

UNIVERSIDAD de VALLADOLID ESCUELA de INGENIERÍAS INDUSTRIALES

INDUSTRIAL ENGINEERING

FINAL PROJECT WORK

PART I : READING IN A BAR’S POSITION BY A MAGNETIC

ENCODER AND AN ARDUINO UNO MICROCONTROLLER

PART II : POSITION CONTROL OF A ROTATING BAR WITH

ENGINE AND PROPELLER USING LABVIEW AND ARDUINO

Author

Luyck, Robin

Mentor:

García Ruiz, Francisco Javier System engineering and
automation

June — 2013

Forword

First of all I want to thank my mentor at the University F. Javier García, who was

always there to help me if I had a problem with the final project work.

Also a thanks to my promoter-docent-mentor at the KHLim in Belgium Wim Claes to

do the weekly check-ups.

Also I want to thank the following people at the University: Luis A. Santos Dominguez

for giving me all the software and tools to create the project, Sánchez Báscones, Ma

Isabel to help me with all the documents for Erasmus and Jesús Zamarreño for

helping me with some troubleshooting.

Then a big thanks to the following people who made this Erasmus possible for me:

Greet Raymaekers, Lecturer / Coordinator International Relations Engineering at the

KHLim in Belgium to do all the research on the available Erasmus places and all the

e-mails and paper work.

My parents, family and friends for giving me this opportunity and supporting me.

My girlfriend Alice for supporting and helping me always.

I also want to say thanks to all the docents at the KHLim for teaching and helping me

during the 3 years of my Bachelor electro-mechanics.

Robin Luyck

Erasmus Valladolid February – June 2013

In February of 2012 we had an information hour at the KHLim (Limburg Catholic

University College (LCUC)) about doing our internship abroad.

I am a very motivated and enthusiastic person, I like challenges, experiencing the

technologies and the culture all over the world. Therefore I was very interested in the

concept of Erasmus. I was pleased to do my Erasmus in Valladolid, Spain. During this

Erasmus I had to do my final project work for my bachelor degree electro-mechanics

with option electro-mechanic.

The Erasmus Program (EuRopean Community Action Scheme for the Mobility of

University Students) is a European Union (EU) student exchange program and gives

students the chance to explore different countries in Europe and explore the

technologies and culture abroad.

Valladolid is the capital of the province of the same name, and is part of the region

of Castile-Leon in Spain.

Valladolid is a reasonably large industrial city to the northwest of Madrid. It is one of

the major regional center in Castile-Leon. The city has an older core with some

interesting buildings. However it has focused more on industry than tourism.

Nowadays the population of Valladolid is near 322,000 inhabitants.

I learned a lot during this Erasmus, I got to know the Spanish mentality and culture,

visited some other parts and beautiful places in Spain. It was a positive experience

for me.

Table of contents
1. CHAPTER 1: Part I : reading in a bar’s position by a magnetic encoder and an

Arduino Uno microcontroller .. 1

1.1 Intro .. 1

1.2 Magnetic encoder AEAT-6010 ... 2

1.2.1 Magnetic encoder’s mean features .. 3

1.2.2 Electrical connections encoder .. 3

1.3 Electronic circuit plant ... 5

1.4 Arduino sketch .. 5

1.4.1 Explanation firmware .. 5

1.5 Processing sketch ... 9

1.5.1 Explanation Processing sketch .. 9

2. CHAPTER 2: Part II : Position control of a rotating bar with engine and propeller

using LabVIEW and Arduino ... 12

2.1 Intro .. 12

2.2 Plant description .. 12

2.3 Basic function ... 13

2.4 Electronic circuit ... 15

2.4.1 The controller .. 16

2.4.2 The power circuit ... 16

2.4.3 The actuator ... 17

2.4.4 Total electronic circuit .. 18

2.5 Theoretical part .. 19

2.5.1 Intro .. 19

2.5.2 PID .. 19

2.5.3 Control System: .. 19

2.5.4 P action ... 20

2.5.5 I action .. 21

2.5.6 D action .. 22

2.5.7 Closed loop .. 23

2.5.8 Tuning rules Ziegler-Nichols ... 24

2.5.9 First method (not used in this final project) .. 25

2.5.10 Second method (USED) .. 26

2.5.11 Kind of system .. 27

2.5.12 Mathematical model .. 31

2.6 Main LabVIEW controlling program .. 37

2.6.1 The code from zero to controlling the bars position ... 37

2.6.2 Creating the front panel .. 48

2.6.3 Creating the block diagram .. 50

2.6.4 Troubleshooting the main LabVIEW program ... 52

3. CHAPTER 3: Software ... 55

3.1 Arduino .. 55

3.1.1 Intro to Arduino .. 55

3.1.2 Installation Arduino software ... 56

3.1.3 Installation Arduino drivers ... 57

3.1.4 Creating a sketch in Arduino ... 62

3.1.5 Blink LED example .. 63

3.2 LabVIEW ... 65

3.2.1 Intro to LabVIEW .. 65

3.2.2 Installation LabVIEW software .. 68

3.3 NI LabVIEW interface for Arduino toolkit ... 70

3.3.1 Intro to the toolkit .. 70

3.3.2 Step by step starterguide for the Installation ... 71

3.4 Step by Step Startup Guide .. 72

3.4.1 Steps .. 72

3.4.2 Connection setup with the Arduino sketch ... 76

3.4.3 Practical example with the toolset ... 78

3.5 Processing ... 82

3.5.1 Intro to Processing ... 82

3.5.2 Installation Processing software ... 83

3.5.3 Practical example ... 84

4. CHAPTER 4: Hardware .. 85

4.1 The Arduino Uno microcontroller ... 85

4.1.1 Mean features.. 86

4.1.2 Inputs and outputs .. 87

4.2 NPN Epitaxial silicon transistor BD 139 .. 88

4.3 Transformer 24V DC out power supply .. 88

5. CHAPTER 5: Sources .. 89

6. CHAPTER 6: Datasheets .. 90

6.1 AEAT-6010-A06 10-bits Magnetic Encoder ... 90

6.2 fullwat FUS-25D-24 Transformer ... 96

6.3 BD 139 Transistor ... 98

Introduction

This thesis is about my final project work I did at the industrial engineering and

technology school from the university of Valladolid (UVa) from February 2013 until

June 2013.

The thesis is divided in different chapters. First off I will give the solutions and programs

that were my task in this final project work and explain the most important thing,

which is how reading in the bars angular from plant n°1 and then the PID control on

plant n°2.

After this follow chapters on the software, the hardware, sources and datasheets.

� The project is divided in 2 parts:

Goals part I

Implementing a 10-bits magnetic encoder on a plant its rotating shaft and writing a

firmware (sketch) in Arduino to read in the bars angular. The firmware (sketch) will be

able to turn the binary signal into the decimal physical angular from the bar, which

then later can be used to detect the bars position.

 I added something extra on this part I, which is implementing the program

Processing, this to visualize the angular in a graph, instead of just getting the angular

out on the serial monitor from the Arduino program.

Plant nº1

• Knowledge of the Arduino Uno microcontroller

• Knowledge of the 10 bits Magnetic Encoder AEAT-6010

• Knowledge of writing C/C++ code

• Knowledge of the Processing open source program

• Knowledge of the steps for installing the software to run on a computer

system.

Goals part II

Position control on a bar with motor and propeller, this by implementing PID control

on the plant. All this by using the graphical program LabVIEW, Arduino Uno

microcontroller and all the necessary electronic parts for position measuring and

power control. I was already familiar with the Arduino microcontroller doing hobby

electronic projects in my free time and had read a lot of books about it, which gave

me a good basic knowledge about the Arduino open-source-platform.

 The plant consists of two bars anchored to swing mode: at one end of the rod sits a

propeller engine that by his force will adjust the bars position. The position is

measured by a potentiometer attached to the shaft and is proportional to the

rotation of the propeller and will be read in by the Arduino Uno microcontroller

analog input pin.

Plant nº2

• Knowledge of the Arduino Uno microcontroller

• Knowledge of writing C/C++ code

• Knowledge of the graphical program LabVIEW + it’s toolkits

• Knowledge to make the Arduino communicate with LabVIEW

• Knowledge of the open-source hardware Fritzing to create the electronic

drawings

• Obtaining of the mathematical model of the system through physical laws

• Development of an open loop system that allows us the get the PID values

• Development of a closed loop system that controls the correct position of the

bar against possible disturbances outside the system

• Improving the system to make it more stable and reliable.

• Knowledge of Pulse Width Modulation (PWM)

• Knowledge of the steps for installing the software to run on the computer

system.

Pictures at the laboratory

 FI�AL PROJECT WORK

1

1. CHAPTER 1: Part I : reading in a bar’s position by a magnetic

encoder and an Arduino Uno microcontroller

1.1 Intro

At the University there is a laboratory for control techniques with +- 15 plants like the

one I use here, the students all have to do PID control on it with an Arduino

microcontroller communicating with Matlab and Simulink. On all the plants shaft

there is a potentiometer attached to detect the bars angular and give this value to

the PID controller as process value, which will depending on this value and the set

point change the controller its output.

My task for the final project work was to implement a magnetic encoder on the shaft

instead of the potentiometer and read in the angular from the bar into the Arduino

software, so they later can use it to do PID control.

I added an extra program to this Part I : implementing the program Processing which

is an open source programming language. Processing makes it possible to create

images, animations, and interactions. I will create a graph to show the bars angular.

Plant n°1

 FI�AL PROJECT WORK

2

1.2 Magnetic encoder AEAT-6010

The AEAT-6010 serie is a high performance, low cost, optical absolute magnetic

encoder module, designed to detect absolute angular position for precise motor

feedback.

This magnetic encoders is ideal for angular detection within 360°. Based on magnetic

technologies, the device is non-contact and ensures reliable operations. It is able to

provide absolute angle detection upon power-up, with a resolution of 0.35°(10 bits

version), which is equivalent to 1024 positions (0-1023) per revolution respectively.

The positional data is provided in serial bit stream. There is no upper speed limit; the

only restriction is that there will be fewer samples per revolution as the speed

increases.

In addition, the magnetic encoder comes complete with housing that enables easy

assembly and integration to customers' applications.

With a 3-wire serial interface, the AEAT-6010 serie enables the provision of absolute

position data in binary format. The encoder is compatible with a wide range of

industrial automation applications with a single 5V power supply input, which are

accessed through four 0.025 inch square pins located on 0.1 inch centers.

 FI�AL PROJECT WORK

3

1.2.1 Magnetic encoder’s mean features

• 10 bits resolution

• Contactless sensing technologies

• Wide temperature range from -40° to 125°C

• Absolute angular position detection

• Synchronous Serial Interface (SSI) output for absolute position data (binary

format)

• Single 5V supply

• Easy assembly, no signal adjustment required

• Direct connectivity through PCB (Printed Circuit Board)

• Small form factor (23mm diameter x 19mm height)

• 6mm shaft

1.2.2 Electrical connections encoder

Connections between the encoder connector and the Arduino Uno

Wires leaving the encoder and entering the Arduino with different colors

I soldered the 5-pins female connector to a 5 wires multi bus, therefore the colors

change like you can see on the next page.

 FI�AL PROJECT WORK

4

Pin connection:

1: wire color in white box: Yellow: VDD (5V supply voltage): 5V power supply Arduino

2: wire color in white box: Green: CSn (Chip select): Digital output 10 Arduino

3: wire color in white box: Pink: VSS (GND): GND Arduino

4: wire color in white box: Brown: CLK (Serial clock-input): Digital output 11 Arduino

5: wire color in white box: Grey: DO (Serial Data-Output): Digital input 12 Arduino

Wire colors to know entering the Arduino

 FI�AL PROJECT WORK

5

1.3 Electronic circuit plant

In this part I, I will only be using the Arduino Uno in the white box. The features about

this one are explained in the hardware chapter. There is a transformer and transistor

attached in the box, but I will not be using them. The Arduino will be powered

through USB.

The transformer and transistor will not be used in this part I

1.4 Arduino sketch

1.4.1 Explanation firmware

The following firmware is written to control the Synchronous Serial Interface for the

AEAT-6010 magnetic encoder, to read in a bars angular in degrees.

To understand the CLK, NCS and Serial data coming from the encoder better, take a

look at the following Timing Characteristics from the encoders datasheet:

 FI�AL PROJECT WORK

6

 FI�AL PROJECT WORK

7

 FI�AL PROJECT WORK

8

 FI�AL PROJECT WORK

9

1.5 Processing sketch

1.5.1 Explanation Processing sketch

The Processing sketch will generate a graph depending on the bars angular (32°-132)

The explanation about the different functions is shown behind the “//” in the code.

Testing the Processing program

 FI�AL PROJECT WORK

10

The main Processing sketch, that will create a graph from the Arduino it’s serial port:

 FI�AL PROJECT WORK

11

 FI�AL PROJECT WORK

12

2. CHAPTER 2: Part II : Position control of a rotating bar with

engine and propeller using LabVIEW and Arduino

2.1 Intro

In this chapter I will describe the main program, the plants components, the

theoretical part on PID control and the tuning method of Ziegler-Nichols that I used

to get my P and I value.

2.2 Plant description

The plant consists of a system with two bars, one

totally anchored and one with a degree of
freedom around an axis with a DC motor with a
propeller attached. The white box contains all

the electronics.

On the rotation shaft from the plant is a
potentiometer attached which will give the
right position of the bar at every moment. The

electric DC motor with propeller attached
controls the movement of the bar. The higher

the motor voltage the faster the propeller will
turn and the bar will change position.

So inside the box we find the electronic circuit.
Formed by an Arduino Uno microcontroller, an

NPN transistor (BD 139) with a radiator which
overlaps it to dissipate heat. This transistor will be
used to control the speed of the electrical

motor by using PWM (PWM is explained in
another chapter). Also in the box we have a

230V AC to 24V DC transformer which we need
to power the motor. This because the Arduino
cannot deliver the amount of voltage and

current we need to power it.

There is one “main” wire which contains 5 wires

inside, which are 2 from the motor and 3 from
the potentiometer. On the outside of the box

you can plug in the 230V socket to power the
transformer and the USB cable to reprogram
the Arduino.

 FI�AL PROJECT WORK

13

2.3 Basic function

The operation is based on the rotation of the motor and consequently of the

propeller, the rotating propeller creates a force that rotates the movable bar (this

process will be studied carefully in section mathematical model, to know accurately

the forces that influence the plant). The motor turns depending on the voltage

received, faster or slower, letting our bar which is attached with a degree of

freedom move with a curve at its ends. There is a semicircle attached to the plant,

to at all times be able to visualize the positions angle. The mechanic minimum and

maximum angular positions are 42° and 135°.

Minimum and Maximum angular

On the rotation shaft is a potentiometer attached which changes its value of

resistance depending on the angle of the moving bar. Now we connect the right pin

to the Arduino ground (GND) and the left pin to the 5V pin, we then connect the

center pin to the analog input of the Arduino board. This connection is called

"voltage regulator" and what it does is, depending on the position of the

potentiometer it will have different voltages, always between the limits set upper limit

of 5 volts and 0 volts the bottom.

 FI�AL PROJECT WORK

14

Potentiometer attached to the shaft

So through the Arduino digital output (PWM) we can move the bar and through an

analog input we know the position of the bar. The engine needs a higher potential

than the Arduino board, which is 5 Volt. Therefore we need a power circuit, which is

explained in depth in the "The electronic circuit".

 FI�AL PROJECT WORK

15

2.4 Electronic circuit

In this section of the thesis I will explain in a detailed way the parts of the electronic

circuit. Within this "electronic circuit" there are three sections:

I: The controller: The Arduino Uno microcontroller communicating with the LabVIEW

software will control the whole system depending on the set point and the actual

process value from the analog input (Pot meter). Doing this by sending out a PWM

signal to the power circuit by a digital PWM output.

II: The power circuit: This circuit will deliver the power to the actuator. The transistor

will adjust the transformer’s 24V depending on the PWM value from the PID controller

its output. A PID output value between 0-255 = voltage between 0-24V.

III: The actuator: The electrical DC motor with the propeller attached.

Testing the PWM with the transistor

These three sections are not separated from each other. For example to make the

engine run we have to use PWM on the transistor and this is controlled by the PWM

output pin from the Arduino and using the LabVIEW program with the PID controller.

 FI�AL PROJECT WORK

16

2.4.1 The controller

The controller controls the system through the Arduino its internal communicating

sketch, input-output signal and the LabVIEW program with the PID controller. The

control part uses PWM on the power circuit which allows the motor to turn faster or

slower. The Arduino has inputs and outputs for analog and digital type, specifically

our output is of a digital type (PWM), as Arduino is powered by a 5 volt signal (via

USB) this signal will vary from 0-5 volts. The analog input pin has a 10 bits resolution for

the internal converter, it means the Arduino board receives a signal of 10 bits of

accuracy and it is able to send a signal of 8 bits of precision being always from 0 to 5

volts.

2.4.2 The power circuit

The goal of the power circuit is powering the DC motor, this because the Arduino

board is powered via USB with a voltage of 5V and the motor needs a higher

potential, therefore an external source is needed (230VAC-24VDC transformer).

To allow the engine to operate in the range of its required potential, I use a power

supply of 24 volts ,which is the maximum for the motor. This source is connected to an

ordinary plug we have at home (230V AC) and the output will always be 24VDC. As

the output of our power supply is constant 24VDC we need a “device” that allows us

to vary the amount of voltage sent to the motor, therefore I use the bipolar transistor.

There are two requirements for the chosen transistor: the collector-emitter voltage

must be greater than 24 volts and the base current has to support more than 40 mA,

which is the current leaving from the Arduino because of the base resistor. It’s

because of these two datasheet values that I use the chosen transistor 139 which has

a collector emitter voltage up to 100 volts and base current of 0.5 Amperes.

Power circuit

 FI�AL PROJECT WORK

17

2.4.3 The actuator

The third part of the circuit is the actuator, the motor, this part is not related to an

electrical circuit itself, but it depends on the power deliverer and the controller.

I have designed a control circuit and a power deliverer for it. The higher the voltage

the more rapidly the engine will turn and therefore the propeller attached to the

external part of the motor will exercise more power to lift the bar. We must remember

that the maximum potential that we let go through the ends of the diode is 24 volts,

which matches with our max. voltage.

When mounting the motor we must place a diode in antiparallel, if we do not do this,

we run the risk of damaging the transistor we have on the power circuit.

Motor with an antiparallel diode

As you can see in the picture the cathode of diode is connected to the positive of

the engine (the engine does not have a positive side and a negative but to feed this

way the engine rotates in the direction we want) and the anode is connected to the

negative side.

Motor + propeller

 FI�AL PROJECT WORK

18

2.4.4 Total electronic circuit

So the circuit must be powered in two ways, we need to plug in the power into a

standard 230V outlet for the transformer to power the DC motor and we need the

Arduino board to insert by USB cable to the computer to feed the board and to

program it.

Electrical scheme

 FI�AL PROJECT WORK

19

2.5 Theoretical part

2.5.1 Intro

In this theoretical part I will explain the different P, I and the D response on a system,

open loop, closed loop, the two Ziegler-Nichols tuning methods , the orders in

systems and the mathematical model of the system. For the controller I designed I

didn’t use the D-action. This because the system works fine using a PI-controller.

2.5.2 PID

Proportional-Integral-Derivative (PID) control is the most common control algorithm

used in industry and has been universally accepted in industrial control. The

popularity of PID controllers can be attributed partly to their robust performance in a

wide range of operating conditions and partly to their functional simplicity, which

allows engineers to operate them in a simple, straightforward manner.

As the name suggests, PID algorithm consists of three basic coefficients; proportional,

integral and derivative which are varied to get optimal response.

2.5.3 Control System:

The basic idea behind a PID controller is to read a sensor, then compute the desired

actuator output by calculating proportional, integral, and derivative responses and

summing those three components to compute the output. Before I start to define the

parameters of a PID controller, I will show what a closed loop system is and some of

the terminologies associated with it.

 FI�AL PROJECT WORK

20

2.5.4 P action

The proportional component depends only on the difference between the set point
and the process variable. This difference is referred to as the Error term.
The proportional gain (Kc) determines the ratio of output response to the error signal.

For instance, if the error term has a magnitude of 10, a proportional gain of 5 would
produce a proportional response of 50. In general, increasing the proportional gain

will increase the speed of the control system response. However, if the proportional
gain is too large, the process variable will begin to oscillate. If Kc is increased further,
the oscillations will become larger and the system will become unstable and may
even oscillate out of control.

The goal of this action is that after having set the steady-state error it will be zero

relative to a reference.

The output we get from it is proportional to the error being this ���� � �� · ����therefore

the transfer function of the proportional action is nothing more than an adjustable

gain.

����� � ��

This action does not correct the error in the steady state. The following figure shows

the operation of a P controller.

Answer of a system with different Kp

As you can see in the figure the steady state error decreases as the constant

increases, the speed of this is slower but also the overshoot and oscillations increase

taking a longer time to oscillate.

 FI�AL PROJECT WORK

21

2.5.5 I action

The integral component sums the error term over time. The result is that even a small

error term will cause the integral component to increase slowly. The integral response

will continually increase over time unless the error is zero, so the effect is to drive the

Steady-State error to zero. Steady-State error is the final difference between the

process variable and set point. A phenomenon called integral windup results when

integral action saturates a controller without the controller driving the error signal

toward zero.

 The output of this controller is proportional to the accumulated error, the response

will be much slower. The fdt of the controller output and this are:

���� � �� � 	���
�

�

� ����� � ��

�
The purpose of this action is the output to match the reference steady state, this can

change without having to change the Ki unlike the proportional control.

The characteristics of the integral action can be seen in the figure below, where we

represent the PI control in which the portion is varied.

Answer of a system for different values of Ti

Being T1= �

��

 , therefore the bigger the constant the higher the speed of the system,

but also the bigger will be its damping, as it could destabilize if it is too big. As we can

see the steady error tends to 0.

 FI�AL PROJECT WORK

22

2.5.6 D action

D-action is NOT USED !

The derivative component causes the output to decrease if the process variable is

increasing rapidly. The derivative response is proportional to the rate of change of

the process variable. Increasing the derivative time (Td) parameter will cause the

control system to react more strongly to changes in the error term and will increase

the speed of the overall control system response. Most practical control systems use

very small derivative time (Td), because the Derivative Response is highly sensitive to

noise in the process variable signal. If the sensor feedback signal is noisy or if the

control loop rate is too slow, the derivative response can make the control system

unstable

This action works when there is a change in absolute value of the error. Therefore it is

not going to be used alone, as it only corrects single errors in the transitional stage.

It’s a predictable action therefore a quick action.

Its aim is to correct the error signal before it becomes too big. The prediction is made

by extrapolating the control error in the direction of the tangent to the

corresponding curve, as shown in the figure.

The disadvantage is that it enlarges the noise signals and it could cause saturation in

the controller. It can be used in systems with significant delay, because it allows rapid

impact of the variable after introducing a disturbance in the process. The

characteristics of the integral action can be seen in the figure below, in which we

represent the PI control varying the portion.

Answer of a system for different values of Ti

 FI�AL PROJECT WORK

23

2.5.7 Closed loop

 X(S) PLANT G (s) Y(S)

 H (s)

A practical example for a closed loop system:

Closed loop speed control:

Hall sensors are used to measure the actual speed of the rotor. This signal is the

actual value input for a Control Circuitry, usually based on PI control algorithm.

The voltage level for motor is adjusted depending on the difference between the

actual value and the set value by implementing PWM.

These circuits are different because the output depends not only on the input, but on

both the input and the output. These circuits are ideal for the regulation because we

can compare the output with the input. We must add that the upper line will be not

only the plant but it may have many other functions such as controllers etc.., like the

line below, but from here we will consider the above line as G (s) and below as H (s).

At this point we can state that the transfer function is simply the mathematical

function that relates the ratio between output and input:

Transfer function: F (s) = Y (s) / X (s)

The transfer function obviously consists of a numerator where the zeros of the system

(are the values that make the numerator zero), and a denominator where the poles

of the system (are the values that make the denominator zero).

The way of classifying the different systems is through the degree of the polynomial

that has the characteristic equation (the denominator of the transfer function), this

approach obtains three groups of first order systems (polynomial of degree 1),

second systems order (polynomial of degree 2), and higher order systems

(polynomial of degree 3 or higher).

 FI�AL PROJECT WORK

24

2.5.8 Tuning rules Ziegler-Nichols

The three PID controller actions are not always used, the proportional action normally

appears accompanied only with the integral action or with the derivative one. This

way they conform the PI controller and the PD one. These together with the PID

controller are the one we most commonly find.

For its proper functioning, the tuning must be correct. This can be done in several

ways, today there are programs (auto tuning) that will automatically adjust it, but it

can also be done manually.

To do this there are rules that facilitate this work. We will see the rules proposed by

Ziegler-Nichols:

The process of setting the optimal gains for P, I and D to get an ideal response from a

control system is called tuning. There are different methods of tuning, of which the

“guess and check” method and the “Ziegler Nichols” method.

The gains of a PID controller can be obtained by trial and error method. Once an

engineer understands the significance of each gain parameter, this method

becomes relatively easy. In this method, the I and D terms are set to zero first and the

proportional gain is increased until the output of the loop oscillates.

 As one increases the proportional gain, the system becomes faster, but care must

be taken to not make the system unstable. Once P has been set to obtain a desired

fast response, the integral term is increased to stop the oscillations. The integral term

reduces the steady state error, but increases overshoot.

Some amount of overshoot is always necessary for a fast system so that it could

respond to changes immediately. The integral term is tweaked to achieve a minimal

steady state error. Once the P and I have been set to get the desired fast control

system with minimal steady state error, the derivative term is increased until the loop

is acceptably quick to its set point. Increasing derivative term decreases overshoot

and yields higher gain with stability but would cause the system to be highly sensitive

to noise.

The Ziegler-Nichols method is another popular method of tuning a PID controller. It is

very similar to the trial and error method wherein I and D are set to zero and P is

increased until the loop starts to oscillate. Once oscillation starts, the critical gain

Kc and the period of oscillations Pc are noted. The P, I and D are then adjusted as per

the tabular column shown below.

 FI�AL PROJECT WORK

25

Control P Ti Td

P 0.5Kc - -

PI 0.45Kc Pc/1.2 -

PID 0.60Kc 0.5Pc Pc/8

Ziegler-Nichols tuning, using the oscillation method

PID controller tuning rules for Ziegler-Nichols

Ziegler and Nichols proposed some rules to determine the values of proportional gain

Kp, integral time Ti and derivative time Td.

There are two methods called rules Ziegler-Nichols tuning. In both it is requested to

obtain a 25% maximum overshoot in the response step.

2.5.9 First method (not used in this final project)

The plant response to a unit step input is obtained experimentally. If the plant does

not contain integrators or complex conjugate dominant poles, the unit step response

curve can be in the form of S (if the response exhibits an S-shaped curve, this method

is not applicable). Such step-response curves is generated experimentally or from a

dynamic simulation of the plant.

The S-shaped curve is characterized by two parameters: the delay time L and the

time constant T. The delay time and the time constant are determined by drawing a

tangent line at the inflection point of the S-shaped curve and determining the

intersection of this tangent with the time axis and the line c (t) = K, as be seen below.

 Calculation of delay time and the time constant

In this case, the transfer function C (s) / U (s) is approximated through a first order

system with a transport delay as it follows:

��	

��	
 � ����	

�	
 1

 FI�AL PROJECT WORK

26

Ziegler and Nichols established the values of Kp, Ti y Td agreeing with the following

table.

Type of control Kp Ti Td

P
�
� ∞ 0

PI 0.9 �
�

�
0.3 0

PID 1.2 �
� 2L 0.5L

2.5.10 Second method (USED)

In the second method, we first set Ti= ∞ and Td = 0. Thanks to the use of only the

proportional control action, Kp increases from 0 to a critical value where the output

Kcr first exhibits sustained oscillations (if the output has not sustained oscillations for

any value you can take Kp, this method does not apply). Therefore, the critical gain

Kcr and Pcr corresponding period are determined experimentally. Ziegler-Nichols

suggested to establish the values of the parameters Kp, Ti and Td according to the

formula shown in the table.

Type of control Kp Ti Td

P 0.5 Kcr ∞ 0

PI 0.45 Kcr
1

1.2 �
� 0

PID 0.6 Kcr 0.5�
� 0.125�
�

 FI�AL PROJECT WORK

27

2.5.11 Kind of system

In the field of automatic control systems the plants are studied in a theoretical way

because the plants are characterized by mathematical equations, in order to use

them in a simpler way especially for the possibility of using computers to solve

problems.

Second order

We have a characterized plant with a mathematical function:

The second order systems have a function of transfer which has this form:

���� �
���

�

�� � 2
��� � ��
�

Where "�� " is the natural frequency, “�" is the damp-coefficient and “K” keeps on

being the system’s gain. The natural frequency and the damp-coefficient indicate

the poles’ position, being it the arcsine of � the angle which form the poles and ��

their wideness, as for example:

Poles of a second order system

Second-order systems are divided into four groups depending on the value of the

damping coefficient, these are called:

* Underdamped system

* Overdamped system

* Critically damped system

* Critically undamped system

 FI�AL PROJECT WORK

28

For the second-order systems we specify graphic characteristics in order to establish

better their characteristics, these are:

• Rise time (tr): rise time is the time taken by a signal to change from a specified low

value (10%) to a specified high value (90%).

• Peak time (tp): is the time it takes the system response to reach the first peak or

maximum value.

• Overshoot (Mp): is the percentage value of the maximum or peak value with

respect to the final value.

• Settling Time or stabilization (ts): is the time required for the system response is in a

band of plus or minus 5% (also frequently used 2%).

An underdamped 2nd order system

Specifications in the time domain

 FI�AL PROJECT WORK

29

Not damped movement (�=0)
This movement occurs when the damping coefficient is zero. It's a bad movement

because, as its name suggests, does not dampen the signal. Your answers in the

system have the following graphics:

Not damped movement

Underdamped movement (0 � � � 1)
When the damping ratio is bigger than zero and less than one it is said to be an

underdamped motion. This type of movement is one of the most effective because it

is usually fast but has an overshoot that could generate a problem.

A graph of the response of this type of motion is:

Underdamped system

As shown in the graph when the damping coefficient is close to zero the overshoot is

bigger, this overshoot is descending as we approach the unit.

 FI�AL PROJECT WORK

30

Critically damped movement (� � 1)
When the damping ratio is exactly equal to 1 it is said to be a critically damped

motion

Critical system

Overdamped movement (� � 1)
If the damping coefficient is larger than the unit it is said to be a movement

overdamped

Overdamped system

 FI�AL PROJECT WORK

31

2.5.12 Mathematical model

In order to get the mathematical model of the system we must have a complete

knowledge about it and the physical laws that affect it. Our system may be defined

as two anchored bars, one totally fixed (the vertical permanent one) and the other

one with the motor attached which has a degree of freedom that performs with

rotational movement. The center of rotation is the point where both bars are

anchored.

I am now going to study the system for the mathematic model.

Analysis of the movement

The movement made by the moving bar with the motor attached makes the rigid-

body rotation around a fixed axis.

In physics, a rigid-body means the distance between any two given points of a rigid

body remains constant in time regardless of external forces exerted on it. The rotation

(motion) which changes the bar its angular is the torque, another words for torque is

moment of force. The torque is the tendency of a force to rotate an object about an

axis.

The torque is a product of the distance between the applied force (r) and the

applied force itself (F).

� � � � �

 FI�AL PROJECT WORK

32

τ is the torque vector and the magnitude of the torque.

r is the displacement vector (a vector from the point from which torque is measured

to the point where force is applied), and r is the length (or magnitude) of the lever

arm vector.

F is the force vector and the magnitude of the force

× denotes the cross product

Moment of inertia involved:

The torque is related to the moment of inertia, so another important term in turning

movements, as every rotating element has an inertia moment. The relationship

formula is:

� � � � �

Where � is the angular acceleration on the body.

Starting from these formulas I can obtain the equations of the system. First I am going

to calculate the inertia moment of the bar and the motor and then the torque. In

the picture we can see a summary of the forces exposed in our system.

The system’s forces

The systems forces:

Fe is the force that provides the rotation of the motor and the charge to change the

bar position.

All the other forces are due to gravity:

F1 is the total gravitational of the mass of the motor

F2 is the total gravitational force for the left side of the bar

F3 is the total gravitational force for the right side of the bar

 FI�AL PROJECT WORK

33

Force of gravity

The force of gravity acts on the bar and the engine, therefore we calculate

them separately.

If the center of gravity of the bar would be in the center of gravity, the total

torque which produces the gravity on the rod would be zero because the

torques of one side of the rotation axis would compensate the other one. In

this case the center of gravity would be displaced 6 cm therefore if the

gravity will produce a torque it will be:

 �� � � � �
� �
� �

�.	

�.		

� 9.81 0.454
0.5 ��������
� �

�.	

�.		

0.1335�������

Here you can see that the right side is 6 cm longer

In order to calculate the torque of the motor and the propeller, we assume

that the whole set is a point mass located in the midpoint of the motor.

Therefore, the torque of this set is:

�� � � � � � !0.245 · 9.81 · 0.076 · ������� � !0.1825 ������� �

 FI�AL PROJECT WORK

34

Movement of inertia

is a property of rotating bodies that defines its resistance to a change in angular

velocity about an axis of rotation. It is how rotation of a body is affected by Newton's

law of inertia, which states "Every body perseveres in its state of being at rest or of

moving uniformly straight forward except insofar as it is compelled to change its state

by forces impressed."

The moment of inertia only depends on the body geometry and position of the

rotational axis but it does not depend on the forces involved in movement.

Physically if we take a particle system and a random axis, the moment of inertia is

defined as the sum of the products of the masses of the particles by the square of

the distance r of each particle to said axis. Mathematically it is expressed as:

� � � �� · �
�

For a continue mass body it is generalized:

� � ! �"�

Now I will calculate the inertia moment of the bar and the propeller motor.

Inertia moment of the bar

Now I apply the inertia formula to the inertia moment of our bar, which has a mass M

= 454 g and a length L = 50 cm = 0.5 m

 In the following picture is a scheme of our bar which shows that the right side is 6 cm

longer then the left side.

The bar’s dividing

The dm mass of the element of longitude of the bar is between x and x+dx and is:

"� � #
� "$

Therefore the inertia moment is:

�� � ! 0.454
0.5

�.��

��.��

$�"$ � 9.867 · 10��*+/ �²

 FI�AL PROJECT WORK

35

Inertia moment of the propeller

When calculating the moment of inertia of the propeller engine I will take it as if all its

mass was concentrated at a point. To calculate it I use the point mass formula:

� � � �� · �
�

The set has a mass m = 0.76 and is at a distance r = 0.245, therefore the moment of

inertia will be:

� � 0.076 . 0.245� � 4.562 · 10�� kg/ m²

Inertia moment in total

It is the sum of the previous two elements:

�� � 1.443 · 10�� kg/ m²

Transferfunction plant

In the transfer function the input will be the driving force from the motor and the

output is the angle of the moving bar. Therefore the transfer function of the form

remain
�

��

.

We will obtain the equation of our system with the help of this formula. But like any

system the system has a friction so you have to attach this term. Therefore the

formula remains:

� � 2 345 � � �

 FI�AL PROJECT WORK

36

As we already have the torques of the calculated system and the moments of

inertia, we only have to replace � which is the angular acceleration thus it can be

put as
�
�
�

��
.

�������� � �
��

��
� �

�
�
�

��

0.1335	674�8
 2 0.1825	674�8

 0.2459� 2 3 "4
"8 � 0.01443 "�4

"8

0.2459� � 0.049	674�8

 345
 0.014434:
If we find derivatives in our equation we will use the Laplace transform to obtain the

transfer function
�

��

. Since the equation is nonlinear, we will linearize it using the

Taylor series about a point of equilibrium (45
� � 4:

� � 0, 4 �
45º, 9�=0.049sin(45)/0.245=0.141N)

< � 0.2459� 2 0.049	674�8
 2 345 2 0.014434: � 0

∆< � ><
>4: ∆4:
 ><

>45 ∆45
 ><
>4 ∆4
 ><

>9�

∆9� � 0

∆< � 0.245∆9� 2 0.049?@	45º∆4 2 3∆45 2 0.01443∆4:
The linearized equation will be:

0.245∆9� � 0.01443∆4:
 3∆45
 0.0346∆4

Now we can use the transformed of Laplace:

0.245∆9��	
 � 0.01443	�∆4�	

 3	∆4�	

 0.0346∆4�	

So the transfer function of our system, supposed that the starting conditions are null,

and taking ∆F=0, it will be:

∆�	
�

∆��	
�
�

0.245

0.01443
� � �
 � 0.0346

The friction coefficient B will change from one device to another, as the friction of

each plant is a bit different.

 FI�AL PROJECT WORK

37

2.6 Main LabVIEW controlling program

Front panel Main LabVIEW controlling program

2.6.1 The code from zero to controlling the bars position

The goal was creating a program (Front panel + Block diagram) in LabVIEW that

communicates with the Arduino Uno its Inputs/Outputs to control the bars position.

� To communicate with the Arduino I found a “Arduino toolkit” which makes it

possible to communicate between the LabVIEW software and the Arduino its

I/O. This part is explained in the software chapter of this thesis.

� LINK: http://vishots.com/getting-started-with-the-labview-interface-for-

arduino/

 FI�AL PROJECT WORK

38

� National Instruments offers the PID Control toolkit for LabVIEW, which was

perfect for this project.

The toolkit can be downloaded from the NI website or installed by the NI Cd-roms:

LINK: http://sine.ni.com/nips/cds/view/p/lang/en/nid/209054

2.6.1.1 The PID algorithm by National Instruments:

The PID controller compares the setpoint (SP) to the process variable (PV) to obtain

the error (e).

In this case, the controller will compare the angular we have chosen in the front

panel with the actual angular from the bar.

Then the PID controller calculates the controller action, u(t), where Kc is controller

gain.

If the error and the controller output have the same range, –100% to 100%, controller

gain is the reciprocal of proportional band. Ti is the integral time in minutes, also

called the reset time, and Td is the derivative time in minutes, also called the rate

time. The derivative action will not be used in this project, because with a PI-

controller the not super complex plant can already be controlled.

 FI�AL PROJECT WORK

39

The following formula represents the proportional action:

The following formula represents the integral action:

The following formula represents the derivative action: (Not used in this project)

2.6.1.2 Implementing the PID Algorithm with the PID Vis

This section describes how the PID VIs implement the positional PID algorithm. The

subVIs used in these VIs are labelled so you can modify any of these features as

necessary.

Error Calculation

The following formula represents the current error used in calculating proportional,

integral, and derivative action.

Proportional Action

Proportional Action is the controller gain times the error, as shown in the following

formula.

Trapezoidal Integration

Trapezoidal Integration is used to avoid sharp changes in integral action when there

is a sudden change in PV or SP. Use nonlinear adjustment of integral action to

counteract overshoot. The larger the error, the smaller the integral action, as shown

in the following formula.

 FI�AL PROJECT WORK

40

Partial Derivative Action

NOT USED

Controller Output

Controller output is the summation of the proportional, integral, and derivative

action, as shown in the following formula:

Output Limiting

The actual controller output is limited to the range specified for control output.

The following formula shows the practical model of the PID controller:

2.6.1.3 The Autotuning Algorithm

The toolkit also offers a Autotuning Algorithm:

I used autotuning to improve the stability of my system. Before you begin autotuning,

you must establish a stable controller!

 I used the following Ziegler-Nichols method to get a stable controller:

2.6.1.4 Closed-Loop (Ultimate Gain) Tuning Procedure

The PID toolkit also offers a Autotuning Algorithm:

I used autotuning to improve the stability of my system. Before you begin autotuning,

you must establish a stable controller!

 FI�AL PROJECT WORK

41

 I used the following Ziegler-Nichols method to get a stable controller:

Although the closed-loop (ultimate gain) tuning procedure is very accurate, you

must put your process in steady-state oscillation and observe the PV on a strip chart. I

completed the following steps to perform the closed-loop tuning procedure:

Step 1: Set both the derivative time and the integral time (does not matter, because I

don’t use it in my controller) on your PID controller to 0.

Step 2: With the controller in automatic mode, slowly and carefully increase the

proportional gain (Kc) in small increments. Make a small change in SP (Angular

wished) to disturb the loop after each increment. As you increase Kc, the value of PV

should begin to oscillate. Keep making changes until the oscillation is sustained,

neither growing nor decaying over time.

Step 3: Record the controller proportional band (PBu) as a percent, where PBu=

100/Kc.

Step 4: Record the period of oscillation (Tu) in minutes.

Step 5: Multiply the measured values by the factors shown in the table on this page

and enter the new tuning parameters into your controller. The table provides the

proper values for a quarter-decay ratio. If you want less overshoot, increase the gain

Kc.

 FI�AL PROJECT WORK

42

Closed-Loop-Quarter-Decay Ratio Values

My values voor P and I after this Closed-Loop (Ultimate Gain) Tuning Procedure

methode were:

P = 2.9

I = 0.4

� Now I will use the PID with Autotuning VI to get the process even more stable:

To use the Autotuning Wizard to improve your controller performance, you must first

create your control application and determine PID parameters that produce stable

control of the system. For my system those are the values I just calculated by the

closed loop tuning procedure (P=2.9 and I=0.4)

You can develop the control application using either the PID VI, the PID Gain

Schedule VI, or the PID with Autotuning VI.

Because the PID with Autotuning VI has input and output consistent with the other

PID VIs, you can replace any PID VI with it. The PID with Autotuning VI has several

additional input and output values to specify the autotuning procedure.

The two additional input values are autotuning parameters and autotune?.

autotuning parameters is a cluster of parameters that the VI uses for the autotuning

process.

 FI�AL PROJECT WORK

43

 Because the Autotuning Wizard allows you to specify all of these parameters

manually, you can leave the autotuning parameters input unwired. The autotune?

input takes a Boolean value supplied by a user control. Wire a Boolean control on

the front panel of your application to this input. When you press the Boolean control,

the Autotuning Wizard opens automatically.

Set the Boolean control mechanical action to Latch When Released so that the

Autotuning Wizard does not open repeatedly when the user presses the control. The

Autotuning Wizard steps the user through the autotuning process.

The Autotuning wizard

 FI�AL PROJECT WORK

44

The PID gains in, before the autotuning and the PID gains out, after going through

the autotuning wizard

After doing the AutoTuning I got the following values for P and I:

P = 2.4

I = 0.2

After doing the trail and error by myself for values close to the AutoTuning outputs,

my final results (value) for P and I are:

P = 2.31

I = 0.1

 FI�AL PROJECT WORK

45

Testing with the final PI values:

� 60 to 90 °

� 90° to 60°

 FI�AL PROJECT WORK

46

� 90° to 100° to110°

� Minimul angular (42°) to 90°

 FI�AL PROJECT WORK

47

� Random set points

� Adding an error to the system (pushing the bar down)

 FI�AL PROJECT WORK

48

2.6.2 Creating the front panel

Now that I have the PI values, I can make the definitive front panel.

I used the decorations under Controls Palette – Modern – Decorations to create a

“drawing” that looks almost the same as the PLANT in real.

The PLANT created in the front panel

 FI�AL PROJECT WORK

49

Information about the frontpanel:

Displays the bars angular

Insert the mechanical max

angular

Insert the mechanical min

angular

Display the angular on the

“white box”

Display the PWM that is done

on the transistor at the

moment

 FI�AL PROJECT WORK

50

2.6.3 Creating the block diagram

 FI�AL PROJECT WORK

51

Explenation from left to right:

“Everything” is placed in a flat sequence structure, were in the first frame a while

loop is created which will run when running the VI. On the left side you can see the

“init” vi from the Arduino toolkit, which is explained in the software part. Here I give

up the COM port for the USB, to communicate with the Arduino + the baud rate.

 Then the next thing you can see is the “Analog read pin” vi from the toolkit. The

Analog pin number is given up by a constant, the potentiometer its “output” is

attached to analog input pin 0…

Then the following step I do is scaling the 0-5V signal to the mechanical angular,

after this I pass through a low pass filter to filter out the created noise by the

propeller. Now we have the Process value after the filter, this one will enter the PID vi

its “process value” input.

Other connections made with the PID vi are:

- Set point by a slider in the front panel

- The PID values (gains)

- The min and max value the PID controller can send on its output (0-255 for the

PWM vi from the Arduino toolkit)

- The output from the PID controller is connected to the PWM vi from Arduino to

control the motor his speed.

The PID vi block

 FI�AL PROJECT WORK

52

2.6.4 Troubleshooting the main LabVIEW program

� Problem 1:

While running the while loop and I would like to stop the program by pressing the

main stop button, the PWM vi kept running it’s last value and so the DC motor kept

running which was not the idea! Therefore I inserted a Flat Sequence Structure.

The idea behind using this structure is that when the while loop has been stopped

which takes place in the first frame (frame 1) and where the PWM vi will get the PID

controller its output value for the duty cycle on pin 6, the second frame (frame 2) will

get activated and the first frame deactivated. In this second frame, the PWM vi

takes place again, but here it writes a “0” to the duty cycle input and so the main

program will stop + the motor will stop turning.

On the left side frame 1 and on the right side frame 2

Flat Sequence Structure (Flat Sequence)

The main STOP button

 FI�AL PROJECT WORK

53

� Problem 2:

When the program is running, the motor is running, the propeller will create disturbing

on the pot-meter value (pulses) entering the LabVIEW program. The PID controller will

react on these pulses.

The proportional component depends only on the difference between the set point

and the process variable. This difference is referred to as the Error term. So the PID

controller will change its output because of these pulses, which is a problem!

Therefore the following solution:

 …

At the number 1 the analog input signal from the potentiometer enters, this is a value

in voltage (0-5V) and contains pulses which I don’t want to enter the PID controller.

There for a shift register is created, it will send the actual value around the while loop

and let it enter the subtrahend. This subtrahend will subtract the actual value with the

previous value.

After this the subtracted value will be compared with “0.5”. This 0.5 is in voltages. I did

measuring on the pulses before and the pulses that disturb the system the most are

the pulses greater 0.5 Volts. When the disturbing pulse is greater as 0.5V, the

1

 FI�AL PROJECT WORK

54

comparison is true. After the comparison U can see the wire entering a select block,

which will compare the signal entering the “?” input with the TRUE and FALSE value.

The FALSE value presents the actual sensed value coming from the analog input.

The TRUE value represents the set point in degrees converted to a voltage signal.

If the PULSE is greater as 0.5V the TRUE statement gets executed, if not and the PULSE

is smaller as 0.5, which presents the FALSE statement, the sensed value from the

analog input will enter the Scaling function and go to the PID controller with no pulse

or a pulse smaller then 0.5V.

� Problem 3:

Every time when I started up the LabVIEW program and the main program, my PI

values were back to “0”. Therefore I needed to right click on the numeric controller

and make the Current Value Default.

 FI�AL PROJECT WORK

55

3. CHAPTER 3: Software

In this chapter I will give information on all the software which is used in the two parts

(Info software, installation and examples)

3.1 Arduino

3.1.1 Intro to Arduino

Arduino is an open-source electronics prototyping platform based on flexible, easy-

to-use hardware and software. It is intended for designers, hobbyists, and anyone

interested in creating interactive objects or environments.

Arduino can sense the environment by receiving input from a variety of sensors and

can affect its surroundings by controlling motors, lights and other actuators. The

microcontroller on the board is programmed using the Arduino programming

language based on C/C++ and the Arduino development environment (based on

Processing). Arduino projects can be stand-alone or they can communicate with

software running on a computer (In my case LabVIEW!).

The boards can be built by hand or purchased preassembled; the software can be

downloaded for free.

Its goal is based on small projects, for fans and lovers of electronics. Its main feature is

the ease with which we can program something, unlike other plates with

microcontrollers on the market, whose programming is much more laborious.

Moreover Arduino belongs to a free software based company (Open source

platform), this allows us to use it in any environment and project.

 FI�AL PROJECT WORK

56

3.1.2 Installation Arduino software

The first thing that should be noted is that Arduino has a free software program.

In this case go to the official website for Arduino: http://arduino.cc

The website show you all sorts of information about Arduino, it has a forum where

users can exchange experiences, projects, blog, questions, etc… It also has an online

store where you can buy Arduino products.

DOWNLOAD THE ARDUINO SOFTWARE:

The open-source Arduino environment makes it easy to write code and upload it to

the I/O board.

At the website there is a section where you can download the free software, it’s the

section named “download”.

Arduino has developed an interactive environment for development, open source

course called IDE (Integrated Development Environment), the IDE to program the

Arduino is an easy, based on C/C++, processing and wiring that is the language the

Arduino uses.

Arduino provides your IDE in various formats, depending on the operating system

that your computer has, Arduino currently reached by the version number 19, but

you can download any of the IDE prior to this in case you have some sort of

compatibility issue.

In my case as I have to install the software on a computer equipped with Windows I

choose the latest version out there for Windows.

 FI�AL PROJECT WORK

57

In each version of Arduino the functions have been improved, the improvement are

also explained every time. So it is worth going the website from time to time to check

for a new version.

Once downloaded into a folder, we have to unzip it and put it in a place easily

accessible as we will need it repeatedly. In this folder we find the libraries, examples,

drivers and the Arduino program itself.

By now we have the program for starting writing a program in the Arduino

environment but first we have to set up the connection between the PC (or laptop)

and the Arduino UNO. This is explained in the following chapter.

3.1.3 Installation Arduino drivers

Plug in your board and wait for Windows to begin its driver installation process. After

a few moments, the process will fail, despite its best efforts..

Then click on the Start Menu, and open up the Control Panel.

While in the Control Panel, navigate to System and Security. Next, click on System.

Once the System window is up, open the Device Manager.

Look under Ports (COM & LPT). You should see an open port named "Arduino UNO

(COMxx)"

 FI�AL PROJECT WORK

58

Right click on the "Arduino UNO (COmxx)" port and choose the "Update Driver

Software" option.

Next, choose the "Browse my computer for Driver software" option.

Finally, navigate to and select the driver file named "arduino.inf", located in the

"Drivers" folder of the Arduino Software download (not the "FTDI USB Drivers" sub-

directory). If you are using an old version of the IDE (1.0.3 or older), choose the Uno's

driver file named "Arduino UNO.inf"

 FI�AL PROJECT WORK

59

Windows will finish up the driver installation from there.

Now the COM port is ready to use for the Arduino and the communication between

the PC (or laptop) is OK.

 FI�AL PROJECT WORK

60

Once everything is installed it is time to open the program : go to the folder arduino-

1.0.2, on which there is symbol named Arduino. When you click on it, it will be like this:

IDE of Arduino

 FI�AL PROJECT WORK

61

Make sure that you are using the correct Arduino board in the program! To check

this click on Tools -> Board and look that the option selected is Arduino UNO board

(The Arduino model used in my case). Also make sure that you are working with the

correct port number, to check this click on Tools -> Serial Port and it will show our port

number. For example: COM13

Selecting the Serial Port

Once we know that we are working with the correct port, we can start writing the

program we want, we use the samples that come in the IDE or get off a program to

verify that our board is working correctly.

 FI�AL PROJECT WORK

62

3.1.4 Creating a sketch in Arduino

I learned programming in Arduino a couple of years ago, because of hobby

electronics in my free time. Back then I bought the book “Getting Started with

Arduino” which is a perfect guide to learn programming in Arduino. I also used the

book during this final project work.

It is programmed through a free program that can be downloaded from the Arduino

website (http://www.arduino.cc). Through the computer the code can be written,

these programs use a proprietary programming language which is based on C/C++.

But we can also use Arduino with other programs, such as LabVIEW, Processing (See

part II of the thesis), Matlab Simulink libraries… For LabVIEW you need a interface with

the Arduino toolkit.

Getting Started with Arduino

The Arduino integrated development environment (IDE) is a cross-

platform application written in Java, and is derived from the IDE for the Processing

programming language . It is designed to introduce programming to artists and other

newcomers unfamiliar with software development. It includes a code editor with

features such as syntax highlighting and automatic indentation, and is also capable

of compiling and uploading programs to the board with a single click. There is

typically no need to edit makefiles or run programs on a command-line interface. A

program or code written for Arduino is called a sketch.

Arduino programs are written in C or C++. The Arduino IDE comes with a software

library called "Wiring" from the original Wiring project, which makes many common

input/output operations much easier. Users only need to define two functions to

make a runnable cyclic executive program:

• setup(): a function run once at the start of a program that can initialize settings

• loop(): a function called repeatedly until the board powers off

 FI�AL PROJECT WORK

63

3.1.5 Blink LED example

Example

A typical first program for a microcontroller simply blinks an LED on and off. In the

Arduino environment, the user might write a program like this:

Here you can see the integrated pin 13 LED

It is a feature of most Arduino boards that they have an LED and load resistor

connected between pin 13 and ground, a convenient feature for many simple tests.

The Arduino code to make the LED blink:

#define LED_PIN 13

void setup () {

 pinMode (LED_PIN, OUTPUT); // enable pin 13 for digital output

}

void loop () {

 digitalWrite (LED_PIN, HIGH); // turn on the LED

 delay (1000); // wait one second (1000 milliseconds)

 digitalWrite (LED_PIN, LOW); // turn off the LED

 delay (1000); // wait one second

}

 FI�AL PROJECT WORK

64

The sketch to make a LED blink:

The program its buttons:

 1 2 3 4 5

1: Compile the sketch

2: Upload the sketch to the Arduino microcontroller

3: New sketch

4: Open the sketch which is on the Arduino microcontroller

5: Save the sketch

The previous code would not be seen by a standard C++ compiler as a valid

program, so when the user clicks the "Upload to I/O board" button in the IDE, a copy

of the code is written to a temporary file with an extra include header at the top and

a very simple main() function at the bottom, to make it a valid C++ program. So with

this you can see that it is not 100% C++ code.

 FI�AL PROJECT WORK

65

3.2 LabVIEW

3.2.1 Intro to LabVIEW

LabVIEW (short for Laboratory Virtual Instrument Engineering Workbench) is a system

design platform and development environment for a visual programming

language from National Instruments.

Graphical programming:

LabVIEW ties the creation of user interfaces (called front panels) into the

development cycle. LabVIEW programs/subroutines are called virtual instruments

(VIs).

Each VI has three components: a block diagram, a front panel and a connector

panel!

a block diagram, a front panel and a connector panel

The last is used to represent the VI in the block diagrams of other, calling VIs. For

example when you create a PID controller in a VI, you can insert this VI then in

another VI where you need also a PID controller…

 FI�AL PROJECT WORK

66

The front panel is built using controls and indicators. Controls are inputs – they allow a

user to supply information to the VI. Indicators are outputs – they indicate, or display,

the results based on the inputs given to the VI.

The back panel, which is a block diagram, contains the graphical source code. All of

the objects placed on the front panel will appear on the back panel as terminals.

The back panel also contains structures (like a while loop) and functions which

perform operations on controls and supply data to indicators.

The structures and functions are found on the Functions palette and can be placed

on the back panel. Collectively controls, indicators, structures and functions will be

referred to as nodes. Nodes are connected to one another using wires – e.g. two

controls and an indicator can be wired to the addition function so that the indicator

displays the sum of the two controls. Thus a virtual instrument can either be run as a

program, with the front panel serving as a user interface, or, when dropped as a

node onto the block diagram, the front panel defines the inputs and outputs for the

given node through the connector panel. This implies each VI can be easily tested

before being embedded as a subroutine into a larger program.

 FI�AL PROJECT WORK

67

The graphical approach also allows non-programmers to build programs by

dragging and dropping virtual representations of lab equipment with which they are

already familiar. The LabVIEW programming environment, with the included

examples and documentation, makes it simple to create small applications.

 LabVIEW Front panel LabVIEW Block diagram

The goal of part II is creating a PID controller in the LabVIEW software to control the

plant. Normally National Instruments offers a DAQ module (which also has analog

and digital In/Outputs), which automatically can communicate with the LabVIEW

software through its I/O pins.

 My goal was to control the plant through an Arduino Uno microcontroller. Therefore I

needed to find something to communicate between LabVIEW and the Arduino

Uno.. I found a NI LabVIEW Interface for Arduino Toolkit, which makes it possible to

communicate between the two. I will explain this part later, first I will give some info

on the LabVIEW software itself.

 FI�AL PROJECT WORK

68

3.2.2 Installation LabVIEW software

To install the LabVIEW 2012 software : the University of Valladolid owned the National

Instruments Academic Software, Fall 2012, which includes LabVIEW 2012. The

package contained 7 cds with the necesairry cd to install the NI LabVIEW 2012

software, the drivers to connect a NI device, NI Academic Site License (4cds) and

the FPGA Module. The installing of the software is an easy step by step installation.

If there are problems with the installation, you can find answers on the National

Instruments website or refer to the LabVIEW Installation Troubleshooting Guide

(troubleshooting_guide.html) on the LabVIEW Platform DVD1.

 FI�AL PROJECT WORK

69

The system requirements:

 FI�AL PROJECT WORK

70

3.3 NI LabVIEW interface for Arduino toolkit

3.3.1 Intro to the toolkit

The NI LabVIEW Interface for Arduino Toolkit helps you easily interface with the

Arduino microcontroller using LabVIEW. With this toolkit and LabVIEW, you can

control or acquire data from the Arduino microcontroller. Once the information is in

LabVIEW, analyze it using the hundreds of built-in LabVIEW libraries, develop

algorithms to control the Arduino hardware.

An example of using the toolkit from Arduino in LabVIEW

A sketch for the Arduino microcontroller acts as an I/O engine that interfaces with

LabVIEW VIs through a serial connection. This helps you quickly move information

from Arduino pins to LabVIEW without adjusting the communication, synchronization,

or even a single line of C code. Using the common Open, Read/Write, Close

convention in LabVIEW, you can access the digital, analog, pulse-width-modulated

of the Arduino microcontroller.

 FI�AL PROJECT WORK

71

3.3.2 Step by step starterguide for the Installation

After some research I found a really good website which explains all the installations

that have to be done to make the connection. It contains a video tutorial and a step

by step startup guide where everything is explained.

The link is: http://vishots.com/getting-started-with-the-labview-interface-for-

arduino/

The labview interface for arduino is a vi based API that was written and distributed by

national instruments. The code also includes and arduino embedded program which

must be downloaded to the device. This program which runs on the Arduino,

responds to commands sent on the USB bus from the LabVIEW program. It then sends

back data to the the computer via the USB.

The LabVIEW VIs provided, allow you to read back the analog inputs, control the

digital IO lines and use several other features of the Arduino hardware.

Note: The Arduino microcontroller must be connected to the computer with LabVIEW

through USB.

Arduino Toolkit in LabVIEW

 FI�AL PROJECT WORK

72

3.4 Step by Step Startup Guide

3.4.1 Steps

Here is a step by step process to get up and running with Arduino and LabVIEW:

1. Purchase an Arduino board. Make sure you have a USB cable.

2. Make sure you have LabVIEW 2009 or newer installed. The VIs that are included in

the LIFA are saved in LV 2009, so this is the version of LV that you must have to be

able to use the LIFA

3. Install NI-VISA Drivers. To LabVIEW, the arduino appears as a serial instrument

device. To communicate with serial instruments in LabVIEW, you need to have

the latest version of the NI-VISA driver. You can get the latest NI-VISA drivers here:

(http://search.ni.com/nisearch/app/main/p/bot/no/ap/tech/lang/en/pg/1/sn/c

atnav:du,n8:3.1637,ssnav:sup/)

Make sure to select the latest Windows version.

4. Install the Arduino IDE and drivers for Windows. You can download them from the

Arduino website here:

http://arduino.cc/en/Main/Software

� Step-by-step instructions for setting up the Arduino software on Windows can

be found here:

http://arduino.cc/en/Guide/Windows

5. Install the LIFA. The LIFA (LabVIEW Interface for Arduino) is available as a VI

package through the LabVIEW Tools Network. You must first install VIPM:

http://jki.net/vipm/download

 Once VIPM is installed, click on this link:

https://lumen.ni.com/nicif/us/evaltlktlvardio/content.xhtml

 to get and install the LIFA under LabVIEW 2009+.

6. Upload the sketch ‘LIFA_Base.pde’ to the Arduino. The LIFA comes with a sketch

program that must be uploaded to the Arduino before you can use the VIs to

communicate with it. You must use the Arduino IDE software (which you installed

in step 4) to do this:

 FI�AL PROJECT WORK

73

The Arduino IDE will open. Click File»Open and browse to LVIFA_Base.pde found in

C:\Program Files\National Instruments\LabVIEW 2010\vi.lib\LabVIEW Interface for

Arduino\Firmware\LVIFA_Base

Choose the Arduino board type by clicking Tools»Board»Arduino Uno

 FI�AL PROJECT WORK

74

Choose the COM port by clicking Tools»Serial Port and choosing the COM port that

corresponds to your Arduino Uno.

You can determine the COM port that corresponds to your Arduino Uno using the

device manager by clicking Start»Control Panel»Device Manager and expanding

Ports(LTP & COM).

Click the Upload button to upload the firmware to the Arduino Uno.

 FI�AL PROJECT WORK

75

The Arduino IDE should report Done Uploading when the firmware has been

successfully uploaded to the Arduino.

7. The sketch is located at:

� C:\Program Files\National Instruments\LabVIEW 2010\vi.lib\LabVIEW

Interface for Arduino\Firmware\LVIFA_Base\LVIFA_Base.pde

�

8. Start Playing. For help, you can join the Arduino LabVIEW community

at ni.com/arduino

 FI�AL PROJECT WORK

76

3.4.2 Connection setup with the Arduino sketch

The sketch that you have to upload to communicate between the Arduino I/O and

LabVIEW:

 FI�AL PROJECT WORK

77

� When the sketch is compiled and uploaded, the communication between the

Arduino I/O and the toolkit in LabVIEW should work perfectly.

 FI�AL PROJECT WORK

78

3.4.3 Practical example with the toolset

I made This LabVIEW program example to control 4 relays through LabVIEW and an

Arduino shields output. How the program works is specified on the front panel.

As you can see, I created the following things on the front panel:

� 4 green indicater LED’s to show the relay status;

� 4 switches to control the relays individual;

� A numeric controller to choose the COM port;

� A numeric controller to choose the Baud Rate;

� A red STOP button to stop the “while loop” and so the system;

The front panel

 FI�AL PROJECT WORK

79

Because of adding the Controllers and Indicators on the front panel, they will

automatically be created in the block diagram:

The block diagram

The things I had to add in the block diagram after creating the front panel are:

� A while loop

 FI�AL PROJECT WORK

80

� Arduino INIT vi

� Arduino CLOSE vi

� Set Digital Pin Mode vi

� Boolean To (0,1) converter

 FI�AL PROJECT WORK

81

� Digital Write Pin vi

� Create constants to tell which pin from the Arduino + indicator to

choose Input or Output

To run the program, make sure the Arduino sketch to communicate between

LabVIEW and Arduino is uploaded into the Arduino and running, then run the

LabVIEW VI by clicking on the Run Continuously button in the left corner of the

screen:

 1 2 3 4

1: Run

2: Run continuously

3: Stop

4: Pauze

 FI�AL PROJECT WORK

82

3.5 Processing

3.5.1 Intro to Processing

Processing is an open source programming language and environment for

people who want to create images, animations, and interactions. Initially

developed to serve as a software sketchbook and to teach fundamentals of

computer programming within a visual context, Processing also has evolved

into a tool for generating finished professional work. Today, there are tens of

thousands of students, artists, designers, researchers, and hobbyists who use

Processing for learning, prototyping, and production

» Free to download and open source

» Interactive programs using 2D, 3D or PDF output

Example + the book on using Processing (“Getting Started with Processing”):

 FI�AL PROJECT WORK

83

3.5.2 Installation Processing software

Go the Processing website and go to “Download”:

http://processing.org/download/

� Then choose the system you are using on your laptop or pc, a zipped map will

automatically download now.

� Unzip the map in a directory that you prefer.

� When unzipped you can click on the Processing logo and the software will

open.

 FI�AL PROJECT WORK

84

� Now you can start writing your program:

3.5.3 Practical example

 FI�AL PROJECT WORK

85

4. CHAPTER 4: Hardware

In this chapter I will give information on all the hardware I used.

4.1 The Arduino Uno microcontroller

Arduino UNO

Arduino boards can be used in different ways, whether through USB powered

through the computer, an adaptar or with a small battery without connecting it to

the computer. The adapter can be connected by plugging a 2.1mm center-positive

plug into the board's power jack. Leads from a battery can be inserted in the Gnd

and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less

than 7V, however, the 5V pin may supply less than five volts and the board may be

unstable. If using more than 12V, the voltage regulator may overheat and damage

the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

VIN. The input voltage to the Arduino board when it's using an external power source

(as opposed to 5 volts from the USB connection or other regulated power source).

You can supply voltage through this pin, or, if supplying voltage via the power jack,

access it through this pin.

5V.This pin outputs a regulated 5V from the regulator on the board. The board can

be supplied with power either from the DC power jack (7 - 12V), the USB connector

(5V), or the VIN pin of the board (7-12V). Supplying voltage via the 5V or 3.3V pins

bypasses the regulator, and can damage your board. We don't advise it.

 FI�AL PROJECT WORK

86

3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw

is 50 mA.

GND. Ground pins.

IOREF. This pin on the Arduino board provides the voltage reference with which the

microcontroller operates. A properly configured shield can read the IOREF pin

voltage and select the appropriate power source or enable voltage translators on

the outputs for working with the 5V or 3.3V.

4.1.1 Mean features

The Arduino Uno is a microcontroller board based on the ATmega328 chip (you can

find the datasheet at the end of the thesis). It has 14 digital input/output pins (of

which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator,

a USB connection, a power jack, an ICSP header, and a reset button. It contains

everything needed to support the microcontroller; simply connect it to a computer

with a USB cable or power it with a AC-to-DC adapter or battery to get started.

Microcontroller ATmega328

Operating Voltage 5V

Input Voltage

(recommended)
7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory
32 KB (ATmega328) of which 0.5 KB used by

bootloader

SRAM 2 KB (ATmega328)

EEPROM 1 KB (ATmega328)

Clock Speed 16 MHz

 FI�AL PROJECT WORK

87

4.1.2 Inputs and outputs

Each of the 14 digital pins on the Uno can be used as an input or output,

using pinMode(), digitalWrite(), and digitalRead()functions. They operate at 5 volts.

Each pin can provide or receive a maximum of 40 mA and has an internal pull-up

resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have

specialized functions:

Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data.

These pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL

Serial chip.

External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on

a low value, a rising or falling edge, or a change in value. See

the attachInterrupt() function for details.

PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with

the analogWrite() function.

SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication

using the SPI library.

LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH

value, the LED is on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of

resolution (i.e. 1024 different values). By default they measure from ground to 5 volts,

though is it possible to change the upper end of their range using the AREF pin and

the analogReference() function.

Other pins on the board:

AREF. Reference voltage for the analog inputs. Used with analogReference().

Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset

button to shields which block the one on the board.

 FI�AL PROJECT WORK

88

4.2 NPN Epitaxial silicon transistor BD 139

This transistor allows me to vary the amount of voltage sent to the motor, by applying

PWM on it.

 There are two requirements for the chosen transistor:

� the collector-emitter voltage must be greater than 24 volts

� The base current has to support more than 40 mA, which is the current leaving

from the Arduino because of the base resistor.

 It’s because of these two datasheet values that I use the chosen transistor 139 which

has a collector emitter voltage up to 100 volts and base current of 0.5 Amperes.

You can find the BD139 transistor datasheet in CHAPTER 6.

4.3 Transformer 24V DC out power supply

This transformer from the company fullwat creates a constant 24 Voltage DC on its

output, this 24V will be controlled between 0-24V by the PWM that the Arduino uses

on the transistor, to control the speed of the motor. This 0-24V depending on the PID

controller its output (0-255).

You can find the fullwat FUS-25D-24 datasheet in CHAPTER 6.

 FI�AL PROJECT WORK

89

5. CHAPTER 5: Sources

http://www.arduino.cc/

http://netherlands.ni.com/

http://vishots.com/getting-started-with-the-labview-interface-for-arduino/%E2%80%8F

http://www.google.com

http://www.ni.com/pdf/manuals/372192a.pdf

http://www.processing.org/

http://fritzing.org/

http://www.avagotech.com/pages/en/motion_control_encoder_products/magneti

c_encoders/aeat-6010-a06/

 FI�AL PROJECT WORK

90

6. CHAPTER 6: Datasheets

6.1 AEAT-6010-A06 10-bits Magnetic Encoder

 FI�AL PROJECT WORK

91

 FI�AL PROJECT WORK

92

 FI�AL PROJECT WORK

93

 FI�AL PROJECT WORK

94

 FI�AL PROJECT WORK

95

 FI�AL PROJECT WORK

96

6.2 fullwat FUS-25D-24 Transformer

 FI�AL PROJECT WORK

97

 FI�AL PROJECT WORK

98

6.3 BD 139 Transistor

 FI�AL PROJECT WORK

99

 FI�AL PROJECT WORK

100

