Het gebruik van wielerbeelden als innovatieve methode om het effect van de klimaatverandering op de fenologie van bomen te kwantificeren

Lisa Van Langenhove
Persbericht

Archiefbeelden Ronde van Vlaanderen bewijzen klimaatverandering

Archiefbeelden Ronde van Vlaanderen bewijzen klimaatverandering

Thesisonderzoek aan de Universiteit Gent heeft dankzij het VRT-archief de effecten van de klimaatverandering kunnen waarnemen. Unieke archiefbeelden van maar liefst 36 edities van de Ronde van Vlaanderen werden bestudeerd en men ontdekte dat de bomen op de hellingen van het parcours steeds vroeger in bloei staan.

“Het viel op dat de bomen vóór 1990 zelden al bladeren hadden tijdens de Ronde van Vlaanderen. Na 1990 stonden verschillende boomsoorten, zoals magnolia’s, meidoorns, haagbeuken en berken, wel al in blad.”

Figuur 1. Variatie van de bladeren op een beuk langs de Paterberg.(zie bijlage)

Bomen op de hellingen van de Ronde van Vlaanderen dragen in de loop van de voorbije 36 jaar steeds meer bladeren en bloemen op de dag van de koers. Dat ontdekten thesisstudente Lisa Van Langenhove en haar begeleiders, toen ze de archiefbeelden van de VRT bestudeerden. Ze vergeleken de jaarlijks herhaalde video-opnames van bomen op twaalf hellingen langs het parcours, en bepaalden daaruit hoeveel bladeren of bloemen er te zien waren tussen 1980 en 2016. Deze gegevens werden dan gekoppeld aan klimaatdata. De onderzoekers zeggen dat de oorzaak van die evolutie bij de klimaatverandering ligt. Op de hellingen van de Ronde van Vlaanderen stegen de temperaturen met maar liefst 1,5° C sinds 1980.

Figuur 2. De variatie in de gemiddelde jaartemperatuur aan het parcours van de Ronde van Vlaanderen.(zie bijlage)

Nieuwe methode

De videobeelden van het VRT-sportarchief zijn een waardevolle bron van informatie om de effecten van de klimaatverandering in kaart te brengen. Dat komt omdat de Ronde van Vlaanderen elk jaar ongeveer hetzelfde parcours heeft, waardoor de evolutie van de planten en bomen nauwkeurig bestudeerd kan worden doorheen de tijd. Bovendien vindt de wielerwedstrijd al decennia lang plaats in het voorjaar, juist op het moment dat bomen en struiken uitlopen.

Tot nu toe werden de effecten van de klimaatverandering op bomen vooral waargenomen in bossen, parken en tuinen bij een aantal boomsoorten, zoals de eik, de beuk en de hazelaar. De reactie op de klimaatverandering verschilt echter van soort tot soort. Met deze nieuwe archiefmethode kan een grotere diversiteit aan plantensoorten onderzocht worden en zo kan het effect van de klimaatverandering beter in kaart gebracht worden.

Een vroege lente mag dan wel heerlijk lijken, de gevolgen voor de natuur zijn dat helemaal niet. Als de bomen vroeger in bloei staan en sneller bladeren dragen, betekent dat ook dat er meer schaduw is. Dat zorgt voor heel wat problemen in de natuur: bloemen krijgen geen kans om te bloeien, waardoor insecten geen nectar vinden en vogels geen voedsel.

 

Bibliografie

Amthor J.S., Hanson P.J., Norby R.J., Wullschleger S.D. (2010). A comment on “Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality” by Aronson and McNulty. Agricultural and Forest Meteorology, 150(3), 497-498.

Anthon H. & Skytte Christiansen M. (1975). Nieuwe flora in kleur. Antwerpen, Standaard uitgeverij, 280 p.

Asshoff R., Zotz G., Körner C. (2006). Growth and phenology of mature temperate forest trees in elevated CO2. Global Change Biology, 12(5), 848-861.

Badeck F.W., Bondeau A., Böttcher K., Doktor D., Lucht W., Schaber J., Stich S. (2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309.

Balmaseda M.A., Trenberth K.E., Källen E. (2013). Distinctive climate signals in reanalysis of global ocean heat content. Geophysical Research Letters, 40(9), 1754-1759.

Beaubien E.J. & Freeland H.J. (2000). Spring phenology in Alberta, Canada: links to ocean temperature. International Journal of Biometeorology, 44(2), 53-59.

Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. (2012). Impact of climate change on the future biodiversity. Ecology Letters, 15(4), 365-377.

Blunden J. & Arndt D.S. (2016). State of the climate in 2015. Bulletin of the American Meteorological Society, 97(8), S1-S275.

Bomengids. Alle Noord-Europese boomsoorten alfabetisch gesorteerd. Consulted on the 23rd of March 2017 via http://www.bomengids.nl/bomen.html#

Chuine I. (2000). A Unified Model for Budburst of Trees. Journal of Theoretical Biology, 207(3), 337-347.

Chuine I. & Beaubien E.G. (2001). Phenology is a major determinant of tree species range. Ecology Letters, 4(5), 500-510.

Chmielewski F., Müller A., Bruns E. (2004). Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agricultural and Forest Meteorology, 121(1-2), 69-78.

Chmielewski F.M., Müller A., Küchler W. (2005). Possible impacts of climate change on natural vegetation in Saxony (Germany). International Journal of Biometeorology, 50(2), 96-104.

Chmielewski F. & Rötzer T. (2001). Response of tree phenology to climate change across Europe. Agricultural and Forest Meteorology, 108(2), 101-112.

Cleland E.E., Chuine I., Menzel A., Mooney H.A., Schwartz M.D. (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22(7), 357-365.

Colwell R.K., Brehm G., Cardelus C.L., Gilman A.C., Longino J.T. (2008). Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science, 322(5899), 258-261.

Cropper J.H. (1979). Tree-Ring Skeleton Plotting by Computer. Tree-Ring Bulletin, 39, 47-60.

De Cleene M., Lejeune M.C. (2007). Compendium of symbolic and ritual plants in Europe. Gent, Mens & Cultuur uitgevers, 695 p.

Delvaux C., Journée M., Bertrand C. (2015). The FORBIO Climate data set for climate analyses. Advances in Science and Research, 12, 103-109.

De Mil T., Vannoppen A., Beeckman H., Van Acker J., Van den Bulcke J. (2016). A field-to-desktop toolchain for X-ray CT densitometry enables tree ring analysis. Annals of Botany, 117(7), 1187-1196.

Diekmann M. (1996). Relationship between flowering phenology of perennial herbs and meteorological data in deciduous forests of Sweden. Canadian Journal of Botany, 74(4), 528-537.

D’Odorico P., Yoo J.C., Jaeger S. (2002). Changing Seasons: An Effect of the North Atlantic Oscillation? Journal of Climate, 15(4), 435-445.

Doi H. & Katano I. (2008). Phenological timings of leaf budburst with climate change in Japan. Agricultural and Forest Meteorology, 148(3), 512-516.

Dore M. (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31(8), 1167-1181.

EEA (2017). Climate change, impacts and vulnerability in Europe 2016. An indicator-based report. Copenhagen, European Environment Agency, 419 p.

EPA (2016). Climate Change Sience: Causes of Climate Change. Consulted on the 15th of December 2016 via http://www.epa.gov/climate-change-science/causes-climate-change

Estrella N., Menzel A., Krämer U., Behrendt H. (2006). Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992-1999). International Journal of Biometeorology, 51(1), 49-59.

ETI BioInformatics (2016). Dieren, planten en paddestoelen in Nederland. Consulted on the 27th of September 2016 via http://www.soortenbank.nl/soorten.php?soortengroep=flora_nl _v2&menuentry=tekstsleutel

Fitzgerald J. & Lindner M. (2013). Adapting to climate change in European forests - Results of the MOTIVE project. Sofia, Pensoft Publishers, 110 p.

Fritts H.C. (1962). The Relation of Growth ring widths in American beech and white oak to variations in climate. Tree-Ring Bulletin, 25(1-2), 2-10.

Fritts H.C. (1966). Growth-Rings of Trees: Their Correlation with Climate. Science, 154(3752), 973-979.

Fritts H.C. (1976). Tree Rings and Climate. New York, Academic Press, 567 p.

Fu Y.H., Piao S., Op de Beeck M., Cong N., Zhao H., Zhang Y., Menzel A., Janssens I.A. (2014). Recent spring phenology shifts in western Central Europe based on multiscale observations. Global Ecology and Biogeography, 23(11), 1255-1263.

Fu Y.H., Zhao H., Piao S., Peaucelle M., Peng S., Zhou G., Ciais P., Huang M., Menzel A., Peñuelas J., Song Y., Vitasse Y., Zeng Z. Janssens I.A. (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature, 526, 104-107.

Gordo O. & Sanz J.J. (2009). Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biology, 16(3), 1082-1106.

Heide O.M. (1993). Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days. Physiologia Plantarum, 89(1), 187-191.

Heide O.M. (2003). High autumn temperature delays spring bud burst in boreal trees, counterbalancing the effect of climatic warming. Tree Physiology, 23(13), 931-936.

Honour S.L., Bell N.B., Ashenden T.W., Cape J.N., Power S.A. (2009). Responses of herbaceous plants to urban air pollution: Effects on growth, phenology and leaf surface characteristics. Environmental pollution, 157(4), 1279-1286.

Huete A.R., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213

Hufkens K., Friedl M.A., Sonnentag O., Braswell B.H., Milliman T., Richardson A.D. (2012). Linking near-surface and satellite remote sensing measurements of deciduous broadleaf forest phenology. Remote Sensing of Environment, 117, 307-321.

Humboldt-University of Berlin (2012). International Phenological Gardens in Europe. Consulted on the 7th of March 2017 via https://www.agrar.hu-berlin.de/en/institut-en/departments/ dntw-en/agrarmet-en/phaenologie/ipg

Humboldt-University of Berlin (2012). Phenological Observation Guide of the International Phenological Gardens. Consulted on the 20th of March 2017 via https://www.agrar.hu-berlin.de/en/institut-en/departments/dntw-en/agrar…

Inouye D.W., Barr B., Armitage K.B., Inouye B.D. (2000). Climate change is affecting altitudinal migrants and hibernating species. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1630-1633.

Inverde (2011). Bomenwijzer. Consulted on the 11th of May 2017 via http://bomenwijzer.be/ boom/64?esthetisch

IPCC (2013). Climate change 2013: The Physical Science Basis. Working group I of the Intergovernmental Panel on Climate Change. Geneva, IPCC,  1535 p.

IPCC (2014). Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, IPCC, 151 p.

IPCC (2017). Emissions Scenarios. Consulted on the 4th of March 2017 via http://www.ipcc.ch /ipccreports/sres/emission/index.php?idp=3

Ishikawa Y. (1987). Relationships between tree age and size in the dominant tree species in Nopporo national forest. Preservation and management of urban forests, 73-85.

Jochner S. & Menzel A. (2015). Does flower phenology mirror the slowdown of global warming? Ecology and Evolution, 5(11), 2284-2295.

KNMI (2015). Uitleg over: El Niño. Consulted on the 28th of December 2016 via https://www.knmi.nl/kennis-en-datacentrum/uitleg/el-nino-21037ceb-3f08-…

Körner C. & Basler D. (2010). Phenology Under Global Warming. Science, 327(5972), 1461-1642.

Kosaka Y. & Xie SP. (2013). Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 501, 403-407.

Lapenis A., Shepaschenko D., Nilsson S., Haaiyyer A. (2005). Acclimation of Russian forests to recent changes in climate. Global Change Biology, 11(12), 2090-2102.

Lebourgeois F., Bréda N., Ulrich E., Granier A. (2005). Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees, 19(4), 385-401.

Lenoir J. Cégout J.C., Marquet P.A., de Ruffray P., Brisse H. (2008). A Significant Upward Shift in Plant Species Optimum Elevation During the 20th Century. Science, 320(5884), 1768-1771.

Linderholm H.W. (2006). Growing season changes in the last century. Agricultural and Forest Meteorology, 137(1-2), 1-14.

Lindsey A.A. & Newman J.E. (1956). Use of Official Wather Data in Spring Time: Temperature Analysis of an Indiana Phenological Record. Ecology, 37(4), 812-823.

Liu W., Xie SP., Lu J. (2016) Tracking ocean heat uptake during the surface warming hiatus. Nature communications, 7, 10926.

Loarie S.R., Duffy P.B., Hamilton H., Asner G.P., Field C.B., Ackerly D.D. (2009). The velocity of climate change. Nature, 462, 1052-1055.

Maher N., Sen Gupta A., England M.H. (2014). Drivers of decadal hiatus periods in the 20th and 21st centuries. Geophysical Research Letters, 41(16), 5978-5986.

Meier E.S., Lischke H., Schmatz D.R., Zimmerman N.E. (2012). Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecology and Biogeography, 21(2), 164-178.

Menzel A. & Fabian P. (1999). Growing season extended in Europe. Nature, 397, 659.

Menzel A. (2002). Phenology: Its Importance to the Global Change Community. Climatic Change, 54(4), 379-385.

Menzel A. (2003). Plant Phenological Anomalies in Germany and their Relation to Air Temperature and NAO. Climatic Change, 57(3), 243-263.

Migliavacca M., Galvagno M., Cremonese E., Rossini M., Meroni M., Sonnentag O., Cogliati S., Manca G., Diotri F., Busetto L., Cescatti A., Colombo R., Fava F., Morra di Cella U., Pari E., Siniscalco C., Richardson A.D. (2011). Using digital repeat photography and eddy covariance data to model grassland phenology and photosynthetic CO2 uptake. Agricultural and Forest Meteorology, 150(10), 1325-1337.

Miller-Rushing A.J., Primack R.B., Primack D., Mukunda S. (2006). Photographs and herbarium specimens as tools to document phenological changes in response to global warming. American Journal of Botany, 11(3), 1667-1674.

Munson S.M & Long A.L. (2016). Climate drives shifts in grass reproductive phenology across the western USA. New Phytologist, 213(4), 1945-1955.

Murray M.B., Cannell M.G.R., Smith R.I. (1989). Date of Budburst of Fifteen Tree Species in Britain Following Climatic Warming. Applied Ecology, 26(2), 693-700.

NASA (2017). Global temperature. Consulted on the 8th of May via https://climate.nasa.gov/ vital-signs/global-temperature/

NASA (2017). GISS Surface Temperature Analysis. Consulted on the 2nd of June via https://data.giss.nasa.gov/gistemp/graphs/

NOAA (2015). What is remote sensing? Consulted on the 8th of March 2017 via http://oceanservice.noaa.gov/facts/remotesensing.html

NOAA (2017). Climate change: Global temperature. Consulted on the 8th of May via https://www.climate.gov/news-features/understanding-climate/climate-cha…

Norby R.J., Edwards N.T., Riggs J.S., Abner C.H., Wullschleger S.D., Gunderson C.A. (1997). Temperature-controlled open-top chambers for global change research. Global Change Biology, 3(3), 259-267.

Parmesan C. & Yohe G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.

Parmesan C. (2006). Ecological and Evolutionary Responses to Recent Climate Change. Annual Reviews, 37, 637-669.

Parmesan C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13(9), 1860-1872.

Peñuelas J. & Boada M. (2003). A global change-induced biome shift in the Montseny mountains (NE Spain), Global Change Biology, 9(2), 131-140.

Peñuelas J., Filella I., Zhang X., Llorens L., Ogaya R., Lloret F., Comas P., Estiarte M., Terradas J. (2004). Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytologist, 161(3), 837-846.

Piao S., Fang J., Zhou L., Ciais P., Zhu B. (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12(4), 672-685.

Power S., Casey T., Folland C., Colman A., Mehta V. (1999). Inter-decadal modulation of the impact of ENSO on Australia. Climate Dynamics, 15(5), 319-324.

Primack R.B. & Gallinat A.S. (2017). Insights into grass phenology from herbarium specimens. New Phytologist, 213(4), 1567-1568.

R Core Team (2017). R: A language and environment for computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

R package version 1.1.3 (2016). Analyzing Pointer Years and Components of Resilience. URL https://cran.r-project.org/web/packages/pointRes/pointRes.pdf

R package version 2.2.1 (2016). Create Elegant Data Visualisations Using the Grammar of Graphics. URL https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf

R package version 3.0.1 (2016). Various R Programming Tools for Plotting Data. URL https://cran.r-project.org/web/packages/gplots/gplots.pdf

R package version 3.1-131 (2017). Linear and Nonlinear Mixed Effects Models. URL https://cran.r-project.org/web/packages/nlme/nlme.pdf

Richardson A.D., Hollinger D.Y., Dail D.B., Lee J.T., Munger J.W., O’Keefe J. (2009). Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiology, 29, 321-331.

Roetzer T., Wittenzeller M., Haeckel H., Nekovar J. (2000). Phenology in central Europe - differences and trends of spring phenophases in urban and rural areas. International Journal of Biometeorology, 44(2), 60-66.

Root T.L., Price J.T., Hall K.R., Schneider S.H., Rosenzweig C., Pounds J.A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.

Scheifinger H., Menzel A., Koch E., Peter C., Ahas R. (2002). Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in central Europe. International Journal of Climatology, 22(14), 1739-1455.

Schnelle F. (1955). Pflanzen-Phänologie: Probleme der Bioklimatologie. Geest and Portig, Leipzig, 299 p.

Seiwa, K. (1999). Changes in Leaf Phenology are Dependent on Tree Height in Acer mono, a Deciduous Broad-leaved Tree. Annals of Botany, 83, 355-361.

Solomon S., Rosenlof K.H., Portmann R.W., Daniel J.S., Davis S.M., Sanford T.J., Plattner G. (2010). Contribution of Stratospheric Water Vapor to Decadal Changes in the Rate of Global Warming. Science, 327(5970), 1219-1223.

Sonnentag O., Hufkens K., Teshera-Sterne C., Young A.M., Friedl M., Braswell B.H., Milliman T., O’Keefe J., Richardson A.D. (2012). Digital repeat photography for phenological research in forest ecosystems. Agricultural and Forest Meteorology, 152, 159-177.

Studer S., Stöckli R., Appenzeller C., Vidale P.L. (2007) A comparative study of satellite and ground-based phenology. International Journal of Biometeorology, 51(5), 405-414.

USGCRP (2014). Climate Change Impacts in the United States: The Third National Climate Assessment. Washington, USGCRP, 841 p.

Umer Zeeshan Ijaz (2015). R code for ecological data analysis. Consulted on the 29th of April 2017 via http://userweb.eng.gla.ac.uk/umer.ijaz/bioinformatics/ecological.html

Valentini N., Me G., Ferrero R., Spanna F. (2001). Use of bioclimatic indexes to characterize phenological phases on apple varieties in Northern Italy. International Journal of Biometeorology, 45(4), 191-195.

Van Bogaert H. (1982). Bomen rondom ons. Tielt, CERA en WWF, 107 p.

Van den Bulcke J., Boone M., Van Acker J., Stevens M., Van Hoorebeke L. (2009). X-ray tomography as a tool for detailed anatomical analysis. Annals of Forest Science, 66(5), 508.

Vellend M., Brown C.D., Kharouba H.M., McCune J.L., Myers-Smith I.H. (2013). Historical ecology: Using unconventional data sources to test for effects of global envrionmental change. American Journal of Botany, 100(7), 1294-1305.

Vitasse Y., Delzon S., Dufrêne E., Pontailler J., Louvet J., Kremer A., Michalet R. (2009). Leaf phenology sensitivity to temperature in European trees: Do within-species populations exhibit similar responses? Agricultural and Forest Meteorology, 149(5), 735-744.

Vlaamse overheid (2017). Geopunt Vlaanderen - kaart. Consulted on the 22nd of March 2017 via http://www.geopunt.be

Walther G., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J., Hoegh-Guldberg O., Bairlein F. (2002). Ecological responses to recent climate change. Nature, 416, 389-395.

Way D.A. (2011). Tree phenology responses to warming: spring forward, fall back? Tree Physiology, 31(5), 469-471.

White M.A., Running S.W., Thornton P.E. (1999). The impact of growing season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. International Journal of Biometeorology, 42(3), 139-145.

Wielgolaski F.E. (2001). Phenological modifications in plants by various edaphic factors. International Journal of Biometeorology, 45(4), 196-202.

Willaert boomkwekerij (2015). Forsythia x intermedia - Chinees klokje. Consulted on the 12th of May 2017 via http://plantengids.willaert.be/nl/plantenfiche/fointerm/

Wolkovich E.M., Cook B.I., Allen J.M., Crimmins T.M., Betancourt J.L., Travers S.E., Pau S., Regetz J., Davies T.J., Kraft N.J.B., Ault T.R., Bolmgren K., Mazer S.J., McCabe G.J., McGill B.J., Parmesan C., Salamin N., Schwartz M.D., Cleland E.E. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature, 485, 494-497.

Zhang H., Yuan W., Liu S., Dong W. (2015). Divergent responses of leaf phenology to changing temperature among plant species and geographical regions. Ecosphere, 6(12), 1-8.

Zhang X., Friedl M.A., Schaaf C.B., Strahler A.H., Hodges J.C.F., Gao F., Reed B.C., Huete A. (2003) Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471-475.

Zhang X., Friedl M.A., Schaaf C.B., Strahler A.H., Liu Z. (2005). Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. Journal of Geophysical Research, 110(D12).

Zhang X., Friedl M.A., Schaaf C.B. (2006). Global vegetation phenology from Moderate Resolution Imaging Spectroradiometer (MODIS): Evaluation of global patterns and comparison with in situ measurements. Journal of Geophysical Research, 111(G4), G04017.

Universiteit of Hogeschool
Bioingenieurswetenschappen
Publicatiejaar
2017
Promotor(en)
Pieter De Frenne, Kris Verheyen, Pieter Vangansbeke
Kernwoorden
Share this on: