The impact of indole-3-acetic acid on virulence of pathogenic Vibrios

Jana Van Haesebroeck
Persbericht

Vispannetje met of zonder antibiotica?

Het einde van vuur bevechten met vuur: bacteriën hoeven niet te worden gedood om hen te bestrijden. 

Meer en meer mensen kiezen er tegenwoordig voor om geen vlees meer te eten. Om toch voldoende voedingsstoffen voor ons lichaam te voorzien, kiest een pescotariër er bijvoorbeeld voor om wel vis en schaaldieren te eten. Maar wanneer u ervoor kiest om een stuk zalm of kom mosselen te bestellen, staat u er dan wel eens bij stil welke weg deze dieren hebben afgelegd? Wist u dat 50% van de geplande productie niet op uw bord terecht komt omwille van infecties in onze oceanen en in de zee? 

In vergelijking met 40 jaar geleden, eet men toch gemiddeld dubbel zo veel vis. Om aan deze vraag te voldoen, werd altijd gegrepen naar het gebruik van antibiotica om bacteriën af te doden. Intussen zijn de negatieve gevolgen hiervan algemeen gekend. Sommige bacteriën overleven (toevallig) een behandeling met antibiotica, dit noemt men resistentie. Deze resistentie kunnen ze dan doorgeven aan volgende generaties, waardoor diezelfde behandeling op lange termijn niet meer werkt. Gelukkige leverde de wetenschap reeds heel wat inspanningen om antibioticumresistentie tegen te gaan. Het lijkt er zelfs op dat bacteriën helemaal niet gedood moeten worden om onze vissen te redden. 

Bacteriën communiceren met elkaar

Vooraleer infectie te kunnen veroorzaken, moeten bacteriën natuurlijk de vijand kunnen bereiken. Mobiliteit is voor hen zeer belangrijk, zij beschikken hiervoor over roterende aanhangsels die hun lichaam een bepaalde richting uit sturen. Naast bewegen, verdedigen bacteriën zichzelf beter in groep. Ze worden minder kwetsbaar door het vormen van zogenaamde biofilms. Hierbij organiseren ze zich binnen een laag slijm en hechten ze zich vast aan een oppervlak binnen het lichaam van de vis. Maar hoe komt deze samenwerking nu precies tot stand? 

Ja, ook bacteriën communiceren met elkaar. Net zoals een leger of voetbalploeg vaak slechts actie onderneemt indien zij weten dat hun aanvallende groep groot genoeg is, voelt een bacterie door hoe veel soortgenoten deze omringd is. Bacteriën doen dit door het aanmaken en verspreiden van chemische stoffen en zullen slechts ziekte veroorzaken indien talrijk genoeg aanwezig in het betrokken lichaamsdeel van de vis. Dit wil zeggen dat voorgaande aanvals- en verdedigingsmechanismen over het algemeen niet zullen optreden zonder de mogelijkheid om met elkaar te communiceren. 

Neem hun 'wapens' af en laat ze verder met rust

Gezien de belangrijkheid van voorgaande processen en de gevolgen ervan voor infecties, werd in het verleden al heel wat onderzoek verricht naar bacteriële communicatie. Een droomscenario voor heel wat wetenschappers is om hierop in te kunnen spelen. Indien bacteriën niet met elkaar kunnen communiceren, worden ze verwacht hun gastheer niet aan te vallen. Op deze manier kan het gebruik van antibiotica omzeild worden en zal in de toekomst minder tot geen resistentie meer optreden. Gaat dit vandaag nog steeds om een verre droom of ligt de oplossing meer voor de hand dan gedacht?

Goed nieuws, een recente ontdekking zou in de toekomst van deze wetenschappelijke droom werkelijkheid kunnen maken, hierbij zorgend voor voldoende en antibioticavrije vis op ons bord. In het normale proces van communicatie, maken bacteriën namelijk gebruik van de stof indool. Indool-3-azijnzuur (afgekort als IAA), dat daar sterk op lijkt, is een natuurlijk voorkomend plantenhormoon. Een behandeling met dit plantenhormoon werd getest op bacteriën van de soort Vibrio, een belangrijke groep van ziekteverwekkers in onze oceanen en in de zee. De belangrijkste resultaten van dit onderzoek worden meegedeeld in volgende alinea's.   

Plantenhormoon zorgt voor verminderde infectie

Voor indool kon in het verleden worden aangetoond dat het zowel mobiliteit als biofilms van Vibrio bacteriën tegenwerkt en hierdoor minder infectie veroorzaakt. Spijtig genoeg blijkt de stof toxisch voor modelorganismen zoals pekelkreeftjes. Pekelkreeftjes zijn zeer kleine kreeftjes die vaak worden gebruikt als visvoer. Doordat ze niet overleven in de aanwezigheid van indool, werd op gelijkaardige manier onderzocht of dezelfde resultaten konden worden behaald met indool-3-azijnzuur (IAA), wat niet dodelijk blijkt voor de modelorganismen. 

Inderdaad, zelfs met het blote oog kon worden aangetoond dat mobiliteit van de bacteriën drastisch verminderde door IAA. De gekweekte Vibrio bacteriën verplaatsten zich weinig tot niet na behandeling met IAA. Ook had de stof invloed op biofilm vorming in de meeste gevallen. De kerst op de taart van deze studie toonde dat zieke pekelkreeftjes, gebruikt als modelorganismen, een grotere kans op overleving hadden na behandeling met IAA. Vispannetje met antibiotica of toch liever met natuurlijk voorkomend plantenhormoon? Denk daar maar eens over na. 

Bibliografie

Abebe, G. M. (2020). The role of bacterial biofilm in antibiotic resistance and food contamination. International journal of microbiology, 2020.

Ahmed, B., Jailani, A., Lee, J. H., & Lee, J. (2022). Effect of halogenated indoles on biofilm formation, virulence, and root surface colonization by Agrobacterium tumefaciens. Chemosphere, 133603.

Anders, P. J. (1998). Conservation aquaculture and endangered species. Fisheries, 23(11), 28-31.

Aquaculture, O. (2017). What is Aquaculture. Office of Aquaculture.

Arthur, J. R. (2005). Preparedness and response to aquatic animal health emergencies in Asia: guidelines (No. 486). Food & Agriculture Org..

Arunkumar, M., LewisOscar, F., Thajuddin, N., Pugazhendhi, A., & Nithya, C. (2020). In vitro and in vivo biofilm forming Vibrio spp: A significant threat in aquaculture. Process Biochemistry, 94, 213-223.

Assefa, A., & Abunna, F. (2018). Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary medicine international, 2018.

Ayers, A. R., Ayers, S. B., & Goodman, R. N. (1979). Extracellular polysaccharide of Erwinia amylovora: a correlation with virulence. Applied and Environmental Microbiology, 38(4), 659- 666.

Bachand, P. T., Tallman, J. J., Powers, N. C., Woods, M., Azadani, D. N., Zimba, P. V., & Turner, J. W. (2020). Genomic identification and characterization of co-occurring Harveyi clade species following a vibriosis outbreak in Pacific white shrimp, Penaeus (litopenaeus) vannamei. Aquaculture, 518, 734628.

Balcázar, J. L., Rojas-Luna, T., & Cunningham, D. P. (2007). Effect of the addition of four potential probiotic strains on the survival of pacific white shrimp (Litopenaeus vannamei) following immersion challenge with Vibrio parahaemolyticus. Journal of invertebrate pathology, 96(2), 147-150.

Beachey, E. H. (1981). Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces. Journal of Infectious Diseases, 143(3), 325- 345.

Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., ... & Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185(5), 373-382.

Blanchard, J. L., Watson, R. A., Fulton, E. A., Cottrell, R. S., Nash, K. L., Bryndum-Buchholz, A., ... & Jennings, S. (2017). Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature ecology & evolution, 1(9), 1240-1249.

Bondad-Reantaso, M. G., Subasinghe, R. P., Arthur, J. R., Ogawa, K., Chinabut, S., Adlard, R., ... & Shariff, M. (2005). Disease and health management in Asian aquaculture. Veterinary parasitology, 132(3-4), 249-272. 51

Brodl, E., Winkler, A., & Macheroux, P. (2018). Molecular mechanisms of bacterial bioluminescence. Computational and structural biotechnology journal, 16, 551-564.

Brunton, L. A., Desbois, A. P., Garza, M., Wieland, B., Mohan, C. V., Häsler, B., ... & Guitian, J. (2019). Identifying hotspots for antibiotic resistance emergence and selection, and elucidating pathways to human exposure: Application of a systems-thinking approach to aquaculture systems. Science of the total environment, 687, 1344-1356.

Buroni, S., & Chiarelli, L. R. (2020). Antivirulence compounds: a future direction to overcome antibiotic resistance?. Future Microbiology, 15(5), 299-301.

Burtseva, O., Kublanovskaya, A., Baulina, O., Fedorenko, T., Lobakova, E., & Chekanov, K. (2020). The strains of bioluminescent bacteria isolated from the White Sea finfishes: genera Photobacterium, Aliivibrio, Vibrio, Shewanella, and first luminous Kosakonia. Journal of Photochemistry and Photobiology B: Biology, 208, 111895.

Castillo, D., Kauffman, K., Hussain, F., Kalatzis, P., Rørbo, N., Polz, M. F., & Middelboe, M. (2018). Widespread distribution of prophage-encoded virulence factors in marine Vibrio communities. Scientific reports, 8(1), 1-9.

Cegelski, L., Marshall, G. R., Eldridge, G. R., & Hultgren, S. J. (2008). The biology and future prospects of antivirulence therapies. Nature Reviews Microbiology, 6(1), 17-27.

Chan, W., Shaughnessy, A. E., van den Berg, C. P., Garson, M. J., & Cheney, K. L. (2021). The validity of brine shrimp (Artemia sp.) toxicity assays to assess the ecological function of marine natural products. Journal of chemical ecology, 47(10), 834-846.

Chandrakala, N., & Priya, S. (2017). Vibriosis in shrimp aquaculture a review. International Journal of Scientific Research in Science, Engineering and Technology, 3(2), 27-33.

Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. (2005). VFDB: a reference database for bacterial virulence factors. Nucleic acids research, 33(suppl_1), D325-D328.

Chu, W., Zere, T. R., Weber, M. M., Wood, T. K., Whiteley, M., Hidalgo-Romano, B., ... & McLean, R. J. (2012). Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Applied and environmental microbiology, 78(2), 411-419.

Darshanee Ruwandeepika, H. A., Sanjeewa Prasad Jayaweera, T., Paban Bhowmick, P., Karunasagar, I., Bossier, P., & Defoirdt, T. (2012). Pathogenesis, virulence factors and virulence regulation of vibrios belonging to the Harveyi clade. Reviews in Aquaculture, 4(2), 59-74.

Defoirdt, T. (2013). Antivirulence therapy for animal production: filling an arsenal with novel weapons for sustainable disease control. PLoS Pathogens, 9(10), e1003603.

Defoirdt, T. (2014). Virulence mechanisms of bacterial aquaculture pathogens and antivirulence therapy for aquaculture. Reviews in Aquaculture, 6(2), 100-114.

Defoirdt, T. (2018). Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 26(4), 313-328. Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., & Bossier, P. (2007). Alternatives to antibiotics to control bacterial infections: luminescent vibriosis in aquaculture as an example. Trends in biotechnology, 25(10), 472-479. 52

Defoirdt, T., Boon, N., Sorgeloos, P., Verstraete, W., & Bossier, P. (2008). Quorum sensing and quorum quenching in Vibrio harveyi: lessons learned from in vivo work. The ISME journal, 2(1), 19-26.

Defoirdt, T., Brackman, G., & Coenye, T. (2013). Quorum sensing inhibitors: how strong is the evidence?. Trends in microbiology, 21(12), 619-624.

Defoirdt, T., Darshanee Ruwandeepika, H. A., Karunasagar, I., Boon, N., & Bossier, P. (2010). Quorum sensing negatively regulates chitinase in Vibrio harveyi. Environmental microbiology reports, 2(1), 44-49.

Defoirdt, T., Sorgeloos, P., & Bossier, P. (2011). Alternatives to antibiotics for the control of bacterial disease in aquaculture. Current opinion in microbiology, 14(3), 251-258.

Defoirdt, T., Vlaeminck, S. E., Sun, X., Boon, N., & Clauwaert, P. (2017). Ureolytic activity and its regulation in Vibrio campbellii and Vibrio harveyi in relation to nitrogen recovery from human urine. Environmental Science & Technology, 51(22), 13335-13343.

Deng, Y., Xu, L., Chen, H., Liu, S., Guo, Z., Cheng, C., ... & Feng, J. (2020). Prevalence, virulence genes, and antimicrobial resistance of Vibrio species isolated from diseased marine fish in South China. Scientific reports, 10(1), 1-8.

Dhont, J., Dierckens, K., Støttrup, J., Van Stappen, G., Wille, M., & Sorgeloos, P. (2013). Rotifers, Artemia and copepods as live feeds for fish larvae in aquaculture. In Advances in aquaculture hatchery technology (pp. 157-202). Woodhead Publishing.

Dickey, S. W., Cheung, G. Y., & Otto, M. (2017). Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nature Reviews Drug Discovery, 16(7), 457- Echazarreta, M. A., & Klose, K. E. (2019). Vibrio flagellar synthesis. Frontiers in cellular and infection microbiology, 9, 131.

Donlan, R. M., & Costerton, J. W. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical microbiology reviews, 15(2), 167-193.

Duca, D., Lorv, J., Patten, C. L., Rose, D., & Glick, B. R. (2014). Indole-3-acetic acid in plant–microbe interactions. Antonie Van Leeuwenhoek, 106(1), 85-125.

Echazarreta, M. A., & Klose, K. E. (2019). Vibrio flagellar synthesis. Frontiers in cellular and infection microbiology, 9, 131.

Engebrecht, J., Nealson, K., & Silverman, M. (1983). Bacterial bioluminescence: isolation and genetic analysis of functions from Vibrio fischeri. Cell, 32(3), 773-781.

Fazli, M., Almblad, H., Rybtke, M. L., Givskov, M., Eberl, L., & Tolker‐Nielsen, T. (2014). Regulation of biofilm formation in P seudomonas and B urkholderia species. Environmental microbiology, 16(7), 1961-1981.

Finlay, B. B., & Falkow, S. (1997). Common themes in microbial pathogenicity revisited. Microbiology and molecular biology reviews, 61(2), 136-169.

Fleitas Martínez, O., Cardoso, M. H., Ribeiro, S. M., & Franco, O. L. (2019). Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial 53 membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Frontiers in cellular and infection microbiology, 74.

Flemming, H. C., Neu, T. R., & Wozniak, D. J. (2007). The EPS matrix: the “house of biofilm cells”. Journal of bacteriology, 189(22), 7945-7947.

Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., & Chou, J. Y. (2015). Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant signaling & behavior, 10(8), e1048052.

Ganz, T. (2018). Iron and infection. International journal of hematology, 107(1), 7-15.

García-Contreras, R., Martínez-Vázquez, M., Velázquez Guadarrama, N., Villegas Pañeda, A. G., Hashimoto, T., Maeda, T., ... & Wood, T. K. (2013). Resistance to the quorumquenching compounds brominated furanone C-30 and 5-fluorouracil in Pseudomonas aeruginosa clinical isolates. Pathogens and disease, 68(1), 8-11.

Guo, D., Kong, S., Chu, X., Li, X., & Pan, H. (2019). De novo biosynthesis of indole-3-acetic acid in engineered Escherichia coli. Journal of agricultural and food chemistry, 67(29), 8186- 8190.

Gutierrez, C. K., Matsui, G. Y., Lincoln, D. E., & Lovell, C. R. (2009). Production of the phytohormone indole-3-acetic acid by estuarine species of the genus Vibrio. Applied and environmental microbiology, 75(8), 2253-2258.

Gutiérrez, E., Lozano, S., & Guillén, J. (2020). Efficiency data analysis in EU aquaculture production. Aquaculture, 520, 734962.

Ha, D. G., Kuchma, S. L., & O’Toole, G. A. (2014). Plate-based assay for swimming motility in Pseudomonas aeruginosa. In Pseudomonas methods and protocols (pp. 59-65). Humana Press, New York, NY.

Henares, B. M., Higgins, K. E., & Boon, E. M. (2012). Discovery of a nitric oxide responsive quorum sensing circuit in Vibrio harveyi. ACS chemical biology, 7(8), 1331-1336.

Henke, J. M., & Bassler, B. L. (2004). Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. Journal of bacteriology, 186(12), 3794-3805.

Henrichsen, J. (1972). Bacterial surface translocation: a survey and a classification. Bacteriological reviews, 36(4), 478-503.

Heuer, O. E., Kruse, H., Grave, K., Collignon, P., Karunasagar, I., & Angulo, F. J. (2009). Human health consequences of use of antimicrobial agents in aquaculture. Clinical Infectious Diseases, 49(8), 1248-1253.

Higgins, D. A., Pomianek, M. E., Kraml, C. M., Taylor, R. K., Semmelhack, M. F., & Bassler, B. L. (2007). The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 450(7171), 883-886.

Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., & Yamaguchi, A. (2005). Indole induces the expression of multidrug exporter genes in Escherichia coli. Molecular microbiology, 55(4), 1113-1126. 54

Hoff, J., Daniel, B., Stukenberg, D., Thuronyi, B. W., Waldminghaus, T., & Fritz, G. (2020). Vibrio natriegens: an ultrafast‐growing marine bacterium as emerging synthetic biology chassis. Environmental Microbiology, 22(10), 4394-4408.

Hoffmann, M., Monday, S. R., Fischer, M., & Brown, E. W. (2012). Genetic and phylogenetic evidence for misidentification of Vibrio species within the Harveyi clade. Letters in applied microbiology, 54(2), 160-165.

Hong, N. T. X., Baruah, K., Vanrompay, D., & Bossier, P. (2016). Characterization of phenotype variations of luminescent and non‐luminescent variants of Vibrio harveyi wild type and quorum sensing mutants. Journal of fish diseases, 39(3), 317-327.

Howard, M. F., Bina, X. R., & Bina, J. E. (2019). Indole inhibits ToxR regulon expression in Vibrio cholerae. Infection and immunity, 87(3), e00776-18.

Ina‐Salwany, M. Y., Al‐saari, N., Mohamad, A., Mursidi, F. A., Mohd‐Aris, A., Amal, M. N. A., ... & Zamri‐Saad, M. (2019). Vibriosis in fish: a review on disease development and prevention. Journal of aquatic animal health, 31(1), 3-22.

Islam, S. S., Zhang, S., Eggermont, M., Bruto, M., Le Roux, F., & Defoirdt, T. (2022). The impact of the multichannel quorum sensing systems of Vibrio tasmaniensis and Vibrio crassostreae on virulence towards blue mussel (Mytilus edulis) larvae. Aquaculture, 547, 737414.

Karmakar, R. (2021). State of the art of bacterial chemotaxis. Journal of Basic Microbiology, 61(5), 366-379. Karunasagar, I., Pai, R., Malathi, G. R., & Karunasagar, I. (1994). Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio harveyi infection. Aquaculture, 128(3-4), 203-209.

Karvonen, A., Rintamäki, P., Jokela, J., & Valtonen, E. T. (2010). Increasing water temperature and disease risks in aquatic systems: climate change increases the risk of some, but not all, diseases. International journal for parasitology, 40(13), 1483-1488.

Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8(9), 634-644.

Khan, F., Tabassum, N., Anand, R., & Kim, Y. M. (2020). Motility of Vibrio spp.: regulation and controlling strategies. Applied Microbiology and Biotechnology, 104(19), 8187-8208.

Khatoon, Z., McTiernan, C. D., Suuronen, E. J., Mah, T. F., & Alarcon, E. I. (2018). Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon, 4(12), e01067.

Kim, J., & Park, W. (2013). Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding. Microbiology, 159(Pt_12), 2616-2625.

Koch, N., Islam, N. F., Sonowal, S., Prasad, R., & Sarma, H. (2021). Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Current Research in Microbial Sciences, 100027.

Kumar, A., & Pal, D. (2018). Antibiotic resistance and wastewater: correlation, impact and critical human health challenges. Journal of environmental chemical engineering, 6(1), 52- 58. 55

Lee, J. H., Kim, Y. G., Baek, K. H., Cho, M. H., & Lee, J. (2015). The multifaceted roles of the interspecies signalling molecule indole in A grobacterium tumefaciens. Environmental Microbiology, 17(4), 1234-1244.

Lee, J., Jayaraman, A., & Wood, T. K. (2007). Indole is an inter-species biofilm signal mediated by SdiA. BMC microbiology, 7(1), 1-15.

Lewis, K. (2005). Persister cells and the riddle of biofilm survival. Biochemistry (Moscow), 70(2), 267-274.

Li, W., Shi, Y., Gao, L., Liu, J., & Cai, Y. (2012). Occurrence of antibiotics in water, sediments, aquatic plants, and animals from Baiyangdian Lake in North China. Chemosphere, 89(11), 1307-1315.

Li, X., Yang, Q., Dierckens, K., Milton, D. L., & Defoirdt, T. (2014). RpoS and indole signaling control the virulence of Vibrio anguillarum towards gnotobiotic sea bass (Dicentrarchus labrax) larvae. PloS one, 9(10), e111801.

Lin, H. R., Shu, H. Y., & Lin, G. H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological research, 216, 30-39.

Liu, P., & Nester, E. W. (2006). Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58. Proceedings of the National Academy of Sciences, 103(12), 4658-4662.

Maeda, T., García-Contreras, R., Pu, M., Sheng, L., Garcia, L. R., Tomás, M., & Wood, T. K. (2012). Quorum quenching quandary: resistance to antivirulence compounds. The ISME journal, 6(3), 493-501.

Manulis, S., Shafrir, H., Epstein, E., Lichter, A., & Barash, I. (1994). Biosynthesis of indole-3- acetic acid via the indole-3-acetamide pathway in Streptomyces spp. microbiology, 140(5), 1045-1050.

McDougald, D., Srinivasan, S., Rice, S. A., & Kjelleberg, S. (2003). Signal-mediated crosstalk regulates stress adaptation in Vibrio species. Microbiology, 149(7), 1923-1933.

Melander, R. J., Minvielle, M. J., & Melander, C. (2014). Controlling bacterial behavior with indole-containing natural products and derivatives. Tetrahedron, 70(37), 6363.

Metian, M., Troell, M., Christensen, V., Steenbeek, J., & Pouil, S. (2020). Mapping diversity of species in global aquaculture. Reviews in Aquaculture, 12(2), 1090-1100.

Milton, D. L., O'Toole, R., Horstedt, P., & Wolf-Watz, H. (1996). Flagellin A is essential for the virulence of Vibrio anguillarum. Journal of bacteriology, 178(5), 1310-1319.

Miyagi, M., Wilson, R., Saigusa, D., Umeda, K., Saijo, R., Hager, C. L., ... & Ghannoum, M. A. (2020). Indole-3-acetic acid synthesized through the indole-3-pyruvate pathway promotes Candida tropicalis biofilm formation. Plos one, 15(12), e0244246.

Mizuno, T., Debnath, A., & Miyoshi, S. I. (2019). Hemolysin of Vibrio species. In Microorganisms. IntechOpen. 56

Mok, K. C., Wingreen, N. S., & Bassler, B. L. (2003). Vibrio harveyi quorum sensing: a coincidence detector for two autoinducers controls gene expression. The EMBO journal, 22(4), 870-881.

Montanchez, I., & Kaberdin, V. R. (2020). Vibrio harveyi: A brief survey of general characteristics and recent epidemiological traits associated with climate change. Marine Environmental Research, 154, 104850.

Moreira, M., Schrama, D., Farinha, A. P., Cerqueira, M., Raposo de Magalhães, C., Carrilho, R., & Rodrigues, P. (2021). Fish pathology research and diagnosis in aquaculture of farmed fish; a proteomics perspective. Animals, 11(1), 125.

Mueller, R. S., Beyhan, S., Saini, S. G., Yildiz, F. H., & Bartlett, D. H. (2009). Indole acts as an extracellular cue regulating gene expression in Vibrio cholerae. Journal of bacteriology, 191(11), 3504-3516.

Murray, A. G., & Peeler, E. J. (2005). A framework for understanding the potential for emerging diseases in aquaculture. Preventive veterinary medicine, 67(2-3), 223-235.

Mzula, A., Wambura, P. N., Mdegela, R. H., & Shirima, G. M. (2021). Present status of aquaculture and the challenge of bacterial diseases in freshwater farmed fish in Tanzania; A call for sustainable strategies. Aquaculture and Fisheries, 6(3), 247-253.

Natrah, F. M. I., Ruwandeepika, H. D., Pawar, S., Karunasagar, I., Sorgeloos, P., Bossier, P., & Defoirdt, T. (2011). Regulation of virulence factors by quorum sensing in Vibrio harveyi. Veterinary microbiology, 154(1-2), 124-129

Navarrete, F., & De La Fuente, L. (2014). Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. Applied and environmental microbiology, 80(3), 1097-1107.

Nithya, C., & Pandian, S. K. (2010). The in vitro antibiofilm activity of selected marine bacterial culture supernatants against Vibrio spp. Archives of microbiology, 192(10), 843- 854.

Novriadi, R. (2016). Vibriosis in aquaculture. Omni-Akuatika, 12(1).

Omer, Z. S., Tombolini, R., Broberg, A., & Gerhardson, B. (2004). Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regulation, 43(1), 93-96.

Osei-Adjei, G., Gao, H., Zhang, Y., Zhang, L., Yang, W., Yang, H., ... & Zhou, D. (2017). Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus. Oncotarget, 8(39), 65809.

Patten, C. L., Blakney, A. J., & Coulson, T. J. (2013). Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Critical reviews in microbiology, 39(4), 395-415.

Peeler, E. J., Murray, A. G., Thebault, A., Brun, E., Giovaninni, A., & Thrush, M. A. (2007). The application of risk analysis in aquatic animal health management. Preventive Veterinary Medicine, 81(1-3), 3-20. P

etchiappan, A., & Chatterji, D. (2017). Antibiotic resistance: current perspectives. Acs Omega, 2(10), 7400-7409. 57

Plyuta, V. A., Lipasova, V. A., Kuznetsov, A. E., & Khmel, I. A. (2013). Effect of salicylic, indole-3-acetic, gibberellic, and abscisic acids on biofilm formation by Agrobacterium tumefaciens C58 and Pseudomonas aeruginosa PAO1. Applied biochemistry and microbiology, 49(8), 706-710.

Pretto, T. (2020). 9. Vibrio harveyi group. Options Méditerranéennes: Série B. Etudes et Recherches, (75), 75-82.

Prusty, R., Grisafi, P., & Fink, G. R. (2004). The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences, 101(12), 4153-4157.

Rabanal, H. R., & Delmendo, M. N. (1988). Organization of the aquaculture industry. ASEAN/UNDP/FAO Regional Small-scale Coastal Fisheries Development Project.

Rasmussen, T. B., & Givskov, M. (2006). Quorum-sensing inhibitors as anti-pathogenic drugs. International Journal of Medical Microbiology, 296(2-3), 149-161.

Read, A. F., & Woods, R. J. (2014). Antibiotic resistance management. Evolution, medicine, and public health, 2014(1), 147.

Rehman, S., Gora, A. H., Ahmad, I., & Rasool, S. I. (2017). Stress in aquaculture hatcheries: source, impact and mitigation. International Journal of Current Microbiology and Applied Sciences, 6(10), 3030-3045.

Reverter, M., Sarter, S., Caruso, D., Avarre, J. C., Combe, M., Pepey, E., ... & Gozlan, R. E. (2020). Aquaculture at the crossroads of global warming and antimicrobial resistance. Nature communications, 11(1), 1-8.

Rezzoagli, C., Archetti, M., Mignot, I., Baumgartner, M., & Kümmerli, R. (2020). Combining antibiotics with antivirulence compounds can have synergistic effects and reverse selection for antibiotic resistance in Pseudomonas aeruginosa. PLoS biology, 18(8), e3000805.

Rico‐Jiménez, M., Roca, A., Krell, T., & Matilla, M. A. (2022). A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones. Environmental Microbiology.

Ruwandeepika, H. D., Karunasagar, I., Bossier, P., & Defoirdt, T. (2015). Expression and quorum sensing regulation of type III secretion system genes of Vibrio harveyi during infection of gnotobiotic brine shrimp. PLoS One, 10(12), e0143935.

Sabag-Daigle, A., Soares, J. A., Smith, J. N., Elmasry, M. E., & Ahmer, B. M. (2012). The acyl homoserine lactone receptor, SdiA, of Escherichia coli and Salmonella enterica serovar Typhimurium does not respond to indole. Applied and environmental microbiology, 78(15), 5424-5431.

Salamone, M., Nicosia, A., Ghersi, G., & Tagliavia, M. (2019). Vibrio proteases for biomedical applications: modulating the proteolytic secretome of V. alginolyticus and V. parahaemolyticus for improved enzymes production. Microorganisms, 7(10), 387.

Schroeder, M., Brooks, B. D., & Brooks, A. E. (2017). The complex relationship between virulence and antibiotic resistance. Genes, 8(1), 39.

Shao, S., & Wu, X. (2020). Microbial degradation of tetracycline in the aquatic environment: a review. Critical Reviews in Biotechnology, 40(7), 1010-1018. 58

Shen, X., Jin, G., Zhao, Y., & Shao, X. (2020). Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment. Science of The Total Environment, 711, 134626.

Sigel, S. P., & Payne, S. M. (1982). Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae. Journal of Bacteriology, 150(1), 148-155.

Singer, R. S., Finch, R., Wegener, H. C., Bywater, R., Walters, J., & Lipsitch, M. (2003). Antibiotic resistance—the interplay between antibiotic use in animals and human beings. The Lancet infectious diseases, 3(1), 47-51.

Song, C., Zhang, C., Kamira, B., Qiu, L., Fan, L., Wu, W., ... & Chen, J. (2017). Occurrence and human dietary assessment of fluoroquinolones antibiotics in cultured fish around Tai Lake, China. Environmental toxicology and chemistry, 36(11), 2899-2905.

Sorgeloos, P., & Kulasekarapandian, S. (1984). Production and use of Artemia in aquaculture. CMFRI special publication, 15, 1-73.

Sourjik, V., & Berg, H. C. (2004). Functional interactions between receptors in bacterial chemotaxis. Nature, 428(6981), 437-441.

Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews, 31(4), 425-448.

Stentiford, G. D., & Lightner, D. V. (2011). Cases of white spot disease (WSD) in European shrimp farms. Aquaculture, 319(1-2), 302-306.

Sun, B., Zhang, X. H., Tang, X., Wang, S., Zhong, Y., Chen, J., & Austin, B. (2007). A single residue change in Vibrio harveyi hemolysin results in the loss of phospholipase and hemolytic activities and pathogenicity for turbot (Scophthalmus maximus). Journal of bacteriology, 189(6), 2575-2579.

Taktikos, J., Stark, H., & Zaburdaev, V. (2013). How the motility pattern of bacteria affects their dispersal and chemotaxis. PloS one, 8(12), e81936.

Tan, L. T. H., Chan, K. G., Lee, L. H., & Goh, B. H. (2016). Streptomyces bacteria as potential probiotics in aquaculture. Frontiers in microbiology, 7, 79.

Tang, K., & Zhang, X. H. (2014). Quorum quenching agents: resources for antivirulence therapy. Marine drugs, 12(6), 3245-3282.

Tebo, B. M., Linthicum, D. S., & Nealson, K. H. (1979). Luminous bacteria and light emitting fish: ultrastructure of the symbiosis. Biosystems, 11(4), 269-280.

Tendencia, E. A., & de la Peña, L. D. (2001). Antibiotic resistance of bacteria from shrimp ponds. Aquaculture, 195(3-4), 193-204.

Thoma, F., & Blombach, B. (2021). Metabolic engineering of Vibrio natriegens. Essays in Biochemistry, 65(2), 381-392.

Tomberlin, J. K., Crippen, T. L., Wu, G., Griffin, A. S., Wood, T. K., & Kilner, R. M. (2017). Indole: an evolutionarily conserved influencer of behavior across kingdoms. Bioessays, 39(2), 1600203. 59

Tsai, C. L., Tripp, P., Sivabalasarma, S., Zhang, C., Rodriguez-Franco, M., Wipfler, R. L., ... & Albers, S. V. (2020). The structure of the periplasmic FlaG–FlaF complex and its essential role for archaellar swimming motility. Nature microbiology, 5(1), 216-225.

Vale, P. F., McNally, L., Doeschl-Wilson, A., King, K. C., Popat, R., Domingo-Sananes, M. R., ... & Kümmerli, R. (2016). Beyond killingCan we find new ways to manage infection?. Evolution, medicine, and public health, 2016(1), 148-157.

Vanmaele, S., Defoirdt, T., Cleenwerck, I., De Vos, P., & Bossier, P. (2015). Characterization of the virulence of Harveyi clade vibrios isolated from a shrimp hatchery in vitro and in vivo, in a brine shrimp (Artemia franciscana) model system. Aquaculture, 435, 28-32.

Vega, N. M., & Gore, J. (2014). Collective antibiotic resistance: mechanisms and implications. Current opinion in microbiology, 21, 28-34.

Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., & Michiels, J. (2008). Living on a surface: swarming and biofilm formation. Trends in microbiology, 16(10), 496-506.

Waters, C. M., Wu, J. T., Ramsey, M. E., Harris, R. C., & Bassler, B. L. (2010). Control of the type 3 secretion system in Vibrio harveyi by quorum sensing through repression of ExsA. Applied and environmental microbiology, 76(15), 4996-5004.

Wu, Y., Liu, J., Yang, L., Chen, H., Zhang, S., Zhao, H., & Zhang, N. (2011). Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environmental Microbiology, 13(3), 604-615.

Yang, Q., & Defoirdt, T. (2015). Quorum sensing positively regulates flagellar motility in pathogenic V ibrio harveyi. Environmental microbiology, 17(4), 960-968.

Yang, Q., Pande, G. S. J., Wang, Z., Lin, B., Rubin, R. A., Vora, G. J., & Defoirdt, T. (2017). Indole signalling and (micro) algal auxins decrease the virulence of V ibrio campbellii, a major pathogen of aquatic organisms. Environmental microbiology, 19(5), 1987-2004.

Yilmaz, S., Yilmaz, E., Dawood, M. A., Ringø, E., Ahmadifar, E., & Abdel-Latif, H. M. (2022). Probiotics, prebiotics, and synbiotics used to control vibriosis in fish: A review. Aquaculture, 547, 737514.

Young, G. M., Smith, M. J., Minnich, S. A., & Miller, V. L. (1999). The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility. Journal of bacteriology, 181(9), 2823-2833.

Zarkan, A., Liu, J., Matuszewska, M., Gaimster, H., & Summers, D. K. (2020). Local and universal action: the paradoxes of indole signalling in bacteria. Trends in microbiology, 28(7), 566-577.

Zhang, B., Chen, J., Su, Y., Sun, W., & Zhang, A. (2022). Utilization of indole-3-acetic acid– secreting bacteria in algal environment to increase biomass accumulation of ochromonas and chlorella. BioEnergy Research, 15(1), 242-252.

Zhang, S., Yang, Q., & Defoirdt, T. (2022). Indole decreases the virulence of pathogenic vibrios belonging to the Harveyi clade. Journal of Applied Microbiology, 132(1), 167-176. 60

Zhang, S., Yang, Q., Fu, S., Janssen, C. R., Eggermont, M., & Defoirdt, T. (2022). Indole decreases the virulence of the bivalve model pathogens Vibrio tasmaniensis LGP32 and Vibrio crassostreae J2-9. Scientific Reports, 12(1), 1-13.

Zhao, Y., Yang, Q. E., Zhou, X., Wang, F. H., Muurinen, J., Virta, M. P., ... & Zhu, Y. G. (2021). Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Critical Reviews in Environmental Science and Technology, 51(19), 2159-2196.

Zhu, Z. M., Dong, C. F., Weng, S. P., & He, J. G. (2018). The high prevalence of pathogenic Vibrio harveyi with multiple antibiotic resistance in scale drop and muscle necrosis disease of the hybrid grouper, Epinephelus fuscoguttatus (♀)× E. lanceolatus (♂), in China. Journal of fish diseases, 41(4), 589-601

Universiteit of Hogeschool
Master of Bioscience Engineering: Cell and gene biotechnology
Publicatiejaar
2022
Promotor(en)
Tom Defoirdt, Qian Yang
Kernwoorden
Share this on: