De invloed van acute inflammatie en inflammaging op het regeneratief potentieel van de zebravisretina

An Beckers
Persbericht

De invloed van acute inflammatie en inflammaging op het regeneratief potentieel van de zebravisretina

De zebravis in de strijd tegen de ziektes van Alzheimer en Parkinson

Zebravissen; amper 3 cm grote visjes, horizontale strepen op hun buik en levend in de tropische rivieren van Zuid-Azië. Wat zouden deze kleine visjes spontaan kunnen wat de ‘machtige’ mens niet kan? Schade aan hersencellen herstellen! Inderdaad, de ziektes van Alzheimer en Parkinson, ALS, dementie en MS, allemaal hebben ze gemeen dat hersencellen afsterven en dat de mens er niet op kan reageren door de schade te herstellen. En dat terwijl de zebravis dit complex proces, met twee vingers (of beter vinnen) in de neus, wel kan uitvoeren. In dit onderzoek hebben we dan ook getracht te achterhalen waarom de zebravis wel schade aan hersencellen kan herstellen en de mens niet. Hopelijk kan de wetenschap met deze kennis in de toekomst een therapie ontwikkelen om patiënten te helpen en hun levenskwaliteit te verbeteren.

Onherstelbare hersenschadeVandaag lijden wereldwijd 37 miljoen mensen aan een neurodegeneratieve ziekte waarbij zenuwcellen in de hersenen of het ruggenmerg afsterven. Deze schade is bij de mens helaas niet te herstellen en bijgevolg definitief. Bovendien verlaagt de levenskwaliteit van de patiënt drastisch en is de ziekte vaak zelfs fataal. Zelfs ondanks intensief onderzoek is de wetenschap er nog niet in geslaagd om een oplossing te ontwikkelen voor deze ziekten. Maar een oplossing kan misschien wel gevonden worden door het gebruik van de zebravis, het onderzoeksmodel van mijn thesis. Deze vis is aan zijn opmars bezig als modelorganisme in de wetenschap aangezien er vele voordelen aan verbonden zijn. Zo is de zebravis gemakkelijk te onderhouden, kweekt het goed, en zijn er veel gelijkenissen tussen de mens en de zebravis qua genen en moleculaire organisatie. Daarenboven kan de zebravis dus wél schade aan hersencellen herstellen, iets wat de mens niet kan. De onderzoeksdoelstelling van deze thesis was dan ook om de onderliggende redenen van het succesvol zenuwherstel bij de zebravis te achterhalen.

De zebravis: van blind naar goedziend in twee maandenDe focus van deze studie lag dus bij hersenschade, maar de hersenen in zijn geheel zijn zeer complex en moeilijk te manipuleren. Daarom wordt wereldwijd het visueel systeem als model gebruikt voor de hersenen. Dit visueel systeem, dat beschouwd wordt als een deel van de hersenen, bestaat uit het netvlies binnenin het oog, de oogzenuw en de visuele gebieden van de hersenen. Zoals eerder vermeld kan de zebravis schade aan hersencellen wel herstellen, maar hoe weten we dit nu? Wel, tijdens mijn thesis gebruikten we als schademodel de optische zenuw crush. Hierbij wordt de oogzenuw van een verdoofde vis geplet, waarna de vis blind is. De connecties tussen het oog en de hersenen zijn immers beschadigd. Zeer opmerkelijk is dat na een tweetal maanden de oogzenuw hersteld is en de zebravis weer normaal kan zien. Dit is onmogelijk bij de mens!

Is inflammaging de reden voor een trager herstel van zenuwschade bij oude vissen?     Specifiek wilde ik tijdens mijn thesis onderzoeken wat de invloed van veroudering op het herstelproces van de oogzenuw is. Kunnen oude vissen minder goed schade aan de oogzenuw herstellen? Een zeer opvallend resultaat uit het onderzoek was dat deze hypothese inderdaad correct is. Na beschadiging groeit de oogzenuw in een oude zebravis trager terug naar de hersenen toe, in vergelijking met een volwassen vis. Een uitgebreide literatuurstudie naar de eventuele reden voor dit vertraagd herstelproces richtte onze aandacht op inflammaging. Inflammaging omvat het fenomeen waarbij in het volledige lichaam van oude organismen een lichte vorm van ontsteking, ook wel inflammatie genoemd, ontstaat. Dit is reeds aangetoond in onder meer mensen en muizen. Verschillende studies suggereren bovendien dat inflammaging een invloed kan hebben op het herstelproces van zenuwcellen, wat zeer interessant is voor deze studie. Allereerst hebben we geverifieerd of inflammaging ook optreedt in de oude zebravis. Meer inflammatoire cellen bleken aanwezig te zijn in oude vissen in vergelijking met volwassen vissen, wat inderdaad duidde op inflammaging. Aangezien deze inflammatoire cellen belangrijk zijn voor het herstel van weefsels en cellen, zou de wijziging in de inflammatoire balans een reden kunnen zijn voor het vertraagde herstelproces van de oogzenuw bij oude vissen.

Inflammatie versnelt het herstelprocesOm de rol van inflammatie verder uit te zoeken, hebben we ervoor gezorgd dat meer inflammatoire cellen aanwezig waren in een volwassen zebravis. Hiervoor injecteerden we de vloeistof zymosan in het oog, wat een instroom van inflammatoire cellen uitlokt. Interessant was dat deze opregulatie van inflammatie ervoor zorgde dat de oogzenuw na schade sneller herstelt. Inflammatie zou dus een snel herstel stimuleren. Dit lijkt zeer tegenstrijdig met de vorige resultaten, namelijk dat in oude vissen schade aan de oogzenuw trager herstelt, terwijl er net meer inflammatoire cellen aanwezig zijn. Dit zou erop kunnen wijzen dat deze cellen gedurende het leven opstapelen in de vis, maar dat ze wel minder goed hun herstellende functie kunnen uitvoeren. Een oude vis bevat met andere woorden wel meer  ‘herstelcellen’, maar deze functioneren minder goed.

Om deze laatste ondervindingen verder te ondersteunen, waren we zeer benieuwd of deze hypothese ook in de omgekeerde richting opgaat, namelijk een trager herstel van de oogzenuw wanneer we inflammatie gaan reduceren. Bij deze laatste experimenten van de thesis konden we echter nog geen effect aantonen, maar mits aanpassingen in de experimentele werkwijze, zou dit wel van toepassing kunnen zijn.

Samenvattend kunnen we stellen dat veroudering het herstel van de zebravisoogzenuw negatief beïnvloedt. Eventueel zou inflammaging hier een onderliggende oorzaak van kunnen zijn. Verder lijkt uit heel het onderzoek en de literatuurstudie naar voren te komen dat een korte inflammatoire respons na schade een belangrijke factor zou kunnen zijn voor een succesvol herstel. Deze hypothese zal verder getest worden. Hopelijk zal deze kennis bijdragen in de zoektocht naar een effectieve therapie voor het herstel van hersenschade bij mensen. Bewonderenswaardig toch wat de mens allemaal van deze kleine visjes kan leren ...

Bibliografie

Abbot, C. et al. (2012) – Amacrine and bipolar inputs to midget and parasol ganglion cells in marmoset retina. Vis. Neurosci. 29: 157-168        

Aharoni, R. en Arnan, R. (2009) – Linkage between immunomodulation, neuroprotection and neurogenesis. Drugs News Perspect. 22: 301-312

Akhlaq, A. et al. (2008) – Metabolism and functions of bioactive ether lipids in the brain. Springer. Eerste editie,  US, 280 pagina’s     

Baylis, D. et al. (2013) – Understanding how we age: insights into inflammaging. Long. And Lifesp. 2: 8       

Bear, M. et al. (2007) – Neuroscience, exploring the brain. Derde editie, Lippincott Williams & Wilkins, US, 857 pagina’s

Becker, C. en Becker, T. (2008) – Adult zebrafish as a model for successful central nervous system regeneration. Rest. Neurol. And Neurosci. 26: 71-80

Becker, T. en Becker G. (2014) – Axonal regeneration in zebrafish. Curr. Op. In Neurobiol. 27: 186-191

Benowitz, L. en Popovich, P. (2011) – Inflammation and axon regeneration. Curr. Op. In Neurol. 24: 577-583

Benowitz, L. en Yin, Y. (2010) – Optic nerve regeneration. Arch. Of Ophth. 128: 1059-1064

Berisha, F. et al. (2007) – Retinal abnormalities in early Alzheimer’s disease. Invest. Ophth. And Vis. Sci. 48: 2285-2289    

Bernhardt, R. et al. (1996) – Increased expression of specific recognition molecules by retinal ganglion cells and by the optic pathway glia accompanies the successful regeneration of retinal axons in adult zebrafish. J. Comp. Neurol. 376: 253-264

Bhumika, S. et al. (2015) – Decreased thyroid hormone signaling accelerates the reinnervation of the optic tectum following optic nerve crush in adult zebrafish. Mol. And Cell. Neurosci. 68: 92-102

Bjarkam, C. et al. (2001) – New strategies for the treatment of Parkinson's disease hold considerable promise for the future management of neurodegenerative disorders. Biogeront. 2: 193-207

Brand, T. en Poon, K. (2013) – The zebrafish model system in cardiovascular research: A tiny fish with mighty prospects. Glob. Card. Sci. And Pract. 2013: 9-28

Briken, V. en Mosser, D. (2011) – Editorial: Switching on arginase in M2 macrophages. J. Leuk. Biol. 90: 839-841

Boivin, A. et al. (2007) – Toll-like receptor signaling is critical for Wallerian degeneration and functional recovery after peripheral nerve injury. J. Neurosci. 27: 12565-12576

Boyd, J. en Gordon, T. (2003) – Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol. Neurobiol. 27: 277-324

Cai, D. et al. (2001) – Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J. Neurosci. 21: 4731-4739

Campbel, S. et al. (2008) – Liver Kupffer cells control the maginitude of the inflammatory response in the injured brain and spinal cord. Neuropharm. 55: 780-787   

Casson, R. et al. (2012) – Translational neuroprotection research in glaucoma: a review of definitions and principles. Clin. And Exp. Ophth. 40: 350-357      

Crane, J. en Liversidge, J. (2008) – Mechanisms of leukocyte migration across the blood-retina barrier. Sem. Immunopath. 30: 165-177   

Conde, J. en Streit, W. (2006) – Effect of aging on the microglial response to peripheral nerve injury. Neurobiol. Ag. 27: 1451-1461   

Cui, Q. et al. (2009) – The role of macrophages in optic nerve regeneration. Neurosci. 158: 1039-1048

Currie, P. en Lieschke, G. (2007) – Animal models of human disease: zebrafish swim into view. Nat. Rev. 8: 353-367

Czeh, M. et al. (2011) – The yin and yang of microglia. Dev. Neurosci. 33: 199-209

Dartt, D. et al. (2011) – Immunology, inflammation and diseases of the eye. Eerste editie, Elsevier, US, 448 pagina’s        

Deonarine, K. et al. (2007) – Gene expression profiling of cutaneous wound healing. J. Transl. Med. 5: 11

Dharmarajan, S. et al. (2014) – Bone morphogenetic protein 7 regulates reactive gliosis in retinal astrocytes and Müller glia. Mol. Vis. 20: 1085-1108

Diekmann, H. et al. (2015) – Characterization of optic nerve regeneration using transgenic zebrafish. Front. Cell. Neurosci. 9: 118

Du, Z. et al. (2006) – Selective regulation of IL-10 signaling and function by zymosan. J. Immunol. 176: 4785-4792 

Edelmann, K. et al. (2013) – Increased radial glia quiescence, decreased reactivation upon injury and unaltered neuroblast behavior underlie decreased neurogenesis in the aging zebrafish telencephalon. J. Comp. Neurol. 521: 3099-3115      

Elsaeidi, F. et al. (2014) – Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J. Neurosci. 34: 2632-2644

Enciu, A. et al. (2011) – Neuroregeneration in neurodegenerative disorders. BMC Neurol. 11: 75-82

Engelhardt, M. et al. (2005) – Adult retinal pigment epithelium cells express neural progenitor properties and the neuronal precursor protein doublecortin. Brain Res. 1040: 98-111

Espenes, A. et al. (1997) – Apoptosis in phagocytotic cells of lymphoid tissues in rainbow trout (Oncorhynchus mykiss) following administration of clodronate liposomes. Cell Tiss. Res. 289: 323-331

Fadool, J. en Dowling, J. (2008) – Zebrafish: a model system for the study of eye genetics. Progr. In Ret. And Eye Res. 27: 89-110

Fahrenfort, I. et al. (2005) – The involvement of glutamate-gated channels in negative feedback from horizontal cells to cones. Prog. Brain. Res. 147: 219-229       

Fischer, D. et al. (2004) – Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J. Neurosci. 24: 1646-1651

Fleisch, V. et al. (2005) – Investigating regeneration and functional integration of CNS neurons: Lessons from zebrafish genetics and other fish species. BBA – Mol. Bas. Of Dis. 1812: 364-380

Franceschi, C. en Campisi, J. (2014) – Chronic inflammation (inflammaging) and its potential contribution to age-asscociated diseases. J. Geront. 69: S4-S9

Friedrich, R. et al. (2010) – Circuit neuroscience in zebrafish. Curr. Biol. 20: R371-R381

Galvan, V. en Jin, K. (2007) – Neurogenesis in the aging brain. Clin. Interv. In Ag. 2: 605-610

Galvao, J. et al. (2014) – Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28: 1317-1330 

Gamling, P. (2006) – The pretectum: connections and oculomotor-related roles. Progr. In Brain Res. 151: 379-405   

Gestri, G. et al. (2012) – The visual system of zebrafish and its use to model human ocular diseases. Dev. Neurobiol. 72: 302-327

Goel, R. et al. (2013) – Characterizing the normal proteome of human ciliary body. Clin. Prot. 10: 1-12

Goldman, D. (2014) – Müller glial cell reprogramming and retina regeneration. Nat. Rev. Neurosci. 15: 431-442         

Gordon, T. et al. (2003) – Experimental strategies to promote functional recovery after peripheral nerve injuries. J. Per. Nerv. Syst. 8: 236-250         

Gori, S. et al. (2014) – Do fish perceive illusory motion? Sci. Rep. 4: 6443

Graciarena, M. et al. (2014) – Dynamics of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. PNAS 111: 1610-1615       

’t Hart, B. (2014) – Apocynin, a low molecular oral treatment for neurodegenerative disease. Biomed. Res. Intern. 2014: 1-6

Hauk, T. et al. (2008) – Neuro-protective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol. 209:469–482           

Hayat, M. (2007) – Microscopy, immunohistochemistry, and antigen retrieval methods. Eerste editie, Springer Science & Business media, US, 355 pagina’s.

Hayes, A. et al. (2013) – Spinal deformity in aged zebrafish is accompanied by degenerative changes to their vertebrae that resemble osteoarthritis. PLoS ONE 9: e75787       

Hu, Y. et al. (2005) – Lentiviral–mediated transfer of CNTF to schwann cells within reconstructed peripheral nerve grafts enhances adult retinal ganglion cell survival and axonal regeneration. Mol. Ther. 11: 906–915

Huang, L. et al. (2014) – Glial scar formation occurs in the human brain after ischemic stroke. Int. J. Med. Sci. 11: 344-348  

Huebner, E. en Srittmatter, S. (2009) – Axon regeneration in the peripheral and central neurvous systems. Results Probl. Cell Diff. 48: 339-351          

Jackman, S. et al. (2011) – A positive feedback synapse from retinal horizontal cells to cone photoreceptors. PLoS Biol. 9: e1001057      

Jain, K. (2011) – The handbook of neuroprotection. Eerste editie, Humana Press, US, 547 pagina’s

Jordan, M. et al. (2003) – Liposomal clodronate as a novel agent for treating autoimmune hemolytic anemia in a mouse model. Blood 101: 594-601          

Kamel, I. en Barnette, R. (2014) – Positioning patients for spine surgery: Avoiding uncommon position-related complications. W. J. Orthop. 5: 425-443    

Kalesnykas, G. et al. (2012) – Retinal ganglion cell morphology after optic nerve crush and experimental glaucoma. Invest. Ophth. Vis. Sci. 53: 3847-3857 

Kaneda, M. et al. (2008) – Changes of phospho-growth-associated protein 43 (phospho-GAP43) in the zebrafish retina after optic nerve injury: A long-term observation.  Neurosci. Res. 61: 281-288     

Karimi-Abdolrezaee, S. et al. (2002) – Developmental down-Regulation of GAP-43 expression and timing of target contact in rat corticospinal neurons. Exp. Neurol. 176: 390-401

Karl, M. en Reh, T. (2010) – Regenerative medicine for retinal diseases: activating the endogenous repair mechanisms. Trends Mol. Med. 16: 193-202         

Karlstrom, R. et al. (1997) – Genetic analysis of axon guidance and mapping in the zebrafish. Trends In Neurosci. 20: 3-8     

Kastin, A. en Pan, W. (2005) – Targeting neurite growth inhibitors to induce CNS regeneration. Curr. Pharm. Des. 11: 1247-1253 

Kapfhammer, J. et al. (1997) – The growth-associated protein GAP-43 is specifically expressed in tyrosine hydroxylase-positive cells of the rat retina. Developm. Brain. Res. 101: 257-264

Kettenmann, H. en Ransom, B. (2005) – Neuroglia. Tweede editie, Oxford University Press, US, 601 pagina’s.

Kigerl, K. et al. (2009) – Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29: 13435-13444

King, M. et al. (1989) – Bioctyin: a versatile anterograde neuroanatomical tract-tracing alternative. Brain Res. 497: 361-367

Kishi, S. et al. (2008) – The identification of zebrafish mutants showing alterations in senescence-associated biomarkers. PLoS 4: e100152

Kolaczkowska, E. en Kubes, P. (2013) – Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13: 159-175

Kordower, J. en Tuszynski, M. (2008) – CNS regeneration. Tweede editie, Academic Press, US, 526 pagina’s

Kreisel, D. et al. (2010) – In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. PNAS 107: 18073-18078

Kriegstein, A. en Alvarez-Buylla, A. (2009) – The glial nature of embryonic and adult neural stem cells. Ann. Rev. Of Neurosci. 32: 149-184       

Kumar, A. en Loane, D. (2012) – Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain, Behav. And Immun. 26: 1191-1201

Kurimoto, T. et al. (2010) – Long–distance axon regeneration in the mature optic nerve: Contributions of Oncomodulin, cAMP, and pten gene deletion. J. Neurosci. 30: 15654–15663

Kyrylkova, K. et al. (2012) – Detection of apoptosis by TUNEL assay. Methods Of Mol. Biol. 887: 41-47      

Kyritsis, N. et al. (2012) – Acute inflammation initiates the regenerative response in the adult zebrafish brain. Sci. 338: 1353-1356 

Kyritsis, N. et al. (2014) – Neuroinflammation and central nervous system regeneration in vertebrates. Trends In Cell Biol. 24: 128-135

Lannotti, C. et al. (2011) – A combination immunomodulatory treatment promotes neuroprotection and locomotor recovery after contusion SCI. Exp. Biol. 230: 3-15

Larsson, A. et al. (2004) – Increased cell proliferation and neurogenesis in the hippocampal dentate gyrus of old GFAP(-/-)Vim(-/-) mice. Neurochem. Res. 29: 2069-2073

Lehenkari, P. et al. (2002) – Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol. Pharm. 61: 1255-1262 

Lenowski, J. en Raymond, P. (2014) – Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish. Prog. Ret. Eye Res. 40: 94-123

Lenzlinger, P. et al. (2001) – The duality of the inflammatory response to traumatic brain injury. Mol. Neurobiol. 24: 169-181  

Leon, S. et al. (2000) – Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20: 4615–4626

Leung, C. et al. (2011) – Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. Invest. Ophth. Vis. Sci. 52: 1539-1547         

Li, L. et al. (2012) – Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J. Biol. Chem. 287: 25353-25360

Lindqvist, N. et al. (2010) – Retinal glial (Müller) gells: Sensing and responding to tissue stretch. Invest. Ophth. And Vis. Sci. 51: 1683-1690

Lingor, P. et al. (2007) – Inhibition of Rho kinase (ROCK) increases neurite outgrowth on chondroitin sulphate proteoglycan in vitro and axonal regeneration in the adult optic nerve in vivo. J. Neurochem. 103: 181-189

Liu, H. et al. (2011) – Dendritic changes in visual pathways in glaucoma and other neurodegenerative conditions. Exp. Eye Res. 92: 244-250

London, A. et al. (2013) – The retina as a window to the brain – from eye research to CNS disorders. Nat. Rev. Neurol. 9: 44–53      

Longin, A. et al. (1993) – Comparison of anti-fading agents used in fluorescence microscopy: image analysis and laser confocal microscopy study. J. Histochem. Cytochem. 41: 1833-1840

Luo, J. et al. (2010) – Increased intrinsic neuronal vulnerability and decreased beneficial reaction of macrophages on axonal regeneration in aged rats. Neurobiol. Of Ag. 31: 1003-1009    

Lynch, A. et al. (2010) – The impact of glial activation in the aging brain. Ag. And Dis. 1: 262-278

MacNeil, A. et al. (2007) – Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells 25:2430–2438

Martinez, J. et al. (2004) – Eye development: a view from the retina pigmented epithelium. Bioess. 26: 766-777

Mattson, M. en Magnus, T. (2006) – Aging and neuronal vulnerability. Nat. Rev. Neurosci. 7: 278-294

McCurley, A. en Callard, G. (2010) – Time course analysis of gene expression patterns in zebrafish eye during optic nerve regeneration. J. Exp. Neurosci. 2010: 17-33

Meyers, J.  et al. (2012) – β-catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neur. Devel. 7: 1-17

Miron, V. et al. (2013) – M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16: 1211-1218         

Mohammadi, M. et al. (2013) – Dexamethasone topically accelerates peripheral nerve repair and target organ reinnervation: a transected sciatic nerve model in rat. Inj. 40: 565-569

Monsul, N. et al. (2004) – Intraocular injection of dibutryl cyclic AMP promotes axon regeneration in rat optic nerve. Exp. Neurol. 186: 124–133  

Münzel, E. et al. (2014) – Zebrafish regenerate full thickness optic nerve myelin after demyelination, but this fails with increasing age. Acta Neuro. Comm. 2: 77

Murray, A. et al. (2009) – cAMP–dependent axon guidance is distinctly regulated by Epac and protein kinase A. J. Neurosci. 29: 15434–15444

Nahrendorf, M. et al. (2007) – The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. Exp. Med. 204: 3037-3047

Nakazawa, T. et al. (2014) – Neuroprotection and neuroregeneration for retinal diseases. Eerste editie, Springer, US, 356 pagina’s

Napoli, I. et al. (2011) – A Central role for the ERK-signaling pathway in controlling schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73: 729-742

Newbern, J. et al. (2009) – Taking off the SOCS: cytokine signaling spurs regeneration. Neuron 64: 591–59    

Newton, R. en Holdon, S. (2007) – Seperating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor. Mol. Pharm. 72: 799:809

Ooto, S. et al. (2004) – Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. PNAS 101: 13654-13659    

Park, J. et al. (2014) – Role of cysteinyl leukotriene signaling in a mouse model of noise-induced cochlear injury. PNAS 111: 9911-9916

Perretti, M. en Flower, R. (1993) – Modulation of IL-1 induced neutrophil migration by dexamethasone and lipocortin 1. J. Immunol. 150: 992-999

Perry, S. et al. (2010) – Fish fysiology – zebrafish. Eerste editie, Acadamic Press, US, 468 pagina’s     

Popovich, P. et al. (1999) – Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Biol. 158: 351-365   

Prasad, S. en Galetta, S. (2011) – Handbook of clinical neurology. Eerste editie, Elsevier, US. 736 pagina’s

Proskocil, B. et al. (2013) – Macrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs. Am. J. Physiol. Lung Cell Mol. Physiol. 304: L519-L529

Purves, D. et al. (2010) – Neuroscience. Tweede editie, Sinauer Associates, US, 759 pagina’s

Reichenbach, A. en Bringmann, A. (2013) – New functions of Müller cells. Glia 61: 651-678

Rhee, K. et al. (2013) – CNTF-mediated protection of photoreceptors requires initial activation of the cytokine receptor gp130 in Müller glial cells. PNAS 19: E4520-E4529

Riger, R. et al. (2010) –  Cold Spring Harb. Persp. Biol. 2: a001867

Ryan, S. et al. (2013) – Retina. Vijfde editie, Elsevier, US, 2564 pagina’s

Salegio, E. et al. (2011) – Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats. BMC Neurosci. 12: 11          

Seagle, B. et al. (2005) – Melanin photoprotection in the human retinal pigment epithelium and its correlation with light-induced cell apoptosis. PNAS 102: 8978-8983

Selzer, M. (2003) – Promotion of axonal regeneration in the injured CNS. The Lanc. Neurol. 2: 157-166          

Semkova, I. en Krieglstein, J. (1999) – Neuroprotection mediated via neurotrophic factors and induction of neurotrophic factors. Brain Res. Rev. 30: 176-188

Sengpiel, F. (2008) – Binocular vision: Only half a brain needed. Curr. Biol. 18: r1054-r1056

Shechter, R. en Schwartz, M. (2012) – Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer ‘if’ but ‘how’. J. Path. 229: 332-346

Shin, E. et al. (2014) – High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress. PLoS One 9: e103148

Simo, R. et al. (2010) – The retinal pigment epithelium: Something more than a constituent of the blood-retinal barrier - Implications for the pathogenesis of diabetic retinopathy. J. Biom. And Biot. 2010: 1-15

Spencer, T. en Filbin, M. (2004) – A role for cAMP in regeneration of the adult mammalian CNS. J. Anat. 204: 49–55

Srinivasan, M. et al. (2002) – Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 161: 1961-1971

Starnes, W. en Huttenlocher, A. (2012) – Neutrophil reverse migration becomes transparent with zebrafish. Adv. In Hema. 2012: 398650       

Sternberg, M. (2006) – Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nat. Rev. Immunol. 6: 318-328

Sun, H. et al. (2012) – Dexamethasone and vitamin B12 synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch. Of Med. Sci. 8: 924-930   

Taupin, P. (2006) – Adult neurogenesis and neural stem cells in mammals. Eerste editie, Nova Publishers, US, 208 pagina’s

Thummel, R. et al. (2008) – Characterization of Müller glia and neuronal progenitors during adult zebrafish retinal regeneration. Exp. Eye Res. 87: 433-444

Tombran, J. et al. (2008) – Mechanisms of the glaucomas: disease processes and therapeutic modalities. Eerste editie, Springer Science & Business Media, US, 781 pagina’san

Tosato, M. et al. (2007) – The aging process and potential interventions to extend life expectancy. Clin. Interv. In Ag. 2: 401-412    

Tropepe, V. et al. (2000) – Retinal stem cells in the adult mammalian eye. Sci. 287: 2032-2036

Tuszynski, M. et al. (2004) – Neurotrophic factors and diseases of the nervous system. Ann. Of Neurol. 35: S9-S12   

Van Engeland, M. et al. (1998) – Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometr. 31: 1-9

Van Hove, I. et al. (2012) – An abberant cerebellar development in mice lacking matrix metalloproteinase-3. Mol. Neurobiol. 45: 17-29   

Van Rooijen, N. en Sanders, A. (1994) – Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. Immunol. Meth 174: 83-93

Vaughan, D. (1992) – Effects of advancing age on peripheral nerve regeneration. J. Comp. Neurol. 323:219-237

Verdú, E. et al. (2000) – Influence of aging on peripheral nerve function and regeneration. J. Per. Nerv. Syst. 5: 191-208

Villegas-Pérez, M. et al. (1993) – Rapid and protracted phases of retinal ganglion cell loss follow axotomy in the optic nerve of adult rats. J. Neurobiol. 24: 23-36         

Weber, A. en Harman, C. (2008) – BDNF preserves the dendritic morphology of alpha and beta ganglion cells in the cat retina after optic nerve injury. Invest. Ophthal. Vis. Sci. 49: 2456-2463

Wilkinson-Berka, J. (2004) – Diabetes and retinal vascular disorders: role of renin-angiotensin system. Exp. Rev. In Mol. Med. 6: 1-18

Wolters, E. en Groenewegen, H. (2004) – Neurologie. Derde editie, Bohn Stafleu Van Loghum, Nederland, 669 pagina’s.

Wong, W. (2013) – Microglial aging in the healthy CNS: phenotypes, drivers, and rejuvenation. Front. In Cell Neurosci. 7:22          

Yamamoto, Y. en Gaynor, R. (2001) – Therapeutic potential of inhibition of the NF-κβ pathway in the treatment of inflammation and cancer. J. Clin. Invest. 170: 135-142

Yang, D. et al. (2009) –  Clodronate-induced cell apoptosis in human thyroid carcinoma is mediated via the P2 receptor signaling pathway. J. Pharm. And Exp. Ther. 330: 613-623

Yarwood, H. et al. (1993) – Effect of dexamethasone on neutrophil accumulation and oedema formation in rabbit skin: an investigation of site of action. J. Pharmacol. 180: 959-966

Yin, Y. et al. (2003) – Macrophage–derived factors stimulate optic nerve regeneration. J. Neurosci. 23: 2284–2293

Yin, Y. et al. (2008) – Oncomodulin links inflammation to optic nerve regeneration. PNAS 106: 19587-19592

Yin, Y. et al. (2006) – Oncomodulin is a macrophage–derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9: 843–852     

Yong, W. (2010) – Inflammation in neurological disorders: a help or a hindrance? Neurosci. 16: 408-420         

Yorio, T. et al. (2011) – Ocular therapeutics: Eye on new discoveries. Eerste editie, Academic Press, US, 536 pagina’s

You, S. et al. (2000) – Axonal regeneration of retinal ganglion cells depending on the distance of axotomy in adult hamsters. Invest. Ophth. Vis. Sci. 41: 3165-3170

Yu, L. et al. (2006) – Cognitive aging in zebrafish. PLoS ONE 1: e14

Zhang, F. et al. (2000) – GAP–43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation. Developm. 127: 969–980

Zhdanova, I. et al. (2008) – Aging of the circadian system in zebrafish and the effects of melatonin on sleep and cognitive performances. Brain Res. Bull. 75: 433-441

Zhou, L. et al. (2013) – Viruses and neurodegeneration. Virol. J. 10: 172-201

Zou, S. et al. (2013) – Neurogenesis of retinal ganglion cells is not essential to visual functional recovery after optic nerve injury in adult zebrafish. PLoS ONE 8: e57280