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Chapter 1

Introduction

Conventional electronic devices are made from bulk materials. A lot of different
electronic components exist, ranging from simple wires to rectifiers and transis-
tors. Especially transistors are of huge importance in modern technology, since
they are the main building block of integrated circuits, which are responsible for
the computational power in all computers, mobile phones, etc. [1]

As the computing force of an integrated circuit increases with the amount of tran-
sistors, scientists and engineers all over the world have tried to minimize the size
of the electronic components which make up these circuits, so that as much com-
putational power as possible can be concentrated on a surface as small as possi-
ble. However, this miniaturization effort is approaching its limit under the current
manufacturing technology, which starts from bulk semiconducting materials. [2]

This evolution has sparked an interest in so called ’molecular scale electron-
ics’. Molecular scale electronics is a branch of nanotechnology which uses single
molecules or assemblies of molecules as electronic components. These compo-
nents are then called molecular electronic devices (MED). As single molecules
are the smallest stable structures possible, MED are the ultimate endpoint of the
miniaturization attempt which started more than 60 years ago when the first tran-
sistors were developed and applied in computers. Although practical applications
for these devices are still far away, a lot of effort is put in trying to understand
the behavior of these devices as they do not behave in the same way as ordinary
electronic components.

What makes the study of these devices very challenging is that the electronic
properties not only depend on the considered molecule, but also on the choice
of the contact atoms at which the molecule is integrated into the electrical cir-
cuit. [1] [3] [4] Rationalizing the influence of the contact positions has proven to be
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a big challenge. [5] [6] [7] That is why in this study, an attempt is made to get some
qualitative insight in these phenomena based on a chemical concept named the
atom-atom polarizability. [8] [9] [10]

In order to study MED, the considered molecule is usually connected to two semi-
infinite bulk contacts and the current is measured as a function of the applied volt-
age. [11]

Differentiating the current (I) versus voltage (V) curve, the primary property used
to characterize a molecular conductor, the differential conductance g=dI/dV, is
obtained. The conductance of a molecule can be linked to its transmission proba-
bility through the Landauer formula

g(E, V ) =
e2

h
T (E, V ) (1.1)

For a device with one conduction channel, the transmission probability can range
between 0 and 1. Integration of this expression between the boundaries set by the
applied voltage V leads to the actual current I flowing through the molecule.

Traditionally, physicists make use of Green’s function approach to predict the
transmission through molecular electronic devices. [12] [13] While this method can
give accurate results, it does not allow chemical insight into the influence of the
molecular structure on the transmission probability. A more simple approach to
look at transmission, the source and sink potential (SSP) method, has recently
been introduced by Ernzerhof et al. [11] In this new framework, Fowler et al. pro-
posed a selection rule for transmission at the Fermi-level in Hückel level of the-
ory. [6]

Next to this rule, other selection rules have been introduced too. [7] These selec-
tion rules are respectively based on bond orders, Kekulé counts [14] or frontier or-
bitals. [5] While each of these selection rules allow to make a qualitative statement
about the transmission in carbon based devices in Hückel level of theory, none of
them has been expanded to higher levels of theory.

In this work, the use of atom-atom polarizabilities to get qualitative insight into
the transmission probability will be explored. The atom-atom polarizability of
molecules is a concept introduced by Coulson et al. in 1947. [8] What makes
the atom-atom polarizability especially interesting is that it is the Hückel-level
analogue of the linear response in conceptual density functional theory (DFT),
as currently under development in ALGC. [15] [16] [17] Thus, qualitative insight in
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transmission through the atom-atom polarizability might be translated to a higher
level of theory, making it possible to study molecules which cannot be studied in
Hückel theory.
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Chapter 2

Objectives

The main objective of this work is to get some qualitative insight into the influence
that the positioning of the contacts on molecules has on the transmission probabil-
ity close to the Fermi level through consideration of the atom-atom polarizability.

The main reason why we focus specifically on the atom-atom polarizability is
that this property (as well as its density functional theory analogue ’the linear re-
sponse’) is a measure for how a perturbation is handed on throughout a molecule.
More exactly, the mathematical definition for the linear response, which will be
discussed more extensively later on, reads

χ(r, r′) =

(
δρ(r)

δv(r′)

)
N

=

(
δ2E

δv(r)δv(r′)

)
N

(2.1)

which shows that the linear response can be defined as the change in the electron
density at a point r due to a perturbation in point r’. [15]

Looking at transmission, one can say that when a bias is applied to a MED, per-
turbations are applied to the contact atoms and these perturbations cause a current
to flow through the molecule between these contacts. So, the current flow, evi-
dently related to a change in electron density, can be interpreted as a response of
the system to the perturbations at the contacts.

This rationale shows that one can intuitively expect these two measures to be
somehow connected physically. Another argument for our decision to focus on
the atom-atom polarizability is that there is a striking similarity between the ex-
pression for the transmission probability in the SSP method at Hückel level of
theory in the wide band limit as it was established by Fowler et al. [4]
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TWBL(E) =
4(∆̃r,r∆̃s,s − ∆̃∆̃rs,rs)

(∆̃− ∆̃rs,rs)2 + (∆̃r,r + ∆̃s,s)2
(2.2)

and the expression for the atom-atom polarizability, derived by Coulson et al. [8]

πr,s = − 1

πi

∫ ∞i
−∞i

∆∆rs,rs −∆r,r∆s,s

∆2
dz (2.3)

A more profound look at these two expressions will be given in the next chapter.

Both the atom-atom polarizability and the transmission probability have been im-
plemented in computer programs during this work and these programs have been
used to study the series of polycyclic rings: benzene, naphthalene, anthracene,
tetracene, pentacene. Next to an ordinary program to calculate the transmission
probability in one chosen configuration of the contacts on the molecule, another
program was developed which is able to calculate all possible configurations at
once. This method, which was suggested by Fowler but has not yet been pub-
lished, had never been implemented or tested before. Based on the results of these
calculations, which will be presented in chapter 5, an attempt will be made to
establish a formal link between the two quantities and we will try to propose a
selection rule for transmission.

Next to programs to calculate the atom-atom polarizability and the transmission
probability, a program capable of calculating the linear response current (not to be
confused with the chemical concept ’linear response’) has been developed. This
linear response current makes it possible to determine whether a molecule will
act as a conductor or as an insulator when a relatively small bias is applied. In
section 5.5 we will illustrate that, just as is the case with the transmission proba-
bility spectra, the IV-curves are influenced by the positioning of the contact atoms.

As all calculations in this work are done at the Hückel level of theory, an intro-
duction to this computational method will be given in the next chapter. Another
section of the next chapter will be devoted to conceptual density functional theory
and the linear response. This is done in order to show where our interest in the
linear response (and equivalently the atom-atom polarizability) comes from. But
first off, a small introduction to quantum chemistry and a general overview of the
problem involving transmission calculations through molecules will be given.
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Chapter 3

Theoretical background

3.1 Introduction to quantum chemistry and overview
of the problem

Quantum chemistry is the study of the electronical structure of molecules and the
properties which emerge from this characteristic structure. The principal tool to
calculate the electronic structure of a molecule is the determination of the elec-
tronic wave function by solving the time independent Schrödinger equation. [18]

ĤelΨel = EelΨel (3.1)

Several strategies exist to solve this equation, but most ab initio methods share
the same characteristic procedure. They start by separating the N-electron wave
function in several 1-electron functions, molecular spin orbitals (MSOs) χk(i),
which can further be separated in spatial functions, the molecular orbitals (MO)
ψa(ri), and spin functions α(σi) or β(σi)

χk(i) = χk(ri, σi) = ψa(ri)

{
α(σi)
β(σi)

(3.2)

The MOs are then usually defined in a basis (consisting of a set of n basis functions
φr).

ψj =
n∑
r=1

crjφr (3.3)

Another general characteristic shared by most (single determinantal) quantum me-
chanical methods is the use of the variational theorem to determine both the energy
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E and the coefficients cr of each MO. The procedure according to which these pa-
rameters are determined is called optimization. Practically, during optimization
the coefficients and the energy E are determined by minimizing the latter with
respect to the former

∂E

∂cr
= 0 (r = 1, 2, ..., n) (3.4)

E =

∫
ψ∗Hψdv∫
ψ∗ψdv

(3.5)

A side effect of introducing a basis is that the Hamiltonian operator can be writ-
ten in matrix form. In this matrix, the diagonal elements contain the Hamiltonian
associated to the individual basis functions while the other elements contain the
interaction terms between the respective basis functions. Sometimes the eigen-
functions of a system can be divided into several groups, corresponding to specific
parts of the system which can be distinguished from each other. The Hamiltonian
matrix can then be written more compactly by considering the partial Hamiltoni-
ans associated to the different parts which together constitute the system.

Molecular electronic devices for example are systems which consist of 3 parts,
2 semi-infinite contacts (L and R) on both sides of a central supermolecule (M).
For such a system the Hamiltonian matrix becomes [4]

H =

 HL ML,M 0
M+

L,M HM MM,R

0 M+
M,R HR

 (3.6)

A remark to be made is that ML,R and MR,L aren’t exactly zero, but, as they are
spatially separated, these coupling terms are so small that they can be approxi-
mated by zero.

In order to calculate the transmission through the central molecule, a voltage be-
tween the 2 contacts has to be applied which is kept constant long enough such
that a stationary state is obtained. This applied potential influences the Hamilto-
nian matrix and insertion in the Schrödinger equation leads to a very complicated
expression which is not easy to solve due to several reasons. [19]

A first reason for this is that the Hamiltonian matrix gets very large (actually
infinite due to the contacts being made of bulk material). [13] A second reason is
that eigenvectors of all 3 parts of the system take part in the eigenvalue equation.
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H

 CL
CM
CR

 = E

 CL
CM
CR

 (3.7)

And last but not least, since the potential is not homogeneous along the system (as
is usually the case when solving the Schrödinger equation in quantum chemistry),
the equation becomes a linear inhomogeneous differential equation with 2-point
boundary conditions. [11]

The boundary conditions are the following:

• in the left contact there is an incoming Bloch wave with a normalized am-
plitude as well as a reflected wave that has been scattered off the molecule

• in the right contact there is only an outgoing Bloch wave

Such differential equations are, as has been said before, usually solved by
Green’s function approach. This method, which won’t be elaborated on here,
enables one to express the transmission probability in a single equation. This
equation however cannot be interpreted intuitively and as such gives no qualita-
tive insight in the mechanism of ballistic transport.

A much more intuitive way of analyzing ballistic transport is achieved in the
Source and Sink Potential method (SSP method). In this method, the molecular
electronic device is partitioned such that the supermolecule contains a sufficiently
large part of the contacts to take on its asymptotic behavior (the behavior described
by the Bloch waves in the contacts). Introducing a source and a sink potential in
terms of the incoming and outgoing Bloch wave, the problem is reduced to finding
the reflection coefficient which leads to the considered stationary state.

Both the SSP as the Green’s function method start by describing the Hamilto-
nian matrix in the same form as it was expressed in equation (3.7). However,
one should note that in the SSP method a part of the contacts is assigned to the
molecular part of the Hamiltonian.
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3.2 The Hückel method
In this study all calculations will be done at the Hückel level of theory. [20] [21] Ap-
plication of this theory, which is restricted to planar unsaturated molecules, allows
the determination of a very crude approximation of the electronic structure of an
unsaturated system. The obtained numerical results are often far from accurate
but the method is still used frequently because it enables a physical interpretation
of a lot of chemical concepts.

In what follows, the rationale behind the method will be shown through consider-
ation of an example system, the ethene molecule.

For ethene, the following bonding pattern is obtained

Figure 3.1: bonding pattern ethene [22]

• a σ-bond is formed between atoms C1 and C2 from two sp2-hybrids (one on
each C atom) with directional overlap

• σ-bonds are formed between the two remaining sp2-hybrids on each C-atom
and H 1s-orbitals

• a C1 − C2 π-bond arises form the non-directional (parallel) overlap of the
pz-orbitals. The electrons in these orbitals are the mobile electrons and the
part of the molecule in which they move is called the conjugated system.

In Hückel method, the σ-electrons of the system are not considered, only the
π-electrons lying in a common plane are taken into account. As such, the σ- and

12



π-electrons of the system are separated.

So the Hückel method only considers the conjugated system, as the electrons that
move in the conjugated system are the ones that cause all effects that depend on
conjugation, such as resonance energies and variations in bond orders and elec-
tron densities.

The N-electron function Ψπ can be constructed from one electron functions, namely
the π molecular spin orbitals (MSO) χi. In the Hückel method, these MSO are
separated into MO ψj and spin functions α or β. In a first approximation, the
Hartree-product can be written as

Ψi =
∏
i

χi(i) (3.8)

The N-electron wave function can be connected to a total Hamiltonian Hπ. This
total Hamiltonian can now be written as a sum of one particle Hamiltonians

Hπ =
n∑
i=1

hi(π) (3.9)

where hπi comprises the kinetic energy operator of electron i, the attraction to-
wards the nuclei of the π-electrons, the interaction of these π-electron i with the
σ-electrons and the ’inner shell’ electrons and, finally, the (average) interaction
with the other π-electrons.

Unlike most more advanced quantum mechanical methods, Hückel method does
not require the derivation of an analytical expression for operator hπi . Combina-
tion of equation (3.8) and (3.9) leads to an expression for the time independent
Schrödinger equation for the π-system

HπΨπ = EπΨπ (3.10)

⇒

(∑
i

h
(π)
i

)(∏
j

χj

)
= Eπ

(∏
j

χj

)
(3.11)

Dividing the left and right hand side of this last equation by
∏

j χj(j) gives∑
i

{1/χi(i)} h(π)
i χi = Eπ (3.12)
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The total energy on the right hand side of equation (3.12) can be written as a sum
of one-electron contributions of the form

Eπ =
∑
j

επj (3.13)

The summation runs over the different MO’s present in equation (3.8) leading to

Eπ =
∑
j

njε
π
j (3.14)

where nj is the occupancy of the orbital.

The combination of equations (3.12) and (3.14) enables one to split the N-electron
equation (3.10)

hπi χi(i) = ε
(π)
i χi(i) (3.15)

or, after division by the spin functions

hπi ψi(i) = ε
(π)
i ψi(i) (3.16)

where ε(π)
i represents the energy of the considered MO. When the unsaturated

system is oriented in the (x,y)-plane, the π-MSO χi, or the π-MO ψj can be
constructed by making use of the pz-AO (φr) of the atoms that are part of the
unsaturated system due to symmetry reasons. The constructed MO ψj can then
be written as a linear combination of the considered pz-orbitals, analogously to
equation (3.3).

Combination of equations (3.3) and (3.16) leads to

hπi
∑
r

criφr = επi
∑
r

criφr (3.17)

After multiplication with φ?s and integration, the following expression is obtained∑
r

cri

∫
φ?sh

π
i φrdτ = επi

∑
r

cri

∫
φ?sφrdτ (3.18)

The integral on the left hand side of this equation can be defined as (hπi )rs and the
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integral on the right hand side (the overlap integral) can be defined as Srs. Under
these conventions, a final expression can be obtained∑

r

cri[(h
π
i )rs − επi Srs] = 0 (s = 1, 2, ...,m) (3.19)

This equation can be written for every value of s. This set of equations (3.19) only
has a non-trivial solution if

det|Hπ − επS| = 0 (3.20)

where Hπ stands for the matrix of the π-hamiltonian and S denotes the overlap
matrix.

A final obstacle for solving the time independent Schrödinger is the construc-
tion of Hπ and S. This can be tackled as follows.

Assuming orthonormality of the basis, the elements Srs are equal to δrs.

The elements of Hπ are defined without defining the effective hamiltonian hπ:

• All the matrix-diagonal elements hπrr are considered to be equal to each
other and are written as α. The meaning of this parameter follows from the
equation

hπi ψi = επi or

∫
ψ?i h

π
i ψidτ = επi (3.21)

If ψi = φr (which means that the MO φi is located on a single atom, atom
r), this gives

hπrr = επi = αi (3.22)

which shows that that the diagonal element of H can be interpreted as the
energy associated to the electron i in the pz-orbital of the C-atom r. This
integral is generally called the Coulomb integral.

An important note is that no numerical value is assigned to α, it will re-
main a reference energy level for the π-system.
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• The non-diagonal elements hπrs (r 6= s) are also approximated. In order to
understand the rationale behind the approximation, a molecule consisting
of a π-system stretching over 2 atoms r and s has to be considered. For this
π-system, the MO ψi = 1/

√
2(φr + φs) can be constructed. Introducing

this MO in equation (3.21) leads to

εi = α + h(π)
rs (3.23)

As the electron now has extra delocalization possibilities over 2 atoms and a
favorable interaction is established with 2 nuclei instead of with 1, it can be
expected intuitively that εi decreases (becomes more negative) compared to
α. As the atoms r and s are positioned closer to each other, the importance
of this stabilizing term is expected to increase.

In a first approximation, the ’nearest neighbor approximation’ can be used
in molecules. This approximation states that the hπrs (r 6= s) terms can be ne-
glected when r and s are not direct neighbors since the interaction between
these 2 atoms is very small compared to the interactions between nearest
neighbors. The hπrs that are retained are denoted as βrs. When all atoms in
the molecule are equal, these remaining terms are also equal, allowing βrs
to be set equal to β. The quantity β is then called the nearest neighbor hop-
ping parameter. [11] Sometimes however, this last approximation is not made
when constructing the secular determinant. The non-diagonal elements are
then denoted by βrs.

Neglecting the nearest hopping parameter approximation, equation (3.20) leads
to the condition that the following secular determinant

∆(ε) =

∣∣∣∣∣∣∣∣∣∣
α1 − ε β12 β13 ... ...
β21 α2 − ε β23 ... ...
β31 ... ... ... ...
... ... ... ... ...
... ... ... ... αn − ε

∣∣∣∣∣∣∣∣∣∣
(3.24)

should be equal to zero

∆(ε) = 0 (3.25)

This so called ”secular equation” has n roots εj . The corresponding sets of expan-
sion coefficients can be found by substituting these roots into the secular equations
and by considering the normalization condition
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c2
1j + c2

2j + c2
3j + ...+ c2

nj = 1 (3.26)

The electronic ground state of the π-electron system can be constructed through
application of the Aufbau principle. The total energy of the π-system can then be
calculated by applying equation (3.14).

Taking the nearest hopping parameter approximation into account, the Hückel
Hamiltonian for the π-system of the considered molecule can be written more
compactly as

HM = α1 + βA (3.27)

where A is the so called adjacency matrix.

Sometimes, the carbon atoms of a hydrocarbon can be divided into 2 sets as in
the example below, where the atoms of set 1 are denoted by ? and the atoms of set
2 by 0.

Figure 3.2: example of an alternating hydrocarbon

It can be seen from the example that atoms with a ? are never situated next
to an atom of the same set and vice versa; these hydrocarbons are alternating and
their graphs are called bipartite. For alternating hydrocarbons, the energy levels
exist in pairs and are symmetrical with respect to the Fermi level of the isolated
molecule. This property will be of vital importance further on in this work.
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In the final paragraphs of this section an expression for Bloch waves in Hückel
theory is derived. The contacts that are used in MED are metal crystals (periodic
solids). As only one atom connects the contact with the molecule, the approxima-
tion can be made that the entire contact can be represented by a chain of atoms
with nearest neighbor hopping parameter β, and α set to zero. [11] This way, a
one dimensional crystal is obtained. Due to translational symmetry in the infi-
nite crystal, any observable property has to be the same at each atom in the solid.
The probability to find an electron at atom n is |Ψ(n)|2. Symmetry then requires
that [23]

|Ψ(n)|2 = |Ψ(n+m)|2 (3.28)

where n is an integer number. The condition stated in equation (3.28) can only be
satisfied if |Ψ(n)|2 and |Ψ(n+m)|2 differ only by a phase factor. It is reasonable
to expect the phase factor to depend only on the separation between the points
(m), leading to

Ψ(n+m) = eiφmΨ(n) (3.29)

where φm is the phase factor. In Hückel theory, the wave function Ψ(n) = 〈n|Ψ〉
is expressed in terms of the atomic orbitals 〈n|j〉

Ψ(n) =
∑
j

cj〈n|j〉 (3.30)

For Ψ(n+m) one obtains

Ψ(n+m) =
∑
j

cj〈n+m|j〉 (3.31)

〈n+m|j〉 can be rewritten as 〈n|j −m〉. Equation (3.31) can then be restated as

Ψ(n+m) =
∑
j

cj+m〈n|j〉 (3.32)

Comparing equations (3.30) and (3.32), it is evident that equation (3.28) can only
be satisfied if

cj+m
cj

= eiφm (3.33)
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This relation has to be true for any j and m, and since the right hand side only
depends on m, cj has to have the following form

cj = Aeiqj (3.34)

where A is an arbitrary constant and q is any real number. A is determined from the
normalization condition and is equal to 1√

N
. This finally leads to the expression

for a Bloch wave in Hückel theory

Ψ(n+m) = eiqmΨ(n) (3.35)

Solving equation (3.35) for Ψ(n), the simplest solution possible is

Ψ(n) = eiqn (3.36)

where we note that, as the spatial form of the orbitals is not exploited in the Hückel
method, the function describing the form of the orbitals, which is usually present
in the expression of a Bloch wave, can be set to unity. So, Ψ(n) has the form of a
plane wave where q is called the wave vector. This expression for the Bloch wave
will be used later on in this work. For a chain with periodic boundary conditions,
the Hamiltonian acquires the same form as a ring with an infinite number of atoms

H =


α β 0 ... ... 0 β
β α β 0 ... ... 0
0 β α β 0 ... 0
... ... ... ... ... ... ...
0 ... ... 0 β α β
β 0 ... ... 0 β α

 (3.37)

The eigenvalues of such a matrix are given by [23]

E(q) = α + 2βcos(q) (3.38)

As α is set to 0 in this work, equation (3.38) can be rewritten as

q = arccos

(
E

2β

)
(3.39)

This expression is known as the dispersion relationship.
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3.3 The SSP method
As has already been mentioned in section (3.1), the transmission through molecules
in MED is usually calculated through application of the Green’s function method.
Recently however, Ernzerhof et al. developed a new method to get some qualita-
tive insight in the mechanism of ballistic transport. [11] In this method, the central
part of the MED, the supermolecule, contains a sufficiently large part of the con-
tacts to take on its asymptotic behavior which can be described by Bloch waves.

In the left contact, the wave function (CL) is a combination of a forward (C+
L )

and backward (C−L ) going Bloch wave

CL = C+
L + rC−L (3.40)

where r is the reflection coefficient.

In order to normalize the coefficients in this equation, C+
L has been set equal to 1.

In the right contact R, the boundary conditions dictate that the wave function is an
outgoing Bloch wave

CR = tC+
R (3.41)

where t is the transmission amplitude and can be related to the transmission prob-
ability through following expression

T (E) = |t(E)|2 (3.42)

where E is the energy of the considered electron that enters the molecule. The
reflection coefficient r can now be related to T(E) as

T (E) = 1− |r(E)|2 (3.43)

In the SSP method, the fact is exploited that, apart from r and t, the wave function
in the contacts is known. This is the main difference with the Green’s function
approach. Taking a look at the part of the eigenvalue equation (3.7) that involves
CL, CM and CR simultaneously, the following equation is obtained

M+
L,MCL +HMCM +MM,RCR = ECM (3.44)
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In this equation, all eigenvectors of the system are still present. In order to get rid
of the eigenvectors of the contacts, an artificial source-sink potential is introduced

Σ = ΣL + ΣR (3.45)

M+
L,MCL = ΣLCM (3.46)

MM,RCR = ΣRCM (3.47)

These artificial potentials can be interpreted as the projection of the interaction-
potential between the molecule and the contacts on the basis of the supermolecule.

To further simplify, an additional condition is set on ΣL(R), requiring that these
matrices are diagonal in the basis CM . ΣL and ΣR can be determined for each
basis function k by manipulating these equations

ΣLkk
=

(M+
L,MCL)k

CMk

(3.48)

and

ΣRkk
=

(MR,MCR)k
CMk

(3.49)

From these expressions it can evidently be concluded that solutions for ΣLkk
and

ΣRkk
can always be found except when CMk

=0. In the case that CMk
does equal

0, the system can be perturbed slightly, leading to CMk
6= 0, which enables the

calculation of the desired SSP matrix element even in these cases.

By introducing the SSP, equation (3.44) can be rewritten compactly as

HSSP (E, r)CM = ECM (3.50)

with

HSSP (E, r)CM = HM + ΣL(E, r) + ΣR(E) (3.51)
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This last expression is relatively simple, as the contacts have been eliminated com-
pared to the initial equation. Another advantage is that the potential Σ is defined
in terms of Bloch waves which automatically introduce the boundary conditions
into the SSP Hamiltonian HSSP (E, r). Note that ΣR(E) is independent of t. The
reason for this can be easily understood when taking a look at the expression for
the sink potential as it will be presented in equation (3.53).

The SSP method allows a great reduction of the complexity of the calculus re-
quired to solve these kinds of problems. An extra level of simplification can be
introduced by using a Hückel approximation. At this level of theory, the equations
of the SSP method become fairly easy to interpret, and qualitative insight in the
transmission can be obtained for small molecules.

In this approximation, the nearest neighbor hopping parameter is denoted by β
and diagonal matrix elements are set equal to zero (the energy origin is chosen
so that α=0). The resonance integrals in the contacts, denoted as βL and βR, are
expressed as multiples of β.

In a contact, the wave functions are, as was already mentioned before, combina-
tions of plane waves eiqn and e−iqn, where the index n corresponds to the number
of atoms. The expression for ΣL at the boundary between the supermolecule and
the left contact then becomes

ΣLnn(E(q), r) = β
Cn−1

Cn
= β

eiq(n−1) + re−iq(n−1)

eiqn + re−iqn
= β

e−iq + r̃eiq

1 + r̃
(3.52)

In this equation r̃ is defined by r̃ = re−2iqn, where the exponential is simply a
phase factor. So it is clear that r and r̃ differ only by a certain phase which does
not influence the final value of T(E) (see equation (3.43)). As such, no distinction
is made between r and r̃ in the remainder of this discussion.

The expression for ΣR then becomes

ΣRnn(E(q)) = β
Cn+1

Cn
= β

teiq(n+1)

teiqn
= βeiq (3.53)

Considering a concrete system, the isolated molecule can be represented by graphs
with vertices for atoms and edges for σ-bonds. This way, the Hamiltonian for the
π-electrons of the isolated molecule can be expressed as
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HM = βA (3.54)

where A is the adjacency matrix of the considered graph. The SSP Hamiltonian
for the whole system is now constructed by adding to the graph and the result-
ing Hamiltonian the contact atoms L and R, assigned vertex numbers n+1 (for
source vertex L) and n+2 (for sink vertex R). Both of these vertices bear their
respective potentials as described above. The molecular vertices to which the ex-
ternal vertices are connected will be denoted as s and r respectively. Taking these
conventions into account, the Hamiltonian matrix becomes

H =

 A βsLes βrRer
βsLe

+
s aLL 0

βrRe
+
r 0 aRR

 (3.55)

which is a block partition into the internal, left-contact, and right-contact sub-
spaces of the total supermolecule space. The vectors in the contact subspaces are
unit vectors given by

(es)i = δsi (3.56)

(er)i = δri (3.57)

which represent the two connections, limited to one single edge each, between
the external and internal contact vertices. The contact matrix elements consist of
an intrinsic energy value for the respective contact and the respective source-sink
potential (see equations (3.52) and (3.53))

aRR = αR + βRe
iqR (3.58)

aLL = αL + βL
e−iqL + reiqL

1 + r
(3.59)

As aLL contains the reflection parameter r, the SSP Schrödinger equation for the
system, which can be expressed as

(E1−HSSP )c = 0 (3.60)
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implicitly contains r too. As there is a solution for every E within the transparency
region, the secular equation has to fulfill the following condition

det(E1−HSSP ) = 0 (3.61)

This condition can then be used to determine r(E) at each fixed value of E, and
hence eigenvector c. To achieve this, the secular determinant is expanded along
the columns and rows of the border, leading to the following cofactor

(E−aLL)(E−aRR)∆+β2
sLβ

2
rR∆rs,rs−β2

sL(E−aRR)∆s,s−β2
rR(E−aLL)∆r,r = 0 (3.62)

with

∆(E) = det(E1−A) (3.63)

∆s,s(E) = det(E1−A)s,s (3.64)

∆r,r(E) = det(E1−A)r,r (3.65)

∆rs,rs(E) = det(E1−A)rs,rs (3.66)

It can be seen easily that ∆(E) is the minor obtained when the original determi-
nant is expanded along aLL and aRR. ∆s,s(E) is the result of expansion, first along
aRR, secondly along βsLes and thirdly along βsLe+

s . This result is equivalent to
the adjacency matrix of the graph in which the vertex, linked to the left contact,
is deleted. ∆r,r(E) and ∆rs,rs(E) are obtained analogously, respectively deleting
the vertex linked to the right contact, and both the vertices, linked to either the
right or left contact.

Equation (3.62) can be written more compactly by replacing the minors by the
following scaled polynomials

∆̃ = ∆ ∆̃s,s = β̃L∆s,s ∆̃r,r = β̃R∆r,r ∆̃rs,rs = β̃Lβ̃R∆rs,rs (3.67)

where
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β̃L =
β2
sL

βL
β̃R =

β2
rR

βR
(3.68)

These factors express how the strengths of the bonds between and within the
molecule are related to each other.

Replacing aLL and aRR in equation (3.62) by the expressions in equations (3.58)
and (3.59), leads, after some calculus (see appendix A), to the following expres-
sion for the transmission probability T(E)

T (E) =
4 sin qL sin qR(∆̃r,r∆̃s,s − ∆̃∆̃rs,rs)

|e−i(qL+qR)∆̃− e−iqR∆̃s,s − e−iqL∆̃r,r + ∆̃rs,rs|2
(3.69)

In the case of ipso connection (both left and right contact linked to the same atom),
expansion of the characteristic determinant leads to a minor with a column con-
taining only zeros for ∆rs,rs(E), resulting in this secular determinant always being
zero, independently of the value for E. In this case, ∆s,s(E) and ∆r,r(E) also be-
come equal to each other.

Taking a look now at the factor (∆̃r,r∆̃s,s− ∆̃∆̃rs,rs) in the numerator of equation
(3.69), one can write this as the square of one single determinant by applying the
Jacobi/Sylvester determinant identity to the unscaled polynomials,

β̃Lβ̃R(∆r,r∆s,s −∆∆rs,rs) = β̃Lβ̃R∆2
r,s = ∆̃2

r,s (3.70)

This factor ∆2
r,s play an important role further on (see equation (3.76)).

In the final expression for T(E), 4 sin qL sin qR in the numerator acts as a ’band-
pass’ filter, which cuts off transmission at the ends of the range defined by the
intersection of left and right conduction bands. If the band of energy range of the
molecular states is much smaller than that of the energy bands of the semi-infinite
wires, the wide band limit (WBL) is approached. The expression for the transmis-
sion probability is found by letting the resonance parameters βL, βsL and βR, βrR
all approach infinity while keeping β̃L and β̃R constant. In the limit, equation
(3.68) then becomes

β̃L = β̃R = k (3.71)
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where k is a constant. In such case, it becomes clear from equation (3.39) that qL
and qR can be set equal to π/2, greatly simplifying the final expression for T(E)

TWBL(E) =
4(∆̃r,r∆̃s,s − ∆̃∆̃rs,rs)

(∆̃− ∆̃rs,rs)2 + (∆̃r,r + ∆̃s,s)2
(3.72)

Conceptually, the final equation is quite easy to solve for concrete systems. How-
ever, it still requires quite some calculus to find all the characteristic polynomials.
To avoid this time-consuming process, some transformations can be performed
in equation (3.72). In linear algebra, the relationship between the elements of an
inverse matrix (a−1

ij ) and the original matrix A is given by Cramer’s rule [24]

a−1
ij =

ãij
det[A]

(3.73)

where ãij the cofactor of the element ij of A. The cofactor of element ij is
obtained by multiplying the minor of entry ij with a factor (−1)i+j . Applying
this rule to the matrix ∆, introduced in equation (3.63), gives for the diagonal
elements

∆s,s

∆
=
det(E1−A)s,s

det(E1−A)
= [E1−A]−1

s,s (3.74)

∆r,r

∆
= [E1−A]−1

r,r (3.75)

For the non-diagonal elements, two possibilities arise. Either r+s is even, leading
to

∆r,s

∆
= [E1−A]−1

r,s (3.76)

or, if r+s is odd, then

∆r,s

∆
= −[E1−A]−1

r,s (3.77)

So the sign of ∆r,s depends on the choice of r and s. However, ∆2
r,s will always

be positive. As in the remainder of this work ∆r,s only appears as a square (vide
infra), the specific sign plays no role in what follows.

Using the Jacobi/Sylvester determinant identity, ∆rs,rs can be written as
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∆rs,rs =
∆r,r∆s,s −∆2

r,s

∆
(3.78)

where ∆2
r,s was defined in equation (3.70). These equations can be introduced into

equation (3.72) by dividing both numerator and denominator by ∆2

TWBL(E) =
4β̃Lβ̃R(∆r,r

∆

∆s,s

∆
− ∆rs,rs

∆
)

(1− β̃Lβ̃R∆rs,rs

∆
)2 + (β̃R

∆r,r

∆
+ β̃L

∆s,s

∆
)2

(3.79)

This way, equation (3.72) can be solved for any system just by inverting the adja-
cency matrix, with the energy values as its diagonal elements. After the inversion,
the respective values for the elements of the resulting matrix have to be selected
and put into equation (3.79) to find TWBL for a certain energy. Interestingly, TWBL

can now be calculated for every possible configuration of the contacts simultane-
ously, meaning that inversion of the matrix for benzene for example immediately
leads to the transmission probability for both the ipso, ortho, meta and para case.
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3.4 Conceptual DFT and the linear response
Although all calculations and derivations in this study are done in Hückel theory,
the most used ab initio method nowadays is Density Functional Theory (DFT). [25]

This theory distinguishes itself from the other ab initio methods in the fact that it
makes use of functionals of the electron density instead of the wave function to
determine the properties of the system. [26] The main advantage of this approach is
that by considering the electron density, only 3 variables are necessary to charac-
terize an N-electron system, while the wave function depends on 4N variables.

Even though in DFT the goal is to determine the electron density, this does not
mean that wave functions can be omitted entirely from this method; the only way
to retrieve the main part of the kinetic energy of the system is by introduction of
the so-called ’Kohn-Sham’-orbitals ψi. [27] These orbitals can be determined by
solving the Kohn-Sham equation[

−1

2
∇2 + v(r) + vj(r) + vXC(r)

]
ψi(r) = εiψi(r) (3.80)

where −1
2
∇2 denotes the kinetic energy operator, v(r) the nucleus-electron at-

traction operator and vj(r) is called the Coulomb-operator, which arises due to
the electron-electronrepulsion. The final operator is the exchange-correlation op-
erator.

For each of the energy terms associated to one of the operators in equation (3.80),
an expression is known, except for the exchange-correlation operator. However,
as the exchange-correlation energy is known to be very small, good computa-
tional results can already be obtained by making very crude approximations of
this energy. Various, more elaborate, approximations for this operator have been
proposed, enabling very accurate results to be computed, but these won’t be dis-
cussed here since they exceed the scope of this work and are of little interest for
what follows.

Next to a purely computational tool, DFT can also be used to define a theory
of chemical reactivity. In this domain of DFT, called conceptual DFT, reactivity
indices are introduced which correspond to the response of a system to perturba-
tions. [28] In conceptual DFT, all perturbations on the system are written in terms of
perturbations in the number of electrons and/or the external potential. The change
in the energy due to a change in these variables can be expressed by the following
equation
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dE[v(r);N ] =

(
∂E

∂N

)
v(r)

dN +

∫ (
∂E

δv(r)

)
N

δv(r)dr (3.81)

The coefficient of dN is called the electronic potential, by analogy with classical
thermodynamics

µ =

(
∂E

∂N

)
v(r)

(3.82)

The coefficient of δv(r) is nothing else than the electron density itself

ρ(r) =

(
∂E

δv(r)

)
N

(3.83)

The chemical potential and the electron density on their own are again dependent
on the number of electrons and the external potential

dµ =

(
∂µ

∂N

)
v(r)

dN +

∫ (
∂µ

δv(r)

)
N

δv(r)dr (3.84)

dρ(r) =

(
∂ρ(r)

∂N

)
v(r)

dN +

∫ (
∂ρ(r)

δv(r′)

)
N

δv(r′)dr′ (3.85)

The two point (nonlocal) reactivity indicator in this last equation is called the
linear response function [15]

χ(r, r) =

(
δρ(r)

δv(r′)

)
=

(
δ2E

δv(r)δv(r′)

)
N

(3.86)

This nonlocal reactivity indicator has an analogue in Hückel theory, where it is
called the ’atom-atom polarizability’. In the next chapter, an expression for this
quantity will be derived.
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3.5 The atom-atom polarizability
In 1947 Coulson and Longuet-Higgins wrote an article in which they developed
a general theory for the electronic structure of conjugated systems at the Hückel
level of theory. [8] [9] [10] In this article they derived expressions for some of the
properties and concepts that are also studied in DFT. One of the featured prop-
erties is the mutual polarizability of atoms, which is a nonlocal response kernel,
equivalent to the linear response kernel in DFT. [26]

Their rationale starts from the secular determinant defined in equation (3.37).

Since the matrix of ∆ (see equation (3.37)) is Hermitian, the εj are all real, and
Coulson and Longuet-Higgins assumed that they are all distinct, which is true
most of the time and is especially convenient in the derivation that follows.

As was mentioned before in the chapter about Hückel theory, determination of
the eigenvalues from the secular determinant allows the derivation of the respec-
tive eigenvectors. From these eigenvectors, an equation that expresses the total
density of π-electrons around atom r can be established

qr = 2
m∑
j=1

c2
rj (3.87)

In this form, qr is given as a sum over the occupied MO. Equation (3.87) is the
most often used expression for the electron density in Hückel theory. [20]

Coulson and Longuet-Higgins argued however that electron densities could also
be determined directly from the secular determinant. In this form, important de-
ductions can be made concerning both their absolute magnitudes and their varia-
tions with changes in α and β, which wasn’t possible through the former expres-
sion (3.87).

Their rationale continued by considering equations (3.5) and (3.17) and the defi-
nitions of αr and βrs and an orbital energy ε, leading to the following expression
for ε

ε = (
∑
r

c2
rαr + 2

∑
r <

∑
s

crcsβrs)/
∑
t

c2
t (3.88)

which is then differentiated, leading to
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δε =
∑
r

{ c2
r∑
t c

2
t

}δαr +
∑
r <

∑
s

{ 2crcs∑
t c

2
t

}δβrs +
∑
r

δcr
∂ε

δcr
(3.89)

But due to the variational principle and the normalization condition, which give

∂ε/∂cr = 0
∑
t

c2
t = 1 (3.90)

this equation can be be simplified to

δε =
∑
r

c2
rδαr +

∑
r <

∑
s

2crcsδβrs (3.91)

for small changes in αr, βrs and cr. Taking the partial derivative of this equation
respectively with respect to αr and βrs at ∆ = 0 (the necessary condition for
obtaining solutions to the minimization problem), the following expressions for
( ∂ε
∂αr

)∆=0 and ( ∂ε
∂βrs

)∆=0 are obtained

(
∂ε

∂αr
)∆=0 = c2

r (
∂ε

∂βrs
)∆=0 = 2crcs (3.92)

which, after summation over the occupied MO, gives a new expression for the
electron density, as it was defined in equation (3.87)

qr = 2
m∑
j=1

c2
rj = 2

m∑
j=1

(
∂εj
∂αr

)∆=0 = (
∂ε

∂αr
)∆=0 (3.93)

In this expression ε denotes the sum of the π-electron energies, i.e.

ε =
m∑
j=1

2εj (3.94)

In a next step of the derivation, they proposed rewriting the partial derivative as
follows

(
∂εj
∂αr

)∆=0 = −(
∂∆

∂αr
)/(

∂∆

∂ε
) (3.95)

In which, after differentiation of the characteristic polynomial, ε is given the value
εj . And
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∂∆

∂αr
= ∆r,r (3.96)

where ∆r,r is the determinant obtained by deleting from ∆ the rth row and rth
column and ∆r,s is obtained by deleting the rth row and sth column. These last
equations finally lead to the following expression for the electron density

qr = −2
m∑
j=1

∆r,r(εj)

∆′(εj)
(3.97)

where ∆′(εj) denotes [∂∆(ε)
∂ε

]ε=εj

Calculating the electron density through equation (3.97) is very challenging. How-
ever, the authors came up with a method to avoid this difficult calculus. In complex
analysis, a theorem exists which allows the construction of a complex function
which has residues that exactly correspond to the sum in equation (3.97) [29]

f(z) =
∆r,r(z)

∆(z)
(3.98)

According to the residue theorem in complex analysis, the residues of this com-
plex function can be determined by calculating a contour integral around them.
Taking into account that only filled orbitals contribute to the electron density,
only the poles of f(z), i.e. the solutions of ∆(z) = 0 (the orbital energies), on
the negative part of the real axis have to be considered. This explains why the
authors limited their contour to the semicircle confined to the left part of the com-
plex plane, as is shown in the figure below.

32



Figure 3.3: contour integral used for the evaluation of equation (3.97), ε1 stands
for the lowest, εm stands for the highest occupied orbital [8]

It should also be noted that no pole will be found at the origin because the
origin of the considered energy axis can be explicitly forced to comply with this
condition as the choice for this origin is completely arbitrary. A final remark to be
made is that the roots of the secular determinant (εj) are all on the real axis as the
corresponding matrix is Hermitian and as such, these points are the only poles of
the complex function located inside the contour.

Thus, if the semicircle depicted in figure (3.3) is taken sufficiently large so that
all εj are included, the following line integral over the semicircle of the complex
function can be considered

1

2πi

∫
γ

∆r,r(z)

∆(z)
dz (3.99)

Now, at large distance from the origin the integrand tends to -1/z. So calculation of
the line integral over the infinite semicircle leads to -1/2. The part of the contour
integral that still remains is the integral over the imaginary axis. As such, the last
expression can be rewritten as

1

2πi

∫ ∞i
−∞i

∆r,r(z)

∆(z)
dz − 1

2
(3.100)

Summarizing all this, the Cauchy theorem allows the following equation to be
written
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1

2πi

∫ ∞i
−∞i

∆r, r(z)

∆(z)
dz − 1

2
=

m∑
j=1

∆r,r(εj)

∆′(εj)
(3.101)

Replacing the sum over the residues in equation (3.97) by the corresponding inte-
gral gives

qr = 1− 1

πi

∫ ∞i
−∞i

∆r,r(z)

∆(z)
dz (3.102)

Now that an integral expression for qr has been established, the authors derived
a way to express the mutual polarizability of atoms as a function of the electron
density (very reminiscent of the conceptual DFT-relationships), after which they
substituted qr by the integral expression derived above.

Their derivation of this formula starts with the idea that one is able to alter the
energy integral αr of an atom to a slightly different value α + δα. As a result
of this change in αr the electron densities around all the nuclei will change. The
change of the electron density on atom s (δqs) can be treated as the response to a
perturbation applied to atom r. This consideration leads to the following expres-
sion for δqs

δqs =
∂qs
∂αr

δαr = πs,rδαr (3.103)

Coulson and Longuet-Higgins rewrote this equation according to equation (3.93),
leading to

πs,r =
∂qs
∂αr

=
∂2ε

∂αr∂αs
=

∂2ε

∂αs∂αr
=
∂qr
∂αs

= πr,s (3.104)

which resembles a lot the definition of the linear response in DFT. The symmetry
that is evident in this last expression motivated the authors to call this quantity the
mutual polarizability of atoms r and s.

Substitution of qr by its integral form in equation (3.102) permitted them to write
the mutual polarizability in an integral form

πr,s = − 1

πi

∫ ∞i
−∞i

∂

∂αs

∆r,r(z)

∆(z)
dz (3.105)

or
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πr,s = − 1

πi

∫ ∞i
−∞i

∆∆rs,rs −∆r,r∆s,s

∆2
dz (3.106)

where the letters before and after the comma in each suffix denote respectively the
row and the column omitted from ∆.

Next to the derivation of an integral formula for the atom-atom polarizability,
Coulson and Longuet-Higgins also came up with a formula in terms of the MO
coefficients. The derivation of this formula is based on first-order perturbation
theory.

Consider a molecule with occupied MO ψ1, ψ2, ..., ψm and unoccupied MO ψm+1,
..., ψn, constructed from the component atomic orbitals φ1, ..., φn. According to
first order perturbation theory, the change in the MO when the coulomb integral
αr is increased by a small amount δαr can be expressed as

ψj + ψ′j = ψj +
n∑
k=1

{∫
ψjH

′ψkdv

εj − εk

}
ψk (3.107)

⇔ ψj + ψ′j = ψj +
n∑
k=1

crjcrkδαr
εj − εk

ψk (3.108)

Since

ψj =
n∑
s=1

csjφs and

∫
φrH

′φrdv = δαr (3.109)

This allows the change in the MO to be written as

ψ′j = δαr

n∑
k=1

{
crjcrk
εj − εk

n∑
s=1

cskφs

}
=

n∑
s=1

c′sjφs (3.110)

where

c′sj = δαrcrj

n∑
k=1

crkcsk
εj − εk

(3.111)

Keeping in mind the fact that the occupied orbitals are those for which 1 ≤ j ≤ m,
the change in electron density at atom s can be expressed as
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δqs = 2
m∑
j=1

{(csj + c′sj)
2 − c2

sj} = 4
m∑
j=1

csjc
′
sj (3.112)

since c′sj is small. Thus

δqs = 4δαr

m∑
j=1

n∑
k=1

crjcsjcrkcsk
εj − εk

(3.113)

This last equation leads to an expression for πs,r

πs,r =
∂qs
∂αr

= 4
m∑
j=1

n∑
k=1

crjcsjcrkcsk
εj − εk

(3.114)

But the summand here is antisymmetric in j and k so that
∑m

j=1

∑m
k=1=0. Taking

this into account, the expression for the atom-atom polarizability can finally be
written as

πs,r = −4
m∑
j=1

n∑
k=m+1

crjcsjcrkcsk
εk − εj

(3.115)

This expression is the equation that was used in the computational part of this
study to calculate the atom-atom polarizability of the considered molecules. This
equation is also analogous to the expression for the calculation of the linear re-
sponse in DFT. [15]

36



3.6 The linear response current
Up until now, the transmission spectrum in the case where no voltage is applied
has been the main focus of this work. In the following paragraphs, the calculation
of the current flow which results from the application of a small bias will be dis-
cussed.

The transmission spectrum gives the probability for an incident electron with a
certain energy to go through the molecule unscattered. As the electrons originate
from the reservoirs, their energy can not be higher than the Fermi level of these
reservoirs. As long as no voltage is applied, the Fermi levels of the reservoirs
are equal, and so is the rate of electron transfer from one reservoir to the other
through the molecule (each incident electron has a counterpart in the other reser-
voir). [13] As a bias is applied, more energy levels are filled in one reservoir while
in the other one less energy levels are filled. This means that some electrons in one
reservoir no longer have a counterpart of the same energy in the other reservoir,
leading to a net current. According to the Bütticker-Landau equation, this current
can be expressed as [30]

I =
2e

h

∫ EF2

EF1

g(E, V )dE (3.116)

where EF1 and EF2 are the energy levels of the 2 reservoirs. g(E,V) can be re-
trieved from the transmission probability through application of equation (1.1).

An important note to be made about equation (3.116) is that g is dependent of
the applied voltage. This is obviously also true for the transmission probability;
the transmission spectrum changes as the applied voltage changes. [31] So, in or-
der to calculate the change in current with respect to the applied voltage, one has
to calculate the transmission probability at every bias and integrate the resulting
transmission spectrum between the boundaries set by the applied voltage. How-
ever, at low bias, one can make the assumption that the transmission spectrum has
not changed much and so it is sufficient to integrate the zero-bias transmission
spectrum. [32] The resulting current versus applied voltage graph is called the lin-
ear response current.

The linear response current can be used qualitatively to predict the conducting
properties of the molecule at small bias but at bigger bias this method of calcu-
lation breaks down completely. For instance, in this method the current can only
increase as the bias window opens up as the transmission probability is never
negative, which does not comply with the image one gets when taking the more
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elaborate approach of calculating the transmission spectrum at every bias where
negative differential conductances do arise.
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Chapter 4

Methodology

As a first step in our research, computer programs were developed, written in the
FORTRAN programming language, which are capable of calculating the trans-
mission probability and the atom-atom polarizability. The codes of these pro-
grams have been added as an appendix to this work. Some of the used subroutines
were adapted from a handbook listing the most frequently used numerical meth-
ods in FORTRAN. [33]

The program capable of calculating the transmission probability has actually been
programmed in threefold. First, the initial formula put forward by Fowler et al. to
calculate the transmission, as it was given in equation (3.69), was implemented.
The T(E) curves which were obtained through this program were compared to
the results found in literature to test whether our program works correctly. Next,
the same program was written again, but this time in the wide band limit as it
was given in equation (3.72). As can be seen in section 5.1, close to the Fermi-
level these 2 programs give the same results. This result has also been backed
up for a lot of molecule-contact combinations at higher level in literature. [34] As
this part of the curves is our main region of interest in this study, the decision
was made to keep working in the wide band limit, as the formula in that case is
a lot more straightforward than the original one, and the resemblance to the ex-
pression for the atom-atom polarizability is more evident. Next to the wide band
limit, further restrictions have been put forward on the studied systems. In this
research only symmetric connections with αL = αR = 0, βsL = βrR = β and
βL = βR = βC = 1.4β have been considered. Thirdly, equation (3.79) was im-
plemented, as with this method, it becomes possible to calculate the transmission
probability for all combinations of contacts simultaneously. The validity of this
method was confirmed by comparing the resulting graphs with the curves obtained
from the second program.
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For the program capable of calculating the atom-atom polarizability, expression
(3.115) was used. In order to obtain the linear response current, a program was
written which numerically integrates the transmission expression in equation (3.79).

Next, the final programs for the the calculation of the atom-atom polarizability
and transmission probability have been applied to a series of polycyclic aromatic
hydrocarbons: benzene, naphthalene, anthracene, tetracene and pentacene.

As input, the considered systems were numbered as follows:

Figure 4.1: benzene

Figure 4.2: naphthalene
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Figure 4.3: anthracene

Figure 4.4: tetracene

Figure 4.5: pentacene

This add hoc numbering, which does not coincide with the IUPAC numbering
rules, was merely chosen because of practical considerations.

In a first set of calculations, a reference atom (the left contact atom) was kept
fixed at a certain position in the first ring (atom 1) when going through the series
of considered hydrocarbons. The results of these calculations will be presented
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in section 5.2. A next set of calculations involved the variation of the choice
of the reference atom for anthracene. These results are presented in section 5.3.
Finally, some calculations were performed on pentacene to reinforce the conclu-
sions drawn in section 5.3 (see section 5.4). In all of these sections, the results are
presented graphically. These graphical representations were produced by a script,
written in FORTRAN, which produces POSTSCRIPT files. [35]

In a final section, section 5.5, the linear response current was calculated for ev-
ery possible configuration of the contacts of benzene, naphthalene and anthracene
when one contact is kept fixed at atom 1.

Based on all these results, combined with theoretical considerations, a formal link
between the atom-atom polarizability and the transmission probability has been
derived and a selection rule has been put forward. The rationale behind this link
will be presented in section 5.6.
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Chapter 5

Results and discussion

5.1 Validation of the method for the transmission
probability calculation

In a first section, the transmission curves for benzene are presented, both in the
wide band limit and not in the wide band limit. Each configuration is denoted
by the numbering of the contact atoms, as it was introduced in figure 4.1. The
energy of the incident electron is scaled to β (the nearest hopping parameter) and
the Fermi level of the molecule is taken as the origin of the energy axis.

We will first focus on the calculations when the wide band limit is not applied,
as these results can be compared to results in literature. The implemented pro-
gram gave rise to the following curves:
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Figure 5.1: transmission probability for benzene (no wide band limit)

From these results it can be concluded that at the Fermi level, ipso and meta
configurations of the contacts lead to no transmission. For both ortho and para
configurations, a transmission probability of 0,4 is obtained. Further away from
the Fermi level, the transmission probability of the para configuration increases
even more while it remains constant for the ortho configuration for quite a while.
The transmission probability of meta configurations remains relatively flat when
moving away from the Fermi level. Only starting from energies of the incident
electron of −β or β, transmission becomes significant. For ipso connection, the
transmission probability rises more quickly. A remark to be made is that all of the
curves depicted above are perfectly symmetrical. This is due to the fact that the
studied system, just as all the other ones in this work, is bipartite.

Fowler et al. obtained the following results for benzene [4]
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Figure 5.2: transmission probability for benzene (no wide band limit), according
to Fowler et al.

Comparison of figure 5.1 with figure 5.2 leads to the conclusion that our pro-
gram produces accurate results.

The program for the calculation of the transmission probability in the wide band
limit led to the following results for benzene
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Figure 5.3: transmission probability for benzene in the wide band limit

Comparing this graph with graph 5.1, one can clearly see that the two graphs
give qualitatively the same trend. However, at the Fermi level, they agree exactly.
As the goal of this study is to inquire the transmission behavior of molecules close
to the Fermi level, the wide band limit has been used for all the other calculations,
as the equations are much easier in this case.

Similar graphs have been produced for the other studied systems. However, as
one can already notice for the case of benzene depicted above, these graphs be-
come too complex very quickly when the number of possible configurations of the
contacts rises. As our only region of interest in these graphs is the behavior of the
transmission close to the Fermi level, we made the decision not to add a similar
graph like the one above for every system studied. The choice was made to depict
the transmission probability close to the Fermi level in a graphical way, as will be
explained in the next section.
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5.2 Comparison between the atom-atom polarizabil-
ity and the transmission probability for one fixed
reference atom

In this section both the atom-atom polarizability and the transmission probabil-
ity are depicted for each of the studied systems in a graphical way. Throughout
this section, the ad hoc numbering introduced in chapter 4 has been used. Only
one reference atom (atom 1) was considered, as this allows us to study the way
these properties change when more aromatic rings are added to the system. For
the atom-atom polarizability, the reference atom is denoted by a green sphere,
where the area of the sphere is proportional to the self-polarizability of that atom.
One should keep in mind that self-polarizabilities are always negative. The black
spheres and red spheres denote the amount of atom-atom polarizability caused by
a perturbation to the reference atom on the considered atom. The black spheres
correspond to a positive atom-atom polarizability and the red ones to a negative
atom-atom polarizability. Again, the area of the spheres is proportional to the
value for the atom-atom polarizability.

For the transmission probability in the wide band limit at the Fermi level, the same
approach is taken as above. The green sphere denotes the reference case where
both contacts are placed on the reference atom. As in this case, transmission at the
Fermi level is always zero, the sphere was emptied. Since the transmission proba-
bility can only range between 0 and 1, no red spheres will arise. The black spheres
on the atoms denote the amount of transmission in the case where the contacts are
respectively placed on reference atom and the atom on which the sphere is drawn.

Next to these graphical representations, tables were also added to allow numerical
verification of the results presented in these figures. These tables can be found in
appendix B.

First we will focus on benzene.
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Figure 5.4: atom-atom polarizability of benzene

It can be seen from this figure that only atoms in ortho and para positions ex-
hibit a positive atom-atom polarizability with the reference atom. Normally, one
would expect that the atom-atom polarizability decreases with the distance, but
here this is not the case as the atom in para position exhibits a higher atom-atom
polarizability than the atoms in meta position.

This apparently odd result can however be rationalized. First off, it is possible
to draw a resonance structure of benzene where a para bond is present. Due to va-
lence bond theory, this resonance structure, often (incorrectly) called ”Dewar ben-
zene”, [36] contributes to a minor extent to the overall description of benzene, [37]

thus enforcing the para bond slightly compared to the meta bond, leading to a
positive atom-atom polarizability. Another way to rationalize this is to draw the
mesomeric structures for benzene when an electron donor is placed on the ring
system. [38] This shows that the negative charge can only be placed on the ortho
and para positions and not on the meta positions, in compliance with the atom-
atom polarizability picture obtained from figure 5.4.
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Figure 5.5: transmission probability in the wide band limit for benzene at the
Fermi-level

Comparison of figure 5.4 with 5.5, leads to the conclusion that black spheres
for the atom-atom polarizability coincide with black spheres for the transmission
probability. The atoms which show a red sphere for the atom-atom polarizabil-
ity show no sphere for the transmission probability. In other words, it seems that
in order to have transmission for a certain configuration of the contacts on the
molecule, one needs a positive atom-atom polarizability between the 2 contact
atoms.

Now turning to naphthalene, the following results are obtained.

Figure 5.6: atom-atom polarizability of naphthalene
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Figure 5.6 leads to the conclusion that the the atom-atom polarizability is high-
est between atom 1 and 10. This can be rationalized by drawing all the possible
resonance structures of naphthalene, leading to a higher bond order between these
two atoms compared to the bond order between atom 1 and 2, which consequently
leads to a higher atom-atom polarizability. Experimentally, this is reflected in a
decreased bond length between these atoms. [39]

Figure 5.7: transmission probability in the wide band limit for naphthalene at the
Fermi-level

Again there seems to be a correspondence between the atom-atom polarizabil-
ity (figure 5.6) and the transmission probability (figure 5.7), the same conclusions
can be drawn as for benzene. It can also be observed that the atom with the high-
est atom-atom polarizability leads to the highest transmission probability when
the second contact is placed on this atom.

Next, the atom-atom polarizability and transmission probability for anthracene,
tetracene and pentacene are presented and discussed all at once.
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Figure 5.8: atom-atom polarizability of anthracene

Figure 5.9: transmission probability in the wide band limit for anthracene at the
Fermi-level
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Figure 5.10: atom-atom polarizability of tetracene

Figure 5.11: transmission probability in the wide band limit for tetracene at the
Fermi-level

Figure 5.12: atom-atom polarizability of pentacene
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Figure 5.13: transmission probability in the wide band limit for pentacene at the
Fermi-level

For each of these systems, the same conclusions can be drawn as above. Trans-
mission only takes place when the second contact is placed on an atom which
exhibits a positive atom-atom polarizability and the atom with the highest atom-
atom polarizability always leads to the highest transmission probability when the
second contact is placed on this atom.

Putting all these results together, the idea that a positive atom-atom polarizability
is a necessary condition in order to have transmission for a certain configuration
of the contacts on the molecule is reinforced. As the atom-atom polarizability is a
measure for electronic delocalization, these empirical results give rise to the pic-
ture that delocalization should be a necessary condition for transmission.

Considering now the area of the spheres, one can conclude that there is no exact
proportionality between the value for the atom-atom polarizability and the value
for the transmission probability at the Fermi level. However, one can clearly ob-
serve that when the atoms are numbered across the ring, starting in the direction
where the atom with the highest atom-atom polarizability is situated, the trans-
mission probability at the Fermi level drops monotonously when going down this
ranking. So it seems that the atom with the highest atom-atom polarizability ac-
quires the highest transmission probability when the second contact is placed on
that atom, and the position of this atom relative to the first contact determines the
sense in which the transmission probability drops. From then on, the probability
decreases along the chain independently of the amount of atom-atom polarizabil-
ity between the reference atom and the other atoms.

For each of the systems presented above, the reference atom remained constant.
In the next section, this reference atom will be varied for anthracene, allowing us
to verify the observations made above and to get an indication of the importance
of the position of this reference atom.
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5.3 The variation of the atom-atom polarizability and
transmission probability for anthracene when the
reference atom is altered

In the previous section the reference atom was kept constant for all of the stud-
ied systems. In this section, the influence of the choice of the reference atom
will be examined for anthracene. Throughout this section, the ad hoc numbering
introduced in chapter 4 has again been used. Due to symmetry reasons, only 3
distinct choices for the reference atom exist. One of these choices has already
been presented in section 5.2. The other two will be listed below.

Figure 5.14: atom-atom polarizability of anthracene for reference atom 3
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Figure 5.15: transmission probability in the wide band limit for anthracene at the
Fermi-level for reference atom 3

Figure 5.16: atom-atom polarizability of anthracene for reference atom 5
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Figure 5.17: transmission probability in the wide band limit for anthracene at the
Fermi-level for reference atom 5

These results demonstrate that the choice of the reference atom is indeed im-
portant for the transmission probability. For example, when atom 3 is chosen as
a first contact instead of atom 1, the transmission probability at the Fermi level
becomes as high in the 3-14 configuration of the contacts as for the 2-3 configu-
ration. More remarkable, if atom 5 is chosen as a first contact, the monotonous
drop of the transmission probability across the ring is no longer observed. In this
case, the atom at the opposite position on the central ring shows the highest trans-
mission probability. Across the entire system, the transmission probabilities are
elevated compared to the other situations.

Comparing these results for the transmission probability with the results for the
atom-atom polarizability, it can be seen that, for reference atom 3, the same phe-
nomena as in the previous section take place. For the choice of atom 5 as reference
atom, the system becomes symmetrical and now the atom-atom polarizability is
equal at both sides of the reference atom. The highest atom-atom polarizability in
this case can be observed at the opposite side of the molecule, and this configura-
tion also shows the highest transmission probability.

These observations reinforce the idea put forward in section 5.2 that a positive
atom-atom polarizability is a necessary condition for transmission to take place.
The second proposed rule that the relative position of the atom with largest atom-
atom polarizability, compared to the reference atom, determines the direction in
which the transmission probability decreases, appears to be more subtle according
to figure 5.17. In the next section, a few configurations of contacts for pentacene
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will be studied in order to allow this second rule to be rephrased so that it becomes
applicable to all possible configurations of the contacts.
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5.4 The variation of the atom-atom polarizability and
transmission probability for pentacene when the
reference atom is switched from one ring to an-
other

In this section, the influence of the change of the reference atom was studied for
pentacene. As too many configurations of the contacts are possible for this system
to list them all here, the decision was made to consider only reference atoms 3,
5 and 7. The results for reference atom 1 have already been presented in section
5.2.

Figure 5.18: atom-atom polarizability of pentacene for reference atom 3

Figure 5.19: transmission probability in the wide band limit for pentacene at the
Fermi-level for reference atom 3
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Figure 5.20: atom-atom polarizability of pentacene for reference atom 5

Figure 5.21: transmission probability in the wide band limit for pentacene at the
Fermi-level for reference atom 5
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Figure 5.22: atom-atom polarizability of pentacene for reference atom 7

Figure 5.23: transmission probability in the wide band limit for pentacene at the
Fermi-level for reference atom 7

For reference atoms 3 and 7, exactly the same conclusions can be drawn as
in sections 5.2 and 5.3. For reference atom 5, the picture becomes more com-
plicated. As is the case for reference atom 7, the opposite atom again shows the
highest transmission probability. To the right of the line through these 2 atoms,
the behavior is exactly the same as before; the transmission probability drops
monotonously in the direction of the atom with the highest atom-atom polariz-
ability. In the leftmost ring, the transmission probabilities are all equal.

The reason for this apparent complication is the fact that in the case of reference
atom 5, just as is the case for reference atom 7 for pentacene and reference atom
5 for anthracene, the atom with the highest atom-atom polarizability is no longer
adjacent to the reference atom. In each of these cases this atom was the atom with
the highest transmission probability, and starting from this atom, the transmis-
sion probability decreases monotonously in either direction away from this atom.
The direction of the sharpest decline was the direction in which the atom with the
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lowest relative atom-atom polarizability (adjacent to the atom which exhibits the
highest transmission probability) is located.

This rule is generally applicable to all systems considered before, and can thus
be interpreted as a more general and more precise rule than the one put forward
earlier on about the variation of the amount of atom-atom polarizability across the
system.
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5.5 The linear response current
In this section, the linear response currents were plotted for benzene, naphthalene
and anthracene. As the applied voltage is expressed in terms of β, the unit of the
resulting current is ill defined. As such, we decided to drop the factor present in
front of the integral in equation (3.116) and to not take into account the β factor
in the integration boundaries. This leads to a value for the current which has no
standard units and can only be used relatively, to compare the linear response
currents between the different configurations of the same system. These currents
have no absolute quantitative significance.

Figure 5.24: IV-curve benzene in the linear response current regime
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Figure 5.25: IV-curve naphthalene in the linear response current regime - part 1
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Figure 5.26: IV-curve naphthalene in the linear response current regime - part 2
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Figure 5.27: IV-curve anthracene in the linear response current regime - part 1
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Figure 5.28: IV-curve anthracene in the linear response current regime - part 2

By comparing these curves with the results obtained in section 5.2, it can be
seen that a high transmission probability leads to a high linear response current
(conducting behavior) and low transmission probability leads to a low linear re-
sponse current (insulating behavior). Again, we note that these curves are only
valid at very low bias, already at a bias of 0,4V the linear response current can
deviate from the actual current. [32]
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5.6 The link between the transmission probability
and the atom-atom polarizability

From the observations put forward in the discussion of the results presented pre-
viously in this chapter, it is evident that some link seems to exist between the
transmission probability at the Fermi level and the atom-atom polarizability. In
this section, the expressions of these two quantities will be examined in order to
derive a mathematical relationship between them.

Recall the expression for the transmission in the SSP method [4] and consider sym-
metric systems (β̃L = β̃R):

T (E) =
4 sin2 q(∆r,r∆s,s −∆∆rs,rs)β̃

2

|e−2iq∆− e−iq(∆s,s + ∆r,r)β̃ + ∆rs,rsβ̃2|2
(5.1)

Taking now the limit of this expression asE → 0 (transmission at the Fermi level)
and β̃ → 0 (corresponding to weak coupling systems where there is no chemical
bonding between the molecule and the electrodes)

T (E) = 4β̃2 (∆r,r∆s,s −∆∆rs,rs)

∆2
(5.2)

When this last expression is compared with the expression for the atom-atom po-
larizability

πr,s =− 1

πi

∫ ∞i
−∞i

∆∆rs,rs −∆r,r∆s,s

∆2
dz (5.3)

=
1

πi

∫ ∞i
−∞i

∆r,r∆s,s −∆∆rs,rs

∆2
dz (5.4)

It becomes evident that for weak coupling systems the expression for the trans-
mission can be identified with the integrand in the expression for the atom-atom
polarizability, multiplied with a constant.

In other words, one can conclude that, for the considered systems, a complex
function exists which couples the atom-atom polarizability with the transmission
at E=0. For a fixed energy value (usually E=0, the Fermi-level), the atom-atom po-
larizability can be calculated by integrating the function over the imaginary axis.
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The value of the function at this point is the transmission probability at E=0. This
function has the form

X =
∆r,r∆s,s −∆∆rs,rs

∆2
(5.5)

or more compactly (see earlier)

X =
∆2
r,s

∆2
(5.6)

From the properties of this complex function, a selection rule can be established
for alternant hydrocarbons with no energy level situated at the Fermi level. The
rationale behind this selection rule is based for a large part on the proof of the law
of alternating polarity as it was provided by Coulson et al. [10]

Coulson suggested to separate the 2 sets of atoms in the considered alternant hy-
drocarbon into 2 separate secular equations. If the atoms of one set are numbered
from 1 to h, and all the atoms of the other set from h+1 to n, the secular equations
become

−εcr +
n∑

s=h+1

βrscs = 0 (r = 1, 2, ..., h) (5.7)

−εcr +
h∑
s=1

βrscs = 0 (r = h+ 1, h+ 2, ..., n) (5.8)

The secular determinant for an alternant hydrocarbon can then be written in its
most general form as

∆(z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−ε 0 0 ... ... β1,h+1 β1,h+2 ... ...
0 −ε 0 ... ... β2,h+1 β2,h+2 ... ...
0 0 −ε ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... −ε ... ... ... βh,n

β1,h+1 β2,h+1 β3,h+1 ... ... −ε 0 ... ...
β1,h+2 β2,h+2 β3,h+2 ... ... 0 −ε ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... βh,n ... ... ... −ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.9)
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The first h rows and columns refer to the atoms of one set, while the other n-h
rows and columns refer to the atoms of the other set. This determinant can be
written more compactly as

∆(z) =

∣∣∣∣ −zI A
Ā −zJ

∣∣∣∣ (5.10)

where I and J are unit matrix respectively of orders h and n-h and A and Ā are the
two blocks of resonance integrals βrs. Note also that ε is replaced by the complex
number z.

In a next step, Coulson et al. showed that this determinant is either even or odd,
depending on the number of atoms in the alternant hydrocarbon. Multiplication
of the first h rows of ∆(ε) by -1 and then of the last (n-h) columns, leads to the
following identity

∆(z) =

∣∣∣∣ −zI A
Ā −zJ

∣∣∣∣ (5.11)

= (−)h
∣∣∣∣ zI −A
Ā −zJ

∣∣∣∣ (5.12)

= (−)n
∣∣∣∣ zI A
Ā zJ

∣∣∣∣ (5.13)

= (−)n∆(−z) (5.14)

Expansion of this determinant leads to the polynomial in z. So if n is even, only
even powers of z occur in the polynomial, whereas if n is odd, only odd powers
occur.

In the remainder of this rationale, the focus is placed on the case where n is even
as we focus here on alternant hydrocarbons with an even number of carbon atoms
(no energy level located at the Fermi level). As the polynomial is even, it contains
no terms with odd powers. So in general, an even polynomial can be represented
as

f(z) = a0z
2n + a1z

2(n−1) + ...+ an−1z
2 + an (5.15)

where a0, a1, ..., an are the coefficients. Consider now the case that all the coeffi-
cients are real. On the imaginary axis, z can be replaced by iy, leading to

69



f(iy) = a0(−y)n + a1(−y)n−1 + ...+ an−1(−y) + an (5.16)

So it is clear that on the imaginary axis, the image of every even polynomial with
real coefficients is entirely real. As ∆ is the expansion of a determinant with only
real elements, its characteristic polynomial is also entirely real. Hence, the image
of ∆ on the imaginary axis is entirely real. The image of ∆2 is then evidently
entirely real and positive on the imaginary axis.

A next step is to consider the determinant ∆r,s. Looking at equation (5.11) one
can see that if atoms r and s are in the same set or are identical (ergo r, s ≤ h),
then ∆r,s becomes

∆r,s(z) =

∣∣∣∣ −zIr,s Ar,0
Ā0,s −zJ

∣∣∣∣ (5.17)

where letters before and after the comma in a suffix denote respectively rows and
columns struck out (for example: Ar,0 denotes A with the rth row struck out but no
column deleted). Multiplication of the first h− 1 rows and the last n− h columns
by -1 leads to the following identity

∆r,s(z) = (−)n−1∆r,s(−z) (5.18)

Therefore as n is even, ∆r,s(z) is a sum of odd powers of z. On the other hand, if
atoms r and s are in different sets (ergo r ≤ h < s), then ∆r,s becomes

∆r,s(z) =

∣∣∣∣ −zIr,0 Ar,s
Ā −zJ0,s

∣∣∣∣ (5.19)

Multiplication of the first h − 1 rows and the last n − h − 1 columns by -1 then
leads to the following identity

∆r,s(z) = (−)n−2∆r,s(−z) (5.20)

So in this case, as n is even, ∆r,s(z) is a sum of even powers of z.

So one can state that, if r and s are from the same set, ∆ is even and ∆r,s is
odd. Odd polynomials with real coefficients lead to an image on the imaginary
axis which is entirely imaginary. This can be demonstrated by taking a look at the
general representation of an odd polynomial
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f(z) = a0z
2n+1 + a1z

2(n−1)+1 + ...+ an−1z
3 + anz (5.21)

where a0, a1, ..., an are the coefficients. Now one can write

f(z) = z(a0z
2n + a1z

2(n−1) + ...+ an−1z
2 + an) = z ∗ f ′(z) (5.22)

where f ′(z) is a general even polynomial. On the imaginary axis, z can be re-
placed by iy. As all coefficients are real, f ′(iy) will produce an entirely real
image. Taking this into account it becomes clear from equation (5.22) that the
image of an odd polynomial with real coefficients is indeed entirely imaginary on
the imaginary axis. As ∆ is even and its image is entirely real on the imaginary
axis, ∆r,s

∆
will evidently be odd and its image will be entirely imaginary too. It

is now evident from equation (5.6) that the square of this function is nothing else
than X.

Taking the square of the odd polynomial ∆r,s

∆
, an entirely real and negative im-

age is obtained on the imaginary axis. Integration over the imaginary axis in this
case leads to a negative atom-atom polarizability. As ∆r,s

∆
is odd, its image at the

origin is 0, and this is evidently also true for its square
(

∆2
r,s

∆2

)
. So negative atom-

atom polarizabilities for alternant hydrocarbons with an even number of atoms
can be connected to cases of no transmission (X=0).

On the other hand, if r and s belong to different sets, ∆ and ∆r,s are both even.
This leads to ∆r,s

∆
being even too. On the imaginary axis, the image of even poly-

nomials with real coefficients is entirely real. The square of this entirely real
image is entirely real and positive. Integration over the imaginary axis in this case
leads to a positive atom-atom polarizability. For even functions, the image at the
origin is not forced to be 0. So X can differ from 0, leading to transmission. So
positive atom-atom polarizabilities for alternant hydrocarbons with an even num-
ber of carbon atoms can be connected to transmission taking place.

To summarize, for alternant hydrocarbons with an even number of carbon atoms:

• Transmission is allowed when the atom-atom polarizability between the two
contact atoms is positive

• Transmission is not allowed when the atom-atom polarizability between the
two contact atoms is negative
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For a given reference reference atom, a positive atom-atom polarizability is
obtained for atoms of a different set and negative atom-atom polarizability is ob-
tained for atoms of the same set.

It is now also clear that no systems can be considered which have energy lev-
els at the origin, since in this case, X has a pole at the origin and so the image is
not defined at this point.

The constraint of a weak coupling system is logic, as strong chemical bond-
ing between the molecule and the contacts would perturb the electron density
of the considered molecule, leading to a change in its properties (see Hohenberg-
Kohn theorems). [25] The atom-atom polarizability is a property of the isolated
molecule which allows the determination of the transmission probability through
this molecule, but once it is firmly bonded in an electrical circuit, its properties
change and thus also its transmission probability. However, as long as the bonding
of the molecule is weak, the transmission probability of the bonded molecule can
be approximated by the transmission probability of the isolated molecule.

Until now, only weak coupling systems were considered. However, the proposed
selection rule for transmission based on the atom-atom polarizability has a wider
applicability, as will be shown next.

In the chapter about transmission in the SSP method, the wide band limit was
introduced. This limit is approached when the molecule is weakly coupled to the
contacts or when the bonding in the metal contacts is strong. The wide band limit
can be seen as a more general regime compared to the weak coupling systems
considered above.

Moreover, at the Fermi level, the general equation for the transmission probability
in the SSP method becomes equal to the expression for the transmission proba-
bility in the wide band limit (3.72) as q then becomes equal to π/2. This can be
seen easily by comparing equation (5.1) with the expression for the transmission
probability in the wide band limit

TWBL(E) =
4(∆̃r,r∆̃s,s − ∆̃∆̃rs,rs)

(∆̃− ∆̃rs,rs)2 + (∆̃r,r + ∆̃s,s)2
(5.23)

It is now possible to rewrite equation (5.23) as

TWBL(E) = 4β̃2 ∆r,r∆s,s −∆∆rs,rs

∆2

1

(1− β̃2 ∆rs,rs

∆ )2 + (β̃
∆r,r

∆ + β̃
∆s,s

∆ )2
(5.24)
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According to equation (3.78), the numerator of the first factor in equation (5.24)
can be written more compactly, leading to

TWBL(E) = 4β̃2
∆2
r,s

∆2

1

(1− β̃2 ∆rs,rs

∆
)2 + (β̃∆r,r

∆
+ β̃∆s,s

∆
)2

(5.25)

Taking the limit of β̃ → 0 in this equation, one can see that the denominator of
the second term becomes one, leaving only the first term and so equation (5.2) is
retrieved, showing that the weak coupling limit is a special case of the wide band
limit.

Equation (5.25) can be simplified by taking the first part of this section into con-
sideration. For alternant hydrocarbons with an even number of carbon atoms, ∆r,r

and ∆s,s are odd polynomials and so are ∆r,r

∆
and ∆s,s

∆
. The image of odd poly-

nomials at the origin is per definition zero. So for these systems, equation (5.25)
can, at the Fermi level, be rewritten as

TWBL(0) = 4β̃2
∆2
r,s

∆2

1

(1− β̃2 ∆rs,rs

∆
)2

(5.26)

Again according to equation (3.78) one can write

∆rs,rs

∆
=

∆s,s

∆

∆r,r

∆
−

∆2
r,s

∆2
(5.27)

leading to

TWBL(0) = 4β̃2
∆2
r,s

∆2

1

(1 + β̃2 ∆2
r,s

∆2 − β
2 ∆r,r

∆

∆s,s

∆
)2

(5.28)

Once more, ∆r,r

∆
and ∆s,s

∆
are zero. Equation (5.28) then becomes

TWBL(0) = 4β̃2
∆2
r,s

∆2

1

(1 + β̃2 ∆2
r,s

∆2 )2
(5.29)

In both this equation and the more general equation (5.25), the first factor of the
product is exactly the same as the expression for the transmission probability in
the weak coupling systems and can again be identified with the integrand in the
expression for the atom-atom polarizability. This leads to the same selection rule
as derived before. As we already noted, this selection rule is not restricted to the
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wide-band limit, but is generally applicable at the Fermi level.

Note that in equation (5.29) the denominator in the second factor can never be
zero, since β̃2 ∆2

r,s

∆2 is always positive. As such, the transmission probability is al-
ways defined for bipartite systems with no energy level located at the Fermi level.
In the more general equation (5.25), which is valid for all non-bipartite (planar)
systems, it can be possible that the denominator in the second factor becomes
zero. More research is needed to identify in which cases this happens. But, since
for bipartite systems with no energy level situated at the origin, equation (5.29)
is always valid, the systems studied in this work pose no problem. The proposed
selection rule is generally applicable to these systems.

Now that a relationship between transmission and atom-atom polarizability has
been established, the next part of this section will be used to validate the integral
calculation of the atom-atom polarizability through consideration of an example.
This graphical example also allows to get a better grasp of the proposed selection
rule.

For benzene, application of the program which is capable of calculating the atom-
atom polarizability leads to the following table

Table 5.1: atom-atom polarizability for benzene

1 2 3 4 5 6

1 -0.3981 0.1574 -0.0093 0.1019 -0.0093 0.1574
2 0.1574 -0.3981 0.1574 -0.0093 0.1019 -0.0093
3 -0.0093 0.1574 -0.3981 0.1574 -0.0093 0.1019
4 0.1019 -0.0093 0.1574 -0.3981 0.1574 -0.0093
5 -0.0093 0.1019 -0.0093 0.1574 -0.3981 0.1574
6 0.1574 -0.0093 0.1019 -0.0093 0.1574 -0.3981

Now returning to function X, for atoms in meta positions in benzene, the curve
of this function has the following form on the real axis
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Figure 5.29: X for meta positions real axis

On the imaginary axis, the curve has the following form

Figure 5.30: X for meta positions imaginary axis
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Numerical integration over this curve gives -0,0093 as a value, corresponding
exactly to the value found in the table above. One can clearly see in this figure
that the image of X on the imaginary axis is always negative and reaches zero at
the origin.

For atoms in para positions in benzene, the curve has the following form on the
real axis

Figure 5.31: X for para postions real axis

On the imaginary axis, the curve has the following form
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Figure 5.32: X for para positions imaginary axis

Numerical integration over this curve gives 0,1019 as a value, corresponding
to the value found in the table above. This time, the image of the function is
always positive, and differs from zero at the origin. Taking the value of X at the
origin and plugging it into equation (5.29) leads to a transmission probability of
0,3951 at the origin, which corresponds closely to the value calculated by our
program (see appendix B) and the results presented by Fowler et al. [4]
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Chapter 6

Conclusions

In this study, programs for the calculation of the transmission probability, the
atom-atom polarizability and the linear response current at the Hückel level of
theory have been implemented successfully. An alternative version of the pro-
gram capable of calculating the transmission probability has been developed for
the first time which enables the calculation of all possible configurations of con-
tacts simultaneously.

With these tools at our disposal, a series of polycyclic aromatic hydrocarbons
has been studied. Analysis of the results revealed that a positive atom-atom po-
larizability between the contact atoms is a necessary condition for transmission to
take place at the Fermi level. This selection rule has been proven theoretically to
be valid for all bipartite systems with no energy level situated at the origin of the
energy axis in Hückel theory.

Moreover it seems that, for a fixed first contact, the atom which possesses the
highest atom-atom polarizability with this contact atom will facilitate the highest
transmission probability when the second contact is located at this position. From
this atom on, the transmission probability decreases monotonously in either direc-
tion away from this atom. The direction of the sharpest decline in transmission
probability is the direction of that neighbor of the atom with the highest transmis-
sion probability, which exhibits relatively the lowest atom-atom polarizability.

We also showed that configurations that exhibit a high transmission probability
at the Fermi level also exhibit a high linear response current and thus become
relatively conducting at low bias. Configurations that exhibit a low transmission
probability act as relative insulators when a low bias is applied.
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Chapter 7

Outlook

In this final chapter, a few possible future research topics are explored. In a first
section, the possibility to expand the selection rule for transmission based on the
atom-atom polarizability to non-bipartite systems is explored. This is done in a
mere theoretical way, as time constraints made it impossible to back this up with
actual calculations.

Another section is devoted to the exploration of a possible physical interpretation
of the link between the transmission probability and the atom-atom polarizability.
In this section, some indications are presented that would allow the identification
of X with the square of the unperturbed Green’s function of the molecule. Al-
though these indications come across as quite convincing, our understanding of
Green’s functions is very limited, encouraging us to remain very cautious not to
make premature assertions. As will be noted in the specific section, a lot of work
is still needed to fully grasp all aspects of Green’s functions.

A final topic that could be explored is whether the selection rule can be ex-
panded to higher levels of theory, for example Hartree-Fock or DFT. This ex-
pansion would allow the application of our selection rule to general molecules
which can not be studied in Hückel theory. However, no work has been done on
this already, so we won’t elaborate on such an expansion in this chapter.
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7.1 Expansion of the proposed selection rule to non-
bipartite systems

In section 5.6 a selection rule for the transmission has been proposed for alternant
hydrocarbons with no energy levels situated at the origin. Now, one can start to
think about expanding this rule to more general classes of molecules, like non
bipartite planar systems. Such an expansion would also make it possible to study
molecules with heteroatoms.

For planar systems it is still possible to construct and diagonalize the Hπ ma-
trix to obtain π-electron levels and wave functions. The resulting diagonalized
matrix contains all the roots of the characteristic polynomial. With these roots,
the factorized form of the characteristic polynomial (∆) can be constructed

∆ = (z − a1)(z − a2)...(z − an) (7.1)

where a1, a2, ..., an are the roots of the characteristic polynomial.

Taking the square of this polynomial leads to ∆2, which is the denominator of
X. For general planar systems, one can not assume that ∆ is even or odd, so gen-
erally the image of ∆2 will contain a real and an imaginary part on the imaginary
axis. It is however convenient, when working with rational functions, to have
a completely real denominator. The image of ∆2 can be made entirely real by
multiplying ∆2 with the square of the following factorized polynomial

∆+ = (z + a1)(z + a2)...(z + an) (7.2)

where −a1,−a2, ...,−an are the roots of the characteristic polynomial. This way,
∆2 ∗ (∆+)2 will be completely real. This can be demonstrated easily. One can
generally write that

∆2 ∗ (∆+)2 = (z2 − a2
1)2(z2 − a2

2)2 ... (z2 − a2
n)2 (7.3)

On the imaginary axis, z can be replaced with iy, leading to

∆2 ∗ (∆+)2 = (−y2 − a2
1)2(−y2 − a2

2)2 ... (−y2 − a2
n)2 (7.4)

which shows that the image of this polynomial on the imaginary axis is entirely
real.
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It now becomes possible to write X in such a way that its denominator becomes
real

X =
∆2
r,s

∆2
=

∆2
r,s

∆2
∗ (∆+)2

(∆+)2
=

∆2
r,s ∗ (∆+)2

∆2 ∗ (∆+)2
(7.5)

As the factorized polynomial of ∆r,s can, analogously to the construction of ∆,
be constructed through diagonalization of Hπ

r,s, it becomes possible to write the
numerator of X as a factorized polynomial. From the factorized form, the general
expression for the resulting polynomial can be obtained

∆2
r,s ∗ (∆+)2 = a0(z)n + a1(z)n−1 + ...+ an−1(z) + an (7.6)

Such a general polynomial contains both terms of even and odd power. In section
5.6 it was demonstrated that on the imaginary axis, terms of odd power lead to
an entirely imaginary image, while terms of even power lead to an entirely real
image. If one separates the terms of even powers from the ones of odd power,
one can write the complex polynomial as as the sum of a real and an imaginary
part of the form u + iv, where u is a real and even function and v is a real and
odd function. As the the image of the denominator of X is entirely real on the
imaginary axis and never changes signs (all roots are situated on the real axis),
X as a whole can also be separated in a real and odd part on the imaginary axis,
leading to

X(iy) = u(iy) + iv(iy) (7.7)

Calculating the atom-atom polarizability involves integration of X over the imag-
inary axis. As v(iy) is odd, its integral over the imaginary axis is zero. This leads
to the conclusion that the atom-atom polarizability is always real and never has an
imaginary part. This result agrees with what one would expect. As u(iy) is even,
its integral over the imaginary usually differs from zero.

Consider now the case where ∆r,s has no roots on the imaginary axis, except
for the origin potentialy. As all roots of ∆ were situated on the real axis, so will
all the roots of (∆+)2. So it becomes evident that in this case, the numerator of X
(∆2

r,s ∗ (∆+)2) has no roots on the imaginary axis and neither does the denomina-
tor. So, in this case, X is either positive or negative on the imaginary axis but can
not change signs. This leads to 2 possible situations
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• The atom-atom polarizability is positive. This means that the image of X on
the imaginary axis is positive all the time. As was already mentioned, the
image of the function is always positive on the real axis, so no restrictions
are posed on the image at the origin. The image at the origin will be positive
and can be reached in a continuous way across both axes.

• The atom-atom polarizability is negative. This means that the image of the
function on the imaginary axis is negative all the time. As the image of X
is always positive on the real axis (a sum of squares is always real when
no imaginary coefficients are present), a restriction is posed on the image
at the origin. In order for the function to be continuous at this point, the
image at this point has to be reached in a continuous way both on the real
and imaginary axis; the image has to be part of both R+ and R−. The only
number which belongs to both sets is zero. When X is zero at the origin, no
transmission will take place (see equation (5.25)).

This analysis clearly shows that theoretically, it is possible to expand the ear-
lier proposed selection rule to other classes of systems. The only conditions that
have to be fulfilled are that no pole can be situated at the origin and that ∆r,s can
not have any roots on the imaginary axis except for the origin itself. Some calcu-
lations will have to be performed in order to confirm the theoretical expansion of
this selection rule.

As of this moment, we also do not know for which classes of systems this require-
ment is fulfilled and for which it is not, but identifying these classes of systems
would allow us to apply the earlier proposed selection rule to a lot more systems
than the ones discussed in this work.

A remark to be made is that by multiplying ∆2 with (∆+)2, the situation of alter-
nant hydrocarbons with an even number of carbon atoms is ’mimicked’: the roots
of (∆+)2 are the counterparts of the roots of ∆2, leading to a final polynomial (the
denominator in X) which roots are all paired on the real axis.
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7.2 Can the link between the transmission proba-
bility and the atom-atom polarizability be inter-
preted physically?

In section 5.6, a mathematical relationship between the transmission probability
and the atom-atom polarizability was established. Based on the behavior of the
underlying X function, selection rules for transmission were proposed. This way,
the objectives of this thesis were met. One can however now start to think about
the meaning of this underlying X function which links both quantities. In this final
section a first attempt will be made to find a proper interpretation for this function.

As a start, we would like to focus on the final expression for X in equation (5.6).
The numerator of X involves the characteristic polynomial ∆r,s. Fowler et al.
already mentioned that this polynomial links their expressions with the Green’s
function formalism, as it was introduced by Mujica et al. [13] Taking a look at their
work on Green’s functions, the expression on which the assertion of Fowler et al.
is based states that

Grs =
|h̃M(r|s)|
|h̃M |

(7.8)

where Grs is the Green’s function between contact atoms r and s, |h̃M | denotes
the determinant of Hamiltonian h̃M and h̃M(i|j) the cofactor of the element (ij)
of h̃M .

Although the structure of this expression is the same as the expression for
√
X ,

these two expressions are not entirely the same. The reason for this is that the
Hamiltonian matrix connected to equation (7.8) differs from the Hamiltonian used
in equation (5.6). This difference is caused by the interaction between the reser-
voirs and the molecule. This interaction causes so called ’self-energy’-terms to
arise in the Hamiltonian matrix elements corresponding to the contact atoms.
The precise meaning of these self-energies and the derivation and meaning of
the Green’s function formalism will not be discussed here (for more information
see Mujica et al.), [13] but what is important to know is that when there is a strong
interaction between the reservoirs and the molecule, these terms will be big, and
when the interaction is weak, these terms will be small.

So, in the limit of no interaction, the following relationship is valid
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X =
∆2
r,s

∆2
= |G0

rs(0)|2 (7.9)

This argument about the meaning of X can be backed up by considering the re-
search done by Yoshizawa et al. [5] In their work, a selection rule for transmission
through molecules was derived based on the unperturbed Green’s functions. What
is interesting is that Yoshizawa used a MO expansion coefficient expression of the
unperturbed Green’s function

G(0)
rs (E) =

∑
k

CrkC
?
sk

E − εk ± iη
(7.10)

Or, as η → 0 and focussing on the Green’s function at the Fermi level (E=0)

G(0)
rs (0) = −

∑
k

CrkC
?
sk

εk
(7.11)

This expansion coefficient expression is related to the expression of the charac-
teristic polynomials in the same way as the expressions for the atom-atom po-
larizability in equations (3.115) and (3.106) are related. So, if our assertion in
equation (7.9) were correct, then it should be possible to obtain the same trans-
mission probability results with the unperturbed Green’s functions instead of X,
independent of whether ∆2

r,s

∆2 or
∑

k

∑
j

CrkC
?
skCrjC

?
sj

εk∗εj
is used. This statement was

tested for the systems that were studied in this work in the wide band limit, leading
to the following results
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Figure 7.1: |G0
1N(0)|2 for benzene

Figure 7.2: |G0
1N(0)|2 for naphthalene

85



Figure 7.3: |G0
1N(0)|2 for anthracene

Figure 7.4: Transmission probability at the Fermi level for benzene, calculated
through |G0

1N(0)|2
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Figure 7.5: Transmission probability at the Fermi level for naphthalene, calculated
through |G0

1N(0)|2

Figure 7.6: Transmission probability at the Fermi level for anthracene, calculated
through |G0

1N(0)|2

The code for the program which was used for these calculations has been
added as an appendix (see appendix C).

These last 3 graphs completely agree with the transmission probability at the
Fermi level in the SSP method as they were presented before. So it seems that
X can indeed be connected to |G0

rs(0)|2. This would lead to the conclusion that
the atom-atom polarizability is the integral over the imaginary axis of the unper-
turbed Green’s function.
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In order to be able to fully interpret what this integral over the imaginary axis
of the Green’s function means physically, full understanding of all the aspects of
Green’ functions first has to be achieved. A final note is that Green’s functions
can be considered to be the impulse response (output) of of a linear system with
zero initial conditions and a unit impulse function as the input. [40] This is a clear
indication that unperturbed Green’s functions should indeed somehow be phys-
ically connected to the atom-atom polarizability/linear response. More research
will be necessary to work out further this relationship.
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Appendix A

Derivation of the expression for the
transmission probability in the SSP
method

Taking a look at equation (3.62), and separating the r-dependent factors from the
r-independent factors, the following equation can be obtained

(E−aLL)[(E−aRR)∆−β2
rR∆r,r] = −β2

sLβ
2
rR∆rs,rs+β2

sL(E−aRR)∆s,s (A.1)

aRR and aLL can now be replaced, according to equation (3.58) and equation(3.59)

aRR = αR + βRe
iqR (A.2)

aLL = αL + βL
e−iqL + reiqL

1 + r
(A.3)

Taking into account now that the energy is conserved as an electron moves from
the left contact, through the molecule, into the right contact, the three wave-
vectors can now be related to each other.

E = αL + 2βL cos qL = α + 2β cos q = αR + 2βR cos qR (A.4)

This enables a substitution of E in the terms (E − aLL) and (E − aRR) from
equation (A.1)
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(E − aLL) = 2βL cos qL − βL
e−iqL + reiqL

1 + r
(A.5)

(E − aRR) = 2βR cos qR − βReiqR

= 2βR cos qR − βR cos qR − iβR sin qR

= βRe
−iqR (A.6)

Substitution in equation (A.1) leads to the following expression, after division of
the righthand side of the equation by the term put between brackets, of the lefthand
side,

2βL cos qL − βL
e−iqL + reiqL

1 + r
=
−β2

sLβ
2
rR∆rs,rs + β2

sLβRe
−iqR∆s,s

βRe−iqR − β2
rR∆r,r

(A.7)

Dividing both numerator and denominator of the righthand side by βR, applying
the same denominator to the entire lefthand side of the equation and applying
Euler’s formula, the former expression can be transformed to

−∆̃rs,rs + e−iqR∆̃s,s

e−iqR∆̃− ∆̃r,r

=

(A.8)
2 cos qL + 2r cos qL − cos qL + i sin qL − r cos qL − ir sin qL

1 + r

Which can be simplified to

eiqL + re−iqL

1 + r
=
−∆̃rs,rs + e−iqR∆̃s,s

e−iqR∆̃− ∆̃r,r

(A.9)

applying distributivity leads to

eiqLe−iqR∆̃− eiqL∆̃r,r + re−iqLe−iqR∆̃− re−iqL∆̃r,r = (A.10)

− ∆̃rs,rs + e−iqR∆̃s,s − r∆̃rs,rs + re−iqR∆̃s,s

93



separating all r-dependent terms from all r-independent terms leads to the fol-
lowing expression

r(∆̃rs,rs − e−iqR∆̃s,s + e−iqLe−iqR∆̃− e−iqL∆̃r,r) = (A.11)

− eiqLe−iqR∆̃ + eiqL∆̃r,r − ∆̃rs,rs + e−iqR∆̃s,s (A.12)

It can be seen easily that this expression leads to the following equation

r = − eiqL(e−iqR∆̃− ∆̃r,r)− (e−iqR∆̃s,s − ∆̃rs,rs)

e−iqL(e−iqR∆̃− ∆̃r,r)− (e−iqR∆̃s,s − ∆̃rs,rs)
=

eiqLF −G
e−iqLF −G

(A.13)

where

F = e−iqR∆̃− ∆̃r,r G = e−iqR∆̃s,s − ∆̃rs,rs (A.14)

Substituting this equation into the expression for T(E) leads to the following final
equation for the transmission probability

T (E) =
4 sin qL sin qR(∆̃r,r∆̃s,s − ∆̃∆̃rs,rs)

|e−i(qL+qR)∆̃− e−iqR∆̃s,s − e−iqL∆̃r,r + ∆̃rs,rs|2
(A.15)
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Appendix B

Numerical results for the performed
calculations

B.1 The atom-atom polarizability

Table B.1: atom-atom polarizability for benzene

1 2 3 4 5 6

1 -0.3981 0.1574 -0.0093 0.1019 -0.0093 0.1574
2 0.1574 -0.3981 0.1574 -0.0093 0.1019 -0.0093
3 -0.0093 0.1574 -0.3981 0.1574 -0.0093 0.1019
4 0.1019 -0.0093 0.1574 -0.3981 0.1574 -0.0093
5 -0.0093 0.1019 -0.0093 0.1574 -0.3981 0.1574
6 0.1574 -0.0093 0.1019 -0.0093 0.1574 -0.3981
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B.2 The transmission probability

Table B.7: Transmission probability for benzene at the Fermi level

1 2 3 4 5 6

1 0.000 0.401 0.000 0.401 0.000 0.401
2 0.401 0.000 0.401 0.000 0.401 0.000
3 0.000 0.401 0.000 0.401 0.000 0.401
4 0.401 0.000 0.401 0.000 0.401 0.000
5 0.000 0.401 0.000 0.401 0.000 0.401
6 0.401 0.000 0.401 0.000 0.401 0.000
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B.3 The linear response current

Table B.13: IV benzene

V (β) I(1-1) I(1-2) I(1-3) I(1-4)

0.00 1.15E-13 4.01E-04 1.28E-14 4.01E-04
0.10 9.87E-05 4.06E-02 1.10E-05 4.06E-02
0.20 7.80E-04 8.09E-02 8.73E-05 8.11E-02
0.30 2.63E-03 1.21E-01 2.97E-04 1.22E-01
0.40 6.27E-03 1.63E-01 7.17E-04 1.64E-01
0.50 1.23E-02 2.04E-01 1.43E-03 2.08E-01
0.60 2.15E-02 2.47E-01 2.55E-03 2.53E-01
0.70 3.45E-02 2.90E-01 4.21E-03 3.00E-01
0.80 5.22E-02 3.35E-01 6.55E-03 3.50E-01
0.90 7.53E-02 3.81E-01 9.78E-03 4.02E-01
1.00 1.05E-01 4.28E-01 1.41E-02 4.58E-01
1.10 1.41E-01 4.77E-01 1.99E-02 5.19E-01
1.20 1.86E-01 5.27E-01 2.75E-02 5.83E-01

107



Ta
bl

e
B

.1
4:

IV
na

ph
ta

le
ne

V
(β

)
I(

1-
1)

I(
1-

2)
I(

1-
3)

I(
1-

4)
I(

1-
5)

I(
1-

6)
I(

1-
7)

I(
1-

8)
I(

1-
9)

I(
1-

10
)

0.
00

1.
61

E
-1

3
2.

03
E

-0
4

6.
30

E
-1

4
2.

03
E

-0
4

4.
03

E
-1

4
2.

03
E

-0
4

2.
52

E
-1

5
2.

03
E

-0
4

1.
01

E
-1

4
6.

03
E

-0
4

0.
10

1.
39

E
-0

4
2.

05
E

-0
2

5.
44

E
-0

5
2.

05
E

-0
2

3.
49

E
-0

5
2.

06
E

-0
2

2.
20

E
-0

6
2.

06
E

-0
2

8.
68

E
-0

6
6.

09
E

-0
2

0.
20

1.
10

E
-0

3
4.

06
E

-0
2

4.
37

E
-0

4
4.

10
E

-0
2

2.
82

E
-0

4
4.

13
E

-0
2

1.
82

E
-0

5
4.

14
E

-0
2

6.
90

E
-0

5
1.

22
E

-0
1

0.
30

3.
74

E
-0

3
6.

03
E

-0
2

1.
51

E
-0

3
6.

18
E

-0
2

9.
84

E
-0

4
6.

29
E

-0
2

6.
64

E
-0

5
6.

30
E

-0
2

2.
35

E
-0

4
1.

83
E

-0
1

0.
40

8.
98

E
-0

3
7.

94
E

-0
2

3.
74

E
-0

3
8.

31
E

-0
2

2.
46

E
-0

3
8.

57
E

-0
2

1.
77

E
-0

4
8.

60
E

-0
2

5.
67

E
-0

4
2.

46
E

-0
1

0.
50

1.
79

E
-0

2
9.

75
E

-0
2

7.
73

E
-0

3
1.

05
E

-0
1

5.
17

E
-0

3
1.

10
E

-0
1

4.
04

E
-0

4
1.

11
E

-0
1

1.
14

E
-0

3
3.

11
E

-0
1

0.
60

3.
16

E
-0

2
1.

14
E

-0
1

1.
43

E
-0

2
1.

28
E

-0
1

9.
80

E
-0

3
1.

38
E

-0
1

8.
54

E
-0

4
1.

39
E

-0
1

2.
02

E
-0

3
3.

79
E

-0
1

0.
70

5.
17

E
-0

2
1.

29
E

-0
1

2.
48

E
-0

2
1.

51
E

-0
1

1.
74

E
-0

2
1.

68
E

-0
1

1.
74

E
-0

3
1.

70
E

-0
1

3.
33

E
-0

3
4.

49
E

-0
1

0.
80

8.
00

E
-0

2
1.

40
E

-0
1

4.
09

E
-0

2
1.

76
E

-0
1

2.
96

E
-0

2
2.

04
E

-0
1

3.
54

E
-0

3
2.

07
E

-0
1

5.
17

E
-0

3
5.

23
E

-0
1

0.
90

1.
19

E
-0

1
1.

47
E

-0
1

6.
52

E
-0

2
2.

02
E

-0
1

4.
89

E
-0

2
2.

46
E

-0
1

7.
33

E
-0

3
2.

51
E

-0
1

7.
66

E
-0

3
6.

01
E

-0
1

1.
00

1.
71

E
-0

1
1.

49
E

-0
1

1.
01

E
-0

1
2.

28
E

-0
1

7.
88

E
-0

2
2.

99
E

-0
1

1.
58

E
-0

2
3.

04
E

-0
1

1.
09

E
-0

2
6.

84
E

-0
1

1.
10

2.
40

E
-0

1
1.

51
E

-0
1

1.
51

E
-0

1
2.

52
E

-0
1

1.
23

E
-0

1
3.

65
E

-0
1

3.
59

E
-0

2
3.

67
E

-0
1

1.
45

E
-0

2
7.

71
E

-0
1

1.
20

3.
29

E
-0

1
1.

74
E

-0
1

2.
15

E
-0

1
2.

67
E

-0
1

1.
83

E
-0

1
4.

50
E

-0
1

8.
17

E
-0

2
4.

39
E

-0
1

1.
71

E
-0

2
8.

57
E

-0
1

108



Ta
bl

e
B

.1
5:

IV
an

th
ra

ce
ne

V
(β

)
I(

1-
1)

I(
1-

2)
I(

1-
3)

I(
1-

4)
I(

1-
5)

I(
1-

6)
I(

1-
7)

I(
1-

8)
I(

1-
9)

I(
1-

10
)

I(
1-

11
)

I(
1-

12
)

I(
1-

13
)

I(
1-

14
)

0.
00

2.
58

E
-1

3
6.

93
E

-0
4

2.
87

E
-1

4
4.

01
E

-0
4

3.
19

E
-1

5
1.

20
E

-0
4

2.
87

E
-1

4
1.

20
E

-0
4

7.
97

E
-1

4
1.

20
E

-0
4

2.
04

E
-1

3
1.

20
E

-0
4

1.
56

E
-1

3
1.

20
E

-0
4

0.
10

2.
23

E
-0

4
7.

01
E

-0
2

2.
49

E
-0

5
4.

07
E

-0
2

2.
82

E
-0

6
1.

22
E

-0
2

2.
52

E
-0

5
1.

22
E

-0
2

6.
97

E
-0

5
1.

22
E

-0
2

1.
77

E
-0

4
1.

21
E

-0
2

1.
36

E
-0

4
1.

20
E

-0
2

0.
20

1.
79

E
-0

3
1.

40
E

-0
1

2.
03

E
-0

4
8.

23
E

-0
2

2.
42

E
-0

5
2.

51
E

-0
2

2.
13

E
-0

4
2.

49
E

-0
2

5.
81

E
-0

4
2.

45
E

-0
2

1.
45

E
-0

3
2.

39
E

-0
2

1.
11

E
-0

3
2.

33
E

-0
2

0.
30

6.
22

E
-0

3
2.

12
E

-0
1

7.
23

E
-0

4
1.

26
E

-0
1

9.
45

E
-0

5
3.

96
E

-0
2

8.
05

E
-0

4
3.

89
E

-0
2

2.
14

E
-0

3
3.

76
E

-0
2

5.
18

E
-0

3
3.

54
E

-0
2

3.
98

E
-0

3
3.

34
E

-0
2

0.
40

1.
54

E
-0

2
2.

87
E

-0
1

1.
87

E
-0

3
1.

74
E

-0
1

2.
80

E
-0

4
5.

72
E

-0
2

2.
27

E
-0

3
5.

54
E

-0
2

5.
82

E
-0

3
5.

19
E

-0
2

1.
33

E
-0

2
4.

62
E

-0
2

1.
03

E
-0

2
4.

15
E

-0
2

0.
50

3.
22

E
-0

2
3.

66
E

-0
1

4.
16

E
-0

3
2.

27
E

-0
1

7.
52

E
-0

4
8.

01
E

-0
2

5.
70

E
-0

3
7.

63
E

-0
2

1.
37

E
-0

2
6.

83
E

-0
2

2.
87

E
-0

2
5.

58
E

-0
2

2.
29

E
-0

2
4.

65
E

-0
2

0.
60

6.
11

E
-0

2
4.

50
E

-0
1

8.
72

E
-0

3
2.

87
E

-0
1

2.
04

E
-0

3
1.

12
E

-0
1

1.
39

E
-0

2
1.

05
E

-0
1

3.
02

E
-0

2
8.

82
E

-0
2

5.
50

E
-0

2
6.

30
E

-0
2

4.
65

E
-0

2
4.

79
E

-0
2

0.
70

1.
10

E
-0

1
5.

41
E

-0
1

1.
87

E
-0

2
3.

52
E

-0
1

6.
27

E
-0

3
1.

61
E

-0
1

3.
53

E
-0

2
1.

50
E

-0
1

6.
41

E
-0

2
1.

15
E

-0
1

9.
57

E
-0

2
6.

60
E

-0
2

8.
92

E
-0

2
5.

01
E

-0
2

0.
80

1.
91

E
-0

1
6.

34
E

-0
1

4.
54

E
-0

2
4.

20
E

-0
1

2.
49

E
-0

2
2.

33
E

-0
1

9.
14

E
-0

2
2.

24
E

-0
1

1.
27

E
-0

1
1.

57
E

-0
1

1.
50

E
-0

1
7.

08
E

-0
2

1.
59

E
-0

1
8.

18
E

-0
2

0.
90

2.
83

E
-0

1
7.

08
E

-0
1

8.
78

E
-0

2
4.

81
E

-0
1

7.
15

E
-0

2
3.

20
E

-0
1

1.
87

E
-0

1
3.

20
E

-0
1

2.
12

E
-0

1
1.

94
E

-0
1

2.
12

E
-0

1
1.

24
E

-0
1

2.
46

E
-0

1
1.

69
E

-0
1

1.
00

3.
20

E
-0

1
7.

34
E

-0
1

1.
00

E
-0

1
5.

30
E

-0
1

9.
93

E
-0

2
3.

95
E

-0
1

2.
68

E
-0

1
3.

76
E

-0
1

2.
96

E
-0

1
1.

96
E

-0
1

2.
74

E
-0

1
1.

88
E

-0
1

3.
20

E
-0

1
2.

67
E

-0
1

1.
10

3.
24

E
-0

1
7.

36
E

-0
1

1.
02

E
-0

1
5.

63
E

-0
1

1.
15

E
-0

1
4.

49
E

-0
1

3.
26

E
-0

1
3.

97
E

-0
1

3.
64

E
-0

1
1.

98
E

-0
1

3.
30

E
-0

1
2.

44
E

-0
1

3.
68

E
-0

1
3.

54
E

-0
1

1.
20

3.
26

E
-0

1
7.

42
E

-0
1

1.
02

E
-0

1
5.

84
E

-0
1

1.
26

E
-0

1
4.

87
E

-0
1

3.
70

E
-0

1
4.

04
E

-0
1

4.
20

E
-0

1
2.

04
E

-0
1

3.
80

E
-0

1
2.

99
E

-0
1

3.
96

E
-0

1
4.

34
E

-0
1

109



Appendix C

Code of the implemented programs

C.1 Program to calculate the transmission proba-
bility

program alttransmissionall
implicit none
integer :: n,i,j,r,E
real :: w,x,y,z,T,betal,betar
real*8, pointer :: A(:,:), C(:,:),temp(:,:),K(:), Tr(:,:)

print *, ’ ’
!read size of matrix A
print *, ’What is the dimension of the square matrix?’
read *, n

!allocate memory for A and C
allocate(A(1:n,1:n))
allocate(C(1:n,1:n))
allocate(temp(1:n,1:n))
allocate(K(1:n))
allocate(Tr(1:n,1:n))

!read connectivity matrix A
open(12,file=’input tetracene.txt’)
do i=1,n
read(12,*) (A(i,j), j=1, N)
end do
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call outputra(n,A)

!save A before inversion
temp=A

!create transmission output file for plotting T curve
!redefine diagonal elements, make a list of all E-values
open(13,file=’invoutput.txt’)
do E=-300,300
do i=1,n
temp(i,i)=E/100.0
end do
A=temp

call inverse(A,C,n)

do r=1,n

!define w as ∆s,s

∆
, x as ∆r,r

∆
, y as ∆r,s

∆
and z as ∆rs,rs

∆

w=C(1,1)
x=C(r,r)
y=C(1,r)
z=(x*w-y**2)
betal=1/1.4
betar=1/1.4

!calculate the transmission
T=(4*(betar*x*betal*w-betal*betar*z)
/((1-betal*betar*z)**2+(betar*x+betar*w)**2))
!store T in a matrix for each value of r
K(r)=T
end do
write(13,*) E/100.0, (K(r),r=1,n)
end do

!create postscript input
open(14, file=’Toutput.txt’)

do i=1,n
temp(i,i)=0.000001
end do
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A=temp

call inverse(A,C,n)

do r=1,n

!define w as ∆s,s

∆
, x as ∆r,r

∆
, y as ∆r,s

∆
and z as ∆rs,rs

∆

w=C(7,7)
x=C(r,r)
y=C(7,r)
z=(x*w-y**2)
betal=1/1.4
betar=1/1.4

!calculate the transmission
T=(4*(betar*x*betal*w-betal*betar*z)
/((1-betal*betar*z)**2+(betar*x+betar*w)**2))
!store T in a matrix for each value of r
write(14,*) T
end do

!create table with numerical results
open(14, file=’Ttetracenetable.txt’)

do i=1,n
temp(i,i)=0.000001
end do
A=temp

call inverse(A,C,n)

do i=1,n
do r=1,n

!define w as ∆s,s

∆
, x as ∆r,r

∆
, y as ∆r,s

∆
and z as ∆rs,rs

∆

w=C(i,i)
x=C(r,r)
y=C(i,r)
z=(x*w-y**2)
betal=1/1.4
betar=1/1.4
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!calculate the transmission
Tr(i,r)=(4*(betar*x*betal*w-betal*betar*z)
/((1-betal*betar*z)**2+(betar*x+betar*w)**2))
!store T in a matrix for each value of r
end do
write(14,*) (Tr(i,r),r=1,n)
end do

end program
!++++++++++++++++++++++++++++++++++++++++++
subroutine inverse(A,C,n)
! adapted from ’Numerical Recipes in Fortran 90, Second Edition (1996)’
implicit none
integer n
double precision A(n,n), C(n,n)
double precision L(n,n), U(n,n), b(n), d(n), x(n)
double precision coeff
integer i, j, k

! step 0: initialization for matrices L and U and b
! Fortran 90/95 allows such operations on matrices
L=0.0
U=0.0
b=0.0

! step 1: forward elimination
do k=1, n-1
do i=k+1,n
coeff=A(i,k)/A(k,k)
L(i,k) = coeff
do j=k+1,n
A(i,j) = A(i,j)-coeff*A(k,j)
end do
end do
end do

! Step 2: prepare L and U matrices
! L matrix is a matrix of the elimination coefficient
! + the diagonal elements are 1.0
do i=1,n
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L(i,i) = 1.0
end do
! U matrix is the upper triangular part of A
do j=1,n
do i=1,j
U(i,j) = A(i,j)
end do
end do

! Step 3: compute columns of the inverse matrix C
do k=1,n
b(k)=1.0
d(1) = b(1)
! Step 3a: Solve Ld=b using the forward substitution
do i=2,n
d(i)=b(i)
do j=1,i-1
d(i) = d(i) - L(i,j)*d(j)
end do
end do
! Step 3b: Solve Ux=d using the back substitution
x(n)=d(n)/U(n,n)
do i = n-1,1,-1
x(i) = d(i)
do j=n,i+1,-1
x(i)=x(i)-U(i,j)*x(j)
end do
x(i) = x(i)/u(i,i)
end do
! Step 3c: fill the solutions x(n) into column k of C
do i=1,n
C(i,k) = x(i)
end do
b(k)=0.0
end do
end subroutine inverse
!+++++++++++++++++++++++++++++++
subroutine outputra(n,A)
implicit none
integer :: n,row,col
real*8 A(n,n)
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character :: reply*1
do row =1,n
write(*,11) (A(row,col),col=1,n)
11 format(100f10.5)
end do
print*,’ ’
print*,’Hit a key and press enter to continue’
read *,reply
end subroutine outputra
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C.2 Program to calculate the atom-atom polarizabil-
ity

Program aapolarizability
implicit none
integer ialloc, k,n, NROT,i,E,j,c,b
real :: pi
real*8, pointer :: A(:,:),X(:,:),V(:,:),D(:),Z(:),P(:,:),wksp(:)
integer, pointer :: iwksp(:)

print *,’ ’
!read size of matrix A
print *, ’what is the dimension of the square matrix?’
read *, n

!allocate memory for A and P
allocate(A(1:n,1:n))
allocate(X(1:n,1:n))
allocate(V(1:n,1:n))
allocate(D(1:n))
allocate(P(1:n,1:n))
allocate(iwksp(1:n))
allocate(wksp(1:n))

!read connectivity matrix A
open(12,file=’input pentacene.txt’)
do i=1,n
read(12,*) (A(i,j), j=1, N)
end do

call outputra(n,A)

!diagonalization
call Jacobi(A,N,D,V,NROT)
do i=1,n
print *, i,D(i)
end do

call outputra(n,V)
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!sorting of eigenvalues and eigenvectors from low to high value
call sort(n,D,V,wksp,iwksp)

do i=1,n
print *, D(i)
end do

call outputra(n,V)

!writing of output
open(11, file=’aapoutput.txt’)
do c=1,n
do b=1,n
pi=0.0
do j=1,n/2
do k=(n/2)+1,n
pi=pi-((4*(V(c,j)*V(c,k))*(V(b,j)*V(b,k)))/(D(k)-D(j)))
end do
end do
P(c,b)=pi
print *, c,b,P(c,b)
end do
end do

call outputra(n,P)

do c=1,n
write(11,*) (P(c,b),b=1,n)
11 format(100f10.5)
end do
flush(11)

open(12, file=’aappentacene.txt’)
do b=1,n
do c=1,n
write(12,*) P(c,b)
end do
end do

END
!+++++++++++++++++++++++++++++++
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!output of matrix A
subroutine outputra(n,A)
implicit none
integer :: n,row,col
real*8 A(n,n)
character :: reply*1
do row =1,n
write(*,11) (A(row,col),col=1,n)
11 format(100f10.5)
end do
print*,’ ’
print*,’Hit a key and press enter to continue’
read *,reply
end subroutine outputra
!+++++++++++++++++++++++++++++++++
!diagonalisation through jacobi rotations
! adapted from ’Numerical Recipes in Fortran 90, Second Edition (1996)’
Subroutine Jacobi(A,N,D,V,NROT)
integer N,NROT
real*8 A(1:N,1:N),D(1:N),V(1:N,1:N)
real*8, pointer :: B(:), Z(:)
real*8 c,g,h,s,sm,t,tau,theta,tresh

allocate(B(1:100),stat=ialloc)
allocate(Z(1:100),stat=ialloc)

do ip=1, N !initialize V to identity matrix
do iq=1, N
V(ip,iq)=0.d0
end do
V(ip,ip)=1.d0
end do
do ip=1, N
B(ip)=A(ip,ip)
D(ip)=B(ip)
Z(ip)=0.d0
end do
NROT=0
do i=1, 50
sm=0.d0
do ip=1, N-1 !sum off-diagonal elements
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do iq=ip+1, N
sm=sm+DABS(A(ip,iq))
end do
end do
if(sm==0.d0) return !normal return
if(i.lt.4) then
tresh=0.2d0*sm/n**2
else
tresh=0.d0
end if
do ip=1, N-1
do iq=ip+1, N
g=100.d0*DABS(A(ip,iq))
! after 4 sweeps, skip the rotation if the off-diagonal element is small
if((i.gt.4).and.(DABS(D(ip))+g.eq.DABS(D(ip))) &
.and.(DABS(D(iq))+g.eq.DABS(D(iq)))) then
A(ip,iq)=0.d0
else
if(DABS(A(ip,iq)).gt.tresh) then
h=D(iq)-D(ip)
if(DABS(h)+g.eq.DABS(h)) then
t=A(ip,iq)/h
else
theta=0.5d0*h/A(ip,iq)
t=1.d0/(DABS(theta)+DSQRT(1.d0+theta**2))
if(theta.lt.0.d0) t=-t
end if
c=1.d0/DSQRT(1.d0+t**2)
s=t*c
tau=s/(1.d0+c)
h=t*A(ip,iq)
Z(ip)=Z(ip)-h
Z(iq)=Z(iq)+h
D(ip)=D(ip)-h
D(iq)=D(iq)+h
A(ip,iq)=0.d0
do j=1, ip-1
g=A(j,ip)
h=A(j,iq)
A(j,ip)=g-s*(h+g*tau)
A(j,iq)=h+s*(g-h*tau)
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end do
do j=ip+1, iq-1
g=A(ip,j)
h=A(j,iq)
A(ip,j)=g-s*(h+g*tau)
A(j,iq)=h+s*(g-h*tau)
end do
do j=iq+1, N
g=A(ip,j)
h=A(iq,j)
A(ip,j)=g-s*(h+g*tau)
A(iq,j)=h+s*(g-h*tau)
end do
do j=1, N
g=V(j,ip)
h=V(j,iq)
V(j,ip)=g-s*(h+g*tau)
V(j,iq)=h+s*(g-h*tau)
end do
NROT=NROT+1
end if !if ((i.gt.4)...
end if
end do !main iq loop
end do !main ip loop
do ip=1, N
B(ip)=B(ip)+Z(ip)
D(ip)=B(ip)
Z(ip)=0.d0
end do
end do !main i loop
stop ’ 50 iterations !’
return
END
!++++++++++++++++++++++++++++++++++
!creation of an index
! adapted from ’Numerical Recipes in Fortran 90, Second Edition (1996)’
Subroutine indexx(n,arr,indx)
integer :: n,indx(n),M,NSTACK
real*8 arr(n)
parameter (M=25,NSTACK=50)
integer :: i,indxt,ir,itemp,j,jstack,k,l,istack(NSTACK)
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real :: e
do j=1,n
indx(j)=j
end do
jstack=0
l=1
ir=n
1 if(ir-l.lt.M) then
do j=l+1,ir
indxt=indx(j)
e=arr(indxt)
do i=j-1,l,-1
if(arr(indx(i)).le.e)goto 2
indx(i+1)=indx(i)
end do
i=l-1
2 indx(i+1)=indxt
end do
if(jstack.eq.0)return
ir=istack(jstack)
l=istack(jstack-1)
jstack=jstack-2
else
k=(l+ir)/2
itemp=indx(k)
indx(k)=indx(l+1)
indx(l+1)=itemp
if(arr(indx(l)).gt.arr(indx(ir))) then
itemp=indx(l)
indx(l)=indx(ir)
indx(ir)=itemp
end if
if(arr(indx(l+1)).gt.arr(indx(ir))) then
itemp=indx(l+1)
indx(l)=indx(l+1)
indx(ir)=itemp
end if
if(arr(indx(l)).gt.arr(indx(l+1))) then
itemp=indx(l)
indx(l)=indx(l+1)
indx(l+1)=itemp
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end if
i=l+1
j=ir
indxt=indx(l+1)
e=arr(indxt)
3 continue
i=i+1
if(arr(indx(i)).lt.e) goto 3
4 continue
j=j-1
if(arr(indx(j)).gt.e) goto 4
if(j.lt.i) goto 5
itemp=indx(i)
indx(i)=indx(j)
indx(j)=itemp
goto 3
5 indx(l+1)=indx(j)
indx(j)=indxt
jstack=jstack+2
if(jstack.gt.NSTACK) stop ’NSTACK too small in indexx’
if(ir-i+1.ge.j-1)then
istack(jstack)=ir
istack(jstack-1)=i
ir=j-1
else
istack(jstack)=j-1
istack(jstack-1)=1
l=1
end if
end if
goto 1
end Subroutine
!+++++++++++++++++++++++++++++++++
!sorting
! adapted from ’Numerical Recipes in Fortran 90, Second Edition (1996)’
subroutine sort(n,ra,V,wksp,iwksp)
integer :: n,iwksp(n)
real*8 ra(n),rb(n),rc(n),wksp(n),V(n,n),D(n)
integer :: j
call indexx(n,ra,iwksp)
do j=1,n
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wksp(j)=ra(j)
print *, ra(j), iwksp(j)
print *, ’ ’
end do
do j=1,n
ra(j)=wksp(iwksp(j))
end do
do i=1,n
do j=1,n
wksp(j)=V(i,j)
end do
do j=1,n
V(i,j)=wksp(iwksp(j))
end do
end do
return
end subroutine
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C.3 Program to calculate the linear response cur-
rent

program IVall
implicit none
integer :: n,i,j,r,E,delta
real :: w,x,y,z,T,betal,betar
real*8, pointer :: A(:,:), C(:,:),temp(:,:),K(:)

print *, ’ ’
!read size of matrix A
print *, ’What is the dimension of the square matrix?’
read *, n

!allocate memory for A and C
allocate(A(1:n,1:n))
allocate(C(1:n,1:n))
allocate(temp(1:n,1:n))
allocate(K(1:n))

!read connectivity matrix A
open(12,file=’input anthracene.txt’)
do i=1,n
do j=1,n
read(12,*) A(i,j)
end do
end do

call outputra(n,A)

!save A before inversion
temp=A

open(13,file=’IVoutput.txt’)

do r=1,n
K(r)=0
end do

do delta=0,60
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!set all K(r) to zero
do r=1,n
K(r)=0
end do
!redefine diagonal elements, make a list of all E-values
do E=-delta*50,delta*50
do i=1,n
!scale the energy to beta, just as the other elements of the matrix
temp(i,i)=(E/1000.0)+1.0e-5
end do
A=temp

call inverse(A,C,n)

do r=1,n

!define w as ∆s,s

∆
, x as ∆r,r

∆
, y as ∆r,s

∆
and z as ∆rs,rs

∆

w=C(1,1)
x=C(r,r)
y=C(1,r)
z=(x*w-y**2)
betal=1/1.4
betar=1/1.4
!calculate the transmission
T=(4*(betar*x*betal*w-betal*betar*z)/((1-betal*betar*z)**2+(betar*x+betar*w)**2))
!store T in a matrix for each value of r
K(r)=K(r)+T*0.001
end do
end do
write(13,*) delta/10.0, (K(r),r=1,n)
end do

do r=1,n
print *, r, K(r)
end do

end program
!++++++++++++++++++++++++++++++++++++++++++
subroutine inverse(A,C,n)
! adapted from ’Numerical Recipes in Fortran 90, Second Edition (1996)’
implicit none
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integer n
double precision A(n,n), C(n,n)
double precision L(n,n), U(n,n), b(n), d(n), x(n)
double precision coeff
integer i, j, k

! step 0: initialization for matrices L and U and b
! Fortran 90/95 allows such operations on matrices
L=0.0
U=0.0
b=0.0

! step 1: forward elimination
do k=1, n-1
do i=k+1,n
coeff=A(i,k)/A(k,k)
L(i,k) = coeff
do j=k+1,n
A(i,j) = A(i,j)-coeff*A(k,j)
end do
end do
end do

! Step 2: prepare L and U matrices
! L matrix is a matrix of the elimination coefficient
! + the diagonal elements are 1.0
do i=1,n
L(i,i) = 1.0
end do
! U matrix is the upper triangular part of A
do j=1,n
do i=1,j
U(i,j) = A(i,j)
end do
end do

! Step 3: compute columns of the inverse matrix C
do k=1,n
b(k)=1.0
d(1) = b(1)
! Step 3a: Solve Ld=b using the forward substitution
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do i=2,n
d(i)=b(i)
do j=1,i-1
d(i) = d(i) - L(i,j)*d(j)
end do
end do
! Step 3b: Solve Ux=d using the back substitution
x(n)=d(n)/U(n,n)
do i = n-1,1,-1
x(i) = d(i)
do j=n,i+1,-1
x(i)=x(i)-U(i,j)*x(j)
end do
x(i) = x(i)/u(i,i)
end do
! Step 3c: fill the solutions x(n) into column k of C
do i=1,n
C(i,k) = x(i)
end do
b(k)=0.0
end do
end subroutine inverse
!+++++++++++++++++++++++++++++++
subroutine outputra(n,A)
implicit none
integer :: n,row,col
real*8 A(n,n)
character :: reply*1
do row =1,n
write(*,11) (A(row,col),col=1,n)
11 format(100f10.5)
end do
print*,’ ’
print*,’Hit a key and press enter to continue’
read *,reply
end subroutine outputra
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C.4 Program to calculate the unperturbed Green’s
function

The program that was used to calculate the unperturbed Green’s function is ex-
actly the same as the one used to calculate the atom-atom polarizability except for
the part where the output is written:

...

!writing of output
open(11, file=’aapoutput.txt’)
do c=1,n
do b=1,n
G0=0.0
do j=1,n
do k=1,n
G0=G0+(V(c,j)*V(c,k)*V(b,j)*V(b,k))/(D(k)*D(j))
end do
end do
P(c,b)=G0
print *, c,b,P(c,b)
end do
end do

call outputra(n,P)

do c=1,n
write(11,*) (P(c,b),b=1,n)
11 format(100f10.5)
end do
flush(11)

END

...
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