CALCIUM CARBONATE-BASED PARTICLES AND CAPSULES FOR THERAPEUTIC ENZYMES

Laura Van Poelvoorde Bogdan Parakhonskiy
Persbericht

Calciumcarbonaatpartikels als oplossing voor leukemie

Cancer affects all of us, whether you’re a daughter, mother, sister, friend, co-worker, doctor or patient.”

 

Iedereen komt in contact met kanker, ofwel als patiënt ofwel door een naaste die aan de ziekte lijdt. Ongeveer 1,5% van de mannen en vrouwen met kanker worden gediagnosticeerd met leukemie en amper de helft van deze gevallen overleven de ziekte. Er bestaan echter al veel doeltreffende medicijnen, dus waar zit dan het probleem? Een van de hindernispalen om deze behandelingen te verbeteren is het efficiënt bezorgen van het geneesmiddel op de juiste plaats.

Het creëren van capsules, die het medicijn bevatten, is veelbelovend en verbetert de efficiëntie. Dat zal leiden tot een reductie in toxiciteit en het behouden van een hogere concentratie aan geneesmiddel op de doellocatie. In de praktijk worden voorlopig enkel liposomen gebruikt. Dit zijn gesynthetiseerde vesikels met inhoud omgeven door een membraan. Het is dan ook belangrijk om nieuwe partikels te vergelijken met deze liposomen.

Calciumcarbonaatpartikels

Calciumcarbonaatpartikels zijn veelbelovende nieuwe partikels door hun lage synthesekosten, simpele synthesemethode, biocompatibiliteit, lage toxiciteit, porositeit waardoor moleculen gemakkelijk worden geladen op het partikel,… In strijd tegen leukemie zou een enzym guanylaatkinase worden aangebracht op en in deze partikels. Guanylaatkinase heeft een antitumoraal effect en na injectie in het bloed zou het de kankercellen van leukemie kunnen vernietigen en de patiënt genezen.

In vorig onderzoek lag de focus op de optimalisatie van verschillende karakteristieken van het partikel, zoals de grootte, vorm, porositeit en welk polymorf van calciumcarbonaat het interessantste is voor deze toepassing. Polymorfen zijn de verschillende toestanden waarin een stof een vaste aggregatietoestand heeft. Calciumcarbonaat heeft er drie, namelijk aragoniet, vateriet en calciet. Uit deze drie vormen is vateriet het meest interassant door zijn grote porositeit. De metastabiele toestand is bovendien ook zeer interessant aangezien het vateriet bij bewaring in een oplossing zal rekristalliseren tot calciet waardoor alle enzymmoleculen worden vrijgegeven. Deze partikels kunnen niet zo gemakkelijk op zichzelf worden gebruikt door hun instabiliteit en snel rekristallisatieproces. Daarom is het nodig om deze partikels te beschermen. Dit kan onder andere met behulp van alginaatgebaseerde hydrogels die een beschermende laag vormen rond de calciumcarbonaatkern.

Guanylaatkinase is een duur enzym, dus alvorens deze te gebruiken wordt een ander goedkoper therapeutisch modelenzym, alkalische fosfatase, gebruikt. Hierbij er wordt nagegaan hoeveel enzym er op deze partikels wordt geladen, hoeveel enzym hiervan actief is en hoelang het duurt voordat de rekristallisatie plaatsvindt en de enzymmoleculen worden vrijgegeven. De experimenten zijn uitgevoerd op kleine (1,15±0,07 µm) en grote (2,3±0,3 µm) partikels, aangezien het volume en de oppervlaktegrootte een invloed zouden kunnen hebben op de resultaten.

 

Stabiliteit

Vaterietpartikels hebben een ronde vorm onder de microscoop, terwijl calcietpartikels na rekristallisatie een kubische vorm hebben. Deze rekristallisatie gebeurt binnen de 24 uur en is dus interessant indien men snel het geladen enzym wil distribueren. Dit geladen enzym heeft ook een invloed op de stabiliteit. In het geval van alkalische fosfatase zorgt dit voor een stabiliteit van enkele uren meer. Tenslotte zijn de kleine partikels langer stabiel ten opzichte van de grotere partikels.

Voor sommige toepassingen wil men dat dit langzamer gebeurt, wat door een beschermende alginaatlaag rond de calciumcarbonaatkern wordt bekomen. De stabiliteit verhoogt tot ongeveer 6 dagen. Door toevoeging van zilvernitraat of divalente kationen, zoals calcium en magnesium, kan de alginaatlaag bindingen vormen met de alginaatlaag van andere partikels en wordt er een gel gevormd. Calciumcarbonaatkernen kunnen met behulp van ascorbinezuur worden opgelost waardoor er holle capsules ontstaan waarin de geladen moleculen zich bevinden. Door afwezigheid van een calciumcarbonaatkern kan het ook niet meer rekristaliseren.

Ladingscapaciteit

De maximale ladingscapaciteit werd bepaald door een experiment uit te voeren waarbij de incubatietijd en de initiële concentratie van alkalische fosfatase worden geoptimaliseerd. De ladingscapaciteit wordt berekend door de gemeten enzymconcentratie te delen door het gewicht aan partikels. Uit de experimenten bleek een incubatietijd van 2 uur en een initiële enzymconcentratie van 10 mg/mL het beste. Hierbij werd respectievelijk 19,9% en 16,1% van de alkalische fosfatase geladen op de kleine en grote partikels. De ladingscapaciteit van liposomen was 100% als een incubatietijd van 2 uur en een initiële enzymconcentratie van 1 mg/mL werd gebruikt.

Hoeveelheid actief enzym in de partikels

Na het bepalen van de ladingscapaciteit is het interessant om te begrijpen hoeveel enzym actief is en bereikbaar is voor het substraat van het enzym. De ladingscapaciteit van de kleine partikels ligt iets hoger dan van de grote partikels. Echter het percentage aan actief enzym ligt hoger voor de grote partikels, namelijk 55.2% ten opzichte van 32.3%. Dit kan betekenen dat er een aanwezigheid is van enzym in de kleine partikels en niet enkel op het oppervlakte, waardoor het niet gemakkelijk bereikbaar is voor het substraat. Dit percentage aan actief alkalisch fosfatase ligt lager als de calciumcarbonaatpartikels worden omgeven door een beschermende laag. Dus er zal een afweging moeten worden gemaakt tussen de hoeveelheid actief enzym en tussen de stabiliteit. Bij liposomen bedraagt het percentage aan actief alkalisch fosfatase 57,5%. Dit betekent dat er 42,5% niet bereikbaar is voor het substraat. Mogelijke redenen hiervoor zijn dat enzymmoleculen de liposomen hebben gepenetreerd, maar dat het substraat hier niet in slaagt. Een andere mogelijk oorzaak is dat het enzym verkeerd gebonden is op de liposomen en het actief domein ontoegankelijk is voor het substraat.

Toekomst

Er is nog veel verder onderzoek nodig vooraleer men de partikels zal gebruiken in de praktijk, maar de resultaten in dit preliminair onderzoek zijn positief. Calciumcarbonaatpartikels hebben een lagere synthesekost en een gemakkelijkere synthesemethode ten opzichte van de liposomen, terwijl de hoeveelheid actief enzym vergelijkbaar is met deze van de liposomen. De calciumcarbonaatpartikels bieden verder ook de kans op een vertraagde vrijgave van enzym door ze te encapsuleren. Wie weet leidt dit verder onderzoek uiteindelijk tot een daling van sterfgevallen bij leukemiepatiënten?

Bibliografie

Adams S. R., Tsien R. Y. (1993) Controlling cell chemistry with caged compounds. Annual Review of Physiology 55: 755-784

Alarcon C. d. l. H., Pennadam S., Alexander C. (2005) Stimuli responsive polymers for biomedical applications. Chemical Society Reviews 34: 276-285

Amsden B., Turner N. (1999) Diffusion characteristics of calcium alginate gels. Biotechnology and Bioengineering 65: 605-610

Anderson H. C. (1995) Molecular biology of matrix vesicles. Clinical orthopaedics and related research: 266-280

Andreeva D. V., Gorin D. A., SHchukin D. G., Sukhorukov G.B. (2006) Magnetic Microcapsules with Low Permeable Polypyrrole Skin Layer. Macromolecular Rapid Communications 27: 931-936

Andresen T. L., Thompson D. H., Kaasgaard T. (2010) Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Molecular Membrane Biology 27: 353-363

Antipov A. A., Shchukin D., Fedutik Y., Petrov A. I., Sukhorukov G.B., Möhwald H. (2003) Carbonate microparticles for hollow polyelectrolyte capsules fabrication. Colloids and Surfaces A: Physicochemical Engineering Aspects 224: 175-183

Bae Y., Nishiyama N., Fukushima S., Koyama H., Yasuhiro M., Kataoka K. (2005) Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chemistry 16: 122-130

Balabushevitch N. G., Sukhorukov G.B., Moroz N. A., Volodkin D. V., Larionova N. I., Donath E., Möhwald H. (2001) Encapsulation of Proteins by Layer-by-Layer Adsorption of Polyelectrolytes onto Protein Aggregates: Factors Regulating the Protein Release. Biotechnology and Bioengineering 76: 207-213

Balabushevitch N. G., Tiourina O. P., Volodkin D. V., Larionova N. I., Sukhorukov G.B. (2003) Loading the Multilayer Dextran Sulfate/Protamine Microsized Capsules with Peroxidase. Biomacromolecules 4: 1191-1197

Bareford L. M., Swaan P. W. (2007) Endocytic Mechanisms for Targeted Drug Delivery. Advanced Drug Delivery Reviews 59: 748-758

Bäumler H., Artman G., Voigt A., Mitlöhner R., Neu B., Kiesewetter H. (2000) Plastic behaviour of polyelectrolyte microcapsules derived from colloid templates. Journal of Microencapsulation 17: 651-655

Bedard M. F., Braun D., Sukhorukov G.B., Skirtach A. G. (2008) Towards self-assembly of nanoparticles on polymeric capsules: release threshold and permeability. ACS Nano 2: 1807-1816

Berg K., Selbo P. K., Prasmickaite L., Tjelle T. E., Sandvig K., Moan J., Gaudernack G., Fodstad O., Kjolsrud S., Anholt H., Rodal G. H., Rodal S. K., Hogset A. (1999) Photochemical internalization: a novel technology for delivery of macromolecules into cytosol. Cancer Research 59: 1180-1183

Bhaskar S., Pollock K. M., Yoshida M., Lahann J. (2010) Towards designer microparticles: simultaneous control of anisotropy, shape, and size. Small (Weinheim an der Bergstrasse, Germany) 6: 404-411

Biagiotti S., Paoletti M. F., Fraternale A., Rossi L., Magnani M. (2011) Drug Delivery by Red Blood Cells. Life 63: 621-631

Blandino A., Macias M., Cantero D. (2000) Glucose oxidase release from calcium alginate gel capsules. Enzyme and Microbial Technology 27: 319-324

Brady W. A., Kokoris M. S., Fitzgibbon M., Black M. E. (1996) Cloning, Characterization and Modeling of Mouse and Human Guanylate Kinases. The Journal of Biological Chemistry 271

Bruno B. J., Miller G. D., Lim C. S. (2013) Basics and Recent Advances in Peptide and Protein Drug Delivery. Therapeutic Delivery 4: 1443-1467

Caballero-Diaz E., Pfeiffer C., Kastl L., Rivera-Gil P., Simonet B., Valcarcel M., Jiménez-Lamana J., Laborda F., Parak W. J. (2013) The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells and Thus on Their Surface Chemistry. Particle & Particle Systems Characterization 30: 1079-1085

Camolezi F. L., Daghastanli K. R. P., Magalhaes P. P., Pizauro J. M., Ciancaglini P. (2002) Construction of an alkaline phosphatase-liposome system: A tool for biomineralization study. The International Journal of Biochemistry & Cell Biology 34: 1091-1101

Caruso F., Möhwald H. (1999) Protein Multilayer Formation on Colloids through a Stepwise Self-Assembly Technique. Journal of American Chemical Society 121: 6039-6046

Caruso F., Niikura K, Furlong D. N., Okahata Y. (1997) Assembly of Alternating Polyelectrolyte and Protein Multilayer Films for Immunosensing. Langmuir 13: 3427-3433

Caruso F., Trau D., Möhwald H., Renneberg R. (2000) Enzyme Encapsulation in Layer-by-Layer Engineered Polymer Multilayer Capsules. Langmuir 16: 1485-1488

Champion J. A., Mitragotri S. (2006) Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences of the United States 103: 4930-4934

Chasis J. A., Mohandas N. (1986) Erythrocyte Membrane Deformability and Stability: Two Distinct Membrane Properties That Are Independently Regulated by Skeletal Protein Associations. The Journal of Cell Biology 103

Cheng Y., Samia A. C., Li J., Kenney M. E., Resnick A., Burda C. (2010) Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 26: 2248-2255

Chithrani B. D., Ghazani A. A., Chan W. C. W. (2006) Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters 6: 662-668

Daum N., Tscheka C., Neumeyer A., Schneider M. (2012) Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdisciplinary reviews Nanomedicine and nanobiotechnology 4: 52-65

De M., Ghosh P. S., Rotello V. M. (2008) Applications of Nanoparticles in Biology. Advanced Materials 20: 4225-4241

Decuzzi P., Ferrari M. (2008) The Receptor-Mediated Endocytosis of Nonspherical Particles. Biophysical Journal 94: 3790-3797

Dejugnat C., Sukhorukov G.B. (2004) pH-Responsive Properties of Hollow Polyelectrolyte Microcapsules Templated on Various Cores. Langmuir 20: 7265-7269

Delcea M., Möhwald H., Skirtach A. G. (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Advanced Drug Delivery Reviews

Delcea M., Schmidt S., Palankar R., Fernandes P. A. L., Fery A., Möhwald H., Skirtach A. G. (2010) Mechanobiology: Correlation Between Mechanical Stability of Microcapsules Studied by AFM and Impact of Cell-Induced Stresses. Cell Mechanics 6: 2858-2862

Delehanty J. B., Blanco-Canosa J. B., Bradburne C. E., Susumu K., Stewart M. H., Prasuhn D. E., Dawson P. E., Medintz I. L. (2013) Site-specific cellular delivery of quantum dots with chemoselectively-assembled modular peptides. Chemical Communications 49: 7878-7880

Discher D. E., Eisenber A. (2002) Polymer Vesicles. Materials Science: Soft Surfaces 297

Doane T. L., Burda C. (2011) The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews 41: 2885-2911

Domar U., Nilsson B., Baranov V., Gerdes U., Stigbrand T. (1992) Expression of intestinal alkaline phosphatase in human organs. Histochemistry 98: 359-364

Donatan S., Yashchenok A., Khan N., Parakhonskiy B., Cocquyt M., Pinchasik B., Khalenkow D., Möhwald H., Konrad M., Skirtach A. G. (2016) Loading Capacity versus Enzyme Activity in Anisotropic and Spherical Calcium Carbonate Microparticles. Applied Materials & Interfaces 8: 14284-14292

Donath E., Budde A., Knippel E., Bäumler H. (1996) “Hairy Surface Layer” Concept of Electrophoresis Combined with Local Fixed Surface Charge Density Isotherms:  Application to Human Erythrocyte Electrophoretic Fingerprinting. Langmuir 12: 4832-4839

Donath E., Voigt A. (1986) Electrophoretic mobility of human erythrocytes. On the applicability of the charged layer model. Biophysical Journal 49: 493

DonatH E., Walther D., Shilov V. N., Knippel E., Budde A., Lowack K., Helm C. A., Möhwald H. (1997) Nonlinear Hairy Layer Theory of Electrophoretic Fingerprinting Applied to Consecutive Layer by Layer Polyelectrolyte Adsorption onto Charged Polystyrene Latex Particles. Langmuir 13: 5294-5305

Dong W., Ferri J. K., Adalsteinsson T., Schönhoff M., Sukhorukov G.B., Möhwald H. (2005) Influence of Shell Structure on Stability, Integrity, and Mesh Size of Polyelectrolyte Capsules: Mechanism and Strategy for Improved Preparation. Chemsitry of Materials 17: 2603-2611

Doshi N., Zahr A. S., Bhaskar S., Lahann J., Mitragotri S. (2009) Red blood cell-mimicking synthetic biomaterial particles. Proceedings of the National Academy of Sciences of the United States 106: 21495-21499

Douglas T. E. L., Messersmith P. B., Chasan S., Mikos A. G., de Mulder E. L. W., Dickson G., Schaubroeck D., Balcaen L., Vanhaecke F., Dubruel P., Jansen J. A., Leeuwenburgh S. C. G. (2012) Enzymatic Mineralization of Hydrogels for Bone Tissue Engineering by Incorporation of Alkaline Phosphatase. Macromolecular Bioscience 12: 1077-1089

Duan L., He Q., Yan X., Cui Y., Wang K., Li J. (2007) Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochemical and biophysical research communications 354: 357-362

Duncan B., Kim C., Rotello V. M. (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. Journal of Controlled Release 148: 122-127

Elion G. B. (1989) The Purine Path to Chemotherapy. Angewandte Chemie International Edition 28: 870-878

Filmon R., Baslé M. F., Atmani H., Chappard D. (2002) Adherence of osteoblast-like cells on calcospherites developed on a biomaterial combining poly(2-hydroxyethyl) methacrylate and alkaline phosphatase. Bone 30

Fraser D. (1957) Hypophosphatasia. The American Journal of Medicine 22: 730-746

Gao L., Fei J., Zhao J., Cui W., Cui Y., Li J. (2012) pH- and Redox-Responsive Polysaccharide-Based Microcapsules with Autofluorescence for Biomedical Applications. Chemistry - A European Journal 18: 3185-3192

Gåserød O., Smidsrod O., G. S-b (1998) Microcapsules of alginate-chitosan – I: A quantitative study of the interaction between alginate and chitosan. Biomaterials 19: 1815-1825

Gentile P., Chiono V., Carmacnola I., Hatton P. V. (2014) An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. International Journal of Molecular Sciences 15: 3640-3659

Ghan R., Shutava T., Patel A., John V. T., Lvov Y. M. (2004) Enzyme-Catalyzed Polymerization of Phenols within Polyelectrolyte Microcapsules. Macromolecules 37: 4519-4524

Glinel K., Moussa A., Jonas A. M., Laschewsky A. (2002) Influence of Polyelectrolyte Charge Density on the Formation of Multilayers of Strong Polyelectrolytes at Low Ionic Strength. Langmuir 18: 1408-1412

Gorin D. A., Schchukin D. G., Mikhailov A. I., Köhler K., Sergeev S. A., Portnov S. A., Taranov I. V., Kislov V. V., Sukhorukov G.B. (2006) Effect of microwave radiation on polymer microcapsules containing inorganic nanoparticles. Technical Physics Letters 32: 70-72

Graff A., Winterhalter M., Meier W. (2001) Nanoreactors from Polymer-Stabilized Liposomes. Langmuir 17: 919-923

Haghooie R., Toner M., Doyle P. S. (2010) Squishy Non-Spherical Hydrogel Microparticles. Macromolecular Rapid Communications 31: 128-134

Hall S. W., Kuhn H. (1986) Purification and properties of guanylate kinase from bovine retinas and rod outer segments. European Journal of Biochemistry 161: 551-556

Han M. R., Kwon M. C., Lee H. Y., Kim J. C., Yoo S. K., Sin I. S., Kim S. M. (2007) pH-dependent release property of alginate beads containing calcium carbonate particles. Journal of Microencapsulation 24: 787-796

Harder J., Gläser R., Schröder J. M. (2007) The role and potential therapeutical applications of antimicrobial proteins in infectious and inflammatory diseases. Endocrine, metabolic & immuno disorders drug targets 7: 78-82

Hardikar V. V., Matijevic E. (2001) Influence of ionic and nonionic dextrans on the formation of calcium hydroxide and calcium carbonate particles. Colloids and Surfaces A: Physicochemical Engineering Aspects 186: 23-31

Haug A., Larsen B., Smidsrod O. (1966) A Study of the constitution of alginic acid by partial acid hydrolysis. Acta Chemica Scandinavia 20: 183-190

Helmlinger G., Yuan F., Dellian M., Jain R. K. (1997) Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Medicine 3: 177-182

Holt B., Lam R., Meldrum F. C., Stoyanov S. D., Paunov V. N. (2007) Anisotropic nano-papier mache microcapsules. Soft Matter 3: 188-190

Horth M., Lambrecht B., Khim M. C., Bex F., Thiriart C., Ruysschaert J. M., Burny A., Brasseur R. (1991) Theoretical and functional analysis of the SIV fusion peptide. Embo Journal 10: 2747-2755

Hotz J., Meier W. (1998) Vesicle-Templated Polymer Hollow Spheres. Langmuir 14: 1031-1036

Huang H. W., Chen F. Y., Lee M. T. (2004) Molecular mechanism of Peptide-induced pores in membranes. Physical Review LEtters 92

Hühn D., Kantnert K., Geidel C., Brandholt S., De Cock I., Soenen S. J. H., Rivera P., Montenegro J., Braeckman K., Müllen K., Nienhaus G. U., Klapper M., Parak W. J. (2013) Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano 7: 3253-3263

Husain Q., Iqbal J., Saleemuddin M. (1985) Entrapment of concanavalin A-glycoenzyme complexes in calcium alginate gels. Biotechnology and Bioengineering 27: 1102-1107

Hutter E., Boridy S., Labrecque S., Lalancette-Hébert M., Kriz J., Winnik F. M., Maysinger D. (2010) Microglial Response to Gold Nanoparticles. ACS Nano 4: 2595-2606

Islam K. N., Bakar Z. A. B., Noordin M. N., Hussein M. Z. B., Rahman N. S. B. A., Ali E. (2011) Characterisation of Calcium Carbonate and its polymorphs form cock shells (Anadara granosa). Powder Technology 213

Itoh Y., Matsusaki M., Kida T., Akashi M. (2004) Preparation of Biodegradable Hollow Nanocapsules by Silica Template Method. Chemistry Letters 33: 1552-1553

Jain R., Khan N., Menzel A., Rajkovic I., Konrad M., Techert S. (2015) Insights into open/closed conformations of the catalytically active human guanylate kinase as investigated by small-angle X-ray scattering. European Biophysics Journal 45

James J. P., Yan Y., Caruso F. (2012) The Role of Particle Geometry and Mechanics in the Biological Domain. Advanced Healthcare Materials 1: 35-47

Javier A. M., Kreft O., Alberola A. P., Kirchner C., Zebli B., Suha A. S., Horn E., Kempter S., Skirtach A. G., Rogach A. L., Rädler J., Sukhorukov G.B., Benoit M., Parak W. J. (2006) Combined Atomic Force Microscopy and Optical Microscopy Measurements as a Method To Investigate Particle Uptake by Cells. Small (Weinheim an der Bergstrasse, Germany) 2: 394-400

Jemmerson R., Low M. G. (1987) Phosphatidylinositol anchor of HeLa cell alkaline phosphatase. Biochemistry 26: 5703-5709

Jenssen H., Hamill P., Hancock R. E. (2006) Peptide antimicrobial agents. Clinical Microbiology Reviews 19: 491-511

Jiang X., Dausend J., Hafner M., Musyanovych A., Röcker C., Landfester K., Mailänder V., Nienhaus G. U. (2010) Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells. Biomacromolecules 11: 748-753

Johnson J. A., Gray M. O., Karliner J. S., Chen C. H., Mochly-Rosen D. (1996) An improved permeabilization protocol for the introduction of peptides into cardiac myocytes. Application to protein kinase C research. Circulation Research 79: 1086-1099

Karamitros C. S., Yashchenok A. M., Möhwald H., Skirtach A. G., Konrad M. (2013) Preserving Catalytic Activity and Enhancing Biochemical Stability of the Therapeutic Enzyme Asparaginase by Biocompatible Multilayered Polyelectrolyte Microcapsules. Biomacromolecules 14

Kierstan M., Bucke C. (1977) The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnology and Bioengineering 19: 387-397

Kikuchi A., Kawabuchi M., Sugihara M., Sakurai Y., Okano T. (1997) Pulsed dextran release from calcium-alginate gel beads. Journal of Controlled Release 47: 21-29

Kim C. S., Le N. D. B., Xing Y., Yan B., Tonga G. Y., Kim C., Vachet R. W., Rotello V. M. (2014) The Role of Surface Functionality in Nanoparticle Exocytosis. Advanced Healthcare Materials 3: 1200-1202

Kirboga S., Oner M. (2013) Effect of the Experimental Parameters on Calcium Carbonate Precipitation. The Italian Association of Chemical Engineering 32

Köhler K., Shchukin D. G., Möhwald H., Sukhorukov G. B. (2005) Thermal Behavior of Polyelectrolyte Multilayer Microcapsules. 1. The Effect of Odd and Even Layer Number. Journal of Physical Chemistry 109: 18250-18259

Kohn R., Larsen B. (1972) Preparation of water-soluble polyuronic acids and their calcium salts, and the determination of calcium ion activity in relation to the degree of polymerization. Acta Chemica Scandinavia 26: 2455-2468

Kolesnikova T. A., Gorin D. A., Fernandes P., Kessel S., Khomutov G. B., Fery A., Shchukin D. G., Möhwald H. (2010) Nanocomposite Microcontainers with High Ultrasound Sensitivity. Materials Views 20: 1189-1195

Kolesnikova T. A., Khlebtsov B. N., Shchukin D. G., Gorin D. A. (2008) Atomic force microscopy characterization of ultrasound-sensitive nanocomposite microcapsules. Nanotechnologies in Russia 3: 560-569

Konrad M. (1992) Cloning and expression of the essential gene for guanylate kinase from yeast. Journal of Biological Chemistry 267: 25652-25655

Koyama D., Kiyan W., Watanabe Y. (2004) Micro-capsule destruction using ultrasound for drug delivery system. IEEE Ultrasonics Symposium Vol 1-3

Lasic D. D. (1994) Liposomes: From Physics to Applications. Biophysical Journal 67: 1358-1362

Leader B., Baca Q. J., Golan D. E. (2008) Protein therapeutics: a summary and pharmacological classification. Nature Reviews 7: 21-39

Lee K. Y., Mooney D. J. (2012) Alginate: properties and biomedical applications. Progress in polymer science 37: 106-126

Leeuwenburgh S. C., Ana I. D., Jansen J. A. (2010) Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomaterialia 6: 836-844

Leeuwenburgh S. C., Jansen J. A., Mikos A. G. (2007) Functionalization of oligo(poly(ethylene glycol)fumarate) hydrogels with finely dispersed calcium phosphate nanocrystals for bone-substituting purposes. Journal of Biomaterials Science 18: 1547-1564

Lengert E., Yashchenok A., Atkin V., Lapanje A., Gorin D. A., Sukhorukov G.B., Parakhonskiy B. V. (2016) Hollow silver alginate microspheres for drug delivery and surface enhanced Raman scattering detection. RSC Advances 6

Lerch S., Dass M., Landfester K., Mailänder V. (2013) Polymeric nanoparticles of different sizes overcome the cell membrane barrier. European Journal of Pharmaceutics and Biopharmaceutics 84

Liang K., Such G. K., Johnston A. P. R., Zhu Z., Ejima H., Richardson J. J., Cui J., Caruso F. (2014) Endocytic pH-Triggered Degradation of Nanoengineered Multilayer Capsules. Advanced Materials 26: 1901-1905

Liang K., Such G. K., Zhu Z., Dodds S. J., Johnston A. P. R., Cui J., Ejima H., Caruso F. (2012) Engineering Cellular Degradation of Multilayered Capsules through Controlled Cross-Linking. ACS Nano 6

Liechty W. B., Kryscio D. R., Slaughter B. V., Peppas N. A. (2010) Polymers for drug delivery systems. Annual Review of Chemical and Biomolecular Engineering 1: 149-173

Liu L., Liu S., Ng S. Y., Froix M., Ohno T., Heller J. (1997) Controlled release of interleukin-2 for tumour immunotherapy using alginate/chitosan porous microspheres. Journal of Controlled Release 43: 65-74

Liu S., Wei L., Hao L., Fang N., Chang M. W., Xu R., Yang Y., Chen Y. (2009) Sharper and Faster “Nano Darts” Kill More Bacteria: A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube. ACS Nano 3: 3891-3902

Lou P., Lai P., Shieh M., MacRobert A. J., Berg K., Bown S. G. (2006) Reversal of doxorubicin resistance in breast cancer cells by photochemical internalization. International Journal of Cancer 119: 2692-2698

Lu Z., Prouty M. D., Guo Z., Golub V. O., Kumar C. S. S. R., Lvov Y. M. (2005) Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir 21: 2042-2050

Lvov Y. M., Pattekari P., Zhang X., Tochilin V. (2010) Converting Poorly Soluble Materials into Stable Aqueous Nanocolloids. Langmuir 27: 1212-1217

Magnani M., Rossi L., Fraternale A., Bianchi M., Antonelli A., Crinelli R., Chiarantini L. (2002) Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Therapy 9: 749-751

Manning G. S. (1977) Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions. Biophysical Chemistry 7: 95

Marchenko I., Yashchenok A., Borodina T., Bukreeva T. V., Konrad M., Möhwald H., Skirtach A. G. (2012) Controlled enzyme-catalyzed degradation of polymeric capsules templated on CaCO3: Influence of the number of LbL layers, conditions of degradation, and disassembly of multicompartments. Journal of Controlled Release 162: 599-605

Marsh M., Helenius A. (1989) Virus entry into animal cells. Advances in Virus Research 36: 107-151

Melvik J. E., Dornish M. (2004) Alginate as a carrier for cell immobilisation. Fundamentals of Cell Immobilisation Biotechnology 8: 33-51

Melzoch K., Rychtera M., Hábová (1994) Effect of immobilization upon the properties and behaviour of Saccharomyces cerevisiae cells. Journal of Biotechnology 32: 59-65

Meng H., Yang S., Li Z., Xia T., Chen J., Ji Z., Zhang H., Wang X., Lin S., Huang C., Zhou Z. H., Zink J. I., Nel A. E. (2011) Aspect Ratio Determines the Quantity of Mesoporous Silica Nanoparticle Uptake by a Small GTPase-Dependent Macropinocytosis Mechanism. ACS Nano 5: 4434-4447

Merkel T. J., Jones S. W., Herlihy K. P., Kersey F. R., Shields A. R., Napier M., Luft J. C., Wu H., Zamboni W. C., Wang A. Z., Bear J. E., DeSimone J. M. (2011) Using mechanobiological mimicry of red blood cells to extend circulation times of hydrogel microparticles. Proceedings of the National Academy of Sciences of the United States 108: 586-591

Miech R. P., York R., Parks R. E. (1969) Adenosine triphosphate-guanosine 5'-phosphate phosphotransferase. II. Inhibition by 6-thioguanosine 5'-phosphate of the enzyme isolated from hog brain and sarcoma 180 ascites cells. Molecular Pharmacology 5: 30-37

Millan J. L., Narisawa S., Lemire I., Lolsel T. P., Bolleau G., Leonard P., Gramatikova S., Terkeltaub R., Camacho N. P., McKee M. D., Crine P., Whyte M. P. (2008) Enzyme replacement therapy for murine hypophosphatasia. Journal of Bone and Mineral Research 23: 777-787

Millan J. L., Whyte M. P. (2016) Alkaline Phosphatase and Hypophosphatasia. Calcified Tissue International 98: 398-416

Miller D. K., Griffiths E., Lenard J., Firestone R. A. (1983) Cell killing by lysosomotropic detergents. Journal of Cell Biology 97: 1841-1851

Moya S., Dähne L. VA, Leporatti S. DE, Möhwald H. (2001) Polyelectrolyte multilayer capsules templated on biological cells: core oxidation influences layer chemistry. Colloids and Surfaces A: Physicochemical Engineering Aspects 183-185: 27-40

Mozafari M. R., Johnson C., Hatziantoniou S., Demetzos C. (2008) Nanoliposomes and Their Applications in Food Nanotechnology. Journal of Liposome Research 18: 309-327

Mueller R., Köhler K., Weinkamer R., Sukhorukov G.B., Fery A. (2005) Melting of PDADMAC/PSS Capsules Investigated with AFM Force Spectroscopy. Macromolecules 38: 9766-9771

Neijssen J., Herberts C., Drijfhout J. W., Reits E., Janssen L., Neefjes J. (2005) Cross-presentation by intercellular peptide transfer through gap junctions. Nature 434: 83-88

Neu B., Voigt R., Mitlöhner R., Leporatti S., Gao C. Y., Donath E., Kiesewetter H., Möhwald H., Meiselman H. J., Bäumler H. (2008) Biological Cells as Templates for Hollow Microcapsules. Journal of Microencapsulation 18: 385-395

Nishiyama N., Amida W. D., Date K., Miyata K., Kataoka K. (2006) Photochemical enhancement of transgene expression by polymeric micelles incorporating plasmid DNA and dendrimer-based photosensitizer. Journal of Drug Targetting 14: 413-424

Ogino T., Suzuki T., Sawada K. (1987) The formation and transformation mechanism of calcium carbonate in water. Geochimica et Cosmochimica Acta 51: 2757-2767

Orimo H. (2010) The mechanism of mineralization and the role of alkaline phosphatase in health and disease. Journal of Nippon Medical School 77: 4-12

Ouwerx C., Velings N., Mestdagh M. M., Axelos M. A. V. (1998) Physico-chemical properties and rheology of alginate gel beads formed with various divalent cations. Polymer Gels and Networks 6: 393-408

Parakhonskiy B., Haase A., Antolini R. (2012) Sub-Micrometer Vaterite Containers: Synthesis, Substance Loading and Release. Angewandte Chemie International Edition 51

Parakhonskiy B., Zyuzin M., Yashchenok A., Carregal-Romero S., Rejman J., Möhwald H., Parak W. J., Skirtach A. G. (2015) The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. Journal of Nanobiotechnology: 13

Parakhonskiy B. V., Foss C., Carletti E., Fedel M., Haase A., Motta A., Migliaresi C., Antolini R. (2013) Tailored intracellular delivery via a crystal phase transition in 400 nm vaterite particles†. Biomaterial Science

Parakhonskiy B. V., Yashchenok A. M., Donatan S., Volodkin D. V., Tessarolo F., Antolini R., Möhwald H., Skirtach A. G. (2014a) Macromolecule Loading into Spherical, Elliptical, Star-Like and Cubic Calcium Carbonate Carriers. ChemPhysChem 15: 2817-2822

Parakhonskiy B. V., Yashchenok A. M., Konrad M., Skirtach A. G. (2014b) Colloidal micro- and nano-particles as templates for polyelectrolyte multilayer capsules. Advances in Colloid and Interface Science 207: 253-264

Park B., Yoon D., Kim D. (2010) Recent progress in bio-sensing techniques with encapsulated enzymes. Biosensors & Bioelectronics 26: 1-10

Pavlov A. M., Saez V., Cobley A., Graves J., G.B. S, Mason T. J. (2011) Controlled protein release from microcapsules with composite shells using high frequency ultrasound—potential for in vivo medical use. Soft Matter 7: 4341-4347

Peer D., Karp J. M., Hong S., Langer R. (2007) Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2: 751-760

Peters E., Masereeuw R., Pickkers P. (2014) The Potential of Alkaline Phosphatase as a Treatment for Sepsis-Associated Acute Kidney Injury. Clinical Practice 127

Petrov A. I., Volodkin D. V., Sukhorukov G. B. (2005) Protein-Calcium Carbonate Coprecipitation: A Tool for Protein Encapsulation. Biotechnology Progress 21: 918-925

Pickkers P., Heemskerk S., Schouten J., Laterre P., Vincent J., Beishuizen A., Jorens P. G., Spapen H., Bulitta M., Peters W. H. M., van der Hoeven J. G. (2012) Alkaline phosphatase for treatment of sepsis-induced acute kidney injury: a prospective randomized double-blind placebo-controlled trial. Critical Care 16

Podolsky D. K. (2002) Inflammatory Bowel Disease. The New England Journal of Medicine: Research & Review Articles 437

Prasmickaite L., Hogset A., Berg K. (2001) Evaluation of different photosensitizers for use in photochemical gene transfection. Photochemistry and Photobiology 73: 388-395

Radt B., Smith T. A., Caruso F. (2004) Optically Addressable Nanostructured Capsules. Advanced Materials 16: 2184-2189

Raj N. K. K., Sharma C. P. (2003) Oral insulin—a perspective. Journal of Biomaterials Applications 17: 183-196

Ramundo-Orlando A., Morbiducci U., Mossa G., D'Inzeo G. (2000) Effect of Low Frequency, Low Amplitude Magnetic Fields on the Permeability of Cationic Liposomes Entrapping Carbonic Anhydrase. Bioelectromagnetics 21: 491-498

Reiss I., Inderrieden D., Kruse K. (1996) Measurement of skeletal specific alkaline phosphatase in disorders of calcium metabolism in childhood. Monatsschrift Kinderheilkunde 144: 885-890

Rother C., Nidetzky B. (2014) Enzyme Immobilization by Microencapsulation: Methods, Materials and Technological Applications. In Flickinger MC (ed.), Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseperation and Cell Technology. John Wiley & Sons, Inc.

Ruysschaert T., Germain M., Gomes J. F. P., Fournier D., SUkhorukov G.B., Meier W., Winterhalter M. (2004) Liposome-Based Nanocapsules. Transactions on Nanobioscience 3: 49-55

Sakr O. S., Borchard G. (2013) Encapsulation of Enzymes in Layer-by-Layer (LbL) Structures: Latest Advances and Applications. Biomacromolecules 14: 2117-2135

Saraya M. E. I., Rokbaa H. H. A. L. (2016) Preparation of Vaterite Calcium Carbonate in the Form of Spherical Nano-size Particles with the Aid of Polycarboxylate Superplasticizer as a Capping Agent. American Journal of Nanomaterials 4: 44-51

Sawada K. (1997) The Mechanisms of Crystallization and Transformation of Calcium Carbonates Pure and Applied Chemistry 69: 921-928

Schlücker S. (2011) Surface Enhanced Raman Spectroscopy: Analytical, Biophysical and Life Science Applications.

Schneider G., Decher G. (2004) From Functional Core/Shell Nanoparticles Prepared via Layer-by-Layer Deposition to Empty Nanospheres. Nano Letters 4: 1833-1839

Schuetz P., Caruso F. (2003) Copper-Assisted Weak Polyelectrolyte Multilayer Formation on Microspheres and Subsequent Film Crosslinking. Advanced Functional Materials 13: 929-937

Sekulic N., Shuvalova L., Spangenberg O., Konrad M., Lavie A. (2002) Structural characterization of the Closed Conformation of Mouse Guanylate Kinase. JBC papers

Sen C. K. (1998) Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochemical Pharmacology 55: 1747-1758

Sergeeva A., Sergeev R., Lengert E., Zakharevich A., Parakhonskiy B. V., Gorin D. A., Sergeev S., Volodkin D. V. (2015) Composite Magnetite and Protein Containing CaCO3 Crystals. External Manipulation and Vaterite → Calcite Recrystallization-Mediated Release Performance. ACS Applied Materials & Interfaces 7: 21315-21325

Sharp K. A., Brooks D. E. (1985) Calculation of the electrophoretic mobility of a particle bearing bound polyelectrolyte using the nonlinear poisson-boltzmann equation. Biophysical Journal 47: 563-566

Shchepelina O., Kharlampieva E., Mao W., Alexeev A., Tsukruk V. V. (2010) Anisotropic Micro- and Nano-Capsules. Macromolecular Rapid Communications 31: 2041-2046

She S., Li Q., Shan B., Tong W., Gao C. Y. (2013) Fabrication of Red-Blood-Cell-Like Polyelectrolyte Microcapsules and Their Deformation and Recovery Behavior Through a Microcapillary. Advanced Materials 25: 5814-5818

She S., Xu C., Yin X., Tong W., Gao C. Y. (2012) Shape Deformation and Recovery of Multilayer Microcapsules after Being Squeezed through a Microchannel. Langmuir 28: 5010-5016

Shenoy D. B., Antipov A. A., Sukhorukov G.B., Möhwald H. (2003) Layer-by-layer engineering of biocompatible, decomposable core-shell structures. Biomacromolecules 4: 265-272

Shimoni O., Yan Y., Wang Y., Caruso F. (2013) Shape-Dependent Cellular Processing of Polyelectrolyte Capsules. ACS Nano 7: 522-530

Shu S., Zhang X., Wu Z., Wang Z., Li C. (2010) Gradientcross-linked Biodegradable Polyelectrolyte Nanocapsules for Intracellular Protein Drug Delivery. Biomaterials 31: 6039-6049

Singh M. N., Hemant K. S. Y., Ram M., Shivakumar H. G. (2010) Microencapsulation: a Promising Technique for Controlled Drug Delivery. Research in Pharmaceutical Sciences 5: 65-77

Skirtach A. G., De Geest B. G., Mamedov A., Antipov A. A., Kotov N. A., Sukhorukov G.B. (2006) Ultrasound Stimulated Release and Catalysis using Polyelectrolyte Multilayer Capsules. Journal of Materials Chemistry 17: 1050-1054

Skirtach A. G., Dejugnat C., Braun D., Susha A. S., Rogach A. L., Parak W. J., Möhwald H., Sukhorukov G.B. (2005) The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano Letters 5: 1371-1377

Skirtach A. G., Yashchenok A. M., Möhwald H. (2011) Encapsulation, release and applications of LbL polyelectrolyte multilayer capsules. Chemical Communications 47: 12736-12746

Skjàk-Braek G., Smidsrod O., Larsen B. (1986) Tailoring of alginates by enzymatic modification in vitro. International Journal of Biological Macromolecules 8: 330-336

Smidsrod O., Haug A. (1968) A Light Scattering Study of Alginate. Acta Chemica Scandinavia 22: 797-810

Srivastava R., Brown J. Q., Zhu H., McShane M. J. (2005) Stable Encapsulation of Active Enzyme by Application of Multilayer Nanofilm Coatings to Alginate Microspheres. Macromolecular Bioscience 5: 717-727

Stein E. W., Volodkin D. V., McShane M. J., Sukhorukov G.B. (2006) Real-Time Assessment of Spatial and Temporal Coupled Catalysis within Polyelectrolyte Microcapsules Containing Coimmobilized Glucose Oxidase and Peroxidase. Biomacromolecules 7: 710-719

Stokke B. T., Smidsrod O., Zanetti F., Strand W., Skjakbraek G. (1993) Distribution Of Uronate Residues In Alginate Chains In Relation To Alginate Gelling Properties .2. Enrichment Of Beta-D-Mannuronic Acid Anddepletion Of Alpha-L-Guluronic Acid In Sol Fraction. Carbohydrate Polymers 21: 39-46

Strand B. L., Gåserød O., Kulseng B., Espevik T., Skjåk-Bræk G. (2008) Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. Journal of Microencapsulation 19: 615-630

Strong L. E., West J. L. (2011) Thermally responsive polymer-nanoparticle composites for biomedical applications. Wiley Interdisciplinary reviews Nanomedicine and nanobiotechnology 3: 307-317

Sukhorukov G.B., Brumen M., Donath E., Möhwald H. (1999) Hollow Polyelectrolyte Shells: Exclusion of Polymers and Donnan Equilibrium. Journal of Physical Chemistry 103

Svenskaya Y., Fattah H., Zakharevich A., Gorin D., Sukhorukov G., Parakhonskiy B. (2016) Ultrasonically Assisted Fabication of Vaterite Submicron-sized Carriers. Advanced Powder Technology

Svenskaya Y., Parakhonskiy B. V., Haase A., Atkin V., Lukyanets E., Gorin D., Antolini R. (2013) Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical Chemistry 182: 11-15

Tang R., Moyano D. F., Subramani C., Yan B., Jeoung E., Tonga G. Y., Duncan B., Yeh Y., Jiang Z., Kim C., Rotello V. M. (2014) Rapid Coating of Surfaces with Functionalized Nanoparticles for Regulation of Cell Behavior. Advanced Materials 26: 3310-3314

Thu B., Bruheim P., Espevik T., Smidsrod O., Soon-Shiong P., Skjak-Braek G. (1996) Alginate polycation microcapsules Biomaterials 17: 1031-1040

Timko B. P., Whitehead K, Gao W., Kohane D. S., Farokhzad O., Anderson D., Langer R. (2011) Advances in drug delivery. Annual Review of Materials Research 41: 1-20

Tiourina O. P., Sukhorukov G.B. (2002) Multilayer alginate/protamine microsized capsules: Encapsulation of -chymotrypsin and controlled release study. International Journal of Pharmaceutics 242: 155-161

Trau D., Renneberg R. (2003) Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. Biosensors & Bioelectronics 18: 1491-1499

Trushina D. B., Bukreeva T. V., Kovalchuk M. V., N. AM (2014) CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering 45: 644-658

Trushina D. B., Sulyanov S. N., Bukreeva T. V., Kovalchuk M. V. (2015) Size Control and Structure Features of Spherical Calcium Carbonate Particles. Kristallografiya 60: 625-633

Tuin A., Poelstra K., de Jager-Krikken A., Bok L., Raaben W., Velders M. P., Dijkstra G. (2009) Role of alkaline phosphatase in colitis in man and rats. Gut 58

Vigneron N., Stroobant V., Chapiro J., Ooms A., Degiovanni G., Morel S., van der Bruggen P., Boon T., Van den Eynde B. J. (2004) An antigenic peptide produced by peptide splicing in the proteasome. Science 304: 587-590

Vinogradova O. I., Lebedeva O. V., Vasilev K., Gong H., Carcia-Turiel J., Kim B. (2005) Multilayer DNA/Poly(allylamine hydrochloride) Microcapsules: Assembly and Mechanical Properties. Biomacromolecules 6

Vogt C., Mertz D., Benmlih K., Hemmerlé J., Voegel J., Schaaf P., Lavalle P. (2012) Layer-by-Layer Enzymatic Platform for Stretched-Induced Reactive Release. ACC Publications 1: 797-801

Voigt A., Lichtenfeld H., Sukhorukov G.B., Zastrow H., Donath E., Bäumler H., Möhwald H. (1999) Membrane Filtration for Microencapsulation and Microcapsules Fabrication by Layer-by-Layer Polyelectrolyte Adsorption. Industrial & Engineering Chemistry Research 38: 4037-4043

Volodkin D. V., Larionova N. I., Sukhorukov G. B. (2004) Protein Encapsulation via Porous CaCO3 Microparticles Templating. Biomacromolecules 5: 1962-1972

Volodkin D. V., Petrov A. I., Prevot M., Sukhorukov G.B. (2003) Matrix Polyelectrolyte Microcapsules: New System for Macromolecule Encapsulation. Langmuir

Volodkin D. V., Schmidt S., Fernandes P., Larionova N. I., Sukhorukov G.B., Dushl C., Möhwald H., von Klitzing R. (2012) One-Step Formulation of Protein Microparticles with Tailored Properties: Hard Templating at Soft Conditions. Advanced Functional Materials 22: 1914-1922

Volodkin D. V., von Klitzing R., H. M (2010) Pure Protein Microshperes by Calcium Carbonate Templating. Angewandte Chemie International Edition 49

Walde P., Ichikawa S. (2001) Enzymes inside lipid vesicles: preparation, reactivity and applications. Biomolecular Engineering 18: 143-177

Wang B., Zhang Y., Mao Z., Gao C. Y. (2012) Cellular uptake of covalent poly(allylamine hydrochloride) microcapsules and its influences on cell functions. Macromolecular Bioscience 12: 1534-1545

Wattendorf U., Kreft O., Textor M., Sukhorukov G.B., Merlke H. P. (2008) Stable Stealth Function for Hollow Polyelectrolyte Microcapsules through a Poly(ethylene glycol) Grafted Polyelectrolyte Adlayer. Biomacromolecules 9: 100-108

Wuytens P., Parakhonskiy B. V., Yashchenok A. M., Winterhalter M., Skirtach A. G. (2014) Pharmacological aspects of release from microcapsules from polymeric multilayers to lipid membranes. Current Opinion in Pharmacology 18: 129-140

Yan Y., Gause K. T., Kamphuis M. M. J., Ang C., O'Brien-Simpson N. M., Lenzo J. C., Reynolds E. C., Nice E. C., Caruso F. (2013) Differential Roles of the Protein Corona in the Cellular Uptake of Nanoporous Polymer Particles by Monocyte and Macrophage Cell Lines. ACS Nano 7: 10960-10970

Yashchenok A., Delcea M., Videnova K., Jares-Erijman A., Jovin T. M., Konrad M., Möhwald H., Skirtach A. G. (2010) Enzyme Reaction in the Pores of CaCO3 Particles upon Ultrasound Disruption of Attached Substrate-Filled Liposomes. Angewandte Chemie International Edition 49: 8116-8120

Yilmaz Z. E., Cordonnier T., Debuigne A., Calvignac B., Jerome C., Boury F. (2016) Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles. International Journal of Pharmaceutics 513: 130-137

Yoo P. J., Nam K. T., Qi J., Lee S., Park J., Belcher A. M., Hammond P. T. (2006) Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Materials 5: 234-240

Yoshimito M., Wang S., Fukunaga K., Walde P., Kuboi R., Nakao K. (2002) Preparation and Characterization of Reactive and Stable Glucose Oxidase-Containing Liposomes Modulated with Detergent. Biotechnology and Bioengineering 81: 695-704

Yu A., Wang Y., Barlow E., Caruso F. (2005) Mesoporous Silica Particles as Templates for Preparing Enzyme-Loaded Biocompatible Microcapsules. Advanced Materials 17: 1737-1741

Zhang R., Köhler K., Kreft O., Skirtach A. G., Möhwald H., Sukhorukov G. B. (2010) Salt-induced fusion of microcapsules of polyelectrolytes. Soft Matter 6

Zhou J., Pishko M. V., Lutkenhaus J. L. (2014) Thermoresponsive Layer-by-Layer Assemblies for Nanoparticle-Based Drug Delivery. ACS Publication 30: 5903-5910

Zschocke P. D., Schiltz E., Schulz G. E. (1993) Purification and sequence determination of guanylate kinase from pig brain. European Journal of Biochemistry 213: 263-269

Universiteit of Hogeschool
Master of Science in de industriële wetenschappen: Biochemie
Publicatiejaar
2017
Promotor(en)
Andre Skirtach
Kernwoorden
Share this on: