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Preface

This thesis contains the investigations I performed when trying to get to grips with the
intricacies of coronal loop oscillations. The study of oscillations of magnetic cylinders is a
subject of interest for about 40 years, in which the simple models of homogeneous cylinders
have been extended in many directions, stimulated by observations of the solar corona.
This thesis hopes to lead the way to unify several extensions of these models, leading to
a better understanding of the oscillations of these coronal loops. I have enjoyed working
on this master thesis project; the process gave me the joy one gets by finding things out,
thinking about a solving strategy or just calculating one’s way towards an equation. In
the end, I hope to have contributed if only an infinitesimal step (ε, presumably) towards
a further understanding of coronal loop oscillations. I hope you will enjoy reading it.

Several people should be thanked for making this thesis possible. First of all I would
like to thank my promotor, Prof. T. Van Doorsselaere, for many insightful comments
which helped to improve the quality of the thesis, for bringing his physical intuition to
the rescue in order to bring sense into a chaos of calculations I sometimes produced, and
finally for his ongoing support during the past year. Let us hope this will be the start of
a long and fruitful collaboration. Also the readers, Prof. Em. M. Goossens and Prof. A.
Kuijlaars should be thanked, not just for actually reading this thesis, but also for their
critical questions and observations which improved this work as well as my presentation
skills. Marcel deserves a mention in particular for having introduced me in the world of
plasma dynamics. Finally, I want to thank my parents and sister for believing in me.
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Chapter 1

Introduction: observational evidence
of coronal loop oscillations

The solar corona is the outer layer of the solar atmosphere. It consists of hot, ionized
gas, called plasma, which interacts strongly with the magnetic field of the Sun. Typical
values of the plasma parameters are ρ = 10−11 kg/m3, B = 0.003T (30G) and T = 106

K. Because of its low plasma beta β = 2pµ/B2 (with p the pressure, B2 the square of
the magnetic field strength and µ = 4π1̇0−7 H m−1 the permeability of vacuum) we can,
in first approximation, neglect the gravitational force and pressure gradient force when
we look at the large spatial structure of the corona. The dominant force is the Lorentz
force. Early observations have already shown that the magnetic field causes the plasma
to organize itself into loop-like structures which are expected to follow the magnetic field
lines.

Broadly speaking, three models can be used to shed light on the different aspects of
plasma behavior: a microscopic theory, dealing with the motions of charged particles
interacting with a magnetic field and with each other through collisions, a kinetic theory
of an electron and ion fluid with different characteristics and a global ‘fluid’ theory, called
magnetohydrodynamics (MHD), which is obtained by averaging over the electron and ion
distributions describing the plasma in terms of global characteristics such as pressure,
temperature, etc. Each model can be constructed from the previous one by making a
number of simplifications. The microphysics we lose will be compensated by the strength
of the mathematical apparatus we can use within MHD. It has proven to be a successful
model in explaining many global phenomena occurring in the Sun and also in this thesis
I will stick to the MHD formalism. However, it is worth emphasizing that MHD has its
limits, especially in describing small-scale phenomena, where the different dynamics of
ions and electrons become important.
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The evolution of the large-scale physical variables are governed in MHD by a set of partial
differential equations:

∂ρ

∂t
= −∇ · (ρv)

ρ
dv

dt
= −∇p+ ρg +

1

µ
(∇×B)×B

dp

dt
= −γp∇ · v + (γ − 1)η

1

µ2
|∇ ×B|2︸ ︷︷ ︸

∂B

∂t
= ∇× (v ×B) + η∇2B︸ ︷︷ ︸

∇ ·B = 0.

This set of equations is known as the set of ideal and resistive MHD equations. The
underbraced terms denote the terms which are typical of resistive magnetohydrodynamics.
Obtaining a full solution to the MHD equations is an extremely difficult task for almost
any nontrivial geometry and set of boundary conditions; this is true analytically as well
as numerically. Therefore, one often investigates the effect on small perturbations on an
equilibrium state. This linearisation of the MHD equations yield expressions which can
be (more easily) solved for certain equilibria and admit solutions in the form of waves and
instabilities.

Figure 1.1: View from the corona in a spectral line of iron (171A◦) at about 1 MK as observed
by the Solar Dynamics Observatory (SDO) (From http://sdo.gsfc.nasa.gov/data/. Courtesy of
NASA/SDO and the AIA, EVE, and HMI science teams.)
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Cylindrical models for magnetic flux tubes were first developed in the late seventies (see
f.e. Edwin & Roberts (1983) [10]). At the time this was a rather theoretical endeavor,
since detailed observations of the solar atmosphere were not yet available. Since the
launch of the Transition Region And Coronal Explorer (TRACE) in 1998 and we can
observe the structure of the coronal loops in much more detail (Nakariakov et al. (1999)
[26], Aschwanden et al. (1999) [3]). Figure (1.1) shows a snapshot of the corona in an
active region. As one can see, in such regions the coronal plasma organizes itself into a
structure with many thin loops. These observations have led to a resurgence of theoretical
interest in these loops. In particular, one tries to improve the simple models of straight
cylinders to more realistic, but still mathematically tractable ones.

Because the corona is optically thin, it is in general difficult to measure the local plasma
parameters (such as density, pressure or magnetic field) directly. That is why one tries
to resort to alternative measurement techniques. In 2007, observations of the Coronal
Multichannel Parameter (CoMP) revealed that many waves are present throughout the
solar corona (Tomczyk et al. (2007) [37]). The higher spatial resolution of the Atmospheric
Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO), launched in
2010, pointed to even more wave activity in the corona. Measuring the properties of these
waves and comparing them with theoretical models of MHD waves in the corona, could
give information about the environment these waves travel through. This technique is
called ‘coronal seismology’, just like seismologists use the waves generated by earthquakes
to probe the interior of the Earth.

A second motivation for constructing and fine-tuning analytical models of coronal loops
comes from the observed temperature profile in the solar atmosphere.

Figure 1.2: Temperature structure from the photosphere to the lower corona. Peak formation
temperature of several spectral lines is also indicated with colored dots. From Yang et al., 2009
[42]
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Figure (1.2) shows how the temperature in the solar atmosphere evolves with height.
At the photosphere, the temperature drops from about 6500K in the lower photosphere
to 4300K in the temperature minimum region. However, further outwards, in the chro-
mosphere and transition region, the temperature starts to rise again until reaching a
magnitude of about 2 − 3 MK in the higher corona. The heating processes involved
in generating and sustaining the hot corona have so far defied quantitative understand-
ing. The questions of how and where the necessary energy flux (estimated approximately
200 W

m2 ) is created, how it is transported and how the energy can dissipate in the corona
are collectively known as the coronal heating problem.

Two models hold the most promise in explaining coronal heating. The first is the dissi-
pation of current sheets when a reconnection process takes place in the corona. We will
not further deal with this possibility. The second is the conversion of MHD wave energy
into heat through resistive and viscous effects. This wave damping occurs mathematically
due to coupling of the MHD equations which leads to the physical processes of resonant
absorption (Chen & Hasegawa (1974) [8], Hollweg & Yang (1988) [18], Sakurai et al.
(1991) [34] and others) and phase mixing (Heyvaerts & Priest (1983) [17]). We will have
many occasions to investigate the mathematical framework for resonant absorption in the
thesis. Finally, many other mechanisms probably contribute to coronal heating, some of
which are better understood than others.

Using the data of the AIA instrument on SDO, McIntosh et al. (2011) [24] claimed that
enough energy of transverse waves can be transformed into heat to bring the corona to its
high temperature. However, these authors used models of Alfvén waves in homogeneous
plasma’s, hence overestimating the real energy flux by a factor of 10-50, depending on the
equilibrium configuration (Goossens et al., 2013 [16]). In this thesis we will encounter the
effects of geometry and density jumps or stratification on the nature of the waves these
plasma’s admit many times. To conclude, the coronal heating problem remains an open
question even today.

Observations have also shown that often not just one loop, but a system of loops oscillates
after being triggered by for example a solar flare. (A solar flare is an explosive phenomenon
at the solar surface, visible as a sudden brightening at the surface and generally believed
to result from the release of huge amounts (about 1025 J) of magnetic energy.) In view of
these observations, generalising the results of cylindrical geometry to systems of two or
more coronal loops is a natural approach in trying to improve the existing models of the
corona. Building better models of the coronal loop structures improves the measurement
of physical parameters by coronal seismology.

Generalisations of the simple models for a single homogeneous cylinder have developed in
the two directions outlined above. On the one hand, the theory of resonant absorption
can explain the rapid damping of the transverse oscillations. On the other hand, solutions
to the eigenvalue problem and initial value problem for a system of coronal loops show
how the collective dynamics of the ensemble differ from that of a collection of isolated
magnetic flux tubes. I will review these results in Chapters 2 and 3 respectively. Only
in the last five years, studies have been performed which aim to incorporate resonant
absorption into a model of multi-loop oscillations. Most of these studies make use of
computer simulations which solve the resistive MHD equations numerically.
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In this master thesis, I will use and extend considerably the known mathematical methods
and obtain explicit expressions for the damped oscillations of systems of coronal loops.
The major part of the thesis will focus on a system of two parallel loops, in which the
results can be analysed and interpreted in a clear way. In Chapter 4, I will use the well-
known method of separation of variables to find new expressions to describe the resonantly
damped oscillations of a system of two, not necessarily identical, coronal loops. However,
an alternative approach is possible, based on a decomposition of the relevant variables
into a series of cylindrical functions. This approach is inspired by the results of acoustic
physics and studies of the interaction of acoustic waves with sunspots. I will derive and
analyse some new equations to describe the oscillations of a system of more than two
coronal loops in Chapter 5.
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Chapter 2

Resonant damping of MHD waves in
magnetic flux tubes

In this chapter we will look at the mechanism of resonant damping of incoming waves in
magnetic flux tubes with an inhomogeneous layer. Already in the forties it was suggested
that the dissipation of waves created at the solar interior could play a role in heating
the upper corona (Biermann (1946), Schwarzschild (1948) [35]). Resonant damping is
also of interest for laboratory fusion, since one needs to heat the plasma to attain the
extremely high temperatures needed for nuclear fusion. Chen & Hasegawa (1974) [8] were
the first to develop a model of plasma heating through resonant absorption in the context
of laboratory plasmas. In the context of astrophysical plasmas, Hollweg & Yang (1988)
[18] were the first to derive equations for resonant absorption in a Cartesian geometry.
The extension to cylindrical flux tubes was first made by Sakurai et al. (1991) [34].

An homogeneous medium supports three kinds of waves. Alfvén waves are incompressible
waves, driven by magnetic tension which propagate at the Alfvén speed vA = B√

µρ
. The

energy of Alfvén waves propagates in the direction of the magnetic field. Slow and fast
magnetosonic waves (often just called ‘fast’ and ‘slow’ waves) are compressible waves
driven by pressure and magnetic tension forces. Fast waves are fairly isotropic, while slow
waves are rather anisotropic with the energy flow confined to a small cone around the
magnetic field lines.

The introduction of an inhomogeneous layer produces a continuous Alfvén and slow spec-
trum. Hence incoming waves with a frequency in this spectrum transfer part of their en-
ergy to local Alfvén or slow magnetosonic waves in the magnetic surface, and are damped
as a result. The aim of this chapter is to put these arguments on a solid mathematical
basis. For this I will mainly follow the papers of Sakurai et al. (1991) [34] and Goossens
et al. (1995) [13].

Assume a magnetic flux tube (a magnetised cylinder) of length L, radius R and embedded
in an exterior plasma. We choose our coordinate system such that the z-axis is the axis
of symmetry of the cylinder and the xy-plane divides the tube in two equal parts. The
density ρ = ρ(r) is a function of the radial coordinate only. This represents a one-
dimensional model that still contains a lot of the physics present. The magnetic field

7
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B = (0, 0, Bz) has only an axial component. We call such tubes straight (as opposed
to twisted flux tubes which also have an azimuthal component Bϕ). Furthermore, we
assume that the plasma is pressureless. The equilibrium configuration is shown in Figure
(2.1). I have chosen to present the analysis only for this simplified situation, even though
the analysis can be readily generalized to twisted flux tubes including gas pressure (as
was done in the aforementioned papers of Sakurai et al. (1991) [34] and Goossens et
al. (1995) [13]), since in Chapters 3 and 4 analytical results have only been developed
so far for this equilibrium configuration. However, also in this simplified model, a lot of
interesting physics is present. In particular the principles of resonant absorption can be
shown clearly in this configuration.

Figure 2.1: Sketch of the equilibrium configuration used in Section 2.1. Adapted from Morton
& Erdélyi, 2009 [25].

This configuration trivially satisfies the equation of static equilibrium, since the pressure
gradient force, magnetic pressure force and magnetic tension force all vanish. We now
impose linear motions on this equilibrium state. The displacement vector will be denoted
by ξ, hence v = dξ

dt
. Since the background state only depends on r, we Fourier-analyze

the perturbed quantities with respect to ϕ and z and assume a dependence of the form
exp(i[mϕ+ kz − ωt]). A boundary condition to this problem is that the plasma is frozen
into the dense photospheric plasma at heights z = ±L/2. Mathematically, this means

ξ⊥ = 0 at z = ±L
2
.

Since in a pressureless plasma we automatically have ξz = 0 (Equation (2.3) ), this
boundary condition conveys that the plasma is immobile at the foot points of the coronal
loop, the so-called line-tying boundary condition. It quantizes the azimuthal and axial
wave numbers m and k = nπ

L
respectively (m,n ∈ N). In this subsection we stick to the

ideal MHD formalism. Then the linearized equations have been derived in many places
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and can be considered a part of the MHD heritage. They read

radial EQM : D
d

dr
(rξr) = −C2rP

′ (2.1)

azimuthal EQM : ρ(ω2 − ω2
A)ξϕ =

im

r
P ′ (2.2)

axial EQM : ξz = 0 (2.3)

Pressure :
dP ′

dr
= ρ(ω2 − ω2

A)ξr (2.4)

Compression : ∇ · ξ =
−P ′

ρv2
A

. (2.5)

The coefficient functions are given by

D = ρv2
Aω

2(ω2 − ω2
A)

C2 = ω2(ω2 − ω2
A)− m2

r2
v2

A. (2.6)

In these equations ωA = kvA is the Alfvén frequency. We can eliminate ξr from equation
(2.4) and substitute it into (2.1) to obtain a single equation for P ′:

D
d

dr

(
r

ρ(ω2 − ω2
A)

dP ′

dr

)
− C2rP

′ = 0. (2.7)

Substitute the coefficient functions (2.6) into this expression and divide through v2
A to

obtain

ρ(ω2 − ω2
A)

d

dr

(
r

ρ(ω2 − ω2
A)

dP ′

dr

)
−
(
m2

r2
− ω2 − ω2

A

v2
A

)
rP ′ = 0. (2.8)

Alternatively, eliminate P ′ from (2.1) and substitute this into (2.4) to obtain a single
equation for ξr:

d

dr

(
−D
C2r

d(rξr)

dr

)
− ρ(ω2 − ω2

A)ξr = 0. (2.9)

2.1 Solution to the eigenvalue problem in the dissi-

pationless case

Before proceeding to derive the equation of damped oscillations, let us first look at a
solution of the eigenvalue problem in the dissipationless case. We consider a flux tube
of constant density ρi embedded in an exterior plasma of density ρe. The density of the
plasma changes discontinuously at the interface at r = R. In this case, it is possible to
rewrite (2.8) as

d2P ′

dr2
+

1

r

dP ′

dr
−
(
m2

r2
− ω2 − ω2

A

v2
A

)
P ′ = 0. (2.10)

Equation (2.10) represents a set of two differential equations, one for the interior of the

flux tube (where we can set ω2
A = ω2

Ai =
B2

0k
2

µρi
) and one for the exterior region (where we



10

take ω2
A = ω2

Ae =
B2

0k
2

µρe
). Equation (2.10) is a classical Bessel equation. It has solutions in

the form of Bessel functions. Since we are interested in waves which are propagating in the
loop interior, but which are evanescent in the outside medium, we select the frequency ω2

such that ω2
Ai ≤ ω2 ≤ ω2

Ae. This means that in the interior, due to the condition ω2
Ai ≤ ω2,

solutions of equation (2.10) should be linear combinations of the Bessel functions of the
first and second kind, Jm(x) and Ym(x). Since any physically relevant solution must
remain finite at the origin, only the Bessel functions of the first kind should be retained.
At the exterior region, equation (2.10) together with ω2 ≤ ω2

Ae suggest the solutions
should be expressed as linear combinations of the modified Bessel functions of the first
and second kind, Im(x) and Km(x). We select the solutions which remain finite at infinity,
hence the terms with Im must be rejected. This leads after a bit of calculation to the
solutions

P ′i = C1Jm(kir),

ξr,i =
C1ki

ρi(ω2 − ω2
Ai)
J ′m(kir),

P ′e = C2Km(ker),

ξr,e =
C2ke

ρe(ω2 − ω2
Ae)

K ′m(ker), (2.11)

in which C1 and C2 are constants and k2
i = (ω2 − ω2

Ai)/v
2
Ai, k

2
e = −(ω2 − ω2

Ae)/v
2
Ae. The

boundary conditions are that the perturbation of total pressure and the radial displace-
ment vector are continuous at the interface. This leads to a dispersion relation for ω2 as
shown in Goossens et al. (2009) [15]. This dispersion relation can be solved numerically
as was done by Edwin & Roberts (1983) [10]. The results are shown in Figure (2.2). In
this Figure we plotted the phase speeds of the eigenmodes which equation (2.10) supple-
mented with the boundary conditions allows, as a function of radial position (scaled by
k).

When we assume that the loops are thin compared to their radius (kR� 1), it is possible
to derive an analytical expression for the eigenfrequency by developing the Bessel functions
appearing in (2.11) in a McLaurin series up to first order. As one can infer from Figure
(2.2), only the fundamental mode for m ≥ 1 (only shown here for m = 1 and m = 2)
is defined in the entire tube. In this limit, the frequency of all modes with m ≥ 1 all
converge to the same radius given by the kink frequency

ω2
k =

ρiω
2
Ai + ρeω

2
Ae

ρi + ρe
. (2.12)

It follows from the selection of solutions that ω2
Ai < ω2

k < ω2
Ae, which means that the kink

frequency lies in the interval determined by the Alfvén frequencies of the two plasmas.
Notice that the frequency is independent of m when m ≥ 1, as can also be seen in Figure
(2.2). The fundamental kink and flute mode indeed converge to the same frequency if
kR→ 0, while the behavior of the sausage mode (m = 0) is different.
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Figure 2.2: The different modes appearing as a solution of the dispersion relation found by
Edwin & Roberts (1983). Blue lines correspond to the sausage modes (m=0), Red lines to the
kink modes (m=1) and green lines to the flute modes (m=2). The black line corresponds to
the Alfvén speed of the exterior plasma. Of the infinite number of modes, only a few are shown
here.

2.2 Ideal MHD description — Resonant ‘absorption’

Now that we know how the solution looks like in the dissipationless case, let us replace
the interface at which the density is discontinuous by an inhomogeneous layer at radial
position [R− l

2
, R+ l

2
] in which the density is a smooth, strictly monotonically decreasing

function from ρi to ρe. Since now the Alfvén frequency is a continuous function of r in
this inhomogeneous layer, new physics is introduced. We will first look at what happens
when an external driver excites waves with a frequency in the Alfvén spectrum (the
driven problem). Such a situation occurs often in coronal loops since waves are easily
generated through movements of the photospheric footpoints of the loop. Then we will
return to the eigenvalue problem just considered. This method is justified in this case
since ω2

Ai < ω2
k < ω2

Ae.

In a driven problem, ω2 is prescribed and we are interested in the reaction of the system
in the stationary state. Equations (2.1) and (2.4) are differential equations which become
singular at the zeroes of D, i.e. when ω2 = ω2

A(r). At this position, there will be a
resonance as the impinging wave will interact with local Alfvén waves. It can be seen
from equations (2.7) and (2.9) that ideal MHD predicts singularities at the point rA

where ω2 = ω2
A.

To solve this problem, we will have to move to a resistive MHD description. Two different
possibilities can be considered. The first one is to use a numerical code to integrate the
resistive MHD equations as was done in Van Doorsselaere et al. (2004) [38] and further
studies. The second method goes as follows. In the resistive setting, dissipation is only
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important in a narrow layer around the resonant point r = rA. In this layer, we can use
simplified versions of the resistive MHD equations, which are also valid in an overlap region
where the linear Taylor expansion of the local Alfvén frequency is a good approximation
of this frequency. In the overlap region, both ideal and simplified resistive MHD are valid
and should lead to the same results. If we are only interested in the global form of the
solutions of (2.1) — (2.5), then the complicated solutions across the thin dissipative layer
only give a jump condition across this layer. In the remainder of this section, we will derive
an expression for this jump condition. An overview of the different regions involved is
shown in Figure 2.3. It is a priori not clear why the validity of the linear Taylor expansion
should hold outside the dissipative layer (as shown in this Figure) or whether its region
of validity could exceed the inhomogeneity layer. This will be considered further on in
more detail.

Figure 2.3: Radial cross-section of the magnetic flux tube with overview of the different regions
involved in the driven problem.

Early studies (for example the one by Chen and Hasegawa (1974) [8] for laboratory appli-
cations) used a mathematical trick to resolve the singularities which are inherent of the
ideal MHD equations. They added an imaginary component to the frequency such that
ω = ω0 + iγ and ω2 ≈ ω2

0 + 2iγω0 in first approximation (γ � ω0). This way they cre-
ated an artificial damping term. Because there cannot be any dissipation in ideal MHD,
they called this damping mechanism ‘resonant absorption’ instead of resonant dissipation
which occurs in resistive MHD. As we will see later, the damping rate turns out not to
depend on the actual coefficient of resistivity (or viscosity) as long as it is small. Hence
even ideal MHD can describe most of the physics present.

Introduce a new radial variable s = r−rA. Then we can perform a linear Taylor expansion
of the Alfvén frequency near the resonant point: (ω2 − ω2

A) ≈ ∆s, where ∆ = − d
dr
ω2

A(r).
Using this expression for the Alfvén frequency, the coefficient functions D and C2 can also
be expanded about s = 0. Keeping only the first non-zero contributions leads to

D1 = ρAv
2
Aω

2
A∆s C20 =

−ω2
Av

2
Am

2

r2
A

. (2.13)
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The interval [−slin, slin] in which this expansion is accurate is determined by the condition
slin � |2(ω2

A)′|/|(ω2
A)′′|. Since we are interested in the jumps [f ] = lims→0+ [f(s)−f(−s)],

it suffices to take the constant terms in the Taylor expansion of the coefficient functions.

Let us substitute the Taylor expansions for ω2
A, D and C2 into equations (2.7) and (2.9).

Then after a bit of algebra, equation (2.9) is transformed into the following differential
equation:

d

ds

(
s
dξr
ds

)
−
(
m

rA

)2

sξr = 0. (2.14)

Similarly, equation (2.7) can be transformed into

s
d

ds

(
1

s

dP ′

ds

)
+

(
m

rA

)2

P ′ = 0. (2.15)

Rewriting (2.14) and (2.15) a bit further and substituting also α =
(
m
rA

)2

yields

s
d2ξr
ds2

+
dξr
ds
− αsξr = 0, (2.16)

s
d2P ′

ds2
− dP ′

ds
+ αsP ′ = 0. (2.17)

Equations (2.16) and (2.17) have regular singularities at s = 0. Therefore, we can look
for solutions to these differential equations in the complex plane in the form of Frobenius
series. For a differential equation of the form N(z)z′′+Q(z)z′+R(z) = 0 having a regular
singularity at the point z = z0, a solution in the form of a Frobenius series takes the form

f(z) = (z − z0)r
∞∑
n=0

an(z − z0)n

for which r ∈ R is a solution of the indical equation

r(r − 1) + p0r + q0 = 0

where

p0 = lim
z→z0

(z − z0)
Q(z)

N(z)
, q0 = lim

z→z0
(z − z0)2 R(z)

N(z)
.

Regularity of the singular points exactly means that these limits exist. Fuchs’s Theorem
tells us that we can find two linearly independent solutions if and only if r1 − r2 6∈ Z. If
the difference is an integer, then a second solution can be found by adding a logarithmic
term.

The indical equation of (2.16) is r(r−1)+r = 0, with double root r = 0. Fuchs’s Theorem
then implies that every solution is a linear combination of the form

λ1ξr1(s) + λ2[ξr1(s) ln(s) + ξr2(s)], (2.18)

where ξr1(s) and ξr2(s) are two Frobenius series (in this case they correspond to actual
power series) starting with a constant. The indical equation for (2.17) is r(r− 1)− r = 0
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with the two roots r = 0 and r = 2. Then according to Fuchs’s Theorem the solutions to
(2.17) look as follows:

µ1P
′
1(s) + µ2[P ′1(s) ln(s) + P ′2(s)]. (2.19)

Here P ′1(s) is a Frobenius series, which corresponds to a power series starting with a term
in s2. The solution P ′2(s) starts with a constant term. It can be shown that the solutions
ξr1 and P ′1 containing the logarithmic terms are continuous, whereas the solutions ξr2 and
P ′2 may jump (Goedbloed 1983 [11]). This observation allows us to rewrite the solution
for the radial displacement as follows:

ξr(s) = Rξr1(s) ln |s|+

{
ξ−(s) s < 0

ξ+(s) s > 0
(2.20)

In this equation R is a constant. Consider equation (2.20) in the complex plane. Moving
from the positive to the negative real axis implies a jump of the complex argument of π
and hence of the complex logarithm of iπ. This jump in the radial displacement as we
move across the Alfvén resonant point is inherent of the differential equations we obtain,
but cannot be put on a solid physical basis using only the ideal MHD description. The
resistive equations have to be used. In the formula for the pressure perturbation (2.19)
we can neglect the s2 ln(s) contribution to the solution for s � 1. This implies that no
logarithmic singularity is present for the pressure perturbation across the Alfvén resonant
point.

Another way of obtaining these results, which also yields an expression for R and ξr1(s) in
equation (2.20) is by substituting (2.13) into equations (2.1) and (2.4). Neglecting terms
of order s2 then yields the following equations:

∆s
dξr
ds

=
m2

ρAr2
A

P ′, (2.21)

s
dP ′

ds
= 0. (2.22)

Equation (2.22) can be solved using distributions. The factor s appearing in (2.22) leads
to a Heaviside function contribution, hence its solution can be written as

P ′ = c1 + c2H(s). (2.23)

It can be shown that continuity of the solutions containing the logarithmic terms im-
plies that the Heaviside contribution to the solution vanishes. Hence we have derived a
conservation law across the resonant point, namely

P ′ = const. (2.24)

Using this conservation property, by a separation of variables one can solve equation (2.21)
leading to

ξr(s) =
m2

ρAr2
A∆

P ′c1 ln |s|+

{
ξ−(s) s < 0

ξ+(s) s > 0.
(2.25)

Now we are able to identify the constant R and the function ξr1(s) appearing in (2.20).
The jump which appears in (2.25) is due to resistive effects. It has been substituted here
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because the ideal MHD solution is not valid all the way up to s = 0, since for small values
of s we move into the dissipative layer. The jump which we are interested in is

[ξr(s)] = lim
s→0

[ξr(s)− ξr(−s)] = ξ+(s)− ξ−(s). (2.26)

By using the ideal MHD description, we have implicitly assumed that we are away from
the resonant point (at least outside the dissipative layer). The jump condition (2.26) has
been obtained by an expansion about the resonant point of the solution in the outside
layer. What we will do next, following the method of Goossens et al. (1995) [13] and
Ruderman et al. (1995) [32], is calculating the solution in the dissipative layer, using
a set of simplified resistive equations. Then an asymptotic expansion of this dissipative
solution ‘far away’ from the resonant position, in a precise sense which will be explained
later, should coincide with the ideal MHD solution (2.25).

Conservation law (2.24) expresses that the perturbation of gas pressure balances the mag-
netic pressure perturbation. In the more general case with Bϕ 6= 0, a similar conservation
law can be found, although in this case the pressure perturbation does not have to be
continuous anymore. (See Goossens et al. (1995) [13]). In the general case, the outwards
total pressure gradient and the inwards magnetic tension force at the resonant surface,
caused by the original curvature of the field lines plus the additional curvature induced
by the displacement of the field lines by the incoming wave, balance one another.

From this the following physical picture arises. An externally driven wave propagates
through the magnetic flux tube, inducing plasma motions (in the radial and azimuthal
direction, as seen by equations (2.2) and (2.25) ) which deform the magnetic field lines
because of conservation of magnetic flux in ideal MHD. The magnetic tension force tries to
counteract these motions, setting up oscillations along the magnetic field lines. However,
only at the resonant magnetic surface, a stable oscillation can be maintained. Incoming
waves can hence be converted very efficiently into Alfvén waves, thus causing a decrease
in the radial component of the driving wave. The magnitude of the jump and its physical
origin cannot be described anymore using ideal MHD. We have to move towards a resistive
MHD description.

2.3 Resistive MHD description — Jump conditions

Let us now include the Ohmic resistivity term η∇2B in the linearised induction equa-
tion. We will keep the adiabatic energy equation, as numerical studies have shown that
the inclusion of resistivity in the energy equation does not significantly alter the results
obtained for resonant damping (Poedts et al. 1990 [29]). Since we can neglect resistiv-
ity everywhere but in a small dissipative layer, this leads to the following mathematical
simplifications:

• We can neglect the derivatives of η with respect to the derivatives of ξ.

• In the dissipative layer there are only large gradients in the radial direction.
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Then it can be shown (reducing the equations of Goossens et al. 1995 [13]) that equations
(2.1) and (2.4) can be rewritten to

Dη
d

dr
(rξr) = −C2rP

′ (2.27)

dP ′

dr
= ρ(ω2

η − ω2
A)ξr. (2.28)

Here Dη = ρv2
Aω

2(ω2
η − ω2

A) where ω2
η stands for the differential operator

ω2
η = ω2

(
1− i η

ω

d

dr2

)
.

The notation ω2
η is used to bring the equations (2.27) and (2.28) as much as possible in the

same form as their ideal counterparts (2.1) and (2.4). The singularity which was present
in the ideal MHD description is absent in the resistive MHD equations (2.27) and (2.28).
The price we have to pay is that differential equation (2.27) is now of third order and
(2.28) of second order, with the coefficient of the highest-order derivative proportional to
η.

As before, we can linearise (2.27) and (2.28) about the resonant point s = 0. Then
translating the coordinate system to s = r − rA coordinates leads to(

s∆− iωη d
2

ds2

)
dξr
ds

=
m2

ρr2
A

(2.29)(
s∆− iωη d

2

ds2

)
dP ′

ds
= 0. (2.30)

All equilibrium quantities are understood to be evaluated in s = 0. Dissipation will
become important as soon as the terms s∆ and iωη d2

ds2
on the left-hand side of (2.29)

and (2.30) are comparable in magnitude. This results in a layer of thickness δA of the

dissipative layer determined by |δA∆| ≈
∣∣∣ iωηδ2A ∣∣∣ or

δA =

(
ωη

|∆|

)1/3

. (2.31)

This equation also holds for planar geometry and remains valid if we include viscosity
(then the factor η would only be replaced by η + ν, as one can see by comparing the
papers of Sakurai et al. (1991) [34] and Goossens et al. (1995) [13]). By definition of the

magnetic Reynolds number Rm we have δA ∼ R
−1/3
m and since Rm � 1 in the corona, it

follows from these considerations that
slin

δA
� 1. (2.32)

This shows that Figure (2.3) is ‘correct’ in the sense that the linear Taylor expansion
around the resonant point is also valid in an overlap region outside the dissipative layer.
Introducing the new variable τ = s/δA, we can rewrite (2.29) and (2.30) to(

d2

dτ 2
+ isgn(∆)τ

)
dξr
dτ

=
im2P ′

ρr2
A|∆|

, (2.33)(
d2

dτ 2
+ isgn(∆)τ

)
dP ′

dτ
= 0.
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It can be shown that the conservation law (2.24) still holds across the resonant point in
resistive MHD (see Goossens et al. 1995 [13]). Then one can use an integral representation
for the solution of ξr (originating in a solution for dξr

dτ
) in the dissipative layer which reads

ξr = − m2P ′

ρr2
A|∆|

G(τ) + Cξ, (2.34)

P ′ = CP ′ .

Here Cξ and CP ′ are (integration) constants and the function G(τ) is defined by

G(τ) =

∫ ∞
0

e−u
3/3

u
{exp(iuτ sgn(∆))− 1} du (2.35)

The asymptotics for τ → ±∞ for G (which corresponds to s → slin, hence with the
solution outside the dissipative layer) can then be calculated. This was done in Goossens
et al. (1995) [13] and yields the following asymptotic expansion of ξr:

ξr ≈
m2P ′

ρArA∆

(
ln |τ |+ 2ν

3
+

1

3
ln 3− iπ

2
sgn(∆τ)

)
+ C. (2.36)

where ν is Euler’s constant. As explained in the last section, we will now match the
asymptotic expansion (2.36) of the dissipative solution with the ideal solution (2.25) near
the resonant point. This is readily done and gives an expression for the jump (2.26). Since
we already proved that P ′ is constant across the dissipative layer, we obtain that

[ξr] = −iπm
2P ′

ρr2
A|∆|

, [P ′] = 0. (2.37)

Note that by the matching condition, this jump could also have been calculated by taking
the limit

lim
τ→∞

[ξr(τ)− ξr(−τ)] (2.38)

in equation (2.36). This means that

[ξr] = lim
s→0

[ξr(s)− ξr(−s)] = lim
τ→∞

[ξr(τ)− ξr(−τ)] (2.39)

if we accept a slight abuse of notation: the expression in the middle refers to the ideal
MHD solution, and the expression on the right to the dissipative solution.

The magnitude of the jumps depends on the equilibrium quantities but also on the az-
imuthal wave number m. As one can see, the jump [ξr] has a negative sign, which means
that the incoming wave indeed leaves behind some of its energy creating Alfvén waves at
the resonant surface.

From equation (2.12), we inferred that the kink eigenmode lies in the Alfvénspectrum
and that they are susceptible to resonant damping. As one can see from figure (2.2),
when the tube thickness increases more eigenmodes lie in the Alfvén spectrum. However,
this does not mean that these waves will therefore be automatically damped. For this
phenomenon to occur it is necessary that the differential equations (2.1) — (2.5) are
coupled. For a straight magnetic field, it can be seen that when m = 0, these differential
equations can be solved independently for the radial component and for the components
in the perpendicular direction. In this case, no coupling (hence no resonance) can occur
between Alfvén waves and the sausage modes (Goossens 2008) [14]. This is confirmed by
the expression for the jump condition (2.37).
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2.4 Damping decrement and discussion

In the previous section, we derived a jump condition across the dissipative layer in a
driven problem. Now we return to the eigenvalue problem considered in section 2.1.
The jump conditions (2.37) can be used as new boundary conditions to the dispersion
relation derived from (2.10). However, since (2.10) was only valid in the inside and
outside homogeneous regions, we should actually integrate the ideal MHD solution for a
nonuniform equilibrium to the dissipative layer to extend the jump condition (2.37) to a
jump condition for the inhomogeneous layer.

A way around this problem is to use the so-called thin-boundary (TB) assumption. Tra-
ditionally, this assumption is stated as l/R� 1. It is quite a strong physical assumption
since the thickness of the dissipative layer is given by (2.31). Numerical simulations using
fully resistive MHD (Van Doorsselaere et al. [38]) show that the thin boundary assumption
is nevertheless accurate for l/R . 0.4 (Goossens (2008) [14]). Hence the TB assumption
is accurate far beyond the region in which it should be accurate mathematically. However,
for larger values of l/R discrepancies are found between analytical and numerical results.

When we assume a thin boundary, the Frobenius expansion about the ideal singularity
is valid throughout the entire inhomogeneous layer. This layer will then nearly be small
enough to coincide with the dissipative layer, and the jump condition (2.37) can be used as
a jump condition across the inhomogeneous layer itself. Note that this approach hinges on
two approximations: near-equality of the inhomogeneous and dissipative layer as well as
the fact that the validity region of the Frobenius expansion about the ideal singularity does
not extend too far outside this layer. In reality, the convergence of the resistive solutions
to the ideal quasi-modes is not guaranteed. (Quasi-modes are ‘solutions’ of the ideal
MHD equations in nonuniform plasma’s with a complex value for ω as in the formulation
of resonant absorption by Chen & Hasegawa, 1974 [8], which cannot exist as eigenmodes
of the ideal MHD equations proper because of the self-adjointness of the force operator
in ideal MHD [12].) When the resistivity is lowered, the local resistive eigenfunctions
become strongly oscillatory. The only way in which the local resistive solutions converge
to the ideal quasi-solutions is due to the fact that the oscillatory domain scales as the
thickness of the dissipative layer δA, outside of which the resistive and ideal solutions
converge pointwise to one another (Andries, 2003 [1]).

In what follows, I will be forced to impose the equality of the dissipative and inhomoge-
neous layer in order to derive an expression for the linear damping rate. This approach,
which represents a simplification of the original TB assumption (but which is often called
just the TB assumption as well), has often been made in studies of damped loop oscilla-
tions with good results (but see below).

Using the thin boundary assumption, it can be shown (see Goossens et al. (2009) [15])
that an expression for a small damping decrement γ (this means that we put ω = ωk + iγ
and approximate ω2 ≈ ω2

k + 2iγωk) can be given by

γ

ωk
= − π

2ω2
kR

ρ2
i ρ

2
e

(ρi + ρe)3

(ω2
Ai − ω2

Ae)
2

ρA|∆A|
. (2.40)

In particular, some prescribed density profiles (linear or sinusoidal) were investigated in
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the context of studying the eigenfunctions.

In equation (2.40) we could substitute |∆A| ∼ ρ/l to infer that the damping decrement
is proportional to l/R � 1. This means that the damping times are proportional to
R/l � 1. TRACE and SDO observations show, however, that this is not the case in
reality; the observed oscillations turn out to be efficiently damped in only a few wave
periods. This does however not mean that the model we derived turns out to be useless in
the real physical case, for two reasons. The fact that resonant damping can be described
mathematically and interpreted physically in cylindrical plasmas is an achievement in
itself. More importantly, we can use (2.40) to firmly conclude that the nonuniform layer
in a coronal loop will be quite large. Thereafter, comparing the numerical results of Van
Doorsselaere et al. (2004) [38] with observations can be used to estimate the density
contrast ρi/ρe of the observed loops in the corona. Hence theoretical models of damped
loop oscillations can be used as tools to measure the equilibrium quantities in the corona;
this is coronal seismology in action.

As we have seen, in our description of resonant damping the radial wave energy is only
converted into energy of Alfvén waves propagating along the magnetic surfaces. Hence
this phenomenon could a priori not account for the heating of the corona. However,
since we linearized equations (2.28) and (2.27), which were third order with the highest-
order derivatives proportional to η, we neglected a lot of nonlinear phenomena which
create short length scales and damping. Furthermore, consider a coronal loop in an active
region where an oscillation is triggered by a solar flare. The driving frequency will then
be a superposition of a broad frequency spectrum. When this wave packet interacts with
the coronal loop, each surface will resonate at its own Alfvén frequency. After a while,
the different neighboring flux surfaces get out of phase with one another. This process
is known as phase mixing and has first been described in Heyvaerts and Priest (1983)
[17]. Phase mixing creates small length scales and a consequent decrease of the magnetic
Reynolds number. In this situation, the Ohmic resistive term will dominate locally and
wave energy will be converted into heat.
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Chapter 3

Oscillations of two homogeneous
parallel magnetic loops: separation
of variables

In the previous chapter, we looked at the oscillations of one magnetic cylindrical flux tube.
Now we want to extend the results to a system of coronal loops. The reason is that often,
coronal loops in active regions do not appear in isolation but as a part of a system of
loops which can be triggered simultaneously. It is also argued that loops as we see them
actually consists of several strands, i.e. subloops with an enhanced density, which are
not detected with the current resolution of the spacecraft. Observations (Verwichte et al.
(2004) [40]), numerical simulations (Luna et al. (2008) [21]) and analytical investigations
(Van Doorsselaere et al. (2008) [39]) all show that loops that are part of a system interact
with one another and can oscillate in phase or anti-phase. Hence the dynamics of the
system is more than just the sum of the dynamics of the individual loops. A natural
starting point is to study the damped oscillations of a system of two parallel loops. This
model will be a generalization of the single-loop model and hence constitutes a more
realistic model, which could lead to better seismology. A more elaborate motivation for
an analytical study of these systems will be given in Chapter 4, when we will look at the
system of two coronal loops including damping.

The aim of my thesis is to study the damped oscillations of a system of two loops. To gain
more insight in the results obtained there, we will first look at a system of two parallel
magnetic flux tubes. This chapter will briefly summarize the results of the numerical study
of Luna et al. (2008) [21] and the analytical study of Van Doorsselaere et al. (2008) [39],
since we need to know the behavior of the homogeneous system before we can move on
to more complex systems.

3.1 Equilibrium configuration

The equilibrium configuration consists of two straight parallel magnetic cylinders of length
L with radii RL and RR and densities ρL and ρR respectively. The plasma density in the
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exterior region is ρe. The loop axes are parallel to the z-axis in a Cartesian geometry. A
constant magnetic field B = B1z is applied along the loop axes. The xy-plane cuts both
loops in two equal parts. A sketch of the equilibrium configuration is shown in Figure
(3.1).

Figure 3.1: Left: Sketch of the bicylindrical (σ, τ) coordinate system. The lines σ = const pass
through the points x = ±a, the lines τ = const are nested circles around these points, whose
radius tends to zero and whose centre tends to ±a as |τ | → ∞. Right: Sketch of the equilibrium
configuration (from Van Doorsselaere et al. (2008) [39] )

We study the problem in bicylindrical (σ, τ) coordinates. This coordinate system is most
suited to study the problem, since the tube radii can be expressed in the simplest way. In
this coordinate system, there exist two points x = ±a such that all coordinate surfaces
σ = const pass through these two points. The tube boundaries can be expressed by
τ = −τL and τ = τR. The relation between cartesian and bicylindrical coordinates is
given by

x =
a sinh τ

cosh τ − cosσ
, y =

a sinσ

cosh τ − cosσ
. (3.1)

The tube radii and the distance between the two tube centers can be expressed (after
some calculations) as

RL =
a

sinh τL
, RR =

a

sinh τR
, d =

a

coth τL + coth τR
. (3.2)

From equation (3.1) and Figure (3.1) (left) we can investigate two geometrical limits
which will be relevant later on. When |τ | → ∞, the circles τ = const which are nested
around the points x = ±a will become smaller. Furthermore, their centers will converge
to the points x = ±a themselves. When |τ | � 1, the two circles become large (filling the
entire left and right half-plane in the limit τ → 0). Furthermore, an annulus in the ring
τ0 < τ < τ0 +4τ will become very asymmetric for small values of τ .

We adopt for analytical simplicity the cold plasma approximation. Also in the numerical
study by Luna et al. (2008) this approximation is made. This removes the energy equation
from the analysis. The relevant ideal MHD equations are hence the equation of motion



23

and the induction equation:

ρ
∂2ξ

∂t2
=

1

µ0

(∇× b)×B (3.3)

b = ∇× (ξ ×B). (3.4)

These equations satisfy the regularity conditions P ′ → 0 as τ 2 +σ2 → 0 and the solutions
remain bounded when τ → ∞. Here P ′ is the total pressure perturbation, which in the
cold approximation reduces to the magnetic pressure perturbation, as in chapter two.
Just as at the beginning of chapter two, we are able to impose the boundary conditions
that the τ -component of the radial displacement and the total pressure perturbation are
continuous at the interface. Note that we can interpret τ as the ’radial’ coordinate here
since we only assume an infinitesimal change in this quantity. In chapter four, we shall see
that one must take into account that τ does not fully represent the radial direction since
moving a distance 4τ from the boundary will lead to a smaller increase at the region
in between the tubes than in the region on the other side (see Figure (4.2) in Chapter
four). Using the notation for the jumps [f ] = lims→0+ (f(s)− f(−s)) of chapter two, the
boundary conditions read

[P ′] = 0 [ξτ ] = 0. (3.5)

3.2 Eigenmodes and initial value problem

We look at two distinct methods to determine the eigenfunctions and compare them with
each other. The set of ideal MHD equations can be solved numerically as was done by
Luna et al. (2008) [21]. The authors focus on the kink solution m = 1. They find four
eigenfrequencies of the system corresponding to four different types of motions, as can
be seen in Figure (3.2). This figure shows the velocity field of the four kink-like modes
and the corresponding pressure perturbations. Just as in the case for one cylinder, these
motions displace the tube axis and hence the tube as a whole. From Figure (3.2) it is
clear that both tubes interact with each other. The four different eigenmodes can be
classified as symmetric or antisymmetric and the displacement can either be in the x or
the y-direction. The smallest frequencies (longest wavelengths) are found for the Sx and
Ay-displacements found in Figures (3.2a) and (3.2d), with the Sx-displacement having the
largest frequency of the two.

The movement of the plasma between the tubes can explain the difference in frequencies.
As one can see in figures (3.2a) and (3.2d), the plasma in between the tubes follows the
motion of the tubes and in a sense ‘helps’ to push the tubes in the Sx respectively Ay-
direction. For the Ax-mode, the intermediate plasma is compressed and rarefied as the
tubes move towards one another, thus inhibiting their movement. Finally, for the Sy-mode
the plasma surrounding one flux tube moves in the direction opposing the movement of
the other tube.

We can also follow an analytical route. Using equations (3.3) and (3.4), we can rewrite
the total pressure perturbation (after some algebra) as

P ′ = −ρv2
A∇ · ξ. (3.6)



24

Figure 3.2: Velocity field and pressure perturbations (color index) of the four normal modes
of a system of two identical loops. (a) Loops oscillating in phase in the x-direction (Sx-mode)
(b) Loops oscillating in anti-phase in the x-direction (Ax-mode) (c) Loops oscillating in phase
in the y-direction (Sy-mode) (d) Loops oscillating in anti-phase in the y-direction (Ay-mode)
(from Luna et al. (2008) [21] )

After rewriting and substituting the nabla operator in bicylindrical coordinates, and as-
suming a dependence of all variables on z and t of the form cos(πz/L) exp(iωt) one finds
the following set of equations:

(ω2 − v2
Ak

2)P ′ + v2
A∇2
⊥P
′ = 0 (3.7)

(ω2 − v2
Ak

2)ξτ =
cosh τ − cosσ

aρ

∂P ′

∂τ
(3.8)

(ω2 − v2
Ak

2)ξσ =
cosh τ − cosσ

aρ

∂P ′

∂σ
. (3.9)

In equation (3.7) P ′ represents only the σ- and τ -dependence of the total pressure pertur-
bation (a slight abuse of notation) and the operator ∇2

⊥ is the Laplacian in the direction
perpendicular to the magnetic surfaces:

∇2
⊥ =

(cosh τ − cosσ)2

a2

(
∂2

∂τ 2
+

∂2

∂σ2

)
.

We will now try to manipulate the governing equations such that a full separation of
variables can be performed. This is but one way of solving these equations, depending
crucially on the representation in bicylindrical coordinates. There are, however, other
ways to proceed which depend less on the coordinate system involved. Note from equation
(3.7) that P ′ satisfies the scalar Helmholtz equation. In Chapter 5, I will adapt results
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from acoustic scattering theory to look for an alternative way to derive the solutions to
equations (3.7) — (3.9).

Suppose that the loop length L is much larger than the size of the system in the transverse
direction d. Such an assumption is not unreasonable in view of the observed distances
between coronal loops and their length (Aschwanden et al., 2003 [4]). Denote this ratio by
d/L =: ε� 1. This approximation is known as the long-wavelength approximation (since
k = nπ

L
). Depending on the separation between the tubes we have either a ∼ d or a� d,

but that does not matter for the analysis. Because ω ∼ kvA we have ωa/vA ∼ ka ≤ kd =
πd/L = O(ε) � 1. Then comparing the first term to the second one in equation (3.7)
leads to ∣∣∣∣ ω2 − v2

Ak
2

v2
A(cosh τ − cosσ)2/a2

∣∣∣∣ ∼
∣∣∣∣∣
(
ωa

vA

)2

− k2a2

∣∣∣∣∣ = O(ε2)� 1.

Hence the first term can be ignored in (3.7), which leads to the equation

∂2P ′

∂τ 2
+
∂2P ′

∂σ2
. (3.10)

We can try to solve (3.10) by a separation of variables

P ′ = Θ(τ) cos(σ − σ0)−Θ(0) cosσ0, . (3.11)

Then applying the regularity conditions to equations (3.8) and (3.10) leads to the following
solutions:

Θ(τ) =


CL e

τ τ < −τL,
C1 e

τ + C2 e
−τ − τL < τ < τR,

CR e
−τ τ > τR,

(3.12)

ξτ = ξ̂τ (τ)(cosh τ − cosσ) cos(σ − σ0), (3.13)

ξ̂τ (τ) =



CLe
τ

aρL(ω2 − v2
ALk

2)
τ < −τL,

C1e
τ − C2e

−τ

aρe(ω2 − v2
Aek

2)
− τL < τ < τR,

−CRe−τ

aρR(ω2 − v2
ARk

2)
τ > τR.

. (3.14)

Finally, applying the boundary conditions (3.5) to equations (3.12) and (3.14) leads to
the dispersion relation

F 2ω4(ρL − ρe)(ρR − ρe) = [(ρL + ρe)ω
2 − 2ρev

2
Ak

2][(ρR + ρe)ω
2 − 2ρev

2
Ak

2] (3.15)

with solutions

ω2
± =

ω2
Ae{ζL + ζR + 2±

√
(ζL − ζR)2 + 4(ζL − 1)(ζR − 1)F 2}

(ζL + 1)(ζR + 1)− (ζL − 1)(ζR − 1)F 2
. (3.16)

Here we introduced the notation F = exp[−(τL + τR)], which is a geometrical factor, and
the density contrasts ζL = ρL/ρe and ζR = ρR

ρe
. We only recover two eigenfrequencies of

the system, as opposed to the four frequencies found in the numerical simulations. Van
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Doorsselaere et al. (2008) [39] attribute this difference to the long-wavelength approxima-
tion. We can see that if we take the limit ρL → ρe in (3.16), then we recover the external
Alfvén speed and the kink frequency for the right loop. An important corollary to (3.16)
is that in the limit τL + τR →∞ we have

ω+ → max(ωkL, ωkR), ω− → min(ωkL, ωkR). (3.17)

This will be used in the next section when we classify the different systems as standard
or anomalous. First we will say a few words about the initial value problem.

Luna et al. (2008) [21] studied the reaction of the loops to an initial pulse applied to
the system, with the incidence angle equal to β (as measured with respect to the positive
x-axis). In the stationary state, the system will eventually oscillate in a superposition
of the four eigenmodes of the system. For β = 0, the system will eventually oscillate as
a superposition of only the Sx and Ax modes, while for β = π/2, the system reaches a
steady state for which only the eigenmodes Sy and Ay are present. When the incidence
angle is approximately 0 ≤ α . 50, a stationary state occurs in which the system behaves
as a pair of oscillators which are π/2 out of phase and which alternatingly receive energy
from the other tube in a beating phenomenon.

3.3 Standard and anomalous systems

One can show that the polarization of the displacement appearing in the analytical treat-
ment of Van Doorsselaere et al. (2008) [39] in the limit τ → ∞ (which corresponds to
y → 0 and x→ ±a) for m = 1 can be given in cartesian coordinates by

ξL = (−A cosσ0, A sinσ0) (3.18)

ξR = (B cosσ0, B sinσ0) (3.19)

with

A =
CL

2aρL(ω2 − ω2
AL)

, B =
CR

2aρR(ω2 − ω2
AR)

. (3.20)

Hence σ0 determines the angle of polarization of the two tubes. For the positive frequency
ω+, it can be shown that sgn(CL) = sgn(CR), hence sgn(A) = sgn(B) and the motion
of the tubes is always symmetric with respect to the y-axis. For σ0 = 0 we recover the
Ax-mode of Luna et al. (2008) [21], while for σ0 = π/2 we recover the Sy-mode. Hence
these two modes are merged in the analytical treatment. In agreement with Luna et al.
(2008) [21] these two modes correspond to the highest frequency. For a general angle
σ0, the tubes move symmetrically with respect to the y-axis in the xy-plane as shown in
Figure (3.3) (left).

For the lower frequency, the polarization of the displacement vector depends on the two
inequalities

2ζL < ζR + 1 + (ζR − 1)F 2 (3.21)

2ζR < ζL + 1 + (ζL − 1)F 2. (3.22)



27

Figure 3.3: Left: Displacement vector in cartesian coordinates corresponding with the higher
frequency ω+ Right: Displacement vector in cartesian coordinates corresponding with the lower
frequency ω−. A subdivision must be made for standard and anomalous systems.

If none of these two inequalities is satisfied, it can be shown that CL and CR (hence A and
B) have opposite signs when ω = ω−. Then from equations (3.18) and (3.19) it follows
that the displacement vector of the two tubes is symmetric with respect to the x-axis.
For σ0 = 0 we recover the Sx-mode, while for σ0 = π/2 we recover the Ay-mode. For a
general angle σ0, the tubes move symmetrically with respect to the x-axis in the xy-plane
as shown in figure (3.3) (right). If one inequality is satisfied (they cannot be satisfied
simultaneously) then we have again sgn(A) = sgn(B) and the same analysis as for the
positive frequency applies. Hence there are two Ax — Sy - modes.

Figure 3.4: Left: Regions corresponding with standard or anomalous systems as a function of
ζL and ζR for a fixed value of F . The shades zones correspond to the regions with anomalous
behavior. The angle α is calculated in the text. Right: Plot of the eigenfrequencies as a function
of tube separation. The internal and external Alfvén and kink frequencies are also plotted in
full, respectively dotted lines. In this particular example ζL = 2 and ζR = 2.9 and τL = τR =: τ0

(from Van Doorsselaere et al. (2008) [39] )

For each value of F , one can define three regions in the ζLζR-plane as shown in Figure
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(3.4) (left). The shaded areas correspond to anomalous behavior, while the unshaded area
corresponds to the standard behavior. Let us suppose in the remainder of this section
that ζL ≤ ζR and, for simplicity, τL = τR = τ0. Then inequality (3.22) can never be
satisfied. In the upper-left area, inequality (3.21) is satisfied. The angle α in Figure (3.4)
(left) determines the limiting case for which the inequality (3.21) becomes an equality.
Hence α can be calculated as follows:

tanα =
ζL − 1

ζR − 1
=
ζR + 1 + (ζR − 1)F 2 − 2

2(ζR − 1)
=

1 + F 2

2
. (3.23)

By definition of F , we have 1
2
< tanα < 1 or 29, 51◦ < α < 45◦. From this the following

conclusions can be drawn. The line ζL = ζR in Figure (3.4) (left) always lies in the
region corresponding to standard behavior. This is why Luna et al. (2008) did not find
the anomalous behavior, since they only considered two identical tubes. When ζL 6= ζR
equation (3.23) shows that we can always find a value of τ0 small enough making F 2 large
enough such that the system becomes anomalous when the tubes are close to one another
(compared to their radius). Moreover (and this is not mentioned in the paper of Van
Doorsselaere et al. (2008) [39]), we can see from the lower bound on α that if the density
contrasts ζL and ζR satisfy

ζL − 1

ζR − 1
≤ 1

2
⇔ 2ζL ≤ ζR + 1 ⇔ 2ζL

1 + ζR
≤ 1 (3.24)

then the system will always exhibit the anomalous behavior, independent of the separation
distance between the two tubes. A mathematical way of stating condition (3.24) is that
the left (low-density) tube has a density ρL which is smaller than the mean density of the
outer plasma ρe and the plasma in the right (high-density) tube ρR.

A physical interpretation of the standard and anomalous behavior of the system of two
parallel tubes was given by Van Doorsselaere et al. (2008) [39]. The kink and Alfvén
frequencies of the two tubes (still assuming ζL ≤ ζR) satisfy the series of inequalities
ω2
AR ≤ ω2

AL ≤ ω2
kL ≤ ω2

Ae and ω2
AR ≤ ω2

kR ≤ ω2
kL ≤ ω2

Ae, as can be readily calculated.
The limits (3.17) imply that ω− is a strictly increasing function which tends to ωkR as
d/R → ∞. As one can see from Figure (3.4) (right) in a particular case (but this is
true in general), when ζL 6= ζR a value of d/R exists such that the lower frequency drops
below the Alfvén frequency. This is the point where the system becomes anomalous since
the left tube does not react to the fast global oscillation of the right tube. The global
frequency of the system exceeds the cutoff frequency for the magnetosonic oscillations of
the left tube, which is the Alfvén frequency ωAL.

The position from which the tubes start to exhibit anomalous behavior is determined by
the relative positions of ω2

kR and ω2
AL. From the definitions of the kink frequency (2.12)

and the Alfvén frequency we find that

ω2
kR =

ρRω
2
AR + ρeω

2
Ae

ρR + ρe
=

2ρLω
2
AL

ρR + ρe
=

2ζL
1 + ζR

ω2
AL. (3.25)

When 2ζL
1+ζR

≥ 1, the system can exhibit both the standard and anomalous behavior,

depending on the distance between the tubes. When 2ζL
1+ζR

≤ 1, the kink frequency for
the right tube lies below the Alfvén frequency for the left tube, which means that the
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system is always anomalous. This condition is exactly the condition (3.24) which we found
before. In the numerical example of Figure (3.4) (right), we have that 2ζL

1+ζR
= 4/3.9 which

is just above one, probably for visibility purposes. The fact that the authors chose these
particular values for ζL and ζR suggests that they are also aware of inequality (3.24) even
though it is not mentioned in their paper. This discussion gives a physical explanation
of the standard and anomalous behavior found in the systems. Now that we know the
behavior of the interface system, we can include dissipation in the next chapter.
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Chapter 4

Resonant damping of MHD waves in
a system of two coronal loops

In this chapter we take the next logical step and combine the results and methods of the
previous two chapters to study the damped oscillations of a system of two coronal loops.
The first numerical studies in this respect were performed by Terradas et al. (2008) [36],
who studied the damped oscillations of a multistranded loop (i.e. a structure which looks
like one coronal loop, which actually consists of several physically similar smaller loops,
called strands, with different densities inside) using a 2D numerical code. Ofman (2009)
[27] modelled a system of four parallel coronal loops using a full 3-dimensional numerical
code.

In Terradas et al. (2008) [36], the authors looked at an irregular initial configuration of
a multistranded plasma with ten subloops. They also dropped the condition that the
loop as a whole has a cylindrical geometry. In this more realistic setting, the authors
solved the initial value problem. It was found that after an initial phase, the energy
becomes concentrated at the regions where the oscillation frequency matches the local
Alfvén frequency. This indicates that resonant absorption is a robust mechanism which
is not greatly affected by the geometry of the problem.

We saw in the previous chapter how an initial perturbation of an identical two-loop system
could give rise to a complex stationary state in which the system oscillates at a superpo-
sition of the four eigenmodes of the system. The analytical results of Van Doorsselaere
et al. (2008) [39] allowed a more quantitative understanding of these oscillations, even
though the lower and higher frequency modes found by Luna et al. (2008) [21] were both
merged into one single high-frequency and low-frequency mode. A system of N coronal
loops is expected to have many eigenmodes, that have similar frequency and damping
rate, as was already the case for the two-loop system of Luna et al. (2008) [21]. The
simulations of Terradas et al. (2008) [36] should therefore be interpreted in terms of a
superposition of these eigenmodes. However, the eigenmodes of more complex geometries
are not yet well developed analytically. Hence developing analytical models for a system
of coronal loops, including damping, has two concrete aims. Firstly, it should help in-
terpret the results of observations and complex computer simulations as a superposition
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of eigenmodes. Secondly, as mentioned before, a comparison of the predicted frequencies
and damping times with observations also furthers coronal seismology.

Resonantly damped oscillations of a system of two coronal loops were first studied by
Arregui et al. (2008) [2] using a Cartesian geometry. Later Robertson & Ruderman (2011)
[31] refined their analysis, modeling each loop as a magnetic flux tube (since the properties
of the kink mode in slabs and tubes are rather different). The analysis of the authors
starts in the general setting of two flux tubes with different densities and radii inside and
different thicknesses of the inhomogeneous layer. However, the calculation of the damping
decrement is only done for the special case of two identical tubes. In this chapter, I
first outline the method followed by Robertson & Ruderman (2011) [31] leading to the
jump condition across the dissipative layer. Then I will exploit the TB assumption more
consequently to derive a hitherto unknown dispersion relation for the damped oscillations
of two, not necessarily identical, loops. This dispersion relation generalizes the results
of Van Doorsselaere et al. (2008) [39] of Chapter 3, the results for damped oscillations
of one magnetic flux tube of Goossens et al. (2009) [15] of Chapter 2 and the damping
decrement found by Robertson & Ruderman (2011) [31]. Finally I will derive and discuss
an expression for the damping decrement.

4.1 Derivation of the jump condition

Equilibrium configuration and governing equations
The equilibrium configuration for the system of two loops including an inhomogeneous
layer is given by Figure (4.1). The equilibrium parameters are very similar to the ones in
the last chapter, so I refer to that discussion for an interpretation of Figure (4.1).

Figure 4.1: Sketch of the equilibrium configuration (from Robertson & Ruderman (2011) [31] )
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Figure 4.2: Annulus shape for thick inhomogeneous layers

We assume that the density profile is continuous at all boundaries. Hence we can write

ρ =



ρL τ < −τL − lL
ρL(τ) − τL − lL ≤ τ ≤ −τL
ρe − τL < τ < τR

ρR(τ) τR ≤ τ ≤ τR + lR

ρR τ > τR + lR

(4.1)

in which ρL(τ) is a monotonically decreasing function such that ρL(−τL − lL) = ρL and
ρL(−τL) = ρe, and ρR(τ) is a monotonically increasing function such that ρR(τR) = ρe
and ρR(τR + lR) = ρR.

A word of warning considering the configuration sketched in Figure 4.1 should be made:
since we are working in bicylindrical coordinates, it could be the case that the thickness of
the inhomogeneous annulus varies with angle, as shown in Figure 4.2 (and already alluded
to at the beginning of Chapter 3). If we want to exclude these effects, we will have to
assume a thin boundary layer lL � RL and lR � RR (the TB approximation also used
in Section 2.4.).

We again use the cold plasma approximation. We include viscosity and linearize the
viscous MHD equations, leading to

ρ
∂2ξ

∂t2
=

1

µ0

(∇× b)×B +
∂

∂t
[∇(ν∇ · ξ)−∇× (ν∇× ξ)], (4.2)

b = ∇× (ξ ×B). (4.3)

Here ν denotes the coefficient of shear viscosity. In chapter 2 we used the resistive MHD
equations to study the damping in the dissipative layer. As we saw in section 2.4 in the
case of a single loop, the damping decrement (2.40) is independent of the value of viscosity
(or resistivity) itself, provided it is small enough. Hence there is no problem in using the
viscous MHD equations.

These equations have to be supplemented with a set of regularity and boundary conditions.
If we move far away from the tubes, we want that the perturbation of magnetic pressure
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goes to zero: p→ 0 as τ 2 + σ2 → 0. As in the previous chapter, the solutions have to be
bounded when τ → ∞. To be able to use the analytical results from Chapter three, we
also adopt the long wavelength approximation d

L
=: ε � 1. Finally, we impose that the

magnetic field lines are tied to the photosphere:

ξ⊥(z = ±L/2) = 0. (4.4)

Solution in the outer and core layers
As in the previous setting, we will not solve the full set of resistive MHD equations. Since
we can neglect viscosity everywhere but in a small dissipative layer, we use exactly the
same simplifications as at the beginning of section 2.3. Since the damping decrement is
independent of ν we can specify any dependence of ν on σ and τ provided that the scale
of variation of ν is large compared to the dissipative layer. In particular we could set

ν =
ρ(τ)ν

(cosh τ − cosσ)2
, (4.5)

where ν is assumed small. This mathematical trick greatly simplifies the calculations.
Robertson and Ruderman (2011) [31] used this configuration to derive the evolution equa-
tions of magnetic pressure and displacement components. Since the derivation is rather
similar as in chapter three, we only give the final results, which in the long-wavelength
approximation are

P ′ = Θ(τ) cos(σ − σ0)−Θ(0) cosσ0, (4.6)

Θ(τ) =


CL e

τ τ ≤ −τL − lL,
C1 e

τ + C2 e
−τ − τL ≤ τ ≤ τR,

CR e
−τ τ ≥ τR + lR,

(4.7)

ξτ = ξ̂τ (τ)(cosh τ − cosσ) cos(σ − σ0), (4.8)

ξ̂τ (τ) =



CLe
τ

aρL(ω2 − v2
ALk

2)
τ ≤ −τL − lL,

C1e
τ − C2e

−τ

aρe(ω2 − v2
Aek

2)
− τL ≤ τ ≤ τR,

−CRe−τ

aρR(ω2 − v2
ARk

2)
τ ≥ τR + lR,

. (4.9)

Also the σ-component is coupled to the system; this yields

ξσ = −ξ̂σ(τ)(cosh τ − cosσ) sin(σ − σ0). (4.10)

Substituting (4.8) and (4.10) into (3.6) and neglecting terms of other ε2, we find that

dξ̂τ
dτ
− ξ̂σ = 0. (4.11)

Equation (4.11) will be useful in obtaining a jump condition across the inhomogeneous
layer.

Solution in the dissipative layer and jump conditions
We can now combine these equations with the mathematical tools obtained in the second
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chapter to find appropriate boundary conditions across the dissipative layer in the form
of jump conditions. Using the thin boundary assumption, the main effect of the inhomo-
geneous layer will be the resonant damping of the eigenmodes, with the real part of the
frequency being only slightly modified. Hence the resonant surfaces τ = τAL,R satisfy to
a very good approximation the relations

ωA(τAL) = ω, ωA(τAR) = ω, (4.12)

where ω is equal to either ω+ or ω−, that are the eigenfrequencies of the interface system
given by (3.16). In Chapter 3 we made the distinction between standard and anomalous
systems of magnetic flux tubes. Assume again that ρL ≤ ρR. Then we recover the series
of inequalities ω2

AR ≤ ω2
AL ≤ ω2

kL ≤ ω2
Ae and ω2

AR ≤ ω2
kR ≤ ω2

kL ≤ ω2
Ae as in Chapter three.

For the right tube, we have ωA(τR) ∈ [ω2
AR, ω

2
Ae]; this means that there will be a resonant

surface for both eigenfrequencies. For the left tube, we find ωA(τL) ∈ [ω2
AL, ω

2
Ae]. Since

ω2
AL ≤ ω2

kL ≤ ω2
+ ≤ ω2

Ae, there will always be a resonance for the higher frequency. For the
lower frequency we find for standard systems that ω2

AL ≤ ω2
− ≤ ω2

kR ≤ ω2
Ae, which implies

resonance in the left tube. In anomalous systems, however, there holds ω2
− < ω2

kR ≤ ω2
AL.

This means that no resonant surface exists in the tube with the lowest density (hence
with the highest Alfvén speed).

All of this is summarized in the following table:

Left tube (low density) Right tube (high density)
Standard systems ω+, ω− ω+, ω−
Anomalous systems ω+ ω+, ω−

Again we introduce a new variable

s =
τ − τA
δ

, δ =

(
ω0ν

a2|∆|

)1/3

for which ω0 denotes either ω+ or ω− and |∆| =
dω2
A

dτ (τ=τAL,R)
. If we denote the region

of validity of the linear Taylor expansion of ω2
A as [−τlin, τlin], then letting τ → ±τlin

corresponds formally to s → ±∞. The jump of any quantity f across the dissipative
layer is defined as

[f ] = lim
s→∞

(f(s)− f(−s)). (4.13)

We can now calculate the jump conditions. Now that we understand how this is done,
I refer to the paper of Robertson & Ruderman (2011) [31] for the calculations, which in
the end yield

[Θ] = 0, (4.14)

[ξ̂τ ] = −iπΘ(τA)

aρA|∆|
. (4.15)

These expressions are valid in the case of standard systems, in which there exists a resonant
position in both loops. Now consider an anomalous system with ρL ≤ ρR. We then know
that there does not exist a resonant position in the left (lower-density) tube. In this case,
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an identical calculation still holds for the right tube. This means that the jump condition
(4.15) should be adapted as follows:

[ξ̂τ,L] = 0, [ξ̂τ,R] = − iπΘ(τAR)

aρAR|∆R|
. (4.16)

Going back to standard systems, by (4.15) the jump in ξ̂τ is the same for both loops.
This gives rise to a fundamental question. When we use bicylindrical coordinates, letting
τ (or equivalently, s) increase, corresponds to moving from the inside of the left tube to
the outside region, and finally into the right tube as shown in Figure 4.3.

Figure 4.3: Overview of the different regions and the jump conditions

This implies that in the left tube, the limit sL → ∞ corresponds with moving from the
inside of the tube to the outside region, whereas for the right tube, the limit sR → ∞
corresponds with a movement from the outside region to the inside of the right tube. The
nature of the jump condition is thus opposite whether we consider the left, respectively
the right tube. If we compare the sign of the jumps (which are still hidden in the sign of
Θ(τA)) for both loops, we find, using equations (4.14) and (4.7), that

[ξ̂τ,L] = − iπΘ(τAL)

aρAL|∆L|
= −iπΘ(−τL − lL)

aρAL|∆L|
=
iπCLe

−τL−lL

aρAL|∆L|
, (4.17)

[ξ̂τ,R] = − iπΘ(τAR)

aρAR|∆R|
= −iπΘ(τR + lR)

aρAR|∆R|
=
iπCRe

−τR−lR

aρAR|∆R|
(4.18)

However, in general the two constants CL and CR will be complex numbers, hence it is
of no use to speak about its sign. We do not have to worry about the opposite ‘sign’ of
these jumps, as this does not indicate (as is the case in cylindrical geometry) that the
eigenfunctions correspond to amplifying waves in one of the tubes. This has to do with
the nature of the bicylindrical coordinate system. In the next subsections we will derive
expressions of the imaginary part of the eigenfrequencies, proving that the dissipative
layers are sinks of energy for the waves.

4.2 The dispersion relation

4.2.1 Thin boundary assumption

From the previous section Robertson & Ruderman (2011) [31] proceed as follows. They
integrate the ideal MHD solution in the nonuniform equilibrium to connect these solutions
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with the jump conditions (4.14) and (4.15). This was put forward in Section 2.4 as the
proper way to proceed in general when we have no further assumptions on the inhomoge-
neous layer. It finally results in a jump condition across the inhomogeneous layer in the
form of a principal value integral for ξ̂τ :

[ξ̂τ ] = (ξ̂τ (−τ0)− ξ̂τ (−τ0 − l))−
ΘA

a
P
∫ −τ0
−τ0−l

dt

ρ(t)[ω2
0 − ω2

A(t)],
(4.19)

and a jump condition for Θ in the form of an integral without singularities:

Θ(−τ0)−Θ(−τ0 − l) = aξ̂τ (−τ0)

∫ −τ0
−τ0−l

ρ(t)[ω2
0 − ω2

A(t)]dt. (4.20)

The authors then use the expressions for ξ̂τ (−τ0)− ξ̂τ (−τ0 − l) and Θ(−τ0)−Θ(−τ0 − l)
from (4.19) and (4.20) as boundary conditions for equations (4.9) and (4.7). Thereafter,
they only keep linear terms in the calculation of the damping. Because they keep the term
containing the principal value integral, to keep the calculations tractable they ultimately
have to simplify to a system of two identical tubes. However, in the expression for the
damping decrement, the principal value integral only appears as a phase shift contributing
to the real part of ω (Robertson & Ruderman, 2011 [31]).

Furthermore, in this case the thin boundary assumption has already been invoked in
Section 4.1 (to be able to present τ as the local radial coordinate, we must by definition
(of ‘local’) assume that l � R) and Section 4.2 (in the Ansatz to equation (4.12)). As
explained in Section 2.4., using the thin boundary assumption we can assume that the
inhomogeneous layer and the dissipative layer coincide and forget about the integrals
(4.19) and (4.20) altogether. Since the principal value integral did not appear in the
end result for the damping decrement anymore in Robertson & Ruderman, we ultimately
do not lose any information by doing this. In the remainder of the chapter, we will see
how imposing this assumption from the start allows us to obtain more general results for
systems of two, not necessarily identical, loops.

4.2.2 Derivation of the dispersion relation

We will consider a standard system during the derivations in this subsection. Specific
results for anomalous systems will be discussed in the next subsection. Using the thin
boundary assumption and jump conditions (4.15) and (4.14), we obtain

(ξ̂τ (−τ0)− ξ̂τ (−τ0 − l)) = [ξ̂τ ] = −iπΘ(τA)

aρA|∆|
(4.21)

Θ(−τ0 − l)−Θ(−τ0) = 0. (4.22)

These two equations are the appropriate boundary conditions to be used in equations
(4.7) and (4.9). Since Θ is a constant along the annuli, we can take ΘAL = Θ(−τL− lL) =
C1e

−τL + C2e
τL in the left annulus and ΘAR = Θ(τR + lR) = C1e

τR + C2e
−τR in the right
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annulus. This yields the following system of equations:

CLe
−τL−lL = C1e

−τL + C2e
τL (4.23)

CRe
−τR−lR = C1e

τR + C2e
−τR (4.24)

C1e
−τL − C2e

τL

ρe(ω2 − ω2
Ae)

− CLe
−τL−lL

ρL(ω2 − ω2
AL)

=
−iπ(C1e

−τL + C2e
τL)

ρAL|∆L|
(4.25)

−CRe−τR−lR
ρR(ω2 − ω2

AR)
− C1e

τR − C2e
−τR

ρe(ω2 − ω2
Ae)

=
−iπ(C1e

τR + C2e
−τR)

ρAR|∆R|
. (4.26)

This system has a nontrivial solution if and only if its coefficient matrix has determinant
equal to zero. We now introduce the notation

L = ρL(ω2 − ω2
AL) F = e−(τL+τR)

E = ρe(ω
2 − ω2

Ae) IL =
iπ

ρA|∆L|

R = ρR(ω2 − ω2
AR) IR =

iπ

ρA|∆R|
.

The density ρA at the Alfvén resonant point only depends on the eigenfrequency ω±,
hence it is the same for both loops:

ρ(τ = τAL) =
B2k2

µω2
A(τAL)

=
ρeω

2
Ae

ω2
0

=
B2k2

µω2
A(τAR)

= ρ(τ = τAR). (4.27)

We can write the system of equations (4.28) — (4.31) in matrix form as MC = 0 with
the order of variables C = (CLC1C2CR)T . Using the notation from above, the condition
that det(M) = 0 can be written as

0 = det


−1 1 e2τL 0
0 e2τR 1 −1
1
L

1
E

+ IL e2τL
(−1
E

+ IL
)

0
0 e2τR

(
1
E
− IR

) −1
E
− IR 1

R

 .

In this step we also divided the coefficients appearing with CL (in the first column) by
e−τL−lL and the coefficients of CR by e−τR−lR . If we now develop this determinant to
its first column (for example) and rearrange the terms, we get the following dispersion
relation for ω2:

F 2[L− E(1− LIL)][R− E(1−RIR)] = [L+ E(1− LIL)][R + E(1−RIR)]. (4.28)

This dispersion relation for resonantly damped modes of a system of two cylinders is
hitherto unknown in the literature to the best of my knowledge. Since L,E and R are
both functions of ω2 equation (4.28) is an equation for ω2 of degree four. To calculate
its roots using the quartic formula would give us an intractable equation concealing the
physics of the problem. Furthermore, we can only expect accuracy up to first order in the
damping decrement; which requires a linearisation with respect to the imaginary part of
ω. In the next subsection, we will solve equation (4.28) in the limit of small damping.
However, let us first look at some limiting cases.
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The case without dissipation
In this case we take IL = 0, IR = 0 such that (4.28) reduces to F 2[L − E][R − E] =
[L+ E][R + E]. Substituting the expressions for L,R and E then yields

F 2ω4(ρL − ρe)(ρR − ρe) = [(ρL + ρe)ω
2 − 2ρev

2
Ak

2][(ρR + ρe)ω
2 − 2ρev

2
Ak

2]. (4.29)

This is exactly (3.15).

The case for which the loops are displaced far away from each other
This situation corresponds to τL + τR → ∞: even though the loop centers will remain
at a finite distance at the points for which x = ±a, compared with their radius (which
is the typical length scale of the loops), the loops will diverge infinitely far apart from
each other. Mathematically, this implies F → 0, such that equation (4.28) splits into two
factors:

[L+ E(1− LIL)][R + E(1−RIR)] = 0. (4.30)

Let us look at the first factor in the limiting case of linear damping. Write therefore
ω2 = ω2

0 + 2iω0γ. Here ω0 is the zero-order solution for this equation, i.e. the kink
frequency for the left loop. Then we also decompose:

L = ρL(ω2 − ω2
AL) = ρL(ω2

kL − ω2
AL) + 2ρLiωkLγ =: L0 + Lγ (4.31)

and the same for E and R. First linearizing the first factor (4.30) and then substituting
these expressions we find

L0 + E0︸ ︷︷ ︸
zero-order solution

+Lγ + Eγ − E0L0IL = 0

⇔ 2iγωkL(ρL + ρe) =
ρL(ω2

kL − ω2
AL)ρe(ω

2
kL − ω2

Ae)iπ

ρ(τAL)|∆L(τAL)|
.

Because of the identities ω2
kL−ω2

Ae =
ρL(ω2

AL−ω
2
Ae)

ρL+ρe
and ω2

kL−ω2
AL =

−ρe(ω2
AL−ω

2
Ae)

ρL+ρe
we recover

that
γ

ωkL

=
−π

2ω2
kL

ρ2
Lρ

2
e(ω

2
AL − ω2

Ae)
2

(ρL + ρe)3ρ(τAL)|∆L(τAL)|
. (4.32)

This is almost equation (2.40), with the differences that we evaluate |∆L(τAL)| in bicylin-
drical coordinates, and that a factor of 1/R is missing which does appear in (2.40). This
is logical since we work in bicylindrical coordinates. The analysis for the right tube is
exactly the same, leading to the same equation but with the subscript ’L’ replaced by
’R’. This shows that in both loops, the imaginary part of the solution corresponds to a
damping mechanism, as was derived in Section 4.1. using energy considerations.

In the general case, it is not easy to switch coordinate systems and write |∆L| in terms
of r. In fact, it turns out to be impossible to prevent the tube thickness to go to zero
when τL + τR →∞ in a bicylindrical coordinate system when using the long-wavelength
approximation. This I will show now.

Because of the equations of the bicylindrical coordinate system (3.2) we have

RL

LL
=

ak

nπ sinh(τL)
(4.33)
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in which, for purposes of clarity, we focus on the expressions for the left tube. Since
sinh(τL) → ∞ as τL → ∞ (like eτL), we should additionally make sure that k → ∞ in
this limit to prevent the tubes from collapsing to a zero thickness. However, the long-
wavelength approximation together with (3.2) imply that

d

L
=
a(coth τL + coth τR)

L

τ→∞−→ 2a

L
=

2ak

π
� 1 (4.34)

It is now clear that equation (4.34) can never be satisfied if RL/LL must remain finite.
This means that we cannot prevent the tubes from becoming infinitely thin in the limit
τL + τR →∞ making a direct comparison with the earlier results in cylindrical geometry
difficult.

Nevertheless, it is still possible to compare (4.32) with equation (2.40). Let us first assume
that the density profile is linear throughout the inhomogeneous layer τ ∈ {−τL− lL,−τL}:

ρL(τ) = ρe

(
1 + (1− ζL)

τ + τL
lL

)
. (4.35)

With this density profile we have

|∆L(τAL)| = ω4
kL(ζL − 1)

lLω2
Ae

. (4.36)

Furthermore, the density at the resonant point can be calculated via equation (4.27).
Substituting equations (4.27) and (4.36) into (4.32) leads to a massive simplification,
yielding in the end

γ

ωkL

=
−π
8

lL(ζL − 1)

ζR + 1
. (4.37)

Remember that in general, the thickness of the nonuniform layer lL is a function of σ.
Let us introduce the mean density of the inhomogeneous layer

lavg,L =
1

2πRL

∫ 2π

0

lL(σ)ds(σ). (4.38)

Of course, a similar definition can be used for the right tube. Then it can be shown (see
Robertson & Ruderman (2011) [31]) that in this case, lavg, L is equal to

lavg,L = lLRL coth τL
τ→∞−→ lLRL. (4.39)

Substituting this equation into (4.37) then yields in the end

γ

ωkL

=
−π
8

lavg,L(ζL − 1)

RL(ζR + 1)
. (4.40)

In conclusion, using the mean thickness of the inhomogeneous layer, it is possible to
compare equations (4.32) and (2.40). In the case of a linear density profile, it can be
shown that (2.40) also reduces to (4.40). This means that the dispersion relation (4.28)
also generalises the results found for cylindrical geometry.
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4.3 Derivation of damping decrement

We will now look at the limiting case of small damping for the dispersion relation we found.
Therefore we again use the decomposition (4.31) for L,E and R. Now ω0 stands for one of
the two-loop interface eigenfrequencies (3.16). Linearizing the dispersion equation (4.28)
yields

F 2[(L0 − E0)(R0 − E0)︸ ︷︷ ︸+(L0 − E0)(Rγ − Eγ + E0R0IR) + (R0 − E0)(Lγ − Eγ + L0E0IL)]

= (L0 + E0)(R0 + E0)︸ ︷︷ ︸
zero-order solution

+(L0 + E0)(Rγ + Eγ − E0R0IR) + (R0 + E0)(Lγ + Eγ − L0E0IL).

(4.41)

Since Lγ ±Eγ = 2iγω0(ρL ± ρe) and Rγ ±Eγ = 2iγω0(ρR ± ρe), we can collect the terms
with γ and rewrite (4.41) as

2iγω0[F 2{(L0 − E0)(ρR − ρe) + (R0 − E0)(ρL − ρe)} − {(L0 + E0)(ρR + ρe) + (R0 + E0)(ρL + ρe)}]
= −E0R0IR{(L0 + E0) + F 2(L0 − E0)} − L0E0IL{(R0 + E0) + F 2(R0 − E0)}.

(4.42)

We now try to simplify (4.42) as much as possible. Using the notations

X = (ζL − ζR)2 + 4(ζL − 1)(ζR − 1)F 2, Q = (ζL + 1)(ζR + 1)− (ζL − 1)(ζR − 1)F 2

we can use the following auxiliary results:

L0 =
ρeω

2
Ae

Q
{ζ2

L + ζL − ζR − 1 + (ζL − 1)(ζR − 1)F 2 ± ζL
√
X}

R0 =
ρeω

2
Ae

Q
{ζ2

R + ζR − ζL − 1 + (ζR − 1)(ζL − 1)F 2 ± ζR
√
X}

E0 =
ρeω

2
Ae

Q
{1− ζLζR + (ζR − 1)(ζL − 1)F 2 ±

√
X}

L0 − E0 =
ρeω

2
Ae

Q
{(ζL − ζR)(ζL + 1)− 2(1− ζLζR)± (ζL − 1)

√
X}

L0 + E0 =
ρeω

2
Ae

Q
{(ζL − ζR)(ζL + 1) + 2(1− ζLζR)F 2 ± (ζL + 1)

√
X}

R0 − E0 =
ρeω

2
Ae

Q
{(ζR − ζL)(ζR + 1)− 2(1− ζLζR)± (ζR − 1)

√
X}

R0 + E0 =
ρeω

2
Ae

Q
{(ζR − ζL)(ζR + 1) + 2(1− ζLζR)F 2 ± (ζR + 1)

√
X} (4.43)

to simplify the left-hand side of (4.42):

2iγω0[F 2{(L0 − E0)(ρR − ρe) + (R0 − E0)(ρL − ρe)} − {(L0 + E0)(ρR + ρe) + (R0 + E0)(ρL + ρe)}]
= ∓4iγω0ρ

2
eω

2
Ae

√
X. (4.44)

For the right-hand side, I was not able to find a simple factorization as is possible for the
left-hand side. Substituting for L0, R0 and E0 but leaving the terms with ω2, it is possible
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to obtain the following formula for the damping decrement:

γ±
ω0

=
πρe(ω

2
0 − ω2

Ae)

±4ω2
0ω

2
AeρA|∆L||∆R|

√
(ζL − ζR)2 + 4(ζL − 1)(ζR − 1)F 2

× {(1 + F 2)ζLζR(ω2
0 − ω2

AR)(ω2
0 − ω2

AL)(|∆L|+ |∆R|)

+ (1− F 2)(ω2
0 − ω2

Ae)[|∆L|ζR(ω2
0 − ω2

AR) + |∆R|ζL(ω2
0 − ω2

AL)]}. (4.45)

An alternative way to write this equation is as follows:

γ±
ω0

=
−π(ω2

0 − ω2
Ae)

4ω2
0ρeω

2
AeρA

√
(ζL − ζR)2 + 4(ζL − 1)(ζR − 1)F 2

× (
ρR(ω2

0 − ω2
AR)[(1 + F 2)ρL(ω2

0 − ω2
AL) + (1− F 2)ρe(ω

2
0 − ω2

Ae)]

|∆R|

+
ρL(ω2

0 − ω2
AL)[(1 + F 2)ρR(ω2

0 − ω2
AR) + (1− F 2)ρe(ω

2
0 − ω2

Ae)]

|∆L|
) (4.46)

This expression is suited to check the case of anomalous systems. Formally, the equations
for an anomalous system (in which we take, as usual, ρL < ρR) can be obtained from
the equations of a standard system by letting |∆L| → ∞. For future reference, we will
write down the equation for damping in anomalous systems, which is obtained simply by
dropping the final term of the second factor in (4.46):

γ±,anom

ω0

=
−π(ω2

0 − ω2
Ae)

4ω2
0ρeω

2
AeρA

√
(ζL − ζR)2 + 4(ζL − 1)(ζR − 1)F 2

× ρR(ω2
0 − ω2

AR)[(1 + F 2)ρL(ω2
0 − ω2

AL) + (1− F 2)ρe(ω
2
0 − ω2

Ae)]

|∆R|
. (4.47)

The case of two identical tubes
As an analytical check we can investigate what happens if we suppose the tubes are
identical. Such systems exhibit the standard behavior independent of the separation
between the loops. When R0 = L0, the two terms on the right-hand side of (4.42) are
identical. The factor

√
X in the left-hand side of (4.42) can also be rewritten, which leads

to

∓8iγω0ρ
2
eω

2
Ae(ζ − 1)F = −2L0E0IL{(L0 + E0) + F 2(L0 − E0)}. (4.48)
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Since in this case ω2
0 =

2ω2
Ae

ζ+1∓(ζ−1)F
, equations (4.43) simplify to

L0 + E0 =
±2(ρL − ρe)Fω2

Ae

ζ + 1∓ (ζ − 1)F

L0 − E0 =
±2(ρL − ρe)ω2

Ae

ζ + 1∓ (ζ − 1)F

L0E0 =
ω4
Aeρ

2
e(ζ − 1)2(F 2 − 1)

(ζ + 1∓ (ζ − 1)F )2
. (4.49)

Substituting (4.49) into (4.48) we obtain for the damping decrement

γ± =
−πω4

Aeρe(ζ − 1)2(1− F 2)(1± F )

2ω0ρA|∆|(ζ + 1∓ (ζ − 1)F )3
. (4.50)

This equation is identical to equation (82) of Robertson & Ruderman, 2011 [31] (The
minus sign is because these authors write ω ≈ ω0 − iγ instead of ω ≈ ω0 + iγ).

4.4 Parametric study of damping decrement

To understand the damping properties of the two-loop system, we will investigate the
dependence of equations (4.45) and (4.47) on the different loop densities and the distance
between the tubes. Since the parameter space is a priori quite large, we will have to make
some simplifications. We will suppose that both loops have the same radius. We have
shown in equation (3.16) that in the long-wavelength regime, the undamped frequencies
are independent of the tube radius. For analytical simplicity, we will suppose that the
density drops linearly in the inhomogeneous layer, so that density profile (4.35) can be
used. This means that equation (4.36) can be used to determine the gradient of the Alfvén
frequency in the resonant position. The term ρA can be rewritten using equation (4.27).

To perform a parametric study, it is customary to normalize the different variables ap-
pearing in equations (4.45) and (4.47). In this case, all length scales will be represented
as fractions of the loop length L, and the density will be normalized with respect to the
density of the exterior plasma, i.e. ζ = ρ/ρe. As a consequence, all frequencies will be
normalized with respect to the Alfvén speed of the exterior medium, ω → ω/ωAe.

An important variable is the thickness of the inhomogeneous layer, since this will play
an important role in determining the gradient |∆| of the Alfvén frequency. We want the
thin boundary assumption to be valid throughout the entire parameter space. We know,
however, that the tube radius and the shape of the inhomogeneous layer depend strongly
on the value of τL = τR = τ0. The easiest way out of this problem is to fix the average
relative thickness of the nonuniform layer (defined in (4.38) to lavg,L/R = 0.01. This
also ensures that the expressions for the damping decrement become independent of the
radius itself, which eliminates R from the parameter space. However, this averaging over
τ , ignoring the geometry of the problem, has some side effects as well; we will deal with
them further in this subsection.

First, we will investigate the dependence of the damping on the distance between the
two loops. From (3.2) we know that d/R = 2 cosh τ0. We will investigate two cases.
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Figure 4.4: Plot of the lower eigenfrequency ω− as a function of tube separation d/R, together
with the Alfvén frequency of the left tube, marking the transition point between standard and
anomalous systems, and the kink frequency of the right tube.

In the first case, the loop densities are equal: ζL = ζR = 3. This means we can use
the ‘standard’ expression (4.45) for the damping decrement everywhere. In the second
case, we set ζL = 2.5, ζR = 2.9. As Figure (4.4) shows, only for very small distances
(d/R . 2.05) we will have to use the ‘anomalous’ expression (4.47) to determine γ−. A
small calculation verifies that in the limit ω− → ωAL both the ‘standard’ and ‘anomalous’
expression for the damping decrement (4.45) and (4.47) converge to the same value, such
that γ− is a continuous function of both density and distance at these positions.

Figure (4.5) shows how the damping depends on the distance between the tubes. The
damping of the kink frequencies of the individual flux tubes are plotted as well, and have
been taken from equation (32) of Goossens et al. (2009) [15]. They can also be recovered
by imposing a linear density profile in our equation (2.40). Quite some information can
be read off from this Figure. We can note first of all that the sign of γ is negative for
both frequencies, confirming again that the resonant layer corresponds to a damping of the
two-loop eigenfrequencies. The magnitude of the damping is rather small, indicating large
damping times. This is analogous to what happened in Chapter 2, since the expression
for the damping decrement is proportional to lavg/R � 1. One can again put coronal
seismology in action to compare these predicted damping times with the observed damping
times to conclude that in coronal conditions, the nonuniform layers ought to be quite large.

Now let us discuss the more interesting aspects of Figure (4.5). In the limit d/R → ∞,
the damping decrement tends to the damping decrements of the kink frequencies of the
individual loops. This is not surprising. When the loops are placed far from each other,
the system of two loops becomes decoupled as shown in equation (4.30). Moreover, in
the limit d/R → ∞, we have seen in Chapter 3 (specifically equation (3.17)) that the
homogeneous two-loop frequencies tend to the kink eigenfrequencies of the loops. Since
ζL < ζR, we have ω+ → ωkL and ω− → ωkR. Let us focus on ω+ and its damping
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Figure 4.5: Dependence of the damping decrement on the separation between the loops. Left:
unequal loop densities ζL = 2.5, ζR = 2.9. Right: equal loop densities ζL = ζR = 3. Also the
damping rates for the kink frequencies of the individual loops are shown.

decrement. It can be shown analytically that the contribution of the damping in the right
loop on the global motion vanishes in the limit of large loop separations; just take the
limit ω+ → ωkL in equation (4.46) and it is easily seen that the factor between square
brackets in the term containing |∆R| becomes zero. When the loops are identical, both
frequencies will tend to the common kink frequency of the loops.

When the separation between the loops becomes smaller, they interact more strongly as
the collective homogeneous eigenfrequencies differ more from the individual kink frequen-
cies, as can be seen for the lower eigenfrequency in Figure (4.4). This coupling of the loops
persists until the system becomes anomalous and the lower density loop cannot follow the
global oscillations of the two-loop system anymore. Interesting to note from Figure (4.5)
is that the interaction between the loops decreases the efficiency of resonant damping.
This was already noted in the article of Robertson & Ruderman (2011) [31]. However,
research in the absorption of acoustic waves by sunspots suggest that a collection of loops
is a more efficient absorber of incident wave energy than an individual sunspot (Keppens
et al. (1994) [19]). We look only at the eigenvalue problem here, while they consider the
initial value problem. Nevertheless, in the light of these results the reduced efficiency of
resonant absorption for interacting loops can be considered rather surprising. It should
not be completely ruled out that this tendency is due to the geometry inherent of the
bicylindrical coordinate system. The results of Section 5 could shed more light on this.

When d/R = 2, the loops touch each other and fill the entire half-plane. Figure (4.5)
shows that the oscillations of the two loops will not be damped anymore in this limit.
However, this result might be inaccurate. In fact, the limit τ0 → 0 is quite a peculiar
one. For equal tube densities, this will eventually lead to a state in which almost entire
volume of 3d-space is filled with a plasma of equal density. When the radii are very large,
one could approximate the system of two loops with as a single elliptic structure with the
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two loops glued to one another, oscillating with the Sx and Sy eigenmodes. The other
two eigenmodes will become unphysical, as this would imply that the loops penetrate
one another (Van Doorsselaere et al. (2008) [39]). In the case of two loops with unequal
densities, the limit τ0 → 0 will lead to an anomalous system in which only the denser loop
oscillates. In this case, the density of the immobile less dense loop could contribute as a
boundary condition of the oscillations of the denser loop.

In these unusual geometrical situations the expressions derived in this Chapter probably
lose their validity. However, we can still deduce where the limit γ± → 0 for τ0 → 0 comes
from in the expressions (4.46) and (4.47) for the damping decrement. Let us therefore
look at expressions (4.46) and (4.47) in the limit of τ0 → 0. In this limit, the system is
always anomalous except when the two tubes have equal densities, in which case (4.46) is
equivalent to (4.50). For the zero-order solutions, derived in Chapter 3 (equation 3.16),
we find that in the limit of τ0 → 0, which is equivalent with F → 1, that

ω2
± →

ω2
Ae[ζL + ζR + 2±

√
(ζL + ζR)2 + 4(ζL − 1)(ζR − 1)

(ζL + 1)(ζR + 1)− (ζL − 1)(ζR − 1)
= ω2

Ae

ζL + ζR + 2± (ζL + ζR − 2)

2(ζL + ζR)
.

(4.51)
This leads in particular to

ω2
+ → ω2

Ae, ω2
− →

2ω2
Ae

ζL + ζR
. (4.52)

The limiting frequency for ω− is equal to the kink frequency of a tube with density
ρL + ρR− ρe, but this might be incidental since in this limit both loops fill an entire half-
plane so there is no more exterior plasma. The convergence of ω+ to the Alfvén frequency
of the exterior plasma indicates that the factor ω2

+ − ω2
Ae appearing in both (4.46) and

(4.47) will become zero when τ0 → 0. It also means that the geometrical factor 1 ± F
appearing in (4.50) should be identified with (ω2

±ω
2
Ae) in expression (4.46).

When the two loops have equal densities, from equation (4.52) follows that ω2
− → ω2

Ai

with ω2
Ai the interior Alfvén speed of both loops. In the case of two identical loops, one

can see from the second factor in equation (4.46) that because (1 − F 2) = 0 a factor
(ω2

0−ω2
AL)(ω2

0−ω2
Ae) can be factored out, which is then also zero because of (4.52). These

factors correspond with the term (1− F 2) appearing in (4.50). In conclusion, this factor
appears solely because of the fact that both tubes are identical.

These mathematical points now lead us to what is probably the essence of the matter.
When the two tubes have different densities (so that we have to use the ‘anomalous’
expression (4.47)) we still need an explanation of why γ− → 0 when τ0 → 0 (which is
equivalent to d/R → 2) in Figure (4.5). This can only be because of the factor 1/|∆R|
appearing there. Hence a physical explanation for this limit (in all cases) should be
concerned with this factor.

Recall from Section 4.1 that |∆| = dω2
A

dτ (τ=τAL,R)
is actually a quantity linked to the bicylin-

drical coordinate system, not in particular to the thickness of the inhomogeneous layer
itself. Now if we use the linear density profile (which we employed to plot the figures in
this section) and keep the average thickness of the inhomogeneous layer constant, then
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equations (4.36) and (4.39) yield that

1

|∆L,R|
∼ l =

lavg,(L,R)

R
tanh τL,R.

This means that indeed 1/|∆L,R| → 0 as τL,R → 0. Normally, the limit |∆L,R| → ∞
brings to mind the limit one takes when making the inhomogeneous layer infinitely thin.
In this case, the limit |∆L,R| → ∞ should be explained by the coordinate system used

(because we have fixed
lavg,(L,R)

R
= 0.01). When τL,R → 0, in order to keep the thickness of

the inhomogeneous layer finite we must also take the limit l → 0. But then this means
that the derivative of the Alfvén frequency with respect to the bicylindrical coordinate τ
— not with respect to any physical direction — must diverge to infinity. It means that
we cannot really investigate in this coordinate system what happens when two cylinders
are brought close together but do not become infinitely large. The resulting system then
looks much like an elliptic structure, such as the one investigated by Ruderman in 2003
[33]. It would be interesting to investigate this limiting case further.

Figure 4.6: Difference between the damping decrement in standard systems with the equivalent
expression for anomalous systems, of which one is unphysical, for loop densities ζL = 2.5, ζR =
2.9.

One can wonder whether the distinction between standard and anomalous systems sig-
nificantly influences the damping decrement or not. Figure (4.6) shows the difference
γ−,std − γ−,anom for the investigated loop distances. Determining the relative difference
between the two damping expressions using Figures (4.5) and (4.6) (look at the scales in
both Figures), we conclude that the results are the same whether we use the standard or
anomalous values of the damping decrement. The physical reason for this is the follow-
ing. We have seen in Section 3.3. that in anomalous regimes, the less dense loop cannot
support the global oscillations of the system anymore. Hence, the contribution of the
damping in this loop becomes negligible in anomalous systems.

Now, we will investigate the influence of the different tube densities on the damping
decrement. We set d/R = 3 which is a realistic distance between the loops going by
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Figure 4.7: Plot of the eigenfrequencies ω− and ω+ as a function of the density in the right
tube ζR for fixed ζL and d/R, together with the Alfvén frequencies of the left and right tubes,
marking two transition points between standard and anomalous systems, and the individual
kink frequencies of the two tubes.

observations (Aschwanden et al., 2003 [4]). We fix the density of the left loop ζL = 3
and let ζR vary between 1 and 6. This means that both loops can be the less dense
one, and that an anomalous system emerges at both ends of the density range ζR. This is
illustrated in Figure (4.7). For small values of ζR, the right loop cannot support the global
oscillations while for large values of ζR, the left loop will be unable to support them. It
can be shown that here as well, the contributions of the anomalous regime is negligible
because of the fact that only one loop is oscillating. When the loop densities are equal,
the interaction between the tubes is maximal in the sense that the frequencies ω+ and ω−
differ most from the individual kink frequencies as Figure (4.7) shows.

Figure (4.8) shows the dependence of the damping decrement on the density contrast
between the two loops when the distance between them is kept fixed. The ‘standard’
and ‘anomalous’ expressions (4.45) and (4.47) are used where they are appropriate. We
note from Figure (4.8) that in the case that the loop densities are equal, the higher
eigenfrequency is most strongly damped when compared to unequal loop densities, while
the lower eigenfrequency gets least damped in this case. The physical explanation of this
should probably be looked for in the nature of the eigenfunctions. The higher frequency
ω+ is the frequency of the Sy and Ax eigenmodes. As explained in Chapter 3 (see Figure
(3.2)), for the Ax- and Sy-mode the motions are such that the plasma surrounding the
flux tube moves in the direction opposing the movement of the other tube. It explains
why its frequency is higher. This eigenmode will then also be susceptible to a stronger
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Figure 4.8: Dependence of the damping decrement on the density contrast between the two
loops for a fixed loop distance.

damping. The collective oscillations can be more strongly damped than the individual
oscillations (manifested when the density contrast is large) which feel less resistance from
the intermediate fluid. On the other hand, the Sx- and Ay- eigenmodes are supported
by the intermediate fluid motions, which explains their lower frequencies (longer periods)
and can also explain why these modes are less efficiently damped than the individual kink
modes.

Figure 4.9: Surface plots showing the dependence of the damping decrement on the density
contrast and the loop separation. Left: the damping γ+ of the higher frequency. Right: the
damping γ− of the lower eigenfrequency.
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When the density of the right tube decreases to the density of the exterior fluid, the
eigenfrequency ω+ tends to the Alfvén frequency of the exterior fluid (Figure 4.7), since
it is the highest frequency present in the system. Since in this limiting case there only
remains one loop, it is logical that the damping decrement γ+ converges to zero (Figure
4.8). Interestingly, γ− does not converge to the damping of the kink frequency for the
left tube when ζR → 1. This is because of the factor tanh(τ0) which we introduce in the
equations when keeping lavg/R constant, because of the formula (4.39) which expresses
lavg/R in terms of the parameters of the study. It can be calculated that in the limit of
ζR → 1, we have indeed γ− → γkL tanh τ0 = γkL tanh(arccosh(d/2R)).

Finally, Figure (4.9) combines and in a way summarizes the results of the previous para-
graphs. It plots the dependence of both damping decrements on the tube distance and the
density contrast. The range of loop distances has been limited to d/R ∈ [2.5, 10] to avoid
the systems in which the expressions obtained in Section 4.3. do not longer correspond
with thin cylinders. Especially for the damping of γ− (right panel) we can see that the
interaction between the tubes reduces the efficiency of resonant damping.



Chapter 5

Oscillations of systems of parallel
magnetic loops: T-matrix method

In Chapters 3 and 4, we looked at oscillations of a system of two magnetic loops using
separation of variables in a bicylindrical coordinate system. There is no obvious way
to generalise these results to systems of more than two coronal loops. Furthermore, we
encountered in Sections 4.3 and 4.4 some of the peculiarities of the bicylindrical coordinate
system, especially in the limiting cases τ → 0 or τ →∞.

Therefore, we will investigate another method to solve the MHD equations for a system
of more than two coronal loops. Consider an ensemble of N pressureless magnetic loops.
The jth loop is centered (in a cylindrical coordinate system) at r = rj, its radius is aj,
its density is ρj and its Alfvén frequency is ωAj. The density and Alfvén frequency of
the exterior fluid will be denoted by ρ0 and ωA0 respectively. Then the total pressure
perturbation P ′ = B0Bz

µ
satisfies the wave equation:

∂2P ′

∂t2
− v2

A∇2P ′ = 0. (5.1)

If we Fourier-analyse in z and t, then we can write P ′ = exp(kz−ωt)ψ(r, φ). (In Chapter
3, we slightly abused notation and wrote P ′ for ψ as well. The notation ψ has been chosen
here to connect with the results of acoustic and electrodynamic physics.) We have already
seen in Section 3.2., equation (3.7) that this leads to the scalar Helmholtz equation for ψ:

∇2
⊥ψ + k2

⊥ψ = 0. (5.2)

where
k⊥ = (ω2 − ω2

A)/v2
A (5.3)

depends on the density of the cylinders or the exterior fluid.

We can look at the magnetised cylinders as a collection of scatterers. This view is mo-
tivated by the rich history of the scattering problem in electrodynamics (the famous
Rayleigh scattering of electromagnetic waves) and acoustics. We single these two disci-
plines out, even though in many other fields of physics, scattering problems are studied.
The reason is that in these two disciplines the governing equation describing the wave
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motion is the classical wave equation, as it is here. (For example, in quantum mechanics,
the governing partial differential equation is the Schrödinger equation.)

The T-matrix method has been developed in acoustic physics by Waterman (1969) [41] to
provide a computationally efficient alternative for solving the scalar Helmholtz equation
under von Neumann or Dirichlet boundary conditions. In essence, one relates the exciting
and scattered fields through a linear operator T on the infinite-dimensional Hilbert space
L2(Γ), the space of square-integrable functions on the boundary of the obstacle (which
in our case corresponds to the union of the cylinder surfaces). The T-matrix method
consists of truncating the infinite system of equations which connects the exciting and
scattered fields to obtain a linear system of equations. The convergence of this method has
been studied by Ramm [30], who gave mathematical conditions under which the T-matrix
method converges.

Unfortunately, we will not deal with the mathematical intricacies of the T-matrix method,
described by Ramm [30], because of the following reason. The boundary conditions to
equation (5.2) are given by continuity of total pressure and radial displacement, as before.
In this case, both the value of ψ and its normal derivative are prescribed on the boundary
— however, they are only given in terms of the (unknown) solutions at the inside and
outside region. Instead, we will follow another approach which has been introduced in a
series of papers by Bogdan and different coauthors (1985, 1989, 1991) [5] [6] [7]. They were
the first to apply the results of the acoustic theory to study the interaction of sunspots
with acoustic waves. This was studied to resolve the (then) controversy whether sunspots
are monolithic or multi-stranded (the so-called ‘spaghetti sunspot’ model (Parker, 1979
[28])) in nature. Luna et al. (2009, 2010) [22] [23] adapted their methods to investigate
oscillations of coronal loops. They present numerical solutions for different numbers of
interacting coronal loops. However, they do not investigate whether analytical solutions
can be recovered in the long-wavelength limit. Perhaps more importantly, the effects of
resonant absorption on the oscillations of a multi-loop system have not been addressed so
far to the best of my knowledge.

In Section 5.1., I will give a simple example illustrating the main principles and mathe-
matics behind the T-matrix framework in the formulation of Bogdan, and introduce some
terminology. This will be just a more elaborate version of the ‘pedagogical example’ in
the paper of Bogdan & Fox (1991) [7], so those familiar with that can skip to Section
5.2. There I derive the equations for the system of coronal loops (following Luna et al.
(2009) [22]) and present some of my findings. Due to time restrictions in the planning of
the master thesis, I will only be able to present a few partial results of my investigations
here. Further research is still needed, and will also be done during the summer.

5.1 T-matrix method and principles of multiple scat-

tering

To introduce the T-matrix method and some mathematical methods in scattering theory,
consider the problem of the scattering of an acoustic plane wave by a pair of cylinders.
The cylinders are elastic, i.e. there is no transfer of momentum between the waves and
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the cylinder. We suppose that the wave vector lies in the plane perpendicular to the
cylinder axes, with which we align the coordinate system such that the axes are parallel
to the z coordinate axis. When the cylinders have no acoustic properties, the inclusion of
a z-coordinate of the wave vector would just result in a factor exp(ikzt) in all equations.
The equilibrium configuration is then shown in Figure (5.1).

Figure 5.1: Equilibrium configuration for the multiple scattering problem considered in Section
5.1.

Consider an incoming plane wave of the form

φ(r, t) = e
ik·(r1−r2)

2 ei(k·r−ωt). (5.4)

In this equation, the phase shift exp( ik·(r1−r2)
2

) = exp(ikd cosχ/2) (with d = |r1 − r2|)
is added to obtain symmetry in the expressions, and the meaning of k = |k| should be
slightly altered in the case of acoustic physics: |k| = ω/vS0 in which vS0 is the sound
speed in the external medium. Finally, let us introduce the angle χ between the wave
vector with (r1 − r2), the angle ϕ(r) between the position vector r and k and the angles
ϕj between the x-axis and the vector r− rj (j ∈ {1, 2}).

We can use the Anger-Jacobi formula to write the incoming acoustic wave locally as a
series of Bessel functions of the first kind:

e
id cosχ

2 ei(k|r| cosϕ−ωt) = e
id cosχ

2

∞∑
m=−∞

imJm(k|r|) eimϕ e−iωt. (5.5)

Because of the relation J−m(x) = (−1)mJm(x), it is also possible to combine the terms
i±mJ±m(k|r|) ei(±)mϕ and take the sum over the positive integers only. We also expand
the excitation of the first cylinder in a local Fourier-Bessel series:

ψ1
ex =

∞∑
m=−∞

B1
mJm(k|r− r1|)eimϕ1 e−iωt. (5.6)

The scattering of the wave can be expressed by a linear operator T which links the
expansion coefficients of the exciting wave with those of the scattered wave. T is called
the T -matrix (for obvious reasons) and the method of connecting the expansions the
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T -matrix method. Hence, the scattered wave can be expressed as follows:

ψ1
sc =

∞∑
m=−∞

∞∑
n=−∞

−T 1
mnB

1
nH

(1)
m (k|r− r1|)eimϕ1 e−iωt. (5.7)

We use an expansion in the form of Hankel functions of the first kind since we want a
solution in the form of outward propagating waves. It can be shown that for axisymmet-
ric obstacles such as cylinders, the T -matrix is diagonal (Bogdan & Zweibel, 1985 [5]).
Furthermore, for identical cylinders the T -matrix is the same for both scatterers, such
that we can rewrite (5.7) as

ψ1
sc =

∞∑
m=−∞

−TmmB1
mH

(1)
m (k|r− r1|)eimϕ1 e−iωt. (5.8)

We will now make the drastic assumption that the cylinders only scatter the axisymmetric
component (m = 0) of the exciting waves to obtain simple analytical solutions. This
assumption will be dropped in Section 5.2. In this case, the acoustic wave and the
incoming and scattered waves can be written down as follows (also dividing by e−iωt in
all equations):

ψ1
ex = B1

0J0(k|r− r1|) ψ1
sc = −T00B

1
0H

(1)
0 (k|r− r1|)

ψ2
ex = B2

0J0(k|r− r2|) ψ2
sc = −T00B

2
0H

(1)
0 (k|r− r2|)

φ = e
id cosχ

2 J0(k|r|). (5.9)

The exciting wave in the second cylinder is the sum of the scattered wave by the first
cylinder and the incoming acoustic wave, and analoguously in the first cylinder:

ψ2
ex = ψ1

sc + φ, ψ1
ex = ψ2

sc + φ. (5.10)

To write the scattered waves and acoustic plane wave in the form of a local excitation of
the second cylinder, we can use the translation formulae (Bogdan & Cattaneo, 1989 [6]):

Zn(k|r−rj|)einϕj =
∞∑

m=−∞

{
Jn−m(kd)einϕijZm(k|r− ri|)eimϕi , |r− ri| > d

Zn−m(kd)einϕijJm(k|r− ri|)eimϕi , |r− ri| < d.
(5.11)

Here Zk can represent either Jk, H
(1)
k [or H

(2)
k ] and ϕij is the angle that the center of the

ith loop makes with the center of the j-th loop (measured from the origin). If we only
consider axisymmetric scattering, the translation formulae simplify to Z0(k|r − rj|) =
Z0(kd)J0(k|r − ri|) where for our purposes i, j ∈ {1, 2}. Using the translation formulae
together with equations (5.9) and (5.10) gives us a linear system of equations for B1

0 and
B2

0 :

B1
0 + T00B

2
0H

(1)
0 (kd) = exp(−ikd cosχ

2
)

B2
0 + T00B

1
0H

(1)
0 (kd) = exp(

ikd cosχ

2
). (5.12)
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The terms on the right give the contribution of the incoming acoustic plane wave. We
can use Cramer’s rule to quickly obtain solutions for B1

0 and B2
0 in terms of the scattering

(in this case one-dimensional) matrix T00:

B1
0 =

x exp
(
− ikd cosχ

2

)
− exp

(
ikd cosχ

2

)
(x− 1)(x+ 1)

B2
0 =

x exp
(
ikd cosχ

2

)
− exp

(
− ikd cosχ

2

)
(x− 1)(x+ 1)

. (5.13)

Here the abbreviation x = T00H
(1)
0 (kd) has been used. The components of T depend only

on the scattering properties of the cylinder itself, and can be computed independently of
equation (5.10) linking the scattered and exciting waves to one another. In this case, T00

is completely determined by the scattering angle δ of the waves:

T00 =
1

2
(1− e−iδ). (5.14)

Since the scatterers are elastic, the only consequence of their presence is a phase shift
between the incoming and outgoing wave, i.e. δ is real.

The scattering cross section σs is defined as the scattered acoustic power per unit length
divided by the energy flux of the incident plane wave (e.g. Keppens et al. (1994) [19]).
In this example, it can be shown that the scattering cross-section can be written in terms
of the Bj

0 as

σs =
4

k
|T00|2(|B1

0 |2 + |B2
0 |2 + J0(kd)[B1

0B
2
0 +B1

0B
2
0 ] (5.15)

(Bogdan & Fox, 1991 [7]). Some algebra reduces (5.15) to

σs =
8

k
|T00|2

(
(1 + J0(kd)) cos2(kd cosχ /2)

(x+ 1)2
+

(1− J0(kd)) sin2(kd cosχ /2)

(x− 1)2

)
. (5.16)

Expression (5.16) helps to determine three different scattering regimes as explained by
Bogdan & Fox (1991) [7]. As we will not use them further in the thesis, I will not elaborate
further on this aspect. Nevertheless, the expressions of the scattering cross-section can
be useful in later studies of the scattering theory of coronal loops; that is why it is still
included here.

We can also calculate the eigenfrequencies of the system. If we remove the incoming
acoustic wave from the analysis, the homogeneous counterpart of equation (5.12) yields
an eigenvalue problem. Non-trivial solutions to (5.12) only exist if the determinant of the
linear homogeneous system is zero. This yields the dispersion relation (1 + x)(1− x) = 0
or

T00H
(1)
0 (kd) = ±1. (5.17)

When x = −1, the system oscillates in phase with the eigenfrequency while antisymmetric
oscillations correspond to an eigenfrequency yielding x = 1, as can be seen from the ho-
mogeneous counterpart to equation (5.12). To satisfy equation (5.17), the eigenfrequency
ω should be complex. This means that acoustic driving cannot insonify the cylinders
at one of their eigenfrequencies. However, when one of the eigenvalues ωi of the system
satisfies Imωi � 1, driving the system at the resonant frequency (determined through
ω = Re ωi) will greatly enhance the scattering properties of the system.
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5.2 Oscillations of a system of coronal loops using

the T-matrix method

We will now apply the theory to study oscillations of a system of coronal loops using the
T-matrix method. So consider again the configuration conceived at the beginning of the
Chapter, and described by equation (5.2). For notational simplicity, the subscript ‘⊥’ will
be dropped in the remainder of this section, and the wave vectors k0 and kj represent
the perpendicular wave numbers (defined in (5.3)) in the outside plasma and the inside
of the jth loop, respectively. We consider the eigenvalue problem and keep all the terms
in the expansions of the incoming and outgoing waves. First we will consider the case
without resonant absorption in an inhomogeneous layer at the jth loop. The equations of
the previous section can be recycled without too many major changes. The reason is that
equations (5.6) — (5.11) are independent of the scattering properties of the magnetic flux
tubes themselves.

Expansions (5.6) and (5.8) are valid for each of the N flux tubes. The consistency re-
quirement (5.10) should be replaced by

ψjex(r− rj) =
N∑
i 6=j

ψisc(r− ri). (5.18)

Then using equations (5.6), (5.8), (5.18) and the translation formulae (5.11), we obtain a
linear system of equations for Bj

m as follows (see also Luna et al., 2009 [22]):

Bj
m +

N∑
i 6=j

∞∑
n=−∞

Bi
nT

i
nnH

(1)
n−m(k0|ri − rj|)ei(n−m)ϕji = 0. (5.19)

Finally, we will need that the total exterior field can be written as the sum of the incoming
wave of the jth loop and the scattered wave of the jth loop. In terms of the expansions:

ψtot(r− rj) =
∞∑

m=−∞

Bj
m[Jm(k0|r− rj|) + T jmmH

(1)
m (k0|r− rj|)]eimϕj . (5.20)

The coefficients of the T j-matrix are obtained by the boundary condition that the total
pressure ψ and the radial displacement ξr are continuous across the boundary. If we also
expand the internal field in the jth loop as

ψjin(r− rj) =
∞∑

m=−∞

cjmJm(kj|r− rj|)eimϕj , (5.21)

we can use the linearised momentum equation

ξr =
1

ρ(ω2 − v2
Ak

2)

dψ

dr
(5.22)
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and (5.20), (5.21) to write the boundary conditions in terms of ψ as

ψjin(r− rj)
∣∣∣
|r−rj|=aj

= ψtot(r− rj)
∣∣∣
|r−rj|=aj

; (5.23)

1

ρ0(ω2 − v2
A0k

2)

dψtot

d(r− rj)

∣∣∣
|r−rj|=aj

=
1

ρj(ω2 − v2
Ajk

2)

dψjin
d(r− rj)

∣∣∣
|r−rj|=aj

,

⇔ 1

v2
A0ρ0k2

0

dψtot

d(r− rj)

∣∣∣
|r−rj|=aj

=
1

v2
Ajρjk

2
j

dψjin
d(r− rj)

∣∣∣
|r−rj|=aj

,

⇔ 1

k2
0

dψtot

d(r− rj)

∣∣∣
|r−rj|=aj

=
1

k2
j

dψjin
d(r− rj)

∣∣∣
|r−rj|=aj

. (5.24)

If we use boundary conditions (5.23) and (5.24) for equations (5.20) and (5.21) and elim-
inate the expansion coefficients cjm of the internal loop, we obtain after some calculation
that

T jmm =
kjJm(kjaj)J

′
m(k0aj)− k0Jm(k0aj)J

′
m(kjaj)

k0H
(1)
m (k0aj)J ′m(kjaj)− kjH(1)′

m (k0aj)Jm(kjaj)
. (5.25)

5.2.1 Solution for a system of N loops

We have now reduced (5.19) to an infinite system of linear equations which only includes
the variables Bj

m as unknowns. In order to solve it, we need to truncate the system at a
certain value ofm, saymt. This way, we obtain a sequence of eigenfrequencies {ωkmt} which
hopefully converges to the eigenspectrum of the two-loop system. In the calculations which
follow, the eigenfrequencies which we are interested in eventually become independent of
mt.

If we truncate the system at mt = 0, hence only consider axisymmetric components of
the incoming and outgoing waves, and furthermore consider a system of just two loops,
it can be readily seen that the linear system (5.19) reduces to

B1
0 + T 1

0B
2
0H

(1)
0 (kd) = 0

B2
0 + T 2

0B
1
0H

(1)
0 (kd) = 0

with the associated dispersion relation

1 + T 1
0 T

2
0 [H

(1)
0 (kd)]2 = 0 (5.26)

which is identical to (5.17), with the exception that the T-matrices are now calculated by
equation (5.25).

For higher values of mt, equation (5.19) becomes essentially a homogeneous system of
N(2mt − 1) equations for N(2mt − 1) unknowns. Non-trivial solutions only exist when
the determinant of the matrix M associated to this system is equal to zero. This leads
to a dispersion relation which can be solved with a computer. Such a study has been
performed by Luna et al. (2009, 2010) [22] [23] to investigate the oscillations of systems
of coronal loops. Below, I briefly summarise their results for a system of 2, 3 and 10 loops
of equal radius but different densities.
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The results which Luna et al. (2009) [22] obtain for a system of two nonidentical loops with
radii a1 = a2 = 0.03L at a distance d/R = 3, employing the T-matrix method, agree qual-
itatively with the results we obtained in Chapters 3 and 4. Indeed, the long-wavelength
assumption is applicable in this situation. Then the simplification of considering only
equal loop radii can be justified a posteriori since in the long-wavelength approximation,
the eigenfrequencies are independent of the radius. The Ax, Ay, Sx and Sy eigenmodes
of Luna et al. (2008) [21] are recovered. The interaction between the tubes is measured
with ζL = 3 for ζR ∈ [1, 5] by measuring the deviation between the individual kink fre-
quencies of the loops compared to the collective oscillation frequencies. The interaction
between the loops is maximal when their densities are equal. This we found as well when
discussing Figure (4.7). Luna et al. (2009) [22] claim that the system becomes decoupled
when ζR . 2 or ζR & 4. In the long-wavelength approximation, use of equation (3.23)
shows that the upper threshold between standard and anomalous systems lies a bit higher
at ζR & 4.91, as can also be seen from Figure (4.7) in Chapter 4. In general, the agreement
between the T-matrix method and the results from previous Chapters suggests that the
T-matrix method converges quickly.

Let us now consider a system of three aligned loops with equal radii aj = 0.03L and dis-
tance of adjacent loops d/R = 3 of which the relative densities of the left and middle loop
are fixed at ζ1 = 3 and ζ2 = 2. In this situation, the first and second loop are decoupled
in the long-wavelength approximation as inequality (3.24), with ζ1,L and ζ2,R reversed, is
satisfied. In this case, Luna et al., 2009 [22] find six kinklike eigenmodes, of which the
eigenfrequencies are plotted in the top panel of Figure (5.2). With kinklike modes, it
is meant that at least one of the three loop axes is displaced due to transverse kinklike
oscillations. Of course, many other fluting eigenmodes (associated with azimuthal wave
numbers m ≥ 2) are found; their number increases with increasing truncation number mt.
As can be seen from Figure (5.2), the eigenfrequencies are grouped in pairs of two almost
identical frequencies, just like in the system of two coronal loops. When the density of
the right loop differs from the densities of the two other loops, the global eigenfrequencies
reduce to the individual kink frequencies of the loops.

This translates again in a coupling or decoupling of the different loops, as can be seen from
the lower panel of Figure (5.2). In images (a), (d) and (g) we have ζ3 = ζ2. Observe that
the middle and right loops oscillate in phase or antiphase, while the left loop oscillates
independently. The same can be said for ζ3 = ζ1, shown in images (c), (f) and (i). Finally,
when ζ3 = 2.5, it is found that the three loops oscillate independently. This shows that
the presence of a third loop sharpens the requirements for collective loop oscillations, as
for example without the presence of the first loop, equation (3.23) predicts the standard
behaviour in the system consisting of only the middle and right loop.

When the three loop densities are equal, eight instead of six kinklike frequencies are found.
Two of them correspond with a global kink oscillation of the three-loop system, either in
the direction of the axis connecting the loop centers or perpendicular to it. Also mixed
modes are found, in which the two outer loops oscillate kinklike and the middle loop
responds with a flutelike oscillation. See Luna et al. (2009) [22] for more details.

Finally, let us briefly look at the results of the T-matrix method in a system of 10 coronal
loops (Luna et al., 2010 [23]). The smaller coronal loops have radius aj = 0.006L and
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Figure 5.2: Eigenvalues (top panel) and eigenmodes (bottom panel) for three aligned magnetic
flux tubes in which ρ1 = 3ρ0 and ρ2 = 2ρ0 are fixed as a function of ρ3/ρ0. In the top panel, the
kink frequencies of the left, middle and right tube are given by respectively the lower horizontal,
upper horizontal and diagonal dashed lines. The top, central and bottom images of the bottom
panel show the m2, m3 and m6 eigenmodes. In the images (a), (d) and (g) ρ3 = 2ρ0; in images
(b), (e) and (h) ρ3 = 2.5ρ0 while in images (c), (f) and (i) ρ3 = 3ρ0. Adapted from Luna et al.,
2009 [22].

are distributed randomly within a larger cylinder of radius R = 5aj. The equilibrium
configuration is shown in Figure (5.3). Our interest in studying this configuration is
the following. It is debated whether coronal loops as we see them have an internal fine
structure consisting of several mini-loops or ‘strands’ below the spatial resolution of the
current telescopes (e.g. Klimchuk, 2006 [20]). Moreover, it has been demonstrated that
the inference of the coronal magnetic field strength heavily depends on the chosen model
(De Moortel & Pascoe, 2009 [9]).

In the configuration considered by Luna et al. (2010) [23], the densities of the strands are
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Figure 5.3: Equilibrium configuration in which ten subloops with different densities ρj (see
text) are distributed randomly within an potentially unresolved loop of radius R = 0.03L. The
loops fill 40 % of the interior volume. From Luna et al. (2010) [23].

Figure 5.4: Eigenspectrum of the equilibrium configuration of Figure (5.3) (Top panel) and the
eigenmodes corresponding to the lowest (left image) and highest (right image) eigenfrequency
(Bottom panel). The dotted lines in the top panel represent the individal kink frequencies of
the strands. From Luna et al. (2010) [23].

given by ζj = {7.89, 7.61, 7.60, 8.97, 5.98, 8.73, 7.52, 8.62, 6.18, 5.80}. From Figure (5.3),
it can hence be deduced that the three strands on the right have the lowest densities.
An equivalent monolithic loop density is calculated by the model assmption that the 10
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strands fill 40% of the volume of the loop; it works out to be ζeq = 3.6.

Figure (5.4) shows the eigenspectrum obtained by the T-matrix method in the top panel.
The eigenfrequencies can be classified as low (when the eigenfrequency drops below the
kink frequency of the densest tube), high (when the eigenfrequency rises above the kink
frequency of the rarest tube) or average (when it lies within the range of the strand kink
frequencies). In the shaded area, corresponding to the last group, many eigenfrequencies
are to be found corresponding to complex flutelike eigenmodes (see Luna et al, 2010
[23]). We focus on the lowest and highest eigenfrequency, as collective behaviour can be
expected for these eigenfrequencies especially.

In the lower panel of Figure (5.4) the eigenmodes corresponding to the lowest and high-
est eigenfrequency are shown. Several characteristics of these global loop oscillations are
worth pointing out. First of all, the density contrast between the loops (or, equivalently
for uniform magnetic fields, the difference in kink frequency) is in general the main pa-
rameter which determines which loops will interact with one another. For the lowest
eigenfrequency, the denser tubes 1, 2, 3, 4, 6, 7 and 8 oscillate together in a global circular
kinklike pattern. For the highest frequency, the rarer loops 2,5,6,7,10 oscillate collectively.
This relation between the eigenfrequencies and the density of the loops with the strongest
oscillation amplitudes can also be seen in panels (a), (d), and (g) and (c), (f) and (i) of
Figure (5.2). However, in panels (b), (e) and (h) of Figure (5.2), this relation is no longer
satisfied, which signals that the distance between the individual strands also influences
the global oscillations. Noteworthy, the global kink oscillation of the loop is not identified
in the eigenmodes considered in Luna et al., 2010 [23] and it is unclear whether such an
eigenmode does exist among the different eigenfrequencies. A consideration of the initial
value problem showed that the center of mass of the system will react to an initial pertur-
bation of the multi-loop system polarised with respect to a certain axis with near-elliptic
motions with the major axis of the ellipse in the direction of this axis. This could serve as
a diagnostic to distinguish between the competing loop models, even though in my view
it suggests foremost that the initial pulse contributes more to the global oscillation than
the complex global modes of the system. More studies are in any case needed.

5.2.2 Long-wavelength approximation

This subsection presents some new expressions for the T-matrix (5.25) and the associated
linear system of equations (5.19) which I found using the long-wavelength approximation.
Many of these results should be considered as work in progress. In my view, this approach
can eventually lead to new insight in the character of oscillations of multi-loop systems
and I will indicate which points are not entirely resolved at the writing of this thesis and
will be addressed during the summer months.

In the numerical simulations of the previous subsection, we have seen that the long-
wavelength approximation should be rather accurate in view of the parameters used in
the simulations. Just like we did there, we will assume that the radii of all magnetic flux
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tubes are the same and equal to R. Because of definition (5.3), we have

(k0R)2 = (kR)2

(
ω2 − ω2

Ae

ω2
Ae

)
(kjR)2 = (kR)2

(
ω2 − ω2

Aj

ω2
Aj

)
.

such that in general, the long-wavelength approximation kR� 1 also implies that k0R�
1 and kjR � 1. The case of many magnetic flux tubes is slightly more subtle in this
respect than the well-known case of the uniform single magnetic cylinder, described in
Section 2.1. The reason is that it can be easily shown from the formula for the kink
frequency that k2

1 = (ζ − 1)/(ζ + 1)k2 for a single cylinder such that the long-wavelength
approximation implies a posteriori that k1R � 1. However, if we consider the case of
two loops, the long-wavelength assumption should in principle lead to the discovery of
the homogeneous two-loop eigenfrequencies (3.16) of Chapter 3. Then from Figure (4.7)
in Section 4.4. it follows that ω+ → ωAe if ζR → 1. Then the perpendicular wave number
in the right loop yields (kRR)2 = (kR)2(ζR − 1). Hence apart from the long-wavelength
assumption, one should also assume that the density contrast between the loops does not
become anomalously large.

For realistic coronal conditions , we can safely assume that we avoid this caveat. In
this case, we can perform a Taylor expansion of the Bessel functions of the first kind for
positive integers m

Jm(x) =
xm

2mm!
+O(xm+2)

J ′m(x) =
mxm−1

2mm!
+O(xm+1), J ′0(x) = −x

2
+O(x3) (5.27)

and use asymptotic expansions of the Hankel function of the first kind near the origin

H
(1)
0 (x) =

2i

π
ln
(x

2

)
+O(x0)

H(1)
m (x) = −i2

m(m− 1)!

πxm
+O(x−m+2) m 6= 0 (5.28)

to obtain the following asymptotic formulae for the T-matrix for small values of the
argument:

T j0 =
−iπk0kjR

3(kj − k0)

16kj/k0R + k0kjR ln
(
k0R

2

)
/4

+O(kR)4, (5.29)

T jm =
iπ

22mm!(m− 1)!
(k0R)2m (ζj − 1)ω2

(ζj + 1)ω2 − 2ω2
Ae

+O(kR)2m+2

=
iπ

22mm!(m− 1)!
(kR)2m

(
ω2 − ω2

Ae

ω2
Ae

)m
(ζj − 1)ω2

(ζj + 1)ω2 − 2ω2
Ae

+O(kR)2m+2. (5.30)

Not only does the numerator of T j0 in equation (5.25) vanish in zeroth order because of
the factor m in J ′m(x), the first-order terms also become zero because of a cancellation in
the two first-order terms of the numerator of T j0 . This is why T j0 only starts with a term
in third order in (kR). The same expressions for T jm are valid for negative m because of

the formulae J−m(x) = (−1)mJm(x) and H
(1)
−m(x) = (−1)mH

(1)
m (x). If we would truncate
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the system (5.19) at mt = 0, then we should expand T j0 up to higher order in order to
obtain nontrivial solutions to the dispersion relation (5.26). If we however truncate the
equations at higher mt, we can work with T j0 = 0 up to second order.

Some properties of the long-wavelength T-matrix (5.30) are worth considering. It shows
that Alfvén waves in the exterior medium will be solutions of the dispersion relation since
T jm vanishes there. Furthermore, the zeroes of the last factor correspond to the kink
frequency of the jth loop. This is as expected, since in the case N = 1, all coefficients Bm

are zero because of equation (5.19). In order to have a solution in the exterior medium
(5.8), the product BmTm must be a finite arbitrary number, hence the eigenfrequency
of the single loop should be a zero of the denominator of T jm. This behaviour is in fact
already present in the original T-matrix (5.25), as was noted by Luna et al., 2009 [22].

Let us, for the remainder of this subsection, specialise to a system of two coronal loops of
relative density ζL and ζR aligned in the familiar way in the coordinate system as in Figure
(5.1). Then the term exp(n − m)ϕij in (5.19) is equal to (−1)n−m. If we truncate the
system at m = mt, then (5.19) is a homogeneous linear system of N(2mt − 1) equations
for as many unknowns. It can be written in the form Mb = 0 with

b = (BL
−mt , B

L
−mt+1, . . . , B

L
mt , B

R
−mt , B

R
−mt+1, . . . , B

R
mt)

T

M =

[
I2mt+1 P
Q I2mt+1

]
(5.31)

in which

P (i, j) = TRj−(mt+1)H
(1)
j−i(k0d) (−1)j−i

Q(i, j) = TLj−(mt+1)H
(1)
j−i(k0d) (−1)j−i. (5.32)

Because the block matrices in the bottom row commute, we can use the identity detM =
det(I − PQ) and thus exploit the block structure of M to reduce the dimension of the
problem by a factor 2. Nevertheless, I have not yet found solutions for the equation
detM = 0 so far, because of numerical instability of the problem. This is one avenue of
research which will undoubtedly be taken further.

However, looking at equation (5.30), the long-wavelength assumption suggests it is rea-
sonable to only retain terms which are of order O(kR)2. This means setting mt = 1 and
retaining T j0 = 0 in the equations. Then using the asymptotics of the Hankel function
of the first kind (5.28) together with equations (5.29) and (5.30) we can calculate the
three-dimensional matrices P and Q-matrix in (5.32) by hand. This yields

P (i, j) = −1
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Then the condition det(I − PQ) = 0 leads us eventually to the dispersion relation(
ln2

[
k0d

2

]
− 4

(k0d)4

)2

X2 − 2

(
ln2

[
k0d

2

]
+

4

(k0d)4

)
X + 1 = 0 (5.33)

in which the notation

X =
1

4
(kR)4

(
ω2 − ω2

Ae

ω2
Ae

)2
(ζL − 1)ω2

(ζL + 1)ω2 − 2ω2
Ae

(ζR − 1)ω2

(ζR + 1)ω2 − 2ω2
Ae

has been used.

Since X is of order (kR)4 and (k0d ∼ k0R), if we only retain terms of order O(kR)2 in
(5.33) this yields the following dispersion relation, accurate up to order (kR)2:

16

(k0d)8
X2 − 8

(k0d)4
X + 1 = 0.

⇔
(

4

(k0d)4
X − 1

)2

= 0

⇔ 1

(d/R)4

(ζL − 1)ω2

(ζL + 1)ω2 − 2ω2
Ae

(ζR − 1)ω2

(ζR + 1)ω2 − 2ω2
Ae

= 1. (5.34)

Equation (5.34) is identical to the known equation (3.15) for two homogeneous loops in
bicylindrical coordinates, if we replace the factor F 2 appearing there with 1/(k0d)4. This
term gives the difference between the bicylindrical and cylindrical coordinate systems.
Writing this dispersion relation in the form of equation (5.34) shows clearly that when
the tubes get placed infinitely far away from one another (d/R → ∞), the frequency ω
must converge to the kink frequency of the individual loops such that the product on the
left-hand side remains finite.

Figure (5.5) shows that for a distance between loops d/R & 3, the expressions in both
coordinate systems are very similar, since both expressions lie close to the kink frequency
of the tubes. However, for smaller loop distances, differences start to emerge. In par-
ticular, the eigenfrequency ω+ does not converge to the Alfvén frequency of the exterior
fluid anymore when d/R → 2. The different asymptotics are due to the fact that in
the cylindrical coordinate system, the loops conserve their volume as they approach one
another, which was impossible in the bicylindrical coordinate system. The resulting con-
figuration looks more like an elliptic loop with two different densities at both ends. This
undoubtedly has consequences for the damping formulae as well. In Chapter 4 we saw
that several limiting cases were hard to tackle within the bicylindrical coordinate system.
These results show that the long-wavelength T-matrix approach presents fertile ground
to study the oscillations of systems of coronal loops.
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Figure 5.5: Comparison of the homogeneous two-loop frequencies obtained in the cylindrical
(blue and red full lines) and bicylindrical (dotted and dashed lines) coordinate system.

5.2.3 Damped oscillations of a system of coronal loops

This final section is concerned with the idea of using the jump conditions (2.37) derived
in Chapter two as boundary conditions on the loop boundaries to relate the total external
field (5.20) and the internal field in the jth loop (5.21) to one another. Such an extension
of the theory has already been performed in the case of sunspot models by Keppens et
al. (1994) [19]. As far as I am aware, such a study has not yet been performed in the
equilibrium configuration for coronal loops. Due to time constraints, I will only derive
the governing equation for the T-matrix here. Future research will involve implementing
this method to look for damped eigenmodes.

The use of the jump conditions due to resonant absorption in each of the N loops replaces
boundary conditions (5.23) and (5.24) by

ψjin(aj − lj) = ψtot(aj) (5.35)

ξjr,in(aj − lj) = ξr,tot(aj)− [ξr]. (5.36)

in which lj is the thickness of the inhomogeneous layer in the jth loop. Let us repeat
for convenience the jump condition we found in Chapter 2 by following the method of
Sakurai et al. (1991) [34], with slightly adapted notation:

[ξjr ] = − iπm2ψ

ρAjr2
Aj|∆j|

, [ψ] = 0. (5.37)

Because the total pressure is continuous across the resonant layers, we can approximate ψ
appearing in the jump by its value at the outside boundary of the flux tube at |r−rj = aj|.
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Then a similar calculation as in the Ansatz to (5.24) transforms the second boundary
condition (5.36) into

1

kj(ρv2
A)
ψjin
′(aj − lj) =

1

k0(ρv2
A)
ψ′tot(aj) +

iπm2ψtot(aj)

ρAjr2
Aj|∆j|

. (5.38)

Here a prime denotes the derivative with respect to the argument: f ′(x) = df
dx

. Then
using boundary conditions (5.35) and (5.38)) to equations (5.21) and (5.20) yields after
some straightforward algebra the following expression for the T-matrix corresponding to
resonantly damped oscillations of a system of N loops:

T jm =k0Jm(k0aj)J
′
m(kj(aj − lj))ρAjr

2
Aj|∆j| − kjJ ′m(k0aj)Jm(kj(aj − lj))ρAjr

2
Aj|∆j|

−k0kjiπm
2Jm(k0aj)Jm(kj(aj − lj))ρev2

Ae

kjH
(1)
m
′(k0aj)J ′m(kj(aj − lj))ρAjr2

Aj|∆j| − k0H
(1)
m
′(k0aj)J ′m(kj(aj − lj))ρAjr2

Aj|∆j|
+H(1)

m (k0aj)Jm(kj(aj − lj))k0kjρev
2
Ae. (5.39)

This equation reduces to (5.25) in the limiting case of lj → 0, |∆j| → ∞ removing
the inhomogeneous layers. Due to the problems described in the previous subsection, I
have not investigated the damped eigenfrequencies resulting from substitution of equation
(5.39) into the linear system of equations (5.19) yet. This is a topic of further research
which eventually should be able to increase our understanding of damped oscillations of
multi-loop systems, and give valuable tools in coronal seismology.



67

Summary and conclusions

Observations of coronal loop oscillations have shown the need to extend the models for
homogeneous magnetic cylinders. Better models of oscillating coronal loops will improve
the measurement of the equilibrium parameters by an inversion of these models, a tech-
nique known as coronal seismology. There are many ways to generalise the models of
homogeneous cylinders to more realistic equilibria.

We have concentrated our efforts on two generalisations. The first one is to include a
continuous density profile in a boundary layer. This leads to a coupling of the MHD
equations. The governing differential equations are singular at the resonant point in ideal
MHD, but not in resistive MHD. By a matching of the local dissipative solution and the
ideal solution, jump conditions were formulated for the driven problem, which showed
that incoming transverse waves are damped as part of their energy gets converted into
Alfvén wave energy. If we assume a thin boundary, these jump conditions could be used
as boundary conditions to derive expressions of damped eigenmodes of the system.

The second generalisation of the theory concerns systems of coronal loops. Two math-
ematical techniques have been considered to describe the oscillations of such a system:
the method of separation of variables and an expansion of the solutions into a series of
cylindrical functions.

This master thesis has made some steps towards a unification of both concepts by provid-
ing new formulae of coronal loop oscillations, using the two formalisms. These analytical
investigations can complement the computer-assisted simulations of oscillations of multi-
loop systems and provide deeper insight into them. I have derived a new expression for
the damping decrement for a system of two, not necessarily identical, loops. A subdivi-
sion must be made to include standard as well as anomalous systems. When fixing the
average thickness of the nonuniform layer, it has been shown that the interaction between
the loops is maximal when their densities are equal and the loops are placed not too
far away from each other. For larger separations, the loops behave independently. In
the bicylindrical coordinate system, the interaction of the loops reduces the amount of
damping of the eigenfunctions. Furthermore, when the tubes interact strongly with one
another, the damping is maximal for the eigenfrequency ω+ corresponding to the ‘forced’
Sy and Ax modes and minimal for the ‘unforced’ Sx and Ay eigenmodes. However, since
the radii of the cylinders are so strongly linked to the bicylindrical coordinate system,
several limiting cases are not best described in this framework.

The T-matrix method represents probably a better alternative to study the oscillations
of two loops, and are necessary if we want to consider extensions of the theory to a
system of more cylinders. We have seen that the relative density between the loops is the
main parameter which determines the nature of the eigenmodes of a multi-loop system.
I have also derived expressions which investigate the case of long wavelengths, and found
that for two loops, the results of both mathematical techniques coincide as they should,
up to a transformation of the coordinate system. Finally, an extension of the theory for
damped oscillations of systems of coronal loops is proposed. Further research can build on
this fertile ground to explore in more detail the physical consequences of the expressions
derived here.
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Nederlandstalige samenvatting

De corona is de buitenste laag van de zonne-atmosfeer. Door de hoge temperaturen die er
heersen, is het gas er sterk gëıoniseerd. Een gëıoniseerd gas of plasma is elektrisch gelei-
dend en onderhevig aan elektromagnetische krachten. Onder invloed van het magnetische
veld organiseert het coronale plasma er zich in lussen.

De macroscopische structuur van een plasma kan worden beschreven met de magneto-
hydrodynamische (MHD) vergelijkingen. Dit is een stelsel partiële differentiaalvergeli-
jkingen die kunnen worden beschouwd als een combinatie tussen de hydrodynamische
vergelijkingen en de wetten van Maxwell, verbonden door de bewegingsvergelijking en de
inductievergelijking. Omdat het oplossen van dit stelsel uiterst ingewikkeld is, bestudeert
men vaak de reactie van het systeem op kleine verstoringen uit een welbepaalde even-
wichtsconfiguratie, die eenvoudiger te begrijpen zijn maar nog steeds fysisch relevant.

Observaties van coronale lussen in hoge resolutie door de Transition Region and Coronal
Explorer (TRACE) vanaf 1999 en recenter door het Solar Dynamics Observatory (SDO)
(vanaf 2010) laten inderdaad zien dat transversale oscillaties van coronale lussen legio zijn.
Door modellen op te stellen voor MHD golven in coronale lussen, kunnen we een beter
inzicht krijgen in de evenwichtsconfiguratie van waaruit deze golven ontstaan; een techniek
die bekend staat als coronale sëısmologie. Daarnaast laten observaties zien dat zulke
transversale oscillaties snel gedempt worden; de energieoverdracht die daarmee gepaard
gaat kan de corona verhitten. Ten slotte komen coronale lussen niet afzonderlijk voor,
maar verschijnen ze in systemen van min of meer parallelle lussen. In het licht van
deze observaties zijn de oorspronkelijke modellen voor een enkele homogene magnetische
cylinder uitgebreid; betere modellen leiden namelijk tot betere sëısmologie.

De demping van coronale oscillaties kan beschreven worden door de theorie van resonante
absorptie. Deze theorie beschrijft hoe via koppeling tussen de veschillende MHD golven,
energie van transversale golven wordt omgezet in energie van golven die langs de mag-
netische veldlijnen propageren. Daarnaast zijn vele modellen opgesteld die de oscillaties
beschrijven van systemen van homogene lussen.

Deze masterthesis poogt de voorgenoemde uitbreidingen van de theorie van oscillaties
van magnetische cylinders te verenigen via wiskundige analyse. Eerdere pogingen tot
veralgemening maken meestal gebruik van computersimulaties. In de thesis worden twee
verschillende wiskundige gezichtspunten aangenomen. Door symmetrieën in het systeem
te veronderstellen, kunnen de variablen in de MHD vergelijkingen gescheiden worden. Via
deze techniek heb ik uitdrukkingen afgeleid en voor de gedempte oscillaties van een sys-
teem van twee parallelle lussen, en hun afhankelijkheid van de verschillende evenwichtspa-
rameters bestudeerd. De analyse laat zien dat de interactie tussen de lussen de efficiëntie
van resonante demping verlaagt. Daarnaast kunnen de oplossingen geschreven worden als
een oneindige som van Besselfuncties, functies die de trillingen van cirkelvormige mem-
branen beschrijven. Deze ontwikkeling laat toe om de oscillaties van systemen van lussen
te kwantificeren. Ik heb formules afgeleid die deze oscillaties beschrijven in de limiet
voor lange golflengten en deze geanalyseerd. Verder onderzoek hierop zal toelaten een
vollediger beeld te vormen van de gedempte oscillaties van groepen coronale lussen.
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