Honingbij royalactine beïnvloedt levensduur bij Caenorhabditis elegans.

Giel Detienne
Persbericht

Honingbij royalactine beïnvloedt levensduur bij Caenorhabditis elegans.

Honingbij Royalactine – Bron van de eeuwige jeugd?

In de bijenkolonie zwaait de koningin de scepter over enkele duizenden vrouwelijke werksters. Maar hoe komt deze bijenkoningin aan de macht? De sleutel tot een lang en gelukkig leven op de troon zit niet in haar genen, maar wel in de voeding die ze voorgeschoteld krijgt. Royalactine speelt hierin een centrale rol. Enkel larven die voortdurend gevoed worden met dit eiwit ontwikkelen tot koninginnen en kunnen zo tot tien maal langer leven dan werksterbijen. In de scriptie van Giel Detienne werd voor het eerst aangetoond dat royalactine ook bij het modelorganisme Caenorhabditis elegans de levensduur verlengt. Het werkingsmechanisme van dit eiwit werd onderzocht en gedeeltelijk opgehelderd.

De ontwikkeling van een honingbijlarve tot werkster of koningin is niet genetisch bepaald, maar is afhankelijk van haar voeding. Dit is op zich niet nieuw, maar biedt wel stof tot nadenken. Het betekent dat iemands levensloop drastisch beïnvloed kan worden door zijn of haar voedingspatroon. Honingbijlarven voorbestemd voor het koninklijke leven worden immers uitsluitend gevoed met koninginnegelei. Dit complex mengsel wordt aangemaakt en met zorg toegediend door werksterbijen.

Lang was onduidelijke welke component in koninginnegelei verantwoordelijk is voor zijn opmerkelijke werking. Het geheime ingrediënt van dit mengsel – het eiwit royalactine – werd pas recent geïdentificeerd door de Japanse wetenschapper Masaki Kamakura. Royalactine zet meerdere moleculaire processen in gang die een honingbijlarve geleidelijk doen veranderen in een koningin.

Koninginnenbijen zijn niet alleen veel groter en vruchtbaarder dan werksters, maar leven ook tot tien maal langer. Opmerkelijk genoeg zorgt royalactine ook bij fruitvliegjes voor een verlenging van de levensduur. Tot voor kort was het echter onzeker waaraan royalactine nu juist zijn positieve invloed op levensduur te danken heeft.

In de scriptie van Giel Detienne werd hier voor het eerst een tipje van de sluier gelicht, via het gebruik van het modelorganisme Caenorhabditis elegans. Deze 1 millimeter lange rondworm is het meest gebruikte model voor verouderingsonderzoek. Een groot pluspunt is dat zijn genetische en biochemische netwerken sterk overeen komen met deze van de mens. Hierdoor zijn studies bij dit makkelijk te onderhouden modelorganisme ook relevant voor menselijke veroudering.

Via de levensduurexperimenten uitgevoerd tijdens dit onderzoek, werd voor het eerst aangetoond dat royalactine ook bij C. elegans de levensduur verlengt. Na extractie van royalactine uit koninginnegelei werden de wormpjes hiermee gevoed. Hoe hoger de concentratie aan royalactine in de voedingsbodem, hoe groter het effect bleek op de levensduur. Opmerkelijk genoeg leven behandelde wormpjes niet enkel ca. 30% langer, maar blijven ze ook langer actief. Royalactine heeft dus niet enkel een positieve invloed op de levensduur, maar ook op de levenskwaliteit.

Door gebruik te maken van enkele genetische technieken werd het achterliggende werkingsmechanisme van royalactine – gedeeltelijk – opgehelderd. Via het uitschakelen van specifieke genen werd een moleculaire signaalweg geïdentificeerd waarop royalactine inwerkt. Deze signaalweg blijkt essentieel voor levensduurverlenging via royalactine én is zeer gelijkaardig bij zowel wormpjes, de fruitvlieg, de muis als andere zoogdieren. Het is dus mogelijk dat royalactine ook bij de mens een positieve invloed heeft op de levensduur én levenskwaliteit.

Het onderzoek naar royalactine staat momenteel nog in zijn kinderschoenen. De uitgevoerde experimenten zijn nog maar een eerste stap in het ontrafelen van de complexe relatie tussen royalactine en veroudering. Verder onderzoek zal moeten uitwijzen in hoeverre levensduurverlenging door royalactine ook bij zoogdieren (inclusief de mens) aanwezig is. Giel Detienne zal hieraan verder werken binnen de onderzoeksafdeling Dierenfysiologie en Neurobiologie aan de KU Leuven.  

Een beter inzicht in de manier waarop royalactine genetische netwerken activeert, kan op termijn bijdragen tot het ontwikkelen van therapieën die ook gebruikt kunnen worden bij de mens. Door in te werken op het verouderingsproces an sich kunnen de ongemakken die ermee gepaard gaan mogelijk worden verlicht of uitgesteld. Dit is een visie waar recent veel interesse voor is.

Zeg nu zelf: lang leven en gezond oud worden, wie wil dat nu niet?Laat het wel duidelijk zijn dat we voorlopig nog niet allemaal naar de pot koninginnegelei moeten grijpen om het eeuwig leven te verkrijgen. Royalactine maakt maar een klein deel uit van dit complex mengsel. Er zijn nog enkele andere componenten aanwezig in koninginnegelei die neveneffecten zoals allergische reacties kunnen uitlokken. De samenstelling van het goedje varieert bovendien sterk. Soms worden er zelfs sporen van pesticiden en antibiotica in teruggevonden. Het middel heeft zeker een positieve invloed op de algemene gezondheid van bijen, maar niet noodzakelijk op deze van de mens.

Bibliografie

1. Goulson, D. Effects of introduced bees on native ecosystems. Annual Review of Ecology Evolution and Systematics 34, 1-26 (2003).

2. Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C.F. Spatial and temporal trends of global pollination benefit. Plos One 7, e35954 (2012).

3. Bromenshenk, J.J. Can honey bees assist in area reduction and landmine detection? J. Mine Action 7.3 (2003).

4. Shaw, J.A. et al. Polarization lidar measurements of honey bees in flight for locating land mines. Optics Express 13, 5853-5863 (2005).

5. Weinstock, G.M. et al. Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443, 931-949 (2006).

6. Ratnieks, F.L.W. & Carreck, N.L. Clarity on honey bee collapse? Science 327, 152-153 (2010).

7. Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology 12, 774-782 (2010).

8. Ciarlo, T.J., Mullin, C.A., Frazier, J.L. & Schmehl, D.R. Learning impairment in honey bees caused by agricultural spray adjuvants. Plos One 7, e40848 (2012).

9. Wilson, E.O. & Holldobler, B. Eusociality: Origin and consequences. Proceedings of the National Academy of Sciences of the United States of America 102, 13367-13371 (2005).

10. Plowes, N. An Introduction to eusociality. Nature Education Knowledge 3(10):7 3 (2010).

11. Chittka, A. & Chittka, L. Epigenetics of royalty. Plos Biology 8, e1000532 (2010).

12. Page, R.E. & Peng, C.Y.S. Aging and development in social insects with emphasis on the honey bee, Apis mellifera L. Experimental Gerontology 36, 695-711 (2001).

13. Tarpy, D.R., Nielsen, R. & Nielsen, D.I. A scientific note on the revised estimates of effective paternity frequency in Apis. Insectes Sociaux 51, 203-204 (2004).

14. Schwander, T., Lo, N., Beekman, M., Oldroyd, B.P. & Keller, L. Nature versus nurture in social insect caste differentiation. Trends in Ecology & Evolution 25, 275-282 (2010).

15. Scarselli, R. et al. Towards royal jelly proteome. Proteomics 5, 769-776 (2005).

16. Li, J.K. et al. Differential protein expression in honeybee (Apis mellifera L.) larvae: underlying caste differentiation. Plos One 5, e13455 (2010).

17. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33, 245-254 (2003).

18. Shilatifard, A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annual Review of Biochemistry 75, 243-269 (2006).

19. Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827-1830 (2008).

20. Shi, Y.Y. et al. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, Apidae). Plos One 6, e18808 (2011).

21. Shi, Y.Y. et al. Genomewide analysis indicates that queen larvae have lower methylation levels in the honey bee (Apis mellifera). Naturwissenschaften 100, 193-197 (2013).

22. Bomtorin, A.D., Barchuk, A.R., Moda, L.M. & Simoes, Z.L.P. Hox gene expression leads to differential hind leg development between honeybee castes. Plos One 7, 12 (2012).

23. Chen, X. et al. Transcriptome comparison between honey bee queen- and worker-destined larvae. Insect Biochemistry and Molecular Biology 42, 665-673 (2012).

24. Drapeau, M.D., Albert, S., Kucharski, R., Prusko, C. & Maleszka, R. Evolution of the Yellow/Major Royal Jelly Protein family and the emergence of social behavior in honey bees. Genome Research 16, 1385-1394 (2006).

25. Feng, M., Fang, Y. & Li, J.K. Proteomic analysis of honeybee worker (Apis mellifera) hypopharyngeal gland development. Bmc Genomics 10, 645 (2009).

26. Schmitzova, J. et al. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cellular and Molecular Life Sciences 54, 1020-1030 (1998).

27. Bărnuţiu, L.I., Mărghitaş, L.A., Dezmirean, D.S., Mihai, C.M. & Bobiş, O. Chemical composition and antimicrobial activity of  royal jelly - Review Journal of Animal Science and Biotechnologies 44, 67-72 (2011).

28. Simuth, J. Some properties of the main protein of honeybee (Apis mellifera) royal jelly. Apidologie 32, 69-80 (2001).

29. Shi, Y.Y. et al. Epigenetic modification of gene expression in honey bees by heterospecific gland secretions. Plos One 7, e43727 (2012).

30. Fujiwara, S. et al. A potent antibacterial protein in royal jelly - purification and determination of the primary structure of royalisin. Journal of Biological Chemistry 265, 11333-11337 (1990).

31. Bilikova, K. et al. Apisimin, a new serine-valine-rich peptide from honeybee (Apis mellifera L.) royal jelly: purification and molecular characterization. Febs Letters 528, 125-129 (2002).

32. Fontana, R. et al. Jelleines: a family of antimicrobial peptides from the Royal Jelly of honeybees (Apis mellifera). Peptides 25, 919-928 (2004).

33. Bilikova, K., Wu, G.S. & Simuth, J. Isolation of a peptide fraction from honeybee royal jelly as a potential antifoulbrood factor. Apidologie 32, 275-283 (2001).

34. Ramadan, M.F. & Al-Ghamdi, A. Bioactive compounds and health-promoting properties of royal jelly: A review. Journal of Functional Foods 4, 39-52 (2012).

35. Inoue, S. et al. Royal Jelly prolongs the life span of C3H/HeJ mice: correlation with reduced DNA damage. Experimental Gerontology 38, 965-969 (2003).

36. Narita, Y. et al. Royal jelly stimulates bone formation: physiologic and nutrigenomic studies with mice and cell lines. Bioscience Biotechnology and Biochemistry 70, 2508-2514 (2006).

37. Nagai, T. & Inoue, R. Preparation and the functional properties of water extract and alkaline extract of royal jelly. Food Chemistry 84, 181-186 (2004).

38. Fujii, A. et al. Augmentation of wound-healing by royal jelly (RJ) in streptozotocin-diabetic rats. Japanese Journal of Pharmacology 53, 331-337 (1990).

39. Majtan, J., Kumar, P., Majtan, T., Walls, A.F. & Klaudiny, J. Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Experimental Dermatology 19, E73-E79 (2010).

40. Wang Guo-Yan, L.Z.-B. Effects of 10-hydroxy-2-decenoic acid on T lymphocyte and its subtypes and interleukin 2 production in mice. Zhongguo Yaolixue Yu Dulixue Zazhi 10, 53-55 (1996).

41. Townsend, G.F., Morgan, J.F. & Hazlett, B. Activity of 10-hydroxydecenoic acid from Royal Jelly against experimental leukaemia and ascitic tumours. Nature 183, 1270-1271 (1959).

42. Spannhoff, A. et al. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. Embo Reports 12, 238-243 (2011).

43. Sultana, A. et al. A dipeptide YY derived from royal jelly proteins inhibits renin activity. International Journal of Molecular Medicine 21, 677-681 (2008).

44. Matsui, T. et al. Gastrointestinal enzyme production of bioactive peptides from royal jelly protein and their antihypertensive ability in SHR. Journal of Nutritional Biochemistry 13, 80‑86 (2002).

45. Leung, R., Ho, A., Chan, J., Choy, D. & Lai, C.K.W. Royal jelly consumption and hypersensitivity in the community. Clinical and Experimental Allergy 27, 333-336 (1997).

46. Peacock, S., Murray, V. & Turton, C. Respiratory-distress and royal jelly. British Medical Journal 311, 1472-1472 (1995).

47. Hayashi, T., Takamatsu, N., Nakashima, T. & Arita, T. Immunological characterization of honey proteins and identification of MRJP 1 as an IgE-Binding Protein. Bioscience Biotechnology and Biochemistry 75, 556-560 (2011).

48. Rosmilah, M. et al. Characterization of major allergens of royal jelly Apis mellifera. Tropical Biomedicine 25, 243-251 (2008).

49. Miyata, T. Pharmacological basis of traditional medicines and health supplements as curatives. Journal of Pharmacological Sciences 103, 127-131 (2007).

50. Suzuki, K.-M. et al. Estrogenic activities of fatty acids and a sterol isolated from royal jelly. Evidence-Based Complementary and Alternative Medicine 5, 295-302 (2008).

51. Han, B. et al. Novel royal jelly proteins identified by gel-based and gel-free proteomics. Journal of Agricultural and Food Chemistry 59, 10346-10355 (2011).

52. Fujita, T. et al. Proteomic analysis of the royal jelly and characterization of the functions of its derivation glands in the honeybee. Journal of Proteome Research 12, 363-370 (2013).

53. Albert, S. & Klaudiny, J. The MRJP/YELLOW protein family of Apis mellifera: Identification of new members in the EST library. Journal of Insect Physiology 50, 51-59 (2004).

54. Zhang, L. et al. Towards posttranslational modification proteome of royal jelly. Journal of Proteomics 75, 5327-5341 (2012).

55. Albert, S., Klaudiny, J. & Simuth, J. Molecular characterization of MRJP3, highly polymorphic protein of honeybee (Apis mellifera) royal jelly. Insect Biochemistry and Molecular Biology 29, 427-434 (1999).

56. Ferguson, L.C., Green, J., Surridge, A. & Jiggins, C.D. Evolution of the Insect Yellow Gene Family. Molecular Biology and Evolution 28, 257-272 (2011).

57. Albertova, V., Su, S.K., Brockmann, A., Gadau, J. & Albert, T. Organization and potential function of the mrjp3 locus in four honeybee species. Journal of Agricultural and Food Chemistry 53, 8075-8081 (2005).

58. Tsao, W. & Shuel, R.W. Breakdown of Royal Jelly Protein in the midgut of the larval honeybee. Journal of Apicultural Research 7, 119-128 (1968).

59. Albert, S. & Schmitz, J. Characterization of major royal jelly protein-like DNA sequences in Apis dorsata. Journal of Apicultural Research 41, 75-82 (2002).

60. Huang, C.Y. et al. Growth stimulating effect on queen bee larvae of histone deacetylase inhibitors. Journal of Agricultural and Food Chemistry 60, 6139-6149 (2012).

61. Kamakura, M., Fukuda, T., Fukushima, M. & Yonekura, M. Storage-dependent degradation of 57-kDa protein in royal jelly: a possible marker for freshness. Bioscience Biotechnology and Biochemistry 65, 277-284 (2001).

62. Kamakura, M., Suenobu, N. & Fukushima, M. Fifty-seven-kDa protein in royal jelly enhances proliferation of primary cultured rat hepatocytes and increases albumin production in the absence of serum. Biochemical and Biophysical Research Communications 282, 865-874 (2001).

63. Santos, K.S. et al. Profiling the proteome complement of the secretion from hypopharyngeal gland of Africanized nurse-honeybees (Apis mellifera L.). Insect Biochemistry and Molecular Biology 35, 85-91 (2005).

64. Tamura, S., Kono, T., Harada, C., Yamaguchi, K. & Moriyama, T. Estimation and characterisation of major royal jelly proteins obtained from the honeybee Apis merifera. Food Chemistry 114, 1491-1497 (2009).

65. Cruz, G.C.N. et al. Calcium effect and pH-dependence on self-association and structural stability of the Apis mellifera major royal jelly protein 1. Apidologie 42, 252-269 (2011).

66. Tamura, S. et al. Molecular characteristics and physiological functions of major royal jelly protein 1 oligomer. Proteomics 9, 5534-5543 (2009).

67. Bilikova, K. & Simuth, J. New criterion for evaluation of honey: quantification of royal jelly protein Apalbumin 1 in honey by ELISA. Journal of Agricultural and Food Chemistry 58, 8776-8781 (2010).

68. Kamakura, M. Royalactin induces queen differentiation in honeybees. Nature 473, 478-483 (2011).

69. Brand, A.H. & Perrimon, N. Targeted gene-expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415 (1993).

70. Duffy, J.B. GAL4 system in Drosophila: A fly geneticist's Swiss army knife. Genesis 34, 1-15 (2002).

71. Arrese, E.L. & Soulages, J.L. Insect fat body: energy, metabolism, and regulation. Annual Review of Entomology 55, 207-225 (2010).

72. Gilbert, L.I. & Chino, H. Transport of lipids in insects. Journal of Lipid Research 15, 439-456 (1974).

73. Maleszka, R. Epigenetic integration of environmental and genomic signals in honey bees. Epigenetics 3, 188-192 (2008).

74. Yamanaka, N. & O'Connor, M.B. Apiology: royal secrets in the queen's fat body. Current Biology 21, R510-R512 (2011).

75. Schlessinger, J.  Epidermal Growth Factor Receptor Pathway. Sci. Signal. (Connections Map in the Database of Cell Signaling, as seen 17 December 2012), http://stke.sciencemag.org/cgi/cm/stkecm;CMP_14987.

76. Wolschin, F., Mutti, N.S. & Amdam, G.V. Insulin receptor substrate influences female caste development in honeybees. Biology Letters 7, 112-115 (2011).

77. Mutti, N.S. et al. IRS and TOR nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. Journal of Experimental Biology 214, 3977-3984 (2011).

78. Fujioka, T. & Ui, M. Involvement of insulin receptor substrates in epidermal growth factor induced activation of phosphatidylinositol 3-kinase in rat hepatocyte primary culture. European Journal of Biochemistry 268, 25-34 (2001).

79. Patel, A. et al. The making of a queen: TOR Pathway is a key player in diphenic caste development. Plos One 2, e509 (2007).

80. Osborne, K.E. & Oldroyd, B.P. Possible causes of reproductive dominance during emergency queen rearing by honeybees. Animal Behaviour 58, 267-272 (1999).

81. Moritz, R.F.A. et al. Rare royal families in honeybees, Apis mellifera. Naturwissenschaften 92, 488-491 (2005).

82. Linksvayer, T.A. et al. Larval and nurse worker control of developmental plasticity and the evolution of honey bee queen-worker dimorphism. Journal of Evolutionary Biology 24, 1939-1948 (2011).

83. Ratnieks, F.L.W. & Wenseleers, T. Altruism in insect societies and beyond: voluntary or enforced? Trends in Ecology & Evolution 23, 45-52 (2008).

84. Hamilton, W.D. The genetical evolution of social behaviour. I. Journal of Theoretical Biology 7, 1-16 (1964).

85. Hamilton, W.D. The genetical evolution of social behaviour. II. Journal of Theoretical Biology 7, 17-52 (1964).

86. Willnow, T.E., Christ, A. & Hammes, A. Endocytic receptor-mediated control of morphogen signaling. Development 139, 4311-4319 (2012).

87. Engel, P., Martinson, V.G. & Moran, N.A. Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences of the United States of America 109, 11002-11007 (2012).

88. Kamakura, M., Fukushima, M. & Iso, T. Inhibition of specific degradation of 57-kDa protein in royal jelly during storage by citrate buffer. Journal of Nutritional Science and Vitaminology 51, 207-210 (2005).

89. Casartelli, M., Cermenati, G., Rodighiero, S., Pennacchio, F. & Giordana, B. A megalin-like receptor is involved in protein endocytosis in the midgut of an insect (Bombyx mori, Lepidoptera). American Journal of Physiology-Regulatory Integrative and Comparative Physiology 295, R1290-R1300 (2008).

90. Lara, F.A., Lins, U., Bechara, G.H. & Oliveira, P.L. Tracing heme in a living cell: hemoglobin degradation and heme traffic in digest cells of the cattle tick Boophilus microplus. Journal of Experimental Biology 208, 3093-3101 (2005).

91. Riedel, F., Vorkel, D. & Eaton, S. Megalin-dependent Yellow endocytosis restricts melanization in the Drosophila cuticle. Development 138, 149-158 (2011).

92. Marzolo, M.P. & Farfan, P. New insights into the roles of Megalin/LRP2 and the regulation of its functional expression. Biological Research 44, 89-105 (2011).

93. Harris, R.C., Chung, E. & Coffey, R.J. EGF receptor ligands. Experimental Cell Research 284, 2‑13 (2003).

94. Dong, J.Y. et al. Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proceedings of the National Academy of Sciences of the United States of America 96, 6235-6240 (1999).

95. Honda, Y. et al. Lifespan-extending effects of royal jelly and its related substances on the nematode Caenorhabditis elegans. Plos One 6, e23527 (2011).

96. Lucanic, M., Lithgow, G.J. & Alavez, S. Pharmacological lifespan extension of invertebrates. Ageing Research Reviews 12, 445-458 (2013).

97. Kenyon, C.J. The genetics of ageing. Nature 464, 504-512 (2010).

98. Panowski, S.H. & Dillin, A. Signals of youth: endocrine regulation of aging in Caenorhabditis elegans. Trends in Endocrinology and Metabolism 20, 259-264 (2009).

99. Rawlings, N.D. & Salvesen, S.S. Handbook of Proteolytic Enzymes, Vol. 1, Edn. 3. (Academic Press, Londen; 2013).

100. de Kreij, A., Venema, G. & van den Burg, B. Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids. Journal of Biological Chemistry 275, 31115-31120 (2000).

101. Rongo, C. Epidermal growth factor and aging: A signaling molecule reveals a new eye opening function. Aging-Us 3, 896-905 (2011).

102. Yu, S.M. & Driscoll, M. EGF signaling comes of age: Promotion of healthy aging in C. elegans. Experimental Gerontology 46, 129-134 (2011).

103. Liu, G., Rogers, J., Murphy, C.T. & Rongo, C. EGF signalling activates the ubiquitin proteasome system to modulate C. elegans lifespan. Embo Journal 30, 2990-3003 (2011).

104. Iwasa, H., Yu, S.M., Xue, J.A. & Driscoll, M. Novel EGF pathway regulators modulate C. elegans healthspan and lifespan via EGF receptor, PLC-gamma, and IP3R activation. Aging Cell 9, 490-505 (2010).

105. Beaudet, M.P., Ahnert, N., Dallwig, J.A., Goodman, T. & Thomas, J.A. A fast, easy, accurate method for protein quantitation. Faseb Journal 21, A1006-A1007 (2007).

106. Holme, D.J. & Peck, H. Analytical biochemistry, Edn. 3. (Longman, 1998).

107. Perkins, D.N., Pappin, D.J.C., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551-3567 (1999).

108. Kuipers, B.J.H. & Gruppen, H. Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. Journal of Agricultural and Food Chemistry 55, 5445-5451 (2007).

109. Noble, J.E. & Bailey, M.J.A. in Guide to Protein Purification, Second Edition, Vol. 463. (eds. R.R. Burgess & M.P. Deutscher) 73-95 (Elsevier Science Publishing Co Inc, San Diego; 2009).

110. Inouye, K. et al. Extracellular production of recombinant thermolysin expressed in Escherichia coli, and its purification and enzymatic characterization. Protein Expression and Purification 46, 248-255 (2006).

111. Reineke, K., Mathys, A. & Knorr, D. Shift of pH-value during thermal treatments in buffer solutions and selected foods. International Journal of Food Properties 14, 870-881 (2011).

112. Inouye, K., Kuzuya, K. & Tonomura, B. Effect of salts on the solubility of thermolysin: A remarkable increase in the solubility as well as the activity by the addition of salts without aggregation or dispersion of thermolysin. Journal of Biochemistry 123 (1998).

113. Wilkinson, D.S., Taylor, R.C. & Dillin, A. Analysis of aging in Caenorhabditis elegans. Caenorhabditis Elegans: Cell Biology and Physiology, Second Edition 107 (2012).

114. R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Wenen, Oostenrijk. ISBN 3-900051-07-0, URL http://www.R-project.org/.

115. Fox, J.  (Cox Proportional-Hazards Regression for survival data. http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-cox-regression.pdf; 2002).

116. van Geloven, N. & Geskus, R.B.  (Survival analyse. http://os1.amc.nl/mediawiki/index.php?title=Survival_analyse; 2013).

117. Breslow, N.E. Analysis of survival data under the proportional hazards model. International Statistical Review 43, 45-57 (1975).

118. Manish, K.G., Pardeep, K. & Jugal, K. Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1, 274-278 (2010).

119. Mello, C.C. & Conte, D. Revealing the world of RNA interference. Nature 431, 338-342 (2004).

120. Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325-330 (2000).

121. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237 (2003).

122. Rual, J.F. et al. Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Research 14, 2162-2168 (2004).

123. Craxton, M. Linear amplification sequencing, a powerful method for sequencing DNA. Methods 3, 20-26 (1991).

124. Sanger, F., Nicklen, S. & Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America 74, 5463‑5467 (1977).

125. Sutphin, G. & Kaeberlein, M. Measuring Caenorhabditis elegans life span on solid media. Journal of Visualized Experiments 27 (2009).

126. Aitlhadj, L. & Stuerzenbaum, S.R. The use of FUdR can cause prolonged longevity in mutant nematodes. Mechanisms of Ageing and Development 131, 364-365 (2010).

127. Van Raamsdonk, J.M. & Hekimi, S. FUdR causes a twofold increase in the lifespan of the mitochondrial mutant gas-1. Mechanisms of Ageing and Development 132, 519-521 (2011).

128. Primrose, S.B. & Twyman, R.M. Principles of Gene Manipulation and Genomics, Edn. 7. (Blackwell Publishing, Oxford, UK; 2006).

129. Parker, G.S., Eckert, D.M. & Bass, B.L. RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA. Rna-a Publication of the Rna Society 12, 807-818 (2006).

130. Grishok, A. RNAi mechanisms in Caenorhabditis elegans. Febs Letters 579, 5932-5939 (2005).

131. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103-112 (2001).

132. Calixto, A., Chelur, D., Topalidou, I., Chen, X. & Chalfie, M. Enhanced neuronal RNAi in C. elegans using SID-1. Nature Methods 7, 554-559 (2010).

133. Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Current Biology 12, 1317-1319 (2002).

134. Ye, J. et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13, 134 (2012).

135. Clauser, K.R., Baker, P. & Burlingame, A.L. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS MS and database searching. Analytical Chemistry 71, 2871-2882 (1999).

136. Altman, D.G. & Bland, J.M. Statistics notes - absence of evidence is not evidence of absence. British Medical Journal 311, 485-485 (1995).

137. Hill, R.J. & Sternberg, P.W. The gene lin-3 encodes an inductive signal for vulval development in C. elegans Nature 358, 470-476 (1992).

138. Madden, T. in The NCBI Handbook, Chapter 16: The BLAST Sequence Analysis Tool [Internet] (National Center for Biotechnology Information, Bethesda, VS; 2002).

139. Qu, W.B. et al. Reliability analysis of the Ahringer Caenorhabditis elegans RNAi feeding library: a guide for genomewide screens. BMC Genomics 12, 170 (2011).

140. Chan, Q.W.T., Howes, C.G. & Foster, L.J. Quantitative comparison of caste differences in honeybee hemolymph. Molecular & Cellular Proteomics 5, 2252-2262 (2006).

141. Chan, Q.W.T., Melathopoulos, A.P., Pernal, S.F. & Foster, L.J. The innate immune and systemic response in honey bees to a bacterial pathogen, Paenibacillus larvae. BMC Genomics 10, 387 (2009).

142. Chan, Q.W.T. & Foster, L.J. Changes in protein expression during honey bee larval development. Genome Biology 9, R156 (2008).

143. Randolt, K. et al. Immune-Related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults. Archives of Insect Biochemistry and Physiology 69, 155-167 (2008).

144. Kamakura, M. & Fukushima, M. Inhibition of specific degradation of 57-kDa protein in royal jelly during storage by ethylenediaminetetraacetic acid. Bioscience Biotechnology and Biochemistry 66, 175-178 (2002).

145. Matsuoka, T., Kawashima, T., Nakamura, T., Kanamaru, Y. & Yabe, T. Isolation and characterization of proteases that hydrolyze royal jelly proteins from queen bee larvae of the honeybee, Apis mellifera. Apidologie 43, 685-697 (2012).

146. Barrett, A.J., Tolle, D.P. & Rawlings, N.D. Managing peptidases in the genomic era. Biological Chemistry 384, 873-882 (2003).

147. Hsu, A.L., Feng, Z.Y., Hsieh, M.Y. & Xu, X.Z.S. Identification by machine vision of the rate of motor activity decline as a lifespan predictor in C. elegans. Neurobiology of Aging 30, 1498‑1503 (2009).

148. Van Buskirk, C. & Sternberg, P.W. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans. Nature Neuroscience 10, 1300-1307 (2007).

149. Van Buskirk, C. & Sternberg, P.W. Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. Development 137, 2065-2074 (2010).

150. Kaletsky, R. & Murphy, C.T. The role of insulin/IGF-like signaling in C. elegans longevity and aging. Disease Models & Mechanisms 3, 415-419 (2010).

151. Fontana, L., Partridge, L. & Longo, V.D. Extending Healthy Life Span-From Yeast to Humans. Science 328, 321-326 (2010).

152. Zanin, E. et al. Affinity Purification of Protein Complexes in C. elegans. Caenorhabditis Elegans: Molecular Genetics and Development, Second Edition 106, 289-322 (2011).

153. Bauer, A. & Kuster, B. Affinity purification-mass spectrometry - Powerful tools for the characterization of protein complexes. European Journal of Biochemistry 270, 570-578 (2003).

 

Universiteit of Hogeschool
Master in de Biochemie en de Biotechnologie
Publicatiejaar
2013
Kernwoorden
Share this on: