074 .733 .886 .962 .989 1.142
.3 .451 .758 .881 .964 1.271 .256 .680 .847 .963 1.387
.2 0 .475 .651 .802 1.294 0 .408 .571 .844 1.497

Table A.26: SOMMP accuracy (Gaussian sensing / DCT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .061 .088 .154 .293
.8 0 .056 .078 .135 .255
.7 0 .049 .075 .126 .242
.6 0 .044 .059 .105 .197
.5 0 .039 .055 .087 .160
.4 0 .034 .047 .077 .142
.3 0 .028 .037 .051 .085
.2 .007 .017 .020 .024 .034

ITERS
.9 0 24 30 42.7 70.9
.8 0 24 30 42 69
.7 0 24 29 41 66.5
.6 0 23 28 40 65.5
.5 0 23 28 40 65.5
.4 0 23 29 39 63
.3 6.5 23 28 34 50.5
.2 11.5 19 22 24 31.5

Table A.27: SOMMP computations (Gaussian sensing / DCT dictionary)
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A.14. SOMMP / Gaussian / DFT

A.14 SOMMP / Gaussian / DFT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .037 .055 .064 .105 .019 .051 .061 .072 .104
.8 0 .039 .056 .066 .106 .014 .051 .062 .076 .113
.7 0 .042 .059 .070 .113 .012 .054 .064 .082 .124
.6 0 .046 .063 .077 .123 .006 .057 .068 .090 .141
.5 0 .054 .071 .093 .151 0 .063 .077 .108 .175
.4 0 .063 .088 .137 .248 0 .070 .092 .145 .258
.3 0 .087 .163 .316 .660 0 .093 .153 .273 .542
.2 0 .199 .364 .559 1.098 0 .180 .308 .531 1.057

NMAE
.9 0 .007 .010 .013 .021 0 .008 .011 .016 .028
.8 0 .007 .010 .013 .022 0 .009 .012 .017 .029
.7 0 .008 .011 .014 .024 0 .009 .013 .018 .032
.6 0 .009 .012 .015 .026 0 .010 .014 .020 .035
.5 0 .011 .014 .019 .031 0 .012 .016 .024 .044
.4 0 .013 .018 .025 .042 0 .014 .020 .030 .055
.3 0 .021 .036 .053 .101 0 .023 .036 .055 .102
.2 0 .052 .076 .097 .165 0 .048 .075 .097 .170

NMSE
.9 0 .001 .003 .004 .008 0 .003 .004 .005 .009
.8 0 .002 .003 .004 .009 0 .003 .004 .006 .011
.7 0 .002 .003 .005 .010 0 .003 .004 .007 .012
.6 0 .002 .004 .006 .012 0 .003 .005 .008 .016
.5 0 .003 .005 .009 .017 0 .004 .006 .012 .023
.4 0 .004 .008 .019 .041 0 .005 .008 .021 .045
.3 0 .008 .027 .100 .239 0 .009 .023 .074 .173
.2 0 .040 .133 .312 .721 0 .033 .095 .282 .656

SSIM
.9 .980 .991 .995 .998 1.008 .961 .983 .993 .997 1.019
.8 .979 .990 .995 .998 1.009 .960 .982 .992 .997 1.018
.7 .975 .988 .994 .997 1.011 .957 .980 .991 .996 1.020
.6 .971 .986 .993 .997 1.012 .945 .976 .989 .996 1.026
.5 .958 .980 .991 .995 1.018 .922 .966 .985 .994 1.038
.4 .929 .967 .985 .993 1.031 .883 .948 .979 .991 1.056
.3 .670 .858 .947 .984 1.172 .571 .816 .940 .980 1.225
.2 .048 .562 .765 .905 1.419 0 .476 .720 .923 1.593

Table A.28: SOMMP accuracy (Gaussian sensing / DFT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .129 .208 .394 .791
.8 0 .153 .245 .496 1.010
.7 0 .134 .216 .388 .768
.6 0 .109 .171 .305 .598
.5 0 .092 .145 .240 .463
.4 0 .081 .121 .178 .322
.3 0 .069 .103 .158 .291
.2 1.7e-4 .037 .048 .062 .099

ITERS
.9 0 27 36 52 89.5
.8 0 27 36 50 84.5
.7 0 27 35 48.7 81.4
.6 0 26 34 46 76
.5 0.5 26 33 43 68.5
.4 2.5 25 32 40 62.5
.3 8.5 25 30 36 52.5
.2 12 21 24 27 36

Table A.29: SOMMP computations (Gaussian sensing / DFT dictionary)
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A. Method Result Tables

A.15 SOMMP / Gaussian / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .032 .043 .055 .090 .017 .048 .055 .068 .098
.8 0 .033 .045 .057 .093 .012 .048 .056 .072 .108
.7 0 .035 .046 .058 .094 .010 .049 .057 .074 .113
.6 .004 .037 .048 .060 .093 .009 .050 .058 .078 .119
.5 .003 .042 .054 .068 .108 .003 .055 .065 .089 .141
.4 .002 .044 .057 .072 .114 0 .056 .066 .098 .161
.3 0 .049 .065 .089 .148 0 .060 .074 .115 .197
.2 0 .079 .106 .162 .286 0 .088 .119 .189 .340

NMAE
.9 0 .006 .008 .011 .019 0 .007 .011 .016 .029
.8 0 .006 .008 .012 .021 0 .008 .011 .016 .029
.7 0 .006 .009 .012 .021 0 .008 .012 .017 .032
.6 0 .007 .009 .012 .020 0 .008 .012 .018 .033
.5 0 .008 .010 .014 .024 0 .009 .013 .020 .037
.4 0 .008 .011 .014 .024 0 .010 .014 .021 .038
.3 0 .010 .013 .017 .027 0 .011 .016 .025 .045
.2 0 .016 .022 .030 .050 0 .017 .025 .038 .069

NMSE
.9 0 .001 .002 .003 .006 0 .002 .003 .005 .008
.8 0 .001 .002 .003 .007 0 .002 .003 .005 .010
.7 0 .001 .002 .003 .007 0 .002 .003 .006 .010
.6 0 .001 .002 .004 .007 0 .003 .003 .006 .011
.5 0 .002 .003 .005 .009 0 .003 .004 .008 .015
.4 0 .002 .003 .005 .010 0 .003 .004 .010 .019
.3 0 .002 .004 .008 .016 0 .004 .005 .013 .028
.2 0 .006 .011 .026 .056 0 .008 .014 .036 .078

SSIM
.9 .984 .993 .996 .999 1.007 .961 .983 .993 .998 1.020
.8 .983 .992 .996 .998 1.008 .958 .982 .992 .998 1.022
.7 .983 .992 .996 .998 1.007 .952 .980 .992 .998 1.025
.6 .983 .992 .996 .998 1.007 .948 .978 .992 .998 1.027
.5 .977 .989 .994 .997 1.009 .933 .972 .989 .997 1.035
.4 .977 .989 .994 .997 1.008 .933 .971 .988 .997 1.035
.3 .972 .986 .992 .995 1.009 .916 .963 .986 .995 1.043
.2 .913 .957 .978 .987 1.031 .802 .913 .965 .988 1.099

Table A.30: SOMMP accuracy (Gaussian sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 0 .042 .064 .169 .360
.8 0 .038 .060 .153 .326
.7 0 .035 .051 .125 .260
.6 0 .031 .046 .121 .256
.5 0 .028 .038 .078 .155
.4 0 .024 .034 .068 .133
.3 0 .021 .028 .055 .105
.2 0 .015 .019 .030 .052

ITERS
.9 0 17 23 35 62
.8 0 17 22 36 64.5
.7 0 17 22 34 59.5
.6 0 17 22 33 57
.5 0 16 21 31 53.5
.4 0 16 21 29 48.5
.3 2 17 21 27 42
.2 8 17 19 23 32

Table A.31: SOMMP computations (Gaussian sensing / DWT dictionary)
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A.16. SOMMP / Binary / DWT

A.16 SOMMP / Binary / DWT

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .285 .786 .981 2.026 0 .264 .828 1.040 2.205
.8 0 .285 .808 .986 2.037 0 .273 .839 1.036 2.182
.7 0 .293 .804 .991 2.038 0 .271 .860 1.049 2.217
.6 0 .298 .833 1.003 2.061 0 .290 .868 1.067 2.232
.5 0 .307 .829 1.012 2.069 0 .301 .868 1.068 2.217
.4 0 .341 .856 1.019 2.036 0 .326 .879 1.071 2.188
.3 0 .357 .941 1.216 2.505 0 .359 .967 1.268 2.633
.2 0 .433 .979 1.240 2.450 0 .427 1.022 1.281 2.562

NMAE
.9 0 .035 .151 .299 .695 0 .029 .147 .381 .909
.8 0 .036 .156 .294 .680 0 .029 .147 .375 .894
.7 0 .039 .157 .299 .690 0 .029 .150 .380 .906
.6 0 .039 .154 .308 .712 0 .031 .155 .388 .924
.5 0 .040 .161 .303 .699 0 .031 .154 .379 .901
.4 0 .045 .163 .309 .706 0 .035 .155 .385 .909
.3 0 .049 .177 .361 .830 0 .039 .173 .438 1.037
.2 0 .061 .194 .366 .823 0 .048 .188 .451 1.055

NMSE
.9 0 .081 .618 .963 2.285 0 .070 .686 1.082 2.601
.8 0 .081 .653 .972 2.307 0 .074 .703 1.074 2.573
.7 0 .086 .647 .982 2.325 0 .073 .739 1.101 2.643
.6 0 .089 .694 1.006 2.383 0 .084 .753 1.139 2.720
.5 0 .094 .688 1.023 2.417 0 .091 .753 1.140 2.714
.4 0 .117 .733 1.039 2.422 0 .107 .772 1.148 2.709
.3 0 .128 .885 1.480 3.508 0 .129 .935 1.609 3.829
.2 0 .188 .958 1.537 3.562 0 .182 1.045 1.641 3.830

SSIM
.9 0 .164 .436 .934 2.088 0 .062 .396 .961 2.309
.8 0 .144 .420 .933 2.117 0 .068 .390 .958 2.294
.7 0 .150 .441 .926 2.091 0 .070 .363 .957 2.288
.6 0 .147 .409 .920 2.080 0 .066 .359 .951 2.280
.5 0 .144 .428 .923 2.093 0 .067 .351 .948 2.269
.4 0 .129 .389 .906 2.072 0 .054 .342 .939 2.267
.3 0 .086 .323 .889 2.094 0 .029 .278 .922 2.262
.2 0 .076 .263 .845 1.998 0 .034 .230 .897 2.193

Table A.32: SOMMP accuracy (Binary sensing / DWT dictionary)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .007 .019 .021 .027 .039
.8 .007 .018 .020 .024 .035
.7 .005 .016 .019 .023 .034
.6 .006 .015 .017 .021 .030
.5 .007 .014 .015 .019 .026
.4 .008 .013 .014 .016 .021
.3 .004 .010 .012 .014 .021
.2 .004 .008 .010 .011 .016

ITERS
.9 0 5 6 11 20
.8 0 5 5 10 17.5
.7 0 5 5 10 17.5
.6 0 5 5 11 20
.5 0 5 5 10 17.5
.4 0 5 5 10 17.5
.3 0 4 5 10 19
.2 0 4 5 9 16.5

Table A.33: SOMMP computations (Binary sensing / DWT dictionary)
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A. Method Result Tables

A.17 GAP / Gaussian / 1st Order Derivative

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .008 .012 .018 .032 0 .010 .015 .023 .043
.8 0 .009 .015 .021 .040 0 .013 .019 .028 .052
.7 0 .012 .019 .028 .052 0 .016 .024 .036 .066
.6 0 .017 .025 .035 .064 0 .020 .031 .045 .082
.5 0 .020 .032 .045 .082 0 .025 .040 .057 .106
.4 0 .026 .042 .062 .115 0 .033 .052 .073 .132
.3 0 .039 .060 .086 .157 0 .046 .071 .098 .175
.2 0 .061 .096 .138 .255 0 .067 .107 .145 .262

NMAE
.9 0 .002 .002 .003 .006 0 .002 .003 .005 .009
.8 0 .002 .003 .004 .006 0 .003 .004 .006 .010
.7 0 .003 .004 .005 .009 0 .003 .004 .007 .013
.6 0 .004 .005 .007 .011 0 .004 .006 .009 .016
.5 0 .004 .006 .008 .015 0 .005 .007 .011 .020
.4 0 .006 .008 .011 .018 0 .007 .009 .014 .025
.3 0 .008 .011 .015 .024 0 .009 .013 .018 .031
.2 8.3e-4 .013 .017 .022 .034 0 .014 .018 .025 .042

NMSE
.9 0 6.9e-5 1.5e-4 3.1e-4 6.8e-4 0 1.0e-4 2.3e-4 5.4e-4 .001
.8 0 7.8e-5 2.2e-4 4.5e-4 .001 0 1.6e-4 3.8e-4 8.0e-4 .002
.7 0 1.4e-4 3.7e-4 7.7e-4 .002 0 2.4e-4 5.8e-4 .001 .003
.6 0 2.8e-4 6.1e-4 .001 .003 0 4.0e-4 9.5e-4 .002 .004
.5 0 4.1e-4 .001 .002 .004 0 6.2e-4 .002 .003 .007
.4 0 6.8e-4 .002 .004 .008 0 .001 .003 .005 .012
.3 0 .002 .004 .007 .016 0 .002 .005 .010 .021
.2 0 .004 .009 .019 .042 0 .004 .011 .021 .046

SSIM
.9 .999 1 1 1 1.000 .997 .999 1 1 1.001
.8 .999 .999 1 1 1.000 .996 .998 .999 1 1.002
.7 .998 .999 .999 1 1.001 .994 .997 .999 1 1.003
.6 .997 .998 .999 .999 1.001 .991 .996 .998 .999 1.004
.5 .995 .997 .998 .999 1.002 .985 .993 .997 .999 1.007
.4 .991 .995 .997 .998 1.002 .976 .989 .995 .998 1.011
.3 .984 .991 .994 .996 1.003 .956 .980 .992 .996 1.021
.2 .964 .979 .985 .990 1.005 .912 .959 .982 .991 1.038

Table A.34: GAP accuracy (Gaussian sensing / 1st Order Derivative)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .093 .178 .201 .234 .319
.8 .085 .165 .190 .218 .297
.7 .079 .163 .185 .219 .303
.6 .090 .168 .190 .220 .298
.5 .104 .170 .191 .214 .280
.4 .095 .180 .206 .237 .322
.3 .086 .174 .202 .232 .319
.2 .087 .171 .195 .227 .311

ITERS
.9 1.5 6 7 9 13.5
.8 1.5 6 7 9 13.5
.7 1.5 6 7 9 13.5
.6 3 6 7 8 11
.5 3 6 7 8 11
.4 1.5 6 7 9 13.5
.3 3 6 7 8 11
.2 1.5 6 7 9 13.5

Table A.35: GAP computations (Gaussian sensing / 1st Order Derivative)
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A.18. GAP / Gaussian / 2nd Order Derivative

A.18 GAP / Gaussian / 2nd Order Derivative

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .005 .009 .013 .024 0 .008 .013 .021 .039
.8 0 .006 .010 .015 .029 0 .009 .015 .024 .047
.7 0 .007 .013 .018 .035 0 .011 .018 .029 .056
.6 0 .009 .015 .023 .044 0 .013 .022 .036 .072
.5 0 .011 .019 .029 .057 0 .016 .027 .047 .094
.4 0 .014 .026 .040 .080 0 .020 .035 .064 .131
.3 0 .022 .040 .059 .115 0 .028 .048 .086 .174
.2 0 .047 .067 .100 .179 0 .050 .079 .135 .261

NMAE
.9 0 .001 .002 .002 .004 0 .002 .003 .005 .010
.8 0 .002 .002 .003 .005 0 .002 .003 .006 .011
.7 0 .002 .003 .003 .005 0 .003 .003 .007 .013
.6 0 .002 .003 .004 .006 0 .003 .004 .008 .015
.5 0 .003 .004 .005 .008 0 .004 .005 .009 .018
.4 0 .004 .005 .007 .011 0 .005 .007 .012 .023
.3 9.2e-5 .006 .007 .009 .015 0 .007 .009 .016 .030
.2 2.6e-4 .010 .013 .017 .027 0 .011 .016 .025 .046

NMSE
.9 0 2.8e-5 7.9e-5 1.6e-4 3.7e-4 0 6.4e-5 1.7e-4 4.2e-4 9.6e-4
.8 0 3.7e-5 1.1e-4 2.3e-4 5.1e-4 0 8.2e-5 2.3e-4 5.8e-4 .001
.7 0 4.9e-5 1.6e-4 3.3e-4 7.5e-4 0 1.1e-4 3.1e-4 8.3e-4 .002
.6 0 7.5e-5 2.3e-4 5.2e-4 .001 0 1.6e-4 4.7e-4 .001 .003
.5 0 1.1e-4 3.8e-4 8.5e-4 .002 0 2.4e-4 7.1e-4 .002 .005
.4 0 2.0e-4 6.9e-4 .002 .004 0 4.1e-4 .001 .004 .010
.3 0 4.7e-4 .002 .003 .008 0 7.8e-4 .002 .007 .017
.2 0 .002 .004 .010 .022 0 .003 .006 .018 .041

SSIM
.9 1 1 1 1 1.000 .998 .999 1 1 1.001
.8 .999 1 1 1 1.000 .997 .999 1 1 1.002
.7 .999 1 1 1 1.000 .996 .998 .999 1 1.002
.6 .999 .999 1 1 1.000 .993 .997 .999 1 1.003
.5 .998 .999 .999 1 1.001 .990 .996 .999 .999 1.005
.4 .996 .998 .999 .999 1.001 .984 .993 .998 .999 1.008
.3 .991 .996 .998 .999 1.003 .971 .987 .996 .998 1.014
.2 .973 .986 .992 .995 1.009 .919 .964 .985 .995 1.041

Table A.36: GAP accuracy (Gaussian sensing / 2nd Order Derivative)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .109 .176 .196 .221 .288
.8 .095 .168 .188 .216 .289
.7 .102 .164 .183 .205 .266
.6 .105 .173 .195 .219 .288
.5 .103 .178 .202 .227 .302
.4 .102 .169 .192 .215 .282
.3 .096 .171 .193 .221 .296
.2 .097 .163 .185 .208 .275

ITERS
.9 3 6 7 8 11
.8 3 6 7 8 11
.7 3 6 7 8 11
.6 3 6 7 8 11
.5 3 6 7 8 11
.4 3 6 7 8 11
.3 3 6 7 8 11
.2 2 5 6 7 10

Table A.37: GAP computations (Gaussian sensing / 2nd Order Derivative)
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A. Method Result Tables

A.19 GAP / Gaussian / Wavelet

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .015 .030 .050 .102 0 .021 .038 .058 .113
.8 0 .028 .051 .080 .158 0 .030 .053 .078 .150
.7 0 .036 .068 .104 .207 0 .035 .061 .092 .177
.6 0 .033 .064 .112 .231 0 .042 .076 .119 .233
.5 0 .036 .069 .137 .288 0 .049 .083 .148 .297
.4 0 .032 .062 .115 .239 0 .062 .118 .216 .446
.3 0 .052 .092 .167 .339 0 .059 .102 .171 .339
.2 0 .102 .162 .254 .481 0 .133 .223 .370 .725

NMAE
.9 0 .003 .005 .011 .022 0 .004 .007 .014 .029
.8 0 .005 .009 .019 .042 0 .005 .010 .018 .039
.7 0 .006 .011 .026 .055 0 .005 .011 .023 .049
.6 0 .006 .010 .023 .049 0 .006 .013 .028 .061
.5 0 .006 .011 .027 .059 0 .007 .014 .033 .073
.4 0 .007 .011 .018 .036 0 .009 .019 .051 .115
.3 0 .010 .016 .028 .056 0 .011 .018 .036 .075
.2 0 .019 .028 .045 .084 0 .021 .038 .082 .175

NMSE
.9 0 2.3e-4 8.7e-4 .003 .006 0 4.6e-4 .001 .003 .008
.8 0 7.6e-4 .003 .006 .015 0 9.0e-4 .003 .006 .014
.7 0 .001 .005 .011 .025 0 .001 .004 .008 .019
.6 0 .001 .004 .013 .030 0 .002 .006 .014 .033
.5 0 .001 .005 .019 .045 0 .002 .007 .022 .051
.4 0 .001 .004 .013 .031 0 .004 .014 .046 .111
.3 0 .003 .008 .028 .066 0 .003 .010 .029 .068
.2 0 .010 .026 .064 .145 0 .018 .050 .137 .315

SSIM
.9 .988 .995 .999 1 1.007 .979 .991 .998 .999 1.012
.8 .958 .983 .996 .999 1.024 .957 .982 .996 .999 1.024
.7 .923 .969 .994 .999 1.044 .940 .975 .995 .999 1.034
.6 .935 .973 .995 .998 1.036 .902 .960 .993 .998 1.056
.5 .913 .964 .994 .998 1.049 .859 .942 .991 .998 1.081
.4 .959 .982 .995 .998 1.021 .690 .874 .981 .997 1.180
.3 .904 .959 .989 .996 1.051 .795 .915 .986 .995 1.115
.2 .783 .904 .961 .984 1.105 .284 .704 .921 .984 1.404

Table A.38: GAP accuracy (Gaussian sensing / Wavelet analysis)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .139 .308 .363 .420 .588
.8 .070 .243 .311 .358 .531
.7 .069 .248 .319 .367 .545
.6 .102 .280 .338 .399 .577
.5 .119 .290 .348 .403 .574
.4 .139 .304 .356 .414 .579
.3 .167 .330 .377 .439 .602
.2 .161 .293 .336 .381 .512

ITERS
.9 1.5 9 12 14 21.5
.8 0.5 8 11 13 20.5
.7 0.5 8 11 13 20.5
.6 1.5 9 11 14 21.5
.5 1.5 9 12 14 21.5
.4 4 10 12 14 20
.3 5 11 12 15 21
.2 3 9 11 13 19

Table A.39: GAP computations (Gaussian sensing / Wavelet analysis)
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A.20. SGAP / Gaussian / 1st Order Derivative

A.20 SGAP / Gaussian / 1st Order Derivative

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .010 .015 .021 .038 0 .012 .018 .026 .048
.8 0 .012 .018 .025 .045 0 .014 .022 .032 .058
.7 0 .015 .022 .031 .056 0 .018 .027 .039 .071
.6 0 .019 .029 .041 .074 0 .023 .034 .050 .090
.5 0 .025 .037 .053 .094 0 .029 .044 .064 .116
.4 0 .032 .048 .069 .125 0 .039 .059 .082 .146
.3 0 .048 .071 .098 .174 0 .056 .083 .111 .193
.2 0 .072 .109 .150 .267 0 .085 .123 .167 .289

NMAE
.9 0 .002 .003 .004 .006 0 .002 .003 .005 .009
.8 0 .003 .003 .005 .007 0 .003 .004 .006 .011
.7 0 .003 .004 .006 .010 0 .004 .005 .008 .014
.6 0 .004 .005 .007 .012 0 .005 .006 .010 .017
.5 0 .005 .007 .010 .016 0 .006 .008 .012 .022
.4 0 .007 .009 .012 .020 0 .008 .010 .016 .028
.3 0 .010 .013 .017 .027 0 .011 .014 .021 .037
.2 3.8e-4 .015 .020 .024 .039 0 .016 .022 .032 .054

NMSE
.9 0 9.1e-5 2.1e-4 4.3e-4 9.5e-4 0 1.4e-4 3.2e-4 6.9e-4 .002
.8 0 1.3e-4 3.1e-4 6.3e-4 .001 0 2.0e-4 4.7e-4 .001 .002
.7 0 2.1e-4 4.8e-4 9.7e-4 .002 0 3.1e-4 7.4e-4 .002 .003
.6 0 3.8e-4 8.4e-4 .002 .004 0 5.2e-4 .001 .002 .005
.5 0 6.4e-4 .001 .003 .006 0 8.6e-4 .002 .004 .009
.4 0 .001 .002 .005 .011 0 .002 .003 .007 .014
.3 0 .002 .005 .010 .021 0 .003 .007 .012 .026
.2 0 .005 .012 .022 .048 0 .007 .015 .028 .059

SSIM
.9 .999 .999 1 1 1.000 .996 .998 .999 1 1.002
.8 .998 .999 .999 1 1.001 .995 .998 .999 1 1.003
.7 .997 .999 .999 .999 1.001 .992 .996 .999 .999 1.004
.6 .995 .998 .998 .999 1.002 .986 .994 .998 .999 1.007
.5 .992 .996 .998 .999 1.002 .977 .990 .996 .999 1.011
.4 .988 .994 .996 .998 1.003 .963 .984 .993 .997 1.018
.3 .976 .987 .992 .995 1.006 .929 .969 .987 .995 1.034
.2 .952 .973 .980 .986 1.007 .833 .926 .972 .988 1.081

Table A.40: SGAP accuracy (Gaussian sensing / 1st Order Derivative)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .039 .072 .085 .094 .128
.8 .030 .071 .089 .098 .139
.7 .030 .071 .087 .098 .139
.6 .034 .066 .075 .088 .120
.5 .031 .065 .081 .088 .123
.4 .012 .065 .083 .100 .153
.3 .026 .062 .074 .086 .122
.2 .022 .061 .070 .086 .125

ITERS
.9 0.5 2 2 3 4.5
.8 0.5 2 3 3 4.5
.7 0.5 2 3 3 4.5
.6 0.5 2 2 3 4.5
.5 0.5 2 2 3 4.5
.4 0.5 2 3 3 4.5
.3 0.5 2 2 3 4.5
.2 0.5 2 2 3 4.5

Table A.41: SGAP computations (Gaussian sensing / 1st Order Derivative)
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A. Method Result Tables

A.21 SGAP / Gaussian / 2nd Order Derivative

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .005 .010 .015 .029 0 .008 .014 .022 .043
.8 0 .006 .011 .017 .032 0 .010 .016 .026 .049
.7 0 .007 .013 .020 .039 0 .011 .019 .030 .058
.6 0 .009 .016 .025 .049 0 .013 .023 .038 .075
.5 0 .011 .021 .033 .065 0 .016 .029 .049 .098
.4 0 .015 .030 .047 .094 0 .021 .038 .066 .134
.3 0 .024 .044 .069 .136 0 .031 .056 .095 .191
.2 0 .052 .076 .116 .211 0 .062 .097 .148 .278

NMAE
.9 0 .001 .002 .003 .004 0 .002 .003 .005 .010
.8 0 .002 .002 .003 .005 0 .002 .003 .006 .011
.7 0 .002 .003 .003 .006 0 .003 .004 .006 .012
.6 0 .002 .003 .004 .007 0 .003 .004 .008 .014
.5 0 .003 .004 .005 .008 0 .004 .005 .009 .017
.4 0 .004 .006 .007 .012 0 .005 .007 .012 .022
.3 0 .006 .008 .011 .017 0 .007 .010 .017 .032
.2 3.0e-4 .012 .015 .019 .030 0 .013 .018 .029 .055

NMSE
.9 0 3.0e-5 9.3e-5 2.2e-4 5.1e-4 0 7.1e-5 1.9e-4 4.9e-4 .001
.8 0 4.0e-5 1.2e-4 2.8e-4 6.4e-4 0 9.2e-5 2.6e-4 6.5e-4 .001
.7 0 5.5e-5 1.7e-4 4.0e-4 9.2e-4 0 1.2e-4 3.5e-4 9.0e-4 .002
.6 0 7.9e-5 2.6e-4 6.2e-4 .001 0 1.7e-4 5.2e-4 .001 .003
.5 0 1.3e-4 4.5e-4 .001 .002 0 2.6e-4 8.3e-4 .002 .006
.4 0 2.3e-4 9.0e-4 .002 .005 0 4.5e-4 .001 .004 .010
.3 0 5.5e-4 .002 .005 .011 0 9.5e-4 .003 .009 .021
.2 0 .003 .006 .013 .029 0 .004 .009 .022 .049

SSIM
.9 .999 1 1 1 1.000 .997 .999 1 1 1.001
.8 .999 1 1 1 1.000 .996 .998 1 1 1.002
.7 .999 .999 1 1 1.000 .995 .998 .999 1 1.002
.6 .998 .999 1 1 1.001 .993 .997 .999 1 1.003
.5 .997 .999 .999 1 1.001 .990 .995 .999 .999 1.005
.4 .995 .998 .999 .999 1.002 .982 .992 .997 .999 1.009
.3 .989 .995 .997 .998 1.004 .963 .984 .995 .997 1.018
.2 .965 .982 .989 .994 1.012 .887 .951 .981 .993 1.057

Table A.42: SGAP accuracy (Gaussian sensing / 2nd Order Derivative)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .061 .095 .102 .117 .150
.8 .053 .091 .101 .117 .155
.7 .033 .077 .097 .107 .151
.6 .057 .095 .102 .121 .160
.5 .038 .079 .097 .107 .147
.4 .031 .078 .097 .109 .155
.3 .039 .074 .086 .097 .132
.2 .035 .072 .083 .096 .133

ITERS
.9 3 3 3 3 3
.8 0.5 2 3 3 4.5
.7 0.5 2 3 3 4.5
.6 0 2 3 4 7
.5 0.5 2 3 3 4.5
.4 0.5 2 3 3 4.5
.3 0.5 2 2 3 4.5
.2 0.5 2 2 3 4.5

Table A.43: SGAP computations (Gaussian sensing / 2nd Order Derivative)
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A.22. SGAP / Binary / 2nd Order Derivative

A.22 SGAP / Binary / 2nd Order Derivative

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .003 .006 .009 .016 0 .005 .008 .013 .024
.8 0 .005 .009 .013 .025 0 .008 .013 .019 .037
.7 0 .007 .012 .018 .033 0 .010 .017 .027 .051
.6 0 .009 .016 .024 .046 0 .013 .022 .035 .068
.5 0 .011 .021 .032 .064 0 .016 .029 .048 .096
.4 0 .015 .029 .046 .092 0 .021 .038 .067 .135
.3 0 .023 .044 .069 .138 0 .031 .057 .095 .191
.2 0 .055 .078 .115 .206 0 .064 .098 .151 .280

NMAE
.9 0 8.5e-4 .001 .002 .003 0 .001 .002 .003 .006
.8 0 .001 .002 .002 .004 0 .002 .003 .005 .009
.7 0 .002 .002 .003 .005 0 .002 .003 .006 .011
.6 0 .002 .003 .004 .007 0 .003 .004 .008 .014
.5 0 .003 .004 .005 .009 0 .004 .005 .010 .018
.4 0 .004 .005 .007 .012 0 .005 .007 .012 .022
.3 0 .006 .008 .011 .017 0 .007 .010 .017 .031
.2 9.6e-4 .012 .015 .019 .030 0 .013 .018 .030 .056

NMSE
.9 0 1.2e-5 3.2e-5 7.3e-5 1.6e-4 0 2.8e-5 7.2e-5 1.7e-4 3.7e-4
.8 0 2.7e-5 7.6e-5 1.7e-4 3.8e-4 0 6.4e-5 1.7e-4 3.8e-4 8.5e-4
.7 0 4.7e-5 1.4e-4 3.1e-4 7.0e-4 0 1.1e-4 2.9e-4 7.1e-4 .002
.6 0 7.5e-5 2.5e-4 5.6e-4 .001 0 1.7e-4 4.9e-4 .001 .003
.5 0 1.3e-4 4.6e-4 .001 .002 0 2.6e-4 8.3e-4 .002 .005
.4 0 2.3e-4 8.7e-4 .002 .005 0 4.5e-4 .001 .004 .010
.3 0 5.3e-4 .002 .005 .011 0 9.6e-4 .003 .009 .021
.2 0 .003 .006 .013 .029 0 .004 .010 .023 .050

SSIM
.9 1 1 1 1 1.000 .999 1 1 1 1.001
.8 .999 1 1 1 1.000 .998 .999 1 1 1.001
.7 .999 1 1 1 1.000 .996 .998 .999 1 1.002
.6 .998 .999 1 1 1.001 .993 .997 .999 1 1.003
.5 .997 .999 .999 1 1.001 .989 .995 .999 .999 1.005
.4 .995 .998 .999 .999 1.002 .982 .992 .998 .999 1.009
.3 .989 .995 .997 .998 1.004 .963 .984 .995 .997 1.018
.2 .965 .982 .989 .993 1.011 .874 .946 .979 .993 1.065

Table A.44: SGAP accuracy (Binary sensing / 2nd Order Derivative)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .041 .078 .094 .103 .140
.8 .040 .075 .095 .098 .133
.7 .036 .079 .097 .107 .150
.6 .036 .078 .097 .106 .148
.5 .032 .077 .095 .108 .154
.4 .034 .070 .090 .094 .131
.3 .030 .069 .089 .094 .133
.2 .034 .066 .075 .088 .120

ITERS
.9 0.5 2 3 3 4.5
.8 0.5 2 3 3 4.5
.7 0.5 2 3 3 4.5
.6 0.5 2 3 3 4.5
.5 0.5 2 3 3 4.5
.4 0.5 2 3 3 4.5
.3 0.5 2 3 3 4.5
.2 0.5 2 2 3 4.5

Table A.45: SGAP computations (Binary sensing / 2nd Order Derivative)

81



A. Method Result Tables

A.23 SGAP / Gaussian / Wavelet

Channel 1 Channel 2
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 0 .042 .056 .070 .113 0 .046 .062 .080 .131
.8 .011 .061 .079 .094 .144 .010 .067 .086 .105 .161
.7 .006 .071 .097 .115 .181 .011 .080 .105 .126 .195
.6 .009 .107 .146 .173 .271 .002 .112 .157 .185 .295
.5 0 .116 .164 .205 .339 0 .115 .176 .218 .372
.4 0 .121 .195 .255 .457 0 .127 .208 .282 .513
.3 0 .140 .223 .320 .591 0 .151 .230 .355 .662
.2 0 .216 .327 .428 .746 0 .209 .325 .460 .835

NMAE
.9 0 .007 .011 .018 .034 0 .008 .013 .021 .042
.8 0 .010 .016 .023 .043 0 .011 .017 .029 .057
.7 0 .011 .019 .027 .051 0 .012 .020 .035 .068
.6 0 .017 .028 .040 .074 0 .016 .028 .053 .108
.5 0 .018 .030 .044 .084 0 .018 .030 .056 .113
.4 0 .021 .035 .053 .100 0 .020 .034 .065 .133
.3 0 .024 .039 .060 .114 0 .024 .040 .070 .140
.2 0 .040 .057 .081 .143 0 .036 .058 .094 .182

NMSE
.9 0 .002 .003 .005 .010 0 .002 .004 .006 .013
.8 0 .004 .006 .009 .017 0 .004 .007 .011 .021
.7 0 .005 .009 .013 .026 0 .006 .011 .016 .030
.6 0 .012 .021 .030 .057 0 .013 .025 .034 .067
.5 0 .013 .027 .042 .085 0 .013 .031 .048 .099
.4 0 .015 .038 .065 .141 0 .016 .043 .079 .174
.3 0 .020 .050 .103 .227 0 .023 .053 .126 .281
.2 0 .047 .107 .183 .388 0 .044 .105 .211 .462

SSIM
.9 .970 .987 .994 .998 1.015 .949 .978 .992 .998 1.027
.8 .945 .976 .989 .996 1.026 .903 .959 .985 .996 1.052
.7 .923 .966 .984 .994 1.036 .859 .940 .979 .994 1.076
.6 .841 .929 .967 .988 1.077 .704 .876 .961 .991 1.163
.5 .806 .914 .961 .987 1.095 .631 .845 .955 .987 1.201
.4 .745 .887 .947 .982 1.124 .533 .804 .943 .985 1.256
.3 .643 .841 .928 .973 1.172 .422 .754 .912 .976 1.308
.2 .451 .736 .858 .927 1.212 .047 .583 .830 .940 1.476

Table A.46: SGAP accuracy (Gaussian sensing / Wavelet analysis)

Channel 1+2
CR LOW .25 MED .75 HIGH

TIME
.9 .018 .086 .107 .131 .198
.8 .018 .085 .105 .129 .195
.7 .015 .084 .106 .130 .199
.6 .017 .082 .103 .125 .191
.5 .016 .086 .104 .132 .202
.4 .032 .101 .111 .147 .216
.3 .021 .101 .126 .155 .235
.2 .046 .108 .130 .150 .212

ITERS
.9 0 2 3 4 7
.8 0 2 3 4 7
.7 0 2 3 4 7
.6 0 2 3 4 7
.5 0 2 3 4 7
.4 0 3 3 5 8
.3 0 3 4 5 8
.2 0 3 4 5 8

Table A.47: SGAP computations (Gaussian sensing / Wavelet analysis)
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Appendix B

Noise Aware Reconstruction
Result Tables

This appendix contains the resulting metric values when reconstructing noisy mea-
surements using the standard OMMP and GAP algorithms and their noise-aware
versions OMMPn and GAPn. Each section is titled as follows: Algorithm Name /
Type of Signals / Variable. The first term is the name of the algorithm that is used.
The results of the normal and noise-aware algorithm are shown in one table. The
second term indicates what type of signals were used for these results: real data from
the MIT-BIH Arrhythmia database or simulated signals from the ECG simulator.
The last term indicates whether the results are shown as a function of varying CR
or noise level. The complete description of the experiments and the data (real and
simulated) can be found in chapter 4.
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B. Noise Aware Reconstruction Result Tables

B.1 OMMP / Real / Compression

OMMP OMMPn
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .097 .140 .155 .169 .213 .097 .545 .575 .617 .213
.8 .103 .159 .177 .196 .252 .103 .557 .591 .628 .252
.7 .101 .160 .178 .199 .257 .101 .460 .487 .518 .257
.6 .106 .167 .187 .208 .270 .106 .422 .446 .475 .270
.5 .115 .190 .213 .241 .316 .115 .427 .454 .481 .316
.4 .119 .211 .238 .273 .365 .119 .396 .423 .455 .365
.3 .116 .261 .301 .358 .503 .116 .406 .437 .471 .503
.2 .182 .382 .440 .515 .715 .182 .425 .471 .532 .715

NMAE
.9 0 .020 .027 .043 .077 0 .084 .109 .156 .077
.8 0 .023 .030 .049 .089 0 .086 .110 .158 .089
.7 0 .023 .030 .051 .092 0 .070 .091 .132 .092
.6 0 .024 .032 .053 .097 0 .064 .082 .118 .097
.5 0 .028 .037 .061 .112 0 .064 .084 .119 .112
.4 0 .031 .041 .073 .136 0 .062 .078 .110 .136
.3 0 .039 .052 .093 .175 0 .063 .079 .114 .175
.2 0 .059 .080 .132 .242 0 .070 .090 .124 .242

NMSE
.9 .006 .020 .024 .029 .042 .006 .297 .331 .380 .042
.8 .005 .025 .031 .038 .058 .005 .310 .350 .395 .058
.7 .005 .025 .032 .039 .060 .005 .212 .237 .269 .060
.6 .005 .028 .035 .043 .067 .005 .178 .199 .226 .067
.5 .004 .036 .045 .058 .090 .004 .182 .206 .232 .090
.4 1.2e-4 .045 .057 .074 .119 1.2e-4 .157 .179 .207 .119
.3 0 .068 .091 .128 .218 0 .165 .191 .222 .218
.2 0 .146 .193 .266 .445 0 .180 .222 .283 .445

SSIM
.9 .798 .909 .961 .983 1.093 .798 .445 .637 .786 1.093
.8 .737 .881 .951 .977 1.121 .737 .442 .627 .776 1.121
.7 .722 .875 .950 .977 1.131 .722 .547 .710 .835 1.131
.6 .708 .868 .946 .974 1.134 .708 .578 .742 .855 1.134
.5 .632 .833 .931 .967 1.168 .632 .574 .737 .855 1.168
.4 .531 .788 .917 .959 1.216 .531 .622 .757 .860 1.216
.3 .324 .692 .874 .938 1.307 .324 .596 .753 .858 1.307
.2 .011 .521 .742 .861 1.372 .011 .544 .703 .820 1.372

TIME
.9 .010 .044 .055 .067 .101 .010 1.001 1.085 1.178 .101
.8 .008 .038 .046 .058 .088 .008 .635 .678 .727 .088
.7 .003 .035 .045 .057 .089 .003 .367 .397 .432 .089
.6 .003 .032 .040 .051 .080 .003 .227 .245 .268 .080
.5 .002 .027 .034 .044 .069 .002 .127 .137 .152 .069
.4 6.1e-5 .023 .030 .039 .062 6.1e-5 .068 .073 .080 .062
.3 0 .018 .024 .034 .058 0 .032 .034 .036 .058
.2 0 .014 .018 .026 .043 0 .013 .014 .016 .043

ITER
.9 11 20 22 26 35 11 115 118 120 35
.8 10 19 21 25 34 10 99 101 103 34
.7 8.5 19 22 26 36.5 8.5 80 82 84 36.5
.6 8.5 19 22 26 36.5 8.5 66 68 69 36.5
.5 7.5 18 21 25 35.5 7.5 55 56 58 35.5
.4 3.5 17 21 26 39.5 3.5 43 45 46 39.5
.3 3.5 17 20 26 39.5 3.5 33 34 35 39.5
.2 1 16 19 26 41 1 23 24 25 41

Table B.1: OMMP and OMMPn metrics for varying CR for real signals
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B.2. OMMP / Real / Noise

B.2 OMMP / Real / Noise

OMMP OMMPn
noise LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.01 .119 .372 .463 .541 .794 .119 .052 .059 .068 .794
.02 .052 .130 .151 .181 .259 .052 .163 .177 .191 .259
.05 .110 .186 .210 .236 .312 .110 .414 .438 .464 .312
.1 .158 .240 .265 .294 .376 .158 .653 .698 .738 .376
.2 .210 .299 .326 .358 .446 .210 .900 .951 1.012 .446

NMAE
.01 0 .037 .062 .095 .181 0 .009 .010 .015 .181
.02 0 .019 .026 .049 .094 0 .026 .033 .044 .094
.05 0 .027 .036 .061 .113 0 .063 .080 .114 .113
.1 0 .035 .045 .075 .135 0 .101 .127 .182 .135
.2 0 .044 .057 .090 .160 0 .136 .175 .251 .160

NMSE
.01 0 .138 .214 .293 .524 0 .003 .003 .005 .524
.02 0 .017 .023 .033 .057 0 .027 .031 .036 .057
.05 .003 .034 .044 .056 .088 .003 .171 .192 .215 .088
.1 .014 .058 .070 .087 .130 .014 .426 .487 .545 .130
.2 .031 .089 .106 .128 .186 .031 .809 .905 1.024 .186

SSIM
.01 0 .487 .693 .844 1.378 0 .989 .993 .996 1.378
.02 .759 .894 .966 .984 1.119 .759 .907 .947 .972 1.119
.05 .638 .836 .935 .968 1.166 .638 .598 .753 .859 1.166
.1 .510 .772 .895 .947 1.210 .510 .370 .542 .707 1.210
.2 .371 .699 .847 .918 1.246 .371 .234 .390 .559 1.246

TIME
.01 .315 .406 .432 .466 .557 .315 .015 .018 .023 .557
.02 0 .045 .064 .106 .196 0 .067 .074 .083 .196
.05 0 .027 .034 .046 .074 0 .126 .136 .153 .074
.1 .005 .021 .026 .032 .048 .005 .155 .165 .185 .048
.2 .007 .020 .023 .028 .041 .007 .172 .183 .204 .041

ITER
.01 88 91 92 93 96 88 15 18 21 96
.02 0 26 32 44 71 0 40 42 43 71
.05 6 18 21 26 38 6 55 56 57 38
.1 7.5 15 17 20 27.5 7.5 61 62 63 27.5
.2 5.5 13 15 18 25.5 5.5 64 65 66 25.5

Table B.2: OMMP and OMMPn metrics for varying noise for real signals
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B. Noise Aware Reconstruction Result Tables

B.3 OMMP / Simulated / Compression

OMMP OMMPn
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .086 .107 .115 .121 .143 .086 .516 .546 .569 .143
.8 .085 .113 .121 .132 .160 .085 .485 .520 .548 .160
.7 .098 .128 .138 .148 .178 .098 .511 .548 .569 .178
.6 .092 .126 .137 .148 .182 .092 .428 .449 .484 .182
.5 .103 .138 .151 .162 .197 .103 .415 .443 .471 .197
.4 .112 .146 .156 .168 .202 .112 .369 .394 .431 .202
.3 .122 .166 .182 .196 .239 .122 .361 .391 .417 .239
.2 .138 .209 .233 .257 .328 .138 .356 .383 .416 .328

NMAE
.9 .007 .010 .010 .012 .014 .007 .058 .061 .065 .014
.8 .007 .010 .011 .013 .016 .007 .054 .058 .062 .016
.7 .008 .012 .013 .014 .018 .008 .056 .060 .064 .018
.6 .008 .011 .012 .014 .017 .008 .046 .049 .053 .017
.5 .008 .013 .014 .016 .020 .008 .045 .048 .052 .020
.4 .009 .013 .014 .016 .020 .009 .040 .044 .046 .020
.3 .010 .015 .016 .019 .024 .010 .038 .042 .046 .024
.2 .010 .018 .020 .023 .032 .010 .037 .041 .045 .032

NMSE
.9 .007 .011 .013 .015 .020 .007 .266 .298 .324 .020
.8 .006 .013 .015 .017 .024 .006 .236 .270 .301 .024
.7 .008 .016 .019 .022 .030 .008 .261 .300 .324 .030
.6 .007 .016 .019 .022 .031 .007 .183 .201 .235 .031
.5 .009 .019 .023 .026 .037 .009 .172 .196 .221 .037
.4 .011 .021 .024 .028 .039 .011 .136 .156 .185 .039
.3 .012 .028 .033 .038 .054 .012 .130 .153 .174 .054
.2 .011 .044 .054 .066 .099 .011 .127 .147 .173 .099

SSIM
.9 .999 1 1 1 1 .999 .992 .993 .994 1
.8 .999 1 1 1 1 .999 .993 .994 .995 1
.7 .999 .999 1 1 1 .999 .992 .993 .994 1
.6 .999 1 1 1 1 .999 .994 .995 .996 1
.5 .999 .999 .999 1 1 .999 .995 .995 .996 1
.4 .999 .999 .999 1 1 .999 .996 .996 .997 1
.3 .999 .999 .999 .999 1 .999 .996 .996 .997 1
.2 .998 .998 .999 .999 1 .998 .996 .996 .997 1

TIME
.9 .014 .020 .022 .025 .031 .014 .967 1.030 1.100 .031
.8 .013 .018 .020 .022 .026 .013 .591 .626 .680 .026
.7 .012 .016 .017 .018 .022 .012 .398 .417 .455 .022
.6 .011 .014 .016 .017 .021 .011 .214 .232 .253 .021
.5 .008 .013 .014 .016 .021 .008 .123 .131 .143 .021
.4 .008 .011 .012 .013 .016 .008 .062 .068 .074 .016
.3 .005 .009 .010 .012 .016 .005 .030 .032 .038 .016
.2 .005 .007 .008 .008 .009 .005 .010 .011 .012 .009

ITER
.9 6 9 10 11 14 6 114 116 119 14
.8 6 9 9 11 14 6 96 98 100 14
.7 5 8 9 10 13 5 83 84 86 13
.6 6.5 8 9 9 10.5 6.5 66 68 69 10.5
.5 6.5 8 9 9 10.5 6.5 54.5 56 57 10.5
.4 4 7 8 9 12 4 42 43 44 12
.3 5.5 7 8 8 9.5 5.5 31 32 33 9.5
.2 4.5 6 7 7 8.5 4.5 21 22 22 8.5

Table B.3: OMMP and OMMPn metrics for varying CR for simulated signals
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B.4. OMMP / Simulated / Noise

B.4 OMMP / Simulated / Noise

OMMP OMMPn
noise LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.01 .020 .029 .032 .036 .045 .020 .054 .057 .062 .045
.02 .064 .087 .095 .103 .126 .064 .170 .181 .192 .126
.05 .110 .143 .155 .165 .197 .110 .433 .461 .482 .197
.1 .132 .185 .204 .220 .272 .132 .685 .742 .773 .272
.2 .163 .230 .256 .275 .343 .163 .952 1.007 1.080 .343

NMAE
.01 .002 .003 .003 .004 .005 .002 .005 .005 .006 .005
.02 .006 .008 .009 .010 .013 .006 .018 .019 .021 .013
.05 .008 .013 .014 .016 .020 .008 .047 .050 .054 .020
.1 .010 .016 .018 .020 .026 .010 .075 .080 .084 .026
.2 .011 .019 .022 .025 .033 .011 .103 .111 .118 .033

NMSE
.01 2.3e-4 8.5e-4 .001 .001 .002 2.3e-4 .003 .003 .004 .002
.02 .003 .008 .009 .011 .015 .003 .029 .033 .037 .015
.05 .010 .020 .024 .027 .037 .010 .187 .212 .232 .037
.1 .013 .034 .041 .048 .069 .013 .470 .550 .597 .069
.2 .019 .053 .065 .076 .110 .019 .906 1.013 1.166 .110

SSIM
.01 1 1 1 1 1 1 1 1 1 1
.02 1 1 1 1 1 1 .999 .999 .999 1
.05 .999 .999 .999 1 1 .999 .994 .995 .996 1
.1 .998 .999 .999 .999 1 .998 .986 .987 .989 1
.2 .997 .998 .998 .999 1 .997 .973 .976 .979 1

TIME
.01 .021 .037 .039 .047 .063 .021 .011 .012 .014 .063
.02 .010 .016 .018 .020 .027 .010 .065 .072 .082 .027
.05 .010 .013 .013 .014 .017 .010 .126 .138 .157 .017
.1 .009 .011 .012 .012 .014 .009 .160 .169 .184 .014
.2 .008 .010 .011 .011 .013 .008 .175 .185 .201 .013

ITER
.01 16.5 22.5 24 26.5 32.5 16.5 12 13 14 32.5
.02 8 11 12 13 16 8 39.5 41 43 16
.05 4 7 8 9 12 4 55 56 58 12
.1 4.5 6 6 7 8.5 4.5 61 62 63 8.5
.2 3.5 5 6 6 7.5 3.5 64 65 66 7.5

Table B.4: OMMP and OMMPn metrics for varying noise for simulated signals
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B. Noise Aware Reconstruction Result Tables

B.5 GAP / Real / Compression

GAP GAPn
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .109 .175 .194 .219 .285 .109 .216 .228 .241 .285
.8 .117 .198 .224 .252 .333 .117 .246 .261 .277 .333
.7 .108 .189 .215 .242 .322 .108 .235 .249 .264 .322
.6 .109 .188 .215 .241 .320 .109 .234 .250 .266 .320
.5 .113 .198 .229 .256 .341 .113 .248 .264 .284 .341
.4 .111 .200 .227 .259 .348 .111 .245 .266 .288 .348
.3 .130 .228 .258 .293 .390 .130 .271 .299 .328 .390
.2 .161 .342 .397 .462 .643 .161 .349 .405 .468 .643

NMAE
.9 3.0e-4 .027 .033 .045 .071 3.0e-4 .032 .042 .062 .071
.8 .002 .031 .037 .050 .079 .002 .037 .047 .069 .079
.7 9.8e-4 .029 .036 .048 .077 9.8e-4 .035 .045 .067 .077
.6 8.0e-4 .030 .036 .050 .079 8.0e-4 .035 .045 .065 .079
.5 .001 .032 .039 .053 .084 .001 .037 .048 .070 .084
.4 .003 .033 .040 .054 .084 .003 .038 .048 .070 .084
.3 .003 .038 .046 .062 .097 .003 .043 .055 .081 .097
.2 0 .058 .074 .103 .170 0 .058 .077 .107 .170

NMSE
.9 .005 .030 .038 .048 .074 .005 .047 .052 .058 .074
.8 .003 .039 .050 .063 .100 .003 .061 .068 .077 .100
.7 .001 .036 .046 .059 .093 .001 .055 .062 .070 .093
.6 .001 .035 .046 .058 .092 .001 .055 .063 .071 .092
.5 5.0e-4 .039 .052 .065 .104 5.0e-4 .062 .070 .080 .104
.4 0 .040 .051 .067 .108 0 .060 .071 .083 .108
.3 .001 .052 .067 .086 .136 .001 .073 .090 .107 .136
.2 0 .117 .158 .214 .359 0 .122 .164 .219 .359

SSIM
.9 .792 .895 .937 .964 1.067 .792 .836 .918 .961 1.067
.8 .721 .860 .920 .953 1.093 .721 .799 .894 .948 1.093
.7 .757 .876 .925 .955 1.074 .757 .812 .904 .953 1.074
.6 .755 .875 .925 .955 1.075 .755 .812 .905 .951 1.075
.5 .722 .859 .914 .950 1.087 .722 .796 .890 .943 1.087
.4 .731 .861 .915 .947 1.077 .731 .794 .890 .942 1.077
.3 .641 .818 .891 .935 1.112 .641 .753 .862 .925 1.112
.2 .266 .628 .759 .869 1.230 .266 .609 .764 .863 1.230

TIME
.9 .260 .442 .502 .563 .744 .260 .140 .158 .176 .744
.8 .324 .440 .466 .517 .633 .324 .138 .157 .175 .633
.7 .334 .437 .456 .505 .609 .334 .136 .155 .174 .609
.6 .255 .400 .443 .497 .642 .255 .136 .154 .173 .642
.5 .266 .378 .434 .453 .565 .266 .135 .154 .165 .565
.4 .288 .376 .391 .435 .522 .288 .120 .153 .155 .522
.3 .342 .375 .378 .397 .429 .342 .107 .134 .153 .429
.2 .238 .325 .375 .383 .470 .238 .116 .134 .153 .470

ITER
.9 4 7 8 9 12 4 6 7 8 12
.8 5.5 7 7 8 9.5 5.5 6 7 8 9.5
.7 5.5 7 7 8 9.5 5.5 6 7 8 9.5
.6 3 6 7 8 11 3 6 7 8 11
.5 4.5 6 7 7 8.5 4.5 6 7 7 8.5
.4 4.5 6 6 7 8.5 4.5 5 7 7 8.5
.3 6 6 6 6 6 6 4 6 7 6
.2 3.5 5 6 6 7.5 3.5 5 6 7 7.5

Table B.5: GAP and GAPn metrics for varying CR for real signals
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B.6. GAP / Real / Noise

B.6 GAP / Real / Noise

GAP GAPn
noise LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.01 1.9e-4 .037 .049 .062 .098 1.9e-4 .035 .050 .086 .098
.02 .060 .109 .124 .142 .191 .060 .126 .137 .152 .191
.05 .107 .192 .220 .249 .334 .107 .240 .256 .277 .334
.1 .173 .292 .331 .371 .490 .173 .350 .375 .405 .490
.2 .282 .424 .471 .518 .660 .282 .467 .498 .540 .660

NMAE
.01 0 .008 .009 .013 .022 0 .007 .010 .015 .022
.02 .001 .018 .022 .029 .046 .001 .020 .026 .039 .046
.05 .002 .031 .038 .051 .081 .002 .037 .047 .067 .081
.1 .003 .047 .057 .076 .119 .003 .054 .069 .094 .119
.2 .002 .067 .081 .110 .175 .002 .072 .090 .131 .175

NMSE
.01 0 .001 .002 .004 .007 0 .001 .003 .007 .007
.02 0 .012 .015 .020 .033 0 .016 .019 .023 .033
.05 0 .037 .049 .062 .099 0 .058 .066 .077 .099
.1 .006 .085 .110 .138 .217 .006 .123 .141 .164 .217
.2 .046 .179 .222 .269 .402 .046 .218 .248 .291 .402

SSIM
.01 .985 .993 .995 .997 1.004 .985 .990 .995 .997 1.004
.02 .911 .955 .972 .984 1.028 .911 .931 .966 .984 1.028
.05 .749 .871 .920 .952 1.073 .749 .802 .898 .947 1.073
.1 .516 .746 .837 .899 1.129 .516 .669 .801 .888 1.129
.2 .213 .577 .719 .819 1.182 .213 .525 .694 .816 1.182

TIME
.01 .381 .765 .897 1.022 1.407 .381 .134 .170 .189 1.407
.02 .272 .448 .506 .565 .740 .272 .134 .153 .172 .740
.05 .276 .386 .442 .459 .568 .276 .134 .152 .170 .568
.1 .293 .382 .389 .442 .531 .293 .116 .134 .152 .531
.2 .265 .344 .383 .397 .477 .265 .115 .121 .135 .477

ITER
.01 6 12 14 16 22 6 6 8 9 22
.02 4 7 8 9 12 4 6 7 8 12
.05 4.5 6 7 7 8.5 4.5 6 7 7.7 8.5
.1 4.5 6 6 7 8.5 4.5 5 6 7 8.5
.2 3.5 5 6 6 7.5 3.5 5 5 6 7.5

Table B.6: GAP and GAPn metrics for varying noise for real signals
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B. Noise Aware Reconstruction Result Tables

B.7 GAP / Simulated / Compression

GAP GAPn
CR LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.9 .151 .194 .209 .223 .266 .151 .212 .221 .232 .266
.8 .163 .204 .217 .230 .271 .163 .226 .239 .253 .271
.7 .170 .229 .247 .269 .328 .170 .253 .269 .281 .328
.6 .149 .210 .234 .250 .310 .149 .239 .253 .273 .310
.5 .157 .215 .230 .254 .312 .157 .243 .258 .281 .312
.4 .153 .203 .217 .236 .286 .153 .232 .249 .266 .286
.3 .144 .207 .223 .249 .312 .144 .252 .267 .291 .312
.2 .162 .234 .257 .281 .353 .162 .269 .293 .321 .353

NMAE
.9 .011 .017 .019 .021 .026 .011 .023 .024 .026 .026
.8 .012 .018 .019 .021 .027 .012 .025 .026 .027 .027
.7 .014 .020 .022 .024 .030 .014 .027 .029 .031 .030
.6 .009 .017 .020 .023 .032 .009 .026 .027 .029 .032
.5 .010 .018 .020 .024 .032 .010 .026 .028 .031 .032
.4 .011 .018 .019 .022 .029 .011 .025 .027 .028 .029
.3 .011 .018 .020 .023 .030 .011 .025 .028 .031 .030
.2 .011 .020 .023 .026 .034 .011 .027 .030 .033 .034

NMSE
.9 .020 .038 .044 .050 .068 .020 .045 .049 .054 .068
.8 .024 .041 .047 .053 .071 .024 .051 .057 .064 .071
.7 .023 .053 .061 .072 .102 .023 .064 .072 .079 .102
.6 .016 .044 .055 .062 .090 .016 .057 .064 .074 .090
.5 .019 .046 .053 .065 .092 .019 .059 .066 .079 .092
.4 .019 .041 .047 .056 .078 .019 .054 .062 .070 .078
.3 .014 .043 .050 .062 .091 .014 .063 .071 .085 .091
.2 .018 .055 .066 .079 .116 .018 .072 .086 .103 .116

SSIM
.9 .998 .999 .999 .999 1 .998 .999 .999 .999 1
.8 .998 .999 .999 .999 1 .998 .998 .999 .999 1
.7 .998 .998 .999 .999 .999 .998 .998 .998 .998 .999
.6 .998 .998 .999 .999 1 .998 .998 .998 .999 1
.5 .998 .998 .999 .999 1 .998 .998 .998 .999 1
.4 .998 .999 .999 .999 1 .998 .998 .998 .999 1
.3 .998 .999 .999 .999 1 .998 .998 .998 .999 1
.2 .997 .998 .998 .999 1 .997 .997 .998 .998 1

TIME
.9 .181 .336 .387 .440 .595 .181 .096 .099 .115 .595
.8 .223 .325 .382 .394 .496 .223 .096 .114 .132 .496
.7 .203 .321 .365 .399 .517 .203 .095 .104 .113 .517
.6 .132 .280 .325 .380 .528 .132 .094 .112 .113 .528
.5 .152 .257 .314 .326 .431 .152 .094 .112 .113 .431
.4 .216 .256 .256 .282 .322 .216 .093 .095 .111 .322
.3 .220 .255 .255 .278 .313 .220 .093 .111 .137 .313
.2 .110 .195 .196 .252 .338 .110 .092 .110 .128 .338

ITER
.9 2 5 6 7 10 2 4 4 5 10
.8 3.5 5 6 6 7.5 3.5 4 5 6 7.5
.7 3.5 5 5 6 7.5 3.5 4 4 5 7.5
.6 1 4 5 6 9 1 4 5 5 9
.5 2.5 4 5 5 6.5 2.5 4 5 5 6.5
.4 4 4 4 4 4 4 4 4 5 4
.3 1.5 3 4 4 5.5 1.5 4 5 6 5.5
.2 1.5 3 3 4 5.5 1.5 4 5 6 5.5

Table B.7: GAP and GAPn metrics for varying CR for simulated signals
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B.8. GAP / Simulated / Noise

B.8 GAP / Simulated / Noise

GAP GAPn
noise LOW .25 MED .75 HIGH LOW .25 MED .75 HIGH

PRD
.01 .022 .032 .035 .039 .049 .022 .032 .036 .043 .049
.02 .102 .126 .134 .142 .167 .102 .123 .134 .146 .167
.05 .169 .220 .235 .253 .304 .169 .254 .274 .297 .304
.1 .221 .304 .328 .360 .444 .221 .375 .403 .437 .444
.2 .267 .378 .415 .453 .564 .267 .504 .537 .584 .564

NMAE
.01 .002 .003 .003 .004 .005 .002 .004 .004 .005 .005
.02 .008 .011 .013 .014 .017 .008 .013 .014 .015 .017
.05 .012 .019 .021 .023 .029 .012 .027 .029 .031 .029
.1 .013 .024 .028 .032 .043 .013 .040 .042 .046 .043
.2 .016 .029 .034 .039 .052 .016 .053 .057 .061 .052

NMSE
.01 3.3e-4 .001 .001 .002 .002 3.3e-4 .001 .001 .002 .002
.02 .009 .016 .018 .020 .027 .009 .015 .018 .021 .027
.05 .024 .048 .055 .064 .088 .024 .064 .075 .088 .088
.1 .037 .093 .108 .130 .186 .037 .141 .163 .191 .186
.2 .050 .143 .172 .205 .298 .050 .254 .288 .341 .298

SSIM
.01 1 1 1 1 1 1 1 1 1 1
.02 .999 .999 1 1 1 .999 1 1 1 1
.05 .998 .998 .999 .999 .999 .998 .998 .998 .998 .999
.1 .996 .997 .997 .998 .999 .996 .995 .996 .997 .999
.2 .992 .995 .996 .997 .999 .992 .992 .993 .994 .999

TIME
.01 .433 .606 .655 .721 .894 .433 .108 .112 .130 .894
.02 .170 .325 .372 .429 .584 .170 .094 .112 .130 .584
.05 .169 .257 .267 .315 .403 .169 .094 .112 .127 .403
.1 .117 .204 .257 .262 .349 .117 .094 .094 .112 .349
.2 .113 .199 .200 .257 .343 .113 .076 .094 .112 .343

ITER
.01 7 10 10.5 12 15 7 4.5 5 6 15
.02 2.8 5 6 6.5 8.8 2.8 4 5 6 8.8
.05 2.5 4 4 5 6.5 2.5 4 5 5 6.5
.1 1.5 3 4 4 5.5 1.5 4 4 5 5.5
.2 1.5 3 3 4 5.5 1.5 3 4 5 5.5

Table B.8: GAP and GAPn metrics for varying noise for simulated signals
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