Functional diversity in natural forests along an elevational transect in northern Ecuador

Tine Bommarez
Persbericht

Zie je door het bos de bomen nog? Een onderzoek naar de boomdiversiteit in de tropische bossen van de Ecuadoraanse Andes.

Beeld je in dat je aan het begin van een bergbeklimming staat. Het weer in de vallei is meestal aangenaam, maar naarmate je hoger komt, wordt de tocht uitdagender. Regenbuien, windstoten, frisse temperaturen, felle zon en misschien zelfs mist doen hun intrede. Dit typische weerpatroon op grote hoogte is niet alleen uitdagend voor fanatieke bergbeklimmers, maar ook voor de bomen die op bergflanken groeien. Hun hele leven lang moeten ze met lage temperaturen, hoge uv-straling en hevige windstoten weten om te gaan.

Bomen hebben zich in de loop der evolutie aangepast aan de weersomstandigheden op de hoogte waarop ze voorkomen. Op die manier zijn nieuwe boomsoorten ontstaan. In valleien groeien vaak andere boomsoorten dan op bergtoppen en tussenin komen soms nog andere soorten voor. Dit patroon van veranderende boomsoorten langsheen bergflanken werd al goed in kaart gebracht voor bergketens in gematigde klimaten, zoals de Alpen of de Pyreneeën. Over gebergtebossen in tropische klimaten hebben wetenschappers echter nog heel wat vragen. Hoeveel boomsoorten groeien er in deze bossen? En welke strategieën gebruiken ze om te overleven?

Landscape_Ecuador

Op zoek naar antwoorden trok een internationaal team van de Universiteit Gent naar het Andesgebergte in Ecuador om er de bossen op verschillende hoogtes in kaart te brengen. Aan de veldcampagne werkten zowel Belgische als Ecuadoraanse masterstudenten mee, ondersteund door lokale botanici. De verscheidenheid aan boomsoorten die ze aantroffen is opmerkelijk. Over een afstand van slechts 100 kilometer werden maar liefst 211 verschillende boomsoorten geïdentificeerd. Dat heeft alles te maken met het bergachtige gebied waarin deze bossen zich bevinden. De variërende hoogte en oriëntatie van de bergflanken samen met het tropische klimaat aan de basis van de grote soortenrijkdom in dit gebied. Door de variatie van hoogte, temperatuur en vochtigheid in de ruimte ontstaan zogenaamde “micro-habitats”: kleine gebieden met telkens een andere combinatie van omgevingsfactoren. Micro-habitats zorgen ervoor dat boomsoorten zich gaan specialiseren, waardoor op termijn nieuwe soorten kunnen ontstaan.

Het aantal verschillende boomsoorten op de tropische bergflanken van de Andes is overweldigend in vergelijking met het aantal soorten in onze streken. In heel België komen slechts een vijftigtal verschillende boomsoorten voor. In het onderzochte gebied bevonden zich meer dan vier keer zoveel soorten, en dat terwijl de oppervlakte van België vele keren groter is dan de bestudeerde zone  in Ecuador. De bestudeerde bosoppervlakte in Ecuador bedroeg minder dan drie hectare, dus vermoedelijk ligt het totale soortenaantal in het hele gebied nog een pak hoger.

Bladeren als visitekaartje

Het onderzoeksteam bestudeerde ook bladstalen, afkomstig van bomen op verschillende hoogtes. De bladeren van een boom zijn namelijk als een visitekaartje: ze kunnen ons veel leren over de overlevingsstrategie van een bepaalde boomsoort.

Na analyse van de bladstalen bleek dat bladeren van bomen die groeien op grote hoogte andere eigenschappen hebben dan bladeren van bomen die zich aan de voet van de berg bevinden. Hun bladeren zijn over het algemeen kleiner en stugger, en bovendien bevatten ze minder stikstof. De bomen van het laaglandregenwoud daarentegen hebben grotere bladeren die meer stikstof bevatten. Daarnaast bevatten bladeren van bomen op grote hoogte meer “zware” koolstofatomen (13C) ten opzichte van “normale” koolstofatomen (12C) dan bomen uit het laaglandregenwoud.

Tropical_forest

Wat vertellen deze veranderende bladeigenschappen ons nu over de verschillen tussen laaglandregenwoud en gebergtebos? Uit de stikstofinhoud van bladeren uit laaglandregenwoud, kunnen we afleiden dat dit bostype voedselrijker is dan gebergtebos. De verhoogde koolstof-13-verhouding in bladeren uit het gebergtebos wijst erop dat bomen op grote hoogte spaarzamer omspringen met water. Op grote hoogtes is er dus minder stikstof en minder bodemvocht beschikbaar voor de bomen. Analyse van bodemstalen uit beide bostypes bevestigt dit.

Onzekere toekomst

De bevindingen van dit onderzoek kunnen ons heel wat leren over de toekomst van tropische bossen. De verschillende bladeigenschappen duiden erop dat de bladeren van bomen aangepast zijn aan de hoogte waarop ze voorkomen. Gedurende miljoenen jaren evolueerden de bladeren van bomen, met als gevolg dat ze perfect aangepast zijn aan de groeiomstandigheden van in hun natuurlijke habitat heersen. Klimaatverandering vormt echter een bedreiging voor de gespecialiseerde boomsoorten van de Ecuadoraanse Andes. Veranderende weerpatronen, zoals verhoogde temperaturen of minder neerslag, bedreigen het voortbestaan van deze bossen.

Gebergtebossen zijn nog sterker dan andere bossen bedreigd door klimaatverandering. Wanneer gemiddelde temperatuur langs de bergflank verhoogt, komt de zone met ideale groeitemperatuur steeds hoger op de berg te liggen. Dit is problematisch voor plantensoorten, gezien ze zich niet zomaar kunnen verplaatsen naar het verschoven ideale leefgebied. “Opwaartse migratie” van boomsoorten is in theorie mogelijk: het komt er dan op aan dat zaden in een hoger gelegen gebied wortelen. In de praktijk zijn er echter heel wat struikelblokken voor deze “opwaartse migratie” van boomsoorten. Zo wordt de beschikbare oppervlakte steeds kleiner naarmate de bergtop nadert. Daarnaast vormen ontboste oppervlaktes een barrière voor de migratie van boomsoorten.

De beste garantie voor het voortbestaan van deze gespecialiseerde boomsoorten, is het fragiele evenwicht waarin deze bossen zich bevinden, te beschermen. Daar kunnen we voor zorgen door meer aandacht te hebben voor de oorzaken van klimaatverandering en ontbossing. Alleen zo kunnen we het voortbestaan van de talloze planten- en diersoorten binnen dit unieke ecosysteem garanderen.

 

Bibliografie

Aparecido, L. M. T., Teodoro, G. S., Mosquera, G., Brum, M., Barros, F. d. V., Pompeu, P. V., Rodas, M., Lazo, P., Müller, C. S., Mulligan, M., et al. (2018). Ecohydrological drivers of Neotropical vegetation in montane ecosystems. Ecohydrology, 11(3):e1932. Apaza-Quevedo, A., Lippok, D., Hensen, I., Schleuning, M., and Both, S. (2015). Elevation, topography, and edge effects drive functional composition of woody plant species in tropical montane forests. Biotropica, 47(4):449–458. Arellano, G. and Macía, M. J. (2014). Local and regional dominance of woody plants along an elevational gradient in a tropical montane forest of northwestern Bolivia. Plant ecology, 215(1):39–54. Arsham, H. and Lovric, M. (2011). Bartlett’s test. Asner, G. P., Martin, R. E., Anderson, C. B., Kryston, K., Vaughn, N., Knapp, D. E., Bentley, L. P., Shenkin, A., Salinas, N., Sinca, F., Tupayachi, R., Quispe Huaypar, K., Montoya Pillco, M., Ccori Álvarez, F. D., Díaz, S., Enquist, B. J., and Malhi, Y. (2017a). Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytologist, 214(3):973–988. Asner, G. P., Martin, R. E., Knapp, D., Tupayachi, R., Anderson, C., Sinca, F., Vaughn, N., and Llactayo, W. (2017b). Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355(6323):385–389. Barry, R. (1981). Mountain Weather and Climate. Methuen. Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1):1–48. Bauters, M., Meeus, S., Barthel, M., Stoffelen, P., De Deurwaerder, H. P., Meunier, F., Drake, T. W., Ponette, Q., Ebuy, J., Vermeir, P., Beeckman, H., wyffels, F., Bodé, S., Verbeeck, H., Vandelook, F., and Boeckx, P. (2020). Century-long apparent decrease in iwue with no evidence of progressive nutrient limitation in african tropical forests. Global Change Biology. Bauters, M., Verbeeck, H., Demol, M., Bruneel, S., Taveirne, C., Van der Heyden, D., Cizungu, L., and Boeckx, P. (2017). Parallel functional and stoichiometric trait shifts in South American and African forest communities with elevation. Biogeosciences, 14(23):5313–5321. Bauters, M. (2013). Quantification of the potential carbon capture of reforested highlands in the Andes. Ghent University (Master thesis). BIBLIOGRAPHY Beech, E., Rivers, M., Oldfield, S., and Smith, P. P. (2017). GlobalTreeSearch: The first complete global database of tree species and country distributions. Journal of Sustainable Forestry, 36(5):454–489. Bray, J. R. and Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological monographs, 27(4):325–349. Breslow, N. (1970). A generalized Kruskal-Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika, 57(3):579–594. Bruijnzeel, L., Mulligan, M., and Scatena, F. (2011a). Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrological Processes, 25:465 – 498. Bruijnzeel, L. and Proctor, J. (1995). Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? In Tropical montane cloud forests, pages 38–78. Springer. Bruijnzeel, L., Waterloo, M., Proctor, J., Kuiters, A., and Kotterink, B. (1993). Hydrological observations in montane rain forests on gunung silam, sabah, malaysia, with special reference to themassenerhebung’effect. Journal of Ecology, pages 145–167. Bruijnzeel, L. A., Scatena, F. N., and Hamilton, L. S. (2011b). Tropical montane cloud forests: science for conservation and management. Cambridge University Press. Bruneel, S. (2016). Carbon sequestration in natural forests and reforestations along an altitudinal gradient in the Andes of Ecuador. Ghent University (Master thesis). Bubb, P., May, I. A., Miles, L., Sayer, J., et al. (2004). Cloud forest agenda. Cayuela, L., Macarro, I., Stein, A., and Oksanen, J. (2019). Taxonstand: Taxonomic Standardization of Plant Species Names. R package version 2.2. Chave, J. (2005). Measuring wood density for tropical forest trees. A field manual for the CTFS sites, pages 1–7. Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., and Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4):351–366. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045):1024– 1026. Cordell, S., Goldstein, G., Mueller-Dombois, D., Webb, D., and Vitousek, P. (1998). Physiological and morphological variation in metrosideros polymorpha, a dominant hawaiian tree species, along an altitudinal gradient: the role of phenotypic plasticity. Oecologia, 113(2):188–196. Cornwell, W. K., Schwilk, D. W., and Ackerly, D. D. (2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87(6):1465–1471. Craine, J. M., Elmore, A. J., Aidar, M. P., Bustamante, M., Dawson, T. E., Hobbie, E. A., Kahmen, A., Mack, M. C., McLauchlan, K. K., Michelsen, A., et al. (2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytologist, 183(4):980–992. 56 BIBLIOGRAPHY de Bello, F., Lavorel, S., Albert, C. H., Thuiller, W., Grigulis, K., Dolezal, J., Janecek, ˇ S., and ˇ Leps, J. (2011). Quantifying the relevance of intraspecific trait variability for functional ˇ diversity. Methods in Ecology and Evolution, 2(2):163–174. Demol, M. (2016). Functional diversity in natural forests along an altitudinal gradient in northern Ecuador. Ghent University (Master thesis). Diamond, J. M. (1975). Assembly of species communities. Ecology and evolution of communities, pages 342–444. Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Prentice, I. C., et al. (2016). The global spectrum of plant form and function. Nature, 529(7585):167–171. Díaz, S. and Cabido, M. (2001). Vive la différence: plant functional diversity matters to ecosystem processes. "Trends in Ecology & Evolution", 16(11):646 – 655. Dirzo, R. (2001). Tropical Forests, pages 251–276. Springer New York, New York, NY. Dirzo, R. and Raven, P. H. (2003). Global State of Biodiversity and Loss. Annual Review of Environment and Resources, 28(1):137–167. Dunn, O. J. (1964). Multiple comparisons using rank sums. Technometrics, 6(3):241–252. Easlon, H. M. and Bloom, A. J. (2014). Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7):1400033. Ehleringer, J. R., Cerling, T. E., and Helliker, B. R. (1997). C4 photosynthesis, atmospheric co2, and climate. Oecologia, 112(3):285–299. Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J., Osinaga-Acosta, O., Malizia, L., Silman, M., Farfán-Ríos, W., et al. (2018). Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564(7735):207–212. Falster, D. S. and Westoby, M. (2003). Plant height and evolutionary games. Trends in Ecology & Evolution, 18(7):337–343. FAO (2015). Global Forest Resources Assessment 2015. FAO Forestry Paper No. 1**. FAO and UNEP (2020). The State of the World’s Forests 2020. Forests, biodiversity and people. Rome. Farquhar, G. and Richards, R. (1984). Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Functional Plant Biology, 11(6):539–552. Farquhar, G. D. (1983). On the nature of carbon isotope discrimination in c4 species. Functional Plant Biology, 10(2):205–226. Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. (1989a). Carbon isotope discrimination and photosynthesis. Annual review of plant biology, 40(1):503–537. 57 BIBLIOGRAPHY Farquhar, G. D., Hubick, K. T., Condon, A. G., and Richards, R. A. (1989b). Carbon isotope fractionation and plant water-use efficiency. In Rundel, P. W., Ehleringer, J. R., and Nagy, K. A., editors, Stable Isotopes in Ecological Research, pages 21–40, New York, NY. Springer New York. Feeley, K. J., Rehm, E. M., and Machovina, B. (2012). perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2). Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., Meir, P., Revilla, N. S., Quisiyupanqui, M. N. R., and Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38(4):783–791. Feeley, K. J., Silman, M. R., and Duque, A. (2015). Where are the tropical plants? a call for better inclusion of tropical plants in studies investigating and predicting the effects of climate change. Frontiers of Biogeography. Fick, S. E. and Hijmans, R. J. (2017). Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. International journal of climatology, 37(12):4302–4315. Finegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., CarreñoRocabado, G., Casanoves, F., Díaz, S., Eguiguren Velepucha, P., Fernandez, F., et al. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103(1):191–201. Fithian, W. and Hastie, T. (2013). Finite-sample equivalence in statistical models for presence-only data. The annals of applied statistics, 7(4):1917. Flenley, J. R. (1995). "Cloud Forest, the Massenerhebung Effect, and Ultraviolet Insolation", booktitle="Tropical Montane Cloud Forests". pages 150–155, New York, NY. Springer US. Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., and Holling, C. S. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annu. Rev. Ecol. Evol. Syst., 35:557–581. Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1):73 – 106. Franks, P. J., Adams, M. A., Amthor, J. S., Barbour, M. M., Berry, J. A., Ellsworth, D. S., Farquhar, G. D., Ghannoum, O., Lloyd, J., McDowell, N., et al. (2013). Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century. New Phytologist, 197(4):1077–1094. Gale, J. (1972). Availability of Carbon Dioxide for Photosynthesis at High Altitudes: Theoretical Considerations. Ecology, 53(3):494–497. Gałecki, A. and Burzykowski, T. (2013). Linear mixed-effects model. In Linear Mixed-Effects Models Using R, pages 245–273. Springer. Gentry, A. (1989). Speciation in tropical forests. Tropical forests: Botanical dynamics, speciation and diversity, pages 113–134. 58 BIBLIOGRAPHY Gentry, A. H. (1992). Tropical Forest Biodiversity: Distributional Patterns and Their Conservational Significance. Oikos, 63(1):19–28. Girardin, C. A., Farfan-Rios, W., Garcia, K., Feeley, K. J., Jørgensen, P. M., Murakami, A. A., Cayola Pérez, L., Seidel, R., Paniagua, N., Fuentes Claros, A. F., et al. (2014). Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecology & Diversity, 7(1-2):161–171. Global Forest Watch (2020a). Tree Cover Loss in Imbabura, Ecuador. www.globalforestwatch.org. Global Forest Watch (2020b). Tree Cover Loss in Pichincha, Ecuador. www.globalforestwatch.org. Gotelli, N. J. and Colwell, R. K. (2001). Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology letters, 4(4):379–391. Gotsch, S. G., Asbjornsen, H., and Goldsmith, G. R. (2016). Plant carbon and water fluxes in tropical montane cloud forests. Journal of Tropical Ecology, 32(5):404–420. Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Alonso, J. L. B., Coldea, G., ˇ Dick, J., Erschbamer, B., Kazakis, G., et al. (2012). Continent-wide response of mountain vegetation to climate change. Nature climate change, 2(2):111–115. Grissino-Mayer, H. D. (2003). A manual and tutorial for the proper use of an increment borer. Gómez-Guerrero, A., Silva, L. C. R., Barrera-Reyes, M., Kishchuk, B., Velázquez-Martínez, A., Martínez-Trinidad, T., Plascencia-Escalante, F. O., and Horwath, W. R. (2013). Growth decline and divergent tree ring isotopic composition contradict predictions of CO2 stimulation in high altitudinal forests. Global Change Biology, 19(6):1748–1758. Hagedorn, F., Gavazov, K., and Alexander, J. M. (2019). Above- and belowground linkages shape responses of mountain vegetation to climate change. Science, 365(6458):1119– 1123. Hamilton, L. S., Juvik, J. O., and Scatena, F. N. (1995). "The Puerto Rico Tropical Cloud Forest Symposium: Introduction and Workshop Synthesis". In Hamilton, L. S., Juvik, J. O., and Scatena, F. N., editors, Tropical Montane Cloud Forests, pages 1–18, New York, NY. Springer US. Hill, S. L. L., Arnell, A., Maney, C., Butchart, S. H. M., Hilton-Taylor, C., Ciciarelli, C., Davis, C., Dinerstein, E., Purvis, A., and Burgess, N. D. (2019). Measuring Forest Biodiversity Status and Changes Globally. Frontiers in Forests and Global Change, 2:70. Hogan, J. A., Hérault, B., Bachelot, B., Gorel, A., Jounieaux, M., and Baraloto, C. (2018). Understanding the recruitment response of juvenile Neotropical trees to logging intensity using functional traits. Ecological Applications, 28(8):1998–2010. Homeier, J., Breckle, S.-W., Günter, S., Rollenbeck, R. T., and Leuschner, C. (2010). Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica, 42(2):140–148. 59 BIBLIOGRAPHY Hooper, D. U., Chapin, F. S., Ewel, J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D., Loreau, M., Naeem, S., et al. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological monographs, 75(1):3–35. Hosonuma, N., Herold, M., Sy, V. D., Fries, R. S. D., Brockhaus, M., Verchot, L., Angelsen, A., and Romijn, E. (2012). An assessment of deforestation and forest degradation drivers in developing countries. Environmental Research Letters, 7(4):044009. Hossain, M., Siddique, M. R. H., Abdullah, S., Akhter, M., and SMZ, I. (2017). Manual for building tree volume and biomass allometric equation for Bangladesh. Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E., Fauset, S., Mukinzi, J. M., et al. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579(7797):80–87. Humboldt, A. v. and Bonpland, A. (1805). Essai sur la géographie des plantes accompagné d’un tableau physique des régions équinoxiales. Paris: Levrault, Schoell & Co. Janzen, D. H. (1967). Why mountain passes are higher in the tropics. The American Naturalist, 101(919):233–249. Jiménez Paz, R. A. (2016). Floristic composition, structure and diversity along an elevational gradient in an Andean forest of Northern Ecuador. B.S. thesis, PUCE. Katabuchi, M., Kurokawa, H., Davies, S. J., Tan, S., and Nakashizuka, T. (2012). Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. Journal of Ecology, 100(3):643–651. Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Tautenhahn, S., Werner, G. D., Aakala, T., Abedi, M., et al. (2020). Try plant trait database–enhanced coverage and open access. Global change biology. Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., Garnier, E., Westoby, M., Reich, P. B., Wright, I. J., et al. (2011). Try–a global database of plant traits. Global change biology, 17(9):2905–2935. Keenan, R. J., Reams, G. A., Achard, F., de Freitas, J. V., Grainger, A., and Lindquist, E. (2015). Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. Forest Ecology and Management, 352:9–20. King, D. A., Davies, S. J., Tan, S., and Noor, N. S. M. (2006). The role of wood density and stem support costs in the growth and mortality of tropical trees. Journal of Ecology, 94(3):670–680. Körner, C. (2007). The use of ‘altitude’in ecological research. Trends in ecology & evolution, 22(11):569–574. Körner, C., Farquhar, G., and Wong, S. (1991). Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia, 88(1):30–40. Laliberté, E. and Legendre, P. (2010). A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91(1):299–305. 60 BIBLIOGRAPHY Laliberté, E., Legendre, P., and Shipley, B. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12. Laurance, W. F., Lovejoy, T. E., Vasconcelos, H. L., Bruna, E. M., Didham, R. K., Stouffer, P. C., Gascon, C., Bierregaard, R. O., Laurance, S. G., and Sampaio, E. (2002). Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16(3):605–618. Letts, M. G. and Mulligan, M. (2005). The impact of light quality and leaf wetness on photosynthesis in north-west Andean tropical montane cloud forest. Journal of Tropical Ecology, 21(5):549–557. Levine, J. M. (2016). Ecology: a trail map for trait-based studies. Nature, 529(7585):163– 164. Lewis, S. L., Phillips, O. L., Sheil, D., Vinceti, B., Baker, T. R., Brown, S., Graham, A. W., Higuchi, N., Hilbert, D. W., Laurance, W. F., et al. (2004). Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. Journal of Ecology, 92(6):929–944. Lieberman, D., Lieberman, M., Peralta, R., and Hartshorn, G. S. (1996). Tropical forest structure and composition on a large-scale altitudinal gradient in Costa Rica. Journal of Ecology, pages 137–152. Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., and Saatchi, S. (2010). Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 16(12):3171–3175. Maquipucuna Reserve (2019). Maquipucuna Cloud Forest Reserve. https://www.maquipucuna.org/maquipucuna-reserve. Marshall, J. D., Brooks, J. R., and Lajtha, K. (2007). Sources of variation in the stable isotopic composition of plants. Stable isotopes in ecology and environmental science, 2:22–60. Mason, N. W., Mouillot, D., Lee, W. G., and Wilson, J. B. (2005). Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos, 111(1):112–118. Meeussen, C. (2017). Liana abundance and functional diversity along an altitudinal gradient in northern ecuador. Ghent University (Master thesis). Millennium Ecosystem Assessment, M. (2005). Ecosystems and human well-being. Synthesis. Mindo Cloudforest Foundation (2019a). Milpe Bird Sanctuary. https://mindocloudforest.org/portfolio/milpe-bird-sanctuary/. Mindo Cloudforest Foundation (2019b). Río Silanche Bird Sanctuary. https://mindocloudforest.org/portfolio/rio-silanche/. Montagnini, F. and Jordan, C. (2005). Classification of Tropical Forests. 61 BIBLIOGRAPHY Moret, P., Muriel, P., Jaramillo, R., and Dangles, O. (2019). Humboldt’s tableau physique revisited. Proceedings of the National Academy of Sciences, 116(26):12889–12894. Mouillot, D., Mason, W. N., Dumay, O., and Wilson, J. B. (2005). Functional regularity: a neglected aspect of functional diversity. Oecologia, 142(3):353–359. Mulligan, M. (2010). Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. Tropical montane cloud forests: science for conservation and management, 740:16–38. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772):853. Myster, R. W. (2017). Gradient (elevation) vs. disturbance (agriculture) effects on primary cloud forest in Ecuador: floristics and physical structure. New Zealand Journal of Forestry Science, 47(1):3. Nakagawa, S. and Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in ecology and evolution, 4(2):133– 142. NOAA National Centers for Environmental Information (2020). State of the Climate: Global Climate Report for Annual 2019. https://www.ncdc.noaa.gov/sotc/global/201913. Accessed: 2020-03-16. Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5-6. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., and Hayes, D. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045):988–993. Pauwels, J. (2018). Functional identity and reforestation success of different tree species in the northern Andes range of Ecuador. Ghent University (Master thesis). Perez, T. M., Stroud, J. T., and Feeley, K. J. (2016). Thermal trouble in the tropics. Science, 351(6280):1392–1393. Phillips, O., Baker, T., Feldspauch, T., and Brienen, R. (2002). Field manual for plot establishment and remeasurement (RAINFOR). Amazon Forest Inventory Network. Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of theoretical biology, 13:131–144. Poorter, L., Wright, S. J., Paz, H., Ackerly, D. D., Condit, R., Ibarra-Manríquez, G., Harms, K. E., Licona, J. C., Martínez-Ramos, M., Mazer, S. J., Muller-Landau, H. C., Peña-Claros, M., Webb, C. O., and Wright, I. J. (2008). Are functional traits good predictors of demographic rates? evidence from five neotropical forests. Ecology, 89(7):1908–1920. Rapp, J. M. and Silman, M. R. (2012). Diurnal, seasonal, and altitudinal trends in microclimate across a tropical montane cloud forest. Climate Research, 55(1):17–32. 62 BIBLIOGRAPHY Reinhardt, K., Smith, W. K., and Carter, G. A. (2010). Clouds and cloud immersion alter photosynthetic light quality in a temperate mountain cloud forest. Botany, 88(5):462– 470. Rejou-Mechain, M., Tanguy, A., Piponiot, C., Chave, J., and Herault, B. (2017). BIOMASS : an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8(9). Ricotta, C. and Podani, J. (2017). "On some properties of the Bray-Curtis dissimilarity and their ecological meaning". Ecological Complexity, 31:201 – 205. Rosado, B. H., Joly, C. A., Burgess, S. S., Oliveira, R. S., and Aidar, M. P. (2016). Changes in plant functional traits and water use in Atlantic rainforest: evidence of conservative water use in spatio-temporal scales. Trees, 30(1):47–61. RStudio Team (2019). RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA. Scatena, F., Bruijnzeel, L., Bubb, P., and Das, S. (2010). Setting the stage. Tropical montane cloud forests science for conservation and management, pages 38–63. Schüller, E., Martínez-Ramos, M., and Hietz, P. (2013). Radial gradients in wood specific gravity, water and gas content in trees of a Mexican tropical rain forest. Biotropica, 45(3):280–287. Shannon, C. and Weaver, W. (1963). The measurement theory of communication. Urbana: Univ. of Illinois Press. Sheil, D. and Phillip, O. (1995). Evaluating turnover in tropical forests. Science, 268(5212):894–896. Simpson, E. H. (1949). Measurement of diversity. nature, 163(4148):688–688. Smith, M. D., Knapp, A. K., and Collins, S. L. (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90(12):3279–3289. Spehn, E. M., Liberman, M., and Korner, C. (2006). Land use change and mountain biodiversity. CRC Press. Steinbauer, M. J., Field, R., Grytnes, J.-A., Trigas, P., Ah-Peng, C., Attorre, F., Birks, H. J. B., Borges, P. A., Cardoso, P., Chou, C.-H., et al. (2016). Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 25(9):1097–1107. Steinbauer, M. J., Grytnes, J.-A., Jurasinski, G., Kulonen, A., Lenoir, J., Pauli, H., Rixen, C., Winkler, M., Bardy-Durchhalter, M., Barni, E., et al. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature, 556(7700):231–234. Strubbe, M. (2013). Variation of wood density and vessel traits along an altitude gradient in a tropical montane cloud forest in Ecuador. Ghent University (Master thesis). 63 BIBLIOGRAPHY Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., and Thomas, C. D. (2011). Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos, 120(1):1–8. Sullivan, M. J. P., Lewis, S. L., Affum-Baffoe, K., Castilho, C., Costa, F., Sanchez, A. C., Ewango, C. E. N., Hubau, W., Marimon, B., Monteagudo-Mendoza, A., Qie, L., Sonké, B., Martinez, R. V., Baker, T. R., Brienen, R. J. W., Feldpausch, T. R., Galbraith, D., Gloor, M., Malhi, Y., Aiba, S.-I., Alexiades, M. N., Almeida, E. C., de Oliveira, E. A., Dávila, E. Á., Loayza, P. A., Andrade, A., Vieira, S. A., Aragão, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., Ashton, P., Aymard C., G., Baccaro, F. B., Banin, L. F., Baraloto, C., Camargo, P. B., Barlow, J., Barroso, J., Bastin, J.-F., Batterman, S. A., Beeckman, H., Begne, S. K., Bennett, A. C., Berenguer, E., Berry, N., Blanc, L., Boeckx, P., Bogaert, J., Bonal, D., Bongers, F., Bradford, M., Brearley, F. Q., Brncic, T., Brown, F., Burban, B., Camargo, J. L., Castro, W., Céron, C., Ribeiro, S. C., Moscoso, V. C., Chave, J., Chezeaux, E., Clark, C. J., de Souza, F. C., Collins, M., Comiskey, J. A., Valverde, F. C., Medina, M. C., da Costa, L., Dancák, M., Dargie, G. C., Davies, S., Cardozo, N. D., de Haulleville, T., de Medeiros, M. B., ˇ del Aguila Pasquel, J., Derroire, G., Di Fiore, A., Doucet, J.-L., Dourdain, A., Droissant, V., Duque, L. F., Ekoungoulou, R., Elias, F., Erwin, T., Esquivel-Muelbert, A., Fauset, S., Ferreira, J., Llampazo, G. F., Foli, E., Ford, A., Gilpin, M., Hall, J. S., Hamer, K. C., Hamilton, A. C., Harris, D. J., Hart, T. B., Hédl, R., Herault, B., Herrera, R., Higuchi, N., Hladik, A., Coronado, E. H., Huamantupa-Chuquimaco, I., Huasco, W. H., Jeffery, K. J., Jimenez-Rojas, E., Kalamandeen, M., Djuikouo, M. N. K., Kearsley, E., Umetsu, R. K., Kho, L. K., Killeen, T., Kitayama, K., Klitgaard, B., Koch, A., Labrière, N., Laurance, W., Laurance, S., Leal, M. E., Levesley, A., Lima, A. J. N., Lisingo, J., Lopes, A. P., Lopez-Gonzalez, G., Lovejoy, T., Lovett, J. C., Lowe, R., Magnusson, W. E., Malumbres-Olarte, J., Manzatto, Â. G., Marimon, B. H., Marshall, A. R., Marthews, T., de Almeida Reis, S. M., Maycock, C., Melgaço, K., Mendoza, C., Metali, F., Mihindou, V., Milliken, W., Mitchard, E. T. A., Morandi, P. S., Mossman, H. L., Nagy, L., Nascimento, H., Neill, D., Nilus, R., Vargas, P. N., Palacios, W., Camacho, N. P., Peacock, J., Pendry, C., Peñuela Mora, M. C., Pickavance, G. C., Pipoly, J., Pitman, N., Playfair, M., Poorter, L., Poulsen, J. R., Poulsen, A. D., Preziosi, R., Prieto, A., Primack, R. B., Ramírez-Angulo, H., Reitsma, J., Réjou-Méchain, M., Correa, Z. R., de Sousa, T. R., Bayona, L. R., Roopsind, A., Rudas, A., Rutishauser, E., Abu Salim, K., Salomão, R. P., Schietti, J., Sheil, D., Silva, R. C., Espejo, J. S., Valeria, C. S., Silveira, M., Simo-Droissart, M., Simon, M. F., Singh, J., Soto Shareva, Y. C., Stahl, C., Stropp, J., Sukri, R., Sunderland, T., Svátek, M., Swaine, M. D., Swamy, V., Taedoumg, H., Talbot, J., Taplin, J., Taylor, D., ter Steege, H., Terborgh, J., Thomas, R., Thomas, S. C., Torres-Lezama, A., Umunay, P., Gamarra, L. V., van der Heijden, G., van der Hout, P., van der Meer, P., van Nieuwstadt, M., Verbeeck, H., Vernimmen, R., Vicentini, A., Vieira, I. C. G., Torre, E. V., Vleminckx, J., Vos, V., Wang, O., White, L. J. T., Willcock, S., Woods, J. T., Wortel, V., Young, K., Zagt, R., Zemagho, L., Zuidema, P. A., Zwerts, J. A., and Phillips, O. L. (2020). Long-term thermal sensitivity of Earth’s tropical forests. Science, 368(6493):869–874. Swenson, N. G., Anglada-Cordero, P., and Barone, J. A. (2011). Deterministic tropical tree community turnover: evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 278(1707):877– 884. 64 BIBLIOGRAPHY Tans, P. and Keeling, R. (2020). Trends in Atmospheric Carbon Dioxide. https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed: 2020-03-16. Thierens, E. (2017). Functional identity and reforestation success of different tree species in the northern Andes range of Ecuador. Ghent University (Master thesis). Van den Meerssche, S. (2020). Carbon storage on an altitudinal gradient on the west side of the Andes. Ghent University (Master thesis). Verbeeck, H., Bauters, M., Disney, M., and Calders, K. (2019). Time for a plant structural economics spectrum. Frontiers in Forests and Global Change, 2:43. Villéger, S., Mason, N. W., and Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8):2290–2301. Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., and Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116(5):882–892. Williamson, G. B. and Wiemann, M. C. (2010). Measuring wood specific gravity. . . correctly. American Journal of Botany, 97(3):519–524. Wilson, A. M. and Jetz, W. (2016). Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS biology, 14(3):e1002415. Wilson, S. J. and Rhemtulla, J. M. (2018). Small montane cloud forest fragments are important for conserving tree diversity in the Ecuadorian Andes. Biotropica, 50(4):586–597. Worthy, S. J., Paz, J., Rosa, A., Pérez, Á. J., Reynolds, A., Cruse-Sanders, J., Valencia, R., Barone, J. A., and Burgess, K. S. (2019). Distribution and Community Assembly of Trees Along an Andean Elevational Gradient. Plants, 8(9):326. Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., CavenderBares, J., Chapin, T., Cornelissen, J. H., Diemer, M., et al. (2004). The worldwide leaf economics spectrum. Nature, 428(6985):821–827. Wright, J. P., Naeem, S., Hector, A., Lehman, C., Reich, P. B., Schmid, B., and Tilman, D. (2006). Conventional functional classification schemes underestimate the relationship with ecosystem functioning. Ecology Letters, 9(2):111–120. Wunder, S. (1996). Deforestation and the uses of wood in the Ecuadorian Andes. Mountain research and Development, pages 367–381.

Universiteit of Hogeschool
Master of Science in de bio-ingenieurswetenschappen: bos- en natuurbeheer
Publicatiejaar
2020
Promotor(en)
Prof. Dr. ir. Hans Verbeeck, Dr. ir. Marijn Bauters
Kernwoorden
Share this on: