
Executing Root Commands in Web Applications
While Maintaining Security Best Practices

Cox Vincent, Cooman Nico, Jans Stijn and Vermeulen Gustaaf

Abstract—These guidelines allow a developer to con-
figure a web application that can securely execute root
commands. An overview of the disadvantages and dangers
of running a web application as root provides insight into
the importance of this topic. This document will provide
a secure solution via a daemon, along with additional se-
curity measures to optimize a developer’s web application
environment.

Index Terms—Security, web application, root.

I. INTRODUCTION

MOST web applications are connected to the
Internet and can be accessed by anyone,

including attackers. Unfortunately, a vast majority
of web applications are prone to attack vectors like
SQL injection, XSS and various other techniques.
Running the web application as root aggravates the
impact of a breach and gives the attacker full control
over the server as a root user. This does not only
affect the web application itself but also the entire
server, including other services on the machine.
This is why security professionals always prefer
to run a web server as a regular user instead of
as a root user. However, running as a regular user
limits some functionality like execution of scripts or
root commands via a web application. This paper
shall address these limitations by discussing some
options to execute privileged commands in a web
application as a regular user.

II. ADVANTAGES OF NOT RUNNING A WEB
SERVER AS ROOT

A. Extra layer of security
A lot of web applications and websites suffer

from the vulnerabilities listed in the OWASP Top
Ten [3]. The Open Web Application Security Project

N. Cooman and S. Jans are with The Security Factory, Schelle,
Belgium, e-mail: info@thesecurityfactory.be.

G. Vermeulen is with the Department of Electrical Engineering
(ESAT) TC, KU Leuven, Technology Campus Geel, Belgium, e-mail:
staf.vermeulen@kuleuven.be

(OWASP) [4] is a worldwide not-for-profit charita-
ble organization that focuses on improving the secu-
rity of software. Their mission is to make software
security transparent, so that individuals and organi-
zations across the world can take informed decisions
about how to counter software security risks. The
OWASP Top Ten provides a broad consensus about
the most critical web application security flaws. A
few examples from this list are SQL injection, XSS
and broken session management.
While a breach through any of the above techniques
can be very dangerous on its own, the risk escalates
drastically when the web application is running with
root privileges. If an attacker manages to upload
a web shell in a web application that is running
as root, he or she can browse the entire system of
the server and modify files including system files,
databases and passwords.
This would also affect all the other services and web
applications, because the attacker would be able to
access and edit everything.
Running as a regular user would limit the impact of
a breach to the web application; the entire system
with all its services and applications would not be
impacted.

B. Limiting collateral damage caused by bugs
A bug or misconfiguration in an application could

possibly delete folders, even those outside the ap-
plication folder, when the application is running as
root. This is not necessarily caused by attackers. The
fault can be attributed to a programmer who made
a mistake despite having good intentions.
Running as a regular user with the right permissions
would prevent deletion or modification of files out-
side the web application folder.

C. Limiting the impact of zero-day exploits or state
hackers

A zero-day vulnerability (also known as zero-
hour or 0-day) is a previously undisclosed vulner-

ability in computer software that hackers can ex-
ploit to adversely affect computer programs, data,
additional computers or even a whole network.
It is known as a ‘zero-day’ because once the flaw be-
comes known, the software’s writer has zero days to
plan or suggest any mitigation against its exploita-
tion (for example, by recommending workarounds
or by issuing patches).
Especially advanced hackers and state-sponsored
hackers have several zero-day exploits in their arse-
nal. If a service suffers from a zero-day while run-
ning as root, the entire machine can be controlled.

III. EXECUTING ROOT COMMANDS IN A SECURE
AND CONTROLLED WAY USING A DAEMON

The most effective and secure method in such
a situation is to use a daemon running as root.
The web server triggers the daemon to do certain
predefined actions as root. This paper focuses on a
bash daemon, but the principles are applicable for
all languages.

A. Security measurements
The following guidelines must be followed for

the daemon concept to be fruitful.
1) Hardcode commands that can be executed:

Never get the input from a web application (or
normal user account) to be executed as a command
via a root account. It may be a tempting option
because one does not have to hard code each
command. However, if an attacker breaches the web
application, he or she can inject commands which
will be executed as root. This would make the use
of a daemon pointless.

2) Use a case function in the daemon: A case
function is a great way to let the daemon know
what command needs to be run. This improves
the security because commands are limited to a
controlled and predefined set of commands.

3) Use escaping and sanitization: A great exam-
ple demonstrating the importance of this problem
involves variables used without quotes in bash [6].
Assume that a developer wants to echo the following
string:

testString="home/*"

To achieve this, the developer uses the following
command:

echo "$testString"

This will output the intended and original string.
However, the output is different when the developer
uses the same command without quotes:

echo $testString

This yields a very interesting result:
"/home/vincentcox"

It displays the user account, which is not what
the developer expects. Always use escaping and
sanitizing on passed variables in the daemon (and
applications in general).

B. Triggering the daemon
”Inotifywait” efficiently waits for file changes

using Linux’s ”Inotify” interface. It is very suitable
for shell scripts because the package can be installed
easily. It can either exit once an event occurs, or
continue to execute and output events as they occur.
This method gives an almost immediate response
when a developer wants to trigger the daemon.
For example, one can create a directory called ‘trig-
gerdaemon’ in the web application file structure.
After this, the developer can create a daemon using
Inotifywait locked on the new folder. It is possible
to write a file to that folder in PHP, thus triggering
the daemon. Listing 1 in the appendix shows an
example code for a daemon.

IV. ALTERNATIVES

A. Using a cronjob
This method may sound very appealing because

most beginners are familiar with cronjobs.
However, the response time is limited because
the smallest interval for a cronjob is one minute.
To pass variables towards the root script, one
can use a database like MySQL. Remember to
escape and sanitize Bash code in the daemon script.

V. OPTIMISATION

A. Whitelist the actions performed by the daemon
This is a very effective security measure because

when an injection occurs at the daemon level, the
damage is limited to the permitted commands.
To achieve this, a new user has to be created with
a sudo configuration. An example with visudo:

peter, %operator ALL= /sbin/, /usr/sbin, /
usr/local/apps/check.pl

Do not use this to loosen security by permitting all
actions!

B. Chrooting

Chroot is an operation that changes the apparent
root directory for the current running process and
its children. A program that runs in such a modified
environment cannot access files and commands out-
side the environmental directory tree. This modified
environment is called a chroot jail.
A developer can limit the daemon to certain direc-
tories. This will tighten the overall security and it
prevents the daemon from modifying system and
configuration files.

C. DOS protection

If an attacker is able to breach the web interface,
it means he or she has access to the watchfolder of
the daemon and possibly also the database. If the
daemon or script gets triggered at a high pace (by
writing to the watchfolder or by inserting requests in
the database), this would cause a Denial Of Service
(DOS). For example, an attacker can trigger the
deamon to let the web server restart at a high pace.
Each restart command will take the server offline for
a few seconds and a high pace of restart commands
would take the server offline for a long time. This
can be prevented by using tokens and timestamps.
The script or daemon can check if the timestamp
from the trigger request is in a range from the
current time and if the token is valid. This can be
done by counting the trigger requests made in the
last X minutes. If this count exceeds a threshold,
the admin can be notified. A lot of failed checks
indicate that a serious bug has occurred, or that an
attacker has breached the web interface and is trying
to DOS the system.

VI. CONCLUSION

Performing root actions triggered by a web ap-
plication can be very time-consuming and difficult
to implement in a secure way. In mission critical
systems, these extra security measures are worth the
effort because the time to recover from a root breach
can be many times higher than the time taken to put
these measures in place.
Moreover, name damage and leaked information
about clients may also lead to a huge financial
impact on a company.

APPENDIX

Listing 1. Example bash daemon [5].
#!/bin/bash
logfile="/var/log/daemon.log"
watchdir_deamon_function1="/var/www/hmtl/

watchdir_deamon_function1"
trap process_USR1 SIGUSR1
process_USR1() {
echo ’Watchdog aborted! (USR1 SIGNAL)’>>

$logfile
exit 0
}
deamon_function1(){
while inotifywait --outfile $logfile -e

create $watchdir_deamon_function1; do
echo "Your function code when triggered">>

$logfile
done
exit 0
}
me_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}

")" && pwd)"
me_FILE=$(basename $0)
cd /
if ["$1" = "child"] ; then # 2. We are

the child. We need to fork again.
shift
umask 0
exec setsid $me_DIR/$me_FILE refork "$@" </

dev/null >/dev/null 2>/dev/null &
exit 0
fi
if ["$1" != "refork"] ; then # 1. This is

where the original call starts.
exec $me_DIR/$me_FILE child "$@" &
exit 0
fi
3. We have been reforked.
shift
Spawning the daemons
deamon_function1 &

REFERENCES

[1] I. Ristic, Modsecurity handbook. Feisty Duck Limited, 2015.
[2] Cert. Web server security best practices. [Online]. Available:

https://www.cert.be/docs/web-server-security-best-practices
[3] OWASP, “Owasp top ten 2013,” The ten most critical web

application security risks, 2013.
[4] ——. The free and open software security community. [Online].

Available: https://www.owasp.org/index.php/Main Page
[5] S. answer. Best way to make a shell script daemon? [Online].

Available: http://stackoverflow.com/a/29107686
[6] A. Robbins, Bash pocket reference, 2016.

