
Preference Elicitation in Group
Recommender Systems

Sam Mylle r0712394

Thesis voorgedragen tot het behalen
van de graad van Master of Science

in de ingenieurswetenschappen:
computerwetenschappen, hoofdoptie

Artificiële intelligentie

Promotor:
Prof. dr. L. De Raedt

Assessor:
Dr. Y. Dauxais, Prof. dr. A. Simeone

Begeleider:
Dr. S. Teso

Academiejaar 2018 – 2019



c© Copyright KU Leuven

Without written permission of the thesis supervisor and the author it is forbidden
to reproduce or adapt in any form or by any means any part of this publication.
Requests for obtaining the right to reproduce or utilize parts of this publication
should be addressed to the Departement Computerwetenschappen, Celestijnenlaan
200A bus 2402, B-3001 Heverlee, +32-16-327700 or by email info@cs.kuleuven.be.

A written permission of the thesis supervisor is also required to use the methods, prod-
ucts, schematics and programmes described in this work for industrial or commercial
use, and for submitting this publication in scientific contests.

Zonder voorafgaande schriftelijke toestemming van zowel de promotor als de auteur
is overnemen, kopiëren, gebruiken of realiseren van deze uitgave of gedeelten ervan
verboden. Voor aanvragen tot of informatie i.v.m. het overnemen en/of gebruik
en/of realisatie van gedeelten uit deze publicatie, wend u tot het Departement
Computerwetenschappen, Celestijnenlaan 200A bus 2402, B-3001 Heverlee, +32-16-
327700 of via e-mail info@cs.kuleuven.be.

Voorafgaande schriftelijke toestemming van de promotor is eveneens vereist voor het
aanwenden van de in deze masterproef beschreven (originele) methoden, producten,
schakelingen en programma’s voor industrieel of commercieel nut en voor de inzending
van deze publicatie ter deelname aan wetenschappelijke prijzen of wedstrijden.



Preface

It is important for me to make a difference in the everyday life of people. This is why
the subject of group recommender systems was my first choice for my thesis. Another
reason why I enjoyed this is because recommenders are something I personally use
and recognise.

I would like to thank my advisor Stefano Teso for sharing his insights with me
and for aiding me with the structure of the text. I am also grateful to my promotor
Luc De Raedt and my colleagues for listening to my ideas and asking questions
that stimulated my creativity. Two people that should not be forgotten here are my
parents. Not only did they support me throughout writing this text, but they also
tirelessly encouraged me during the four years of studying leading up to this work.

Sam Mylle r0712394

i



Contents

Preface i
Abstract iv
Samenvatting v
List of Figures vi
List of Abbreviations ix
1 Introduction 1

1.1 Problem and Relevance . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background Knowledge 5
2.1 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Active and Passive Learning . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Group Recommender Systems . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Methods 13
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Terminology and Concepts . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Query Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Detecting Subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Adjusted Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Data 33
4.1 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Experiments 41
5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Synthetic datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

ii



Contents

6 Related Work 51
6.1 Jukola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Domain-independent GRS . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 TV Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusion 55
A Results 57
B Thesis Poster 71
Bibliography 73

iii



Abstract

Recommender systems are ubiquitous in our everyday lives. These systems aid their
user in choosing an object out of a massive pool of possible objects. When dealing
with groups of users instead of a single user, current techniques suggest using voting
mechanisms or averaging operators. However, these voting mechanisms are not based
on the actual concessions a group member is willing to make. This is why in this
work, the focus lies on the binary concept of satisfaction. The recommender will
attempt to find objects with which all users are satisfied and it does so by asking
questions to the users. Mainly, the contribution consists of several query strategies
as well as a method for detecting subgroups of people when the entire group can not
be satisfied with a single object. These techniques are then extensively tested using
both synthetic and real world data.

iv



Samenvatting

Aanbevelingssystemen zijn alomtegenwoordig in het dagelijks leven. Deze systemen
helpen hun gebruiker bij het kiezen van producten uit een gigantisch aanbod. De
huidige technieken maken gebruik van een kiessysteem of een operator die een
gemiddelde berekent wanneer deze systemen met een groep van gebruikers moeten
omgaan in de plaats van slechts een persoon. Deze kiessystemen en operatoren zijn
echter niet gebaseerd op de toegevingen die een groepslid bereid is om te maken.
Daarom ligt de focus in dit werk op het binaire concept van tevredenheid. Het
aanbevelingssysteem zal een poging doen om de objecten te zoeken waarmee elk
groepslid tevreden is door middel van vragen te stellen aan de gebruikers. De
contributies van dit werk bestaan hoofdzakelijk uit enkele methodes om dynamische
vragenlijsten samen te stellen evenals een techniek om subgroepen van gebruikers te
herkennen indien er geen product bestaat waarmee de hele groep tevreden is. Tijdens
de experimenten worden deze technieken uitvoerig getest op zowel synthetische als
bestaande data.

v



List of Figures

2.1 Example of bias in voting mechanisms. Beer will have a higher average
rank due to the density of beer objects. This may lead to problems if you
have a person that likes beer, but does not care that much when the
group would prefer to go to another bar. . . . . . . . . . . . . . . . . . . 10

3.1 An illustration of indifference. The value of the attribute on the x-axis is
of no importance as long as the attribute represented by the y-axis is
somewhere in [0.3, 0.5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Example of what a group of users might look like. There are five users,
each assigned to a different colour. The circles represent their acceptance
regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 The circles represent the current estimate of the acceptance region and
the blue dot is a query point. On the left: the query is exploring. On the
right: the query is exploiting. . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 The red and green circles are the actual acceptance regions of two users
and are unknown to the recommender system. The points in their
respective colours are positive examples of these users, they are known
by the recommender. The grey area is the smallest enclosing sphere of
two random points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 To the left: the initial smallest group sphere of the random set of points
C. In the middle: the output of Algorithm 3.2 (depending on user and
point ordering). To the right: the smallest possible circle. . . . . . . . . 22

3.6 The green and red figures are acceptance regions of two users. The black
figures represent the smallest enclosing hyperrectangle as created by the
SGS strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.7 Example of the smallest enclosing ball problem for a warehouse and its
delivery points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.8 Example of the dropping phase in Gärtner’s Approach. (Image taken
from [10]). The αi of s is negative in the affine combination. Therefore,
it must be dropped. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 Example of the walking phase in Gärtner’s Approach. (Image taken from
[10]). Notice how c /∈ aff({s1, s2}. Because of this, the sphere must
move towards the circumcenter of {s1, s2}. . . . . . . . . . . . . . . . . . 25

vi



List of Figures

3.10 Illustration of the Expansion Heuristic. If there were a positive (green)
example in the grey area, then the minimal enclosing bounding box
would include the negative (red) example. . . . . . . . . . . . . . . . . . 26

3.11 Valid samples of the ground truth (dashed circle) may cause the smallest
enclosing ball of the positives (full circle) to contain false negatives. . . 27

4.1 Generating two acceptance regions that overlap in at least one point. . . 34
4.2 Example of subgroups in data generation. . . . . . . . . . . . . . . . . . 35
4.3 Illustration of how hyperrectangles can be generated with one common

point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4 Illustration of how hyperrectangles can be generated with a common

hyperrectangle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 There are multiple ways to divide this group. You could combine the red
circle with the black and the gold ones or with the other four circles. . . 43

5.2 Two acceptance regions and their positive examples. . . . . . . . . . . . 47

A.1 Satisfaction rates for SGS+MO under fully overlapping, hyperspherical
acceptance regions. The two-user case is not shown since both
configurations are able to find the common satisfying object after
approximately ten iterations. . . . . . . . . . . . . . . . . . . . . . . . . 58

A.2 Rand index for SGS+MO under fully overlapping, hyperspherical
acceptance regions. The two-user case is not shown since both
configurations are able to find the common satisfying object after
approximately ten iterations. . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3 Satisfaction rates for SGS+MO under partially overlapping,
hyperspherical acceptance regions. . . . . . . . . . . . . . . . . . . . . . 60

A.4 Rand index for SGS+MO under partially overlapping, hyperspherical
acceptance regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

A.5 Satisfaction rates for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperspherical
acceptance regions. Increasing the number of features from ten to twenty
barely changes the reported performance. . . . . . . . . . . . . . . . . . 62

A.6 Rand index for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperspherical
acceptance regions. Increasing the number of features from ten to twenty
barely changes the reported performance. . . . . . . . . . . . . . . . . . 63

A.7 Satisfaction rates for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperrectangular
acceptance regions. Increasing the number of features from ten to twenty
barely changes the reported performance. . . . . . . . . . . . . . . . . . 64

A.8 Rand index for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperrectangular
acceptance regions. Increasing the number of features from ten to twenty
barely changes the reported performance. . . . . . . . . . . . . . . . . . 65

vii



List of Figures

A.9 Satisfaction rates for SGS+MO under both partially overlapping
(partitioned) and fully overlapping (full) hyperspherical acceptance
regions. The keyword variant in the legend is used to indicate that
instead of using a hypersphere in the SGS strategy, a hyperrectangle is
used. Objects of 25 features are excluded since all configurations score
very low here. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.10 Rand index for SGS+MO under both partially overlapping (partial) and
fully overlapping (full) hyperspherical acceptance regions. The keyword
variant in the legend is used to indicate that instead of using a
hypersphere in the SGS strategy, a hyperrectangle is used. Objects of 25
features are excluded since all configurations score very low here. . . . . 67

A.11 Rand index and satisfaction rates for SGS+MO under fully satisfiable
groups of users and using real world data. . . . . . . . . . . . . . . . . . 68

A.12 Rand index and satisfaction rates for SGS+MO under partially
satisfiable groups of users and using real world data. . . . . . . . . . . . 69

A.13 Rand index and satisfaction rates for SGS+MO under fully satisfiable
groups of users and using real world data. . . . . . . . . . . . . . . . . . 70

viii



List of Abbreviations

Abbreviations
SEB Smallest Enclosing Ball
SGS Smallest Group Sphere strategy
MO Max Overlap strategy
UTER Uncertain Tree Explore strategy
UTET Uncertain Tree Exploit strategy

ix





Chapter 1

Introduction

Recommender systems have been employed to learn the preferences of their users.
They are applied in a context where there are too many possibilities for the user to
make an informed decision. Even though standard keyword search is still the main
approach for users to find products, the recommender system of the famous webshop
Amazon successfully helps customers in finding the books they want [15]. The
preference of a user can be represented in many ways such as previous behaviour and
explicit item ratings. This preference then implies a ranking of objects, eventually
alleviating human decision makers from the difficult task of choosing one item from
a wide variety of content.

1.1 Problem and Relevance
Decision making can be very burdensome for humans, especially when having to
come to some sort of agreement with their peers. Having large groups of people or
a large object space only makes this more difficult. Examples of this range from
decisions of high importance, such as politicians having to agree on a law, to leisure
activities, for example choosing a destination for a holiday with friends.

Each person that partakes in the discussion has his or her own opinion of what
the optimal decision looks like. This opinion most probably differs from the opinion
of their peers. This is why in most situations it is useful to know the preference
of a person as well as the tradeoffs he or she is willing to make when interacting
with the rest of the group. As opposed to traditional recommender systems, group
recommender systems attempt to search or estimate those interindividual tradeoffs
so that it may recommend items to the entire group.

1.2 Goal
In some cases, the user of a webshop will have to discuss the purchase of a product
with others. For example, when booking a trip online with family or friends, the
decision is usually not made by a single group member. This calls for a mechanism
that explicitly learns what items each group member considers to be good and uses

1



1. Introduction

that information to recommend items to the group. An important aspect of this
is that the recommender should not overload the user with too many or too hard
questions. Otherwise, this might drive potential customers away.

1.3 Overview

Given some users and some products, the goal of the group recommender is to
recommend the product that satisfies the most people. This border between satisfying
and unsatisfying items is a concept that is dubbed the acceptance region of a user.
Finding the product satisfying the most people then corresponds to finding the item
that is located within the most acceptance regions. Other recommenders use ratings
or pairwise comparisons of products. However, these ratings or pairwise comparisons
do not explicitly state whether or not the user is satisfied with an object.

The users have to give at least one example of a product that they find satisfying
which is nothing more than a point inside the acceptance region. Next, the recom-
mender may ask the group members questions about some items in order to gain
information about the optimal object and to get a general clue where to search. This
is better known as interactive concept learning, where the concepts to be learned
are the acceptance regions of the individual users. The main contribution will be a
query strategy that determines which objects are informative enough to propose to
a user. As opposed to the single user recommenders, this strategy should converge
to the most satisfying object instead of exploring the user’s entire preference. In
Chapter 3, some new query strategies will be proposed. Every iteration, a group
of users are asked to indicate whether or not they individually find a specific item
satisfying. This is the same for every query strategy, the difference only lies in
the way that specific item is chosen. The Smallest Group Sphere strategy is an
exploring query strategy that relies on the assumption that when given an object
A satisfying one user and an object B satisfying another, the item that satisfies
both users is most likely somewhere in between A and B. Since it is useful to
combine exploration and exploitation, the Max Overlap strategy is added to this.
This strategy essentially estimates the acceptance regions and then searches for the
item occurring in the most of them. Every question round the recommender will then
nondeterministically choose between an exploring strategy and an exploiting strategy
which are respectively the smallest group sphere and the max overlap strategies.

It is also interesting to see whether or not decision trees are applicable here. The
decision trees can be used to estimate the acceptance regions of individual group
members and to determine what questions to pose next. Using the answers the user
gave, a decision tree can produce probabilities on how likely it is that an unseen
item will satisfy that user. Those probabilities can then be used to represent how
certain or uncertain the tree is about whether or not that object is inside or outside
the acceptance region. The certainty and uncertainty measures are then averaged
across users and used in respectively the Uncertain Tree Exploitation strategy and
the Uncertain Tree Exploration strategy.

It does not make sense to include all users in every question round since some

2



1.3. Overview

users’ acceptance regions might have no overlapping area, meaning that they can
not both be satisfied at once. This is why user clustering is used. Two clusters of
users are only merged if the recommender knows that the members of those two
clusters can all be satisfied at once with at least one object. Each question round,
the recommender picks two clusters and directs its question only to them instead of
the entire group.

In Chapter 5, these query strategies are put to the test based on both synthetic
datasets and real world datasets as discussed in Chapter 4. The performance measures
that are used should reflect the quality of the optimal object as well as the ability to
detect the separate clusters of users.

3





Chapter 2

Background Knowledge

2.1 Preferences
"As preferences are fundamental for the analysis of human choice be-
haviour, they are becoming of increasing importance for computational
fields such as artificial intelligence, databases and human-computer inter-
action."[19]

As discussed by Pigozzi et al. [19] and summarised here, preferences can be repre-
sented in multiple ways. Examples of representations are a binary relation and a
numerical representation. For the first example the generic preference relation A � B
is used, from which you can derive that A is at least as good as B. A stricter form
A � B can be used as well, meaning that A is preferred to B. This purely ordinal
structure makes it hard to generalise and as a consequence, this representation
requires many examples. Since users should not be asked too many questions, this
approach does not fit the group recommendation problem.

Pigozzi et al. [19] also mentions the connection between logic and preferences.
In a set of worlds that satisfy a theory, one model could be preferred to another. A
famous example of this is Tweety: If you know that some entity is a bird, you assume
it can fly. However, when you later learn that the bird is Tweety, you know it does
not fly. So initially the model in which the bird flies is preferred to the model in
which the bird does not. One option to encode this is to define a binary preference
relation between models: The model where birds can fly is preferred over the model
where birds can not. Another possibility is to define a binary preference relation on
rules: The rule that states Tweety’s inability to fly has priority over the rule that
states that birds can fly. It should be clear that this representation can not be used
either since the goal is to recommend objects, not a possible world.

Numbers can also be used to capture a preference ordering between the objects.
Dragone et al. [6, 7] extensively discusses an example in which a vector of real values
(called preference vector) is used. Every real value in this vector is a weight that
belongs to a feature. The function φ(x) represents the mapping of objects x ∈ X to
their feature vectors.

φ(x) : X → Bn

5



2. Background Knowledge

Since feature vectors are here chosen to be one-hot encoded and manually selected,
n equals the number of features and is hence determined by whoever designed the
feature mapping φ. It is possible to add extra contextual features to the feature
vector such as budget or time. These contextual features should be handled as
constraints, but for simplicity they are ignored. The preference vector ~w of a user has
the same dimensions as the feature vectors of the objects since there is one weight
per feature.

~w ∈ Rn

The utility u of an object x according to the user with preference vector ~w is then
defined to be the inner product of ~w and x:

u : Rn × Bn → R

u(~w, x) =
n∑
i=1

~wixi

where n is the number of features. This implies that each entry in the preference
vector denotes the relative importance of that feature according to the user. There
are two problems with this preference representation. First, the utility function
does not define a border between good and bad objects. And second, the preference
elicitation mechanisms as proposed by Dragone et al. [6, 7] only allow to discover
the optimal object. To see why, first consider that the user is proposed an item
and asked to improve it. The preference vector is updated based on the relative
difference between the current knowledge of the optimal item and the improved item.
Say an object has one-hot encoded features including feature A, B and C which are
mutually exclusive. If the user prefers feature A above the others and B above C,
then the improvement of an object having either feature B or C will replace these by
A. Since in both cases features B and C are replaced by A, there is no possible way
for the recommender of noticing that feature B is preferred to feature C. Because of
this, it is unable to capture the difference in satisfaction the user may experience
between two objects.

2.2 Active and Passive Learning
When learning a concept by generalising from examples, the two major possible
configurations are active learning and passive learning. In passive learning, the data
is fixed and there is no way to acquire more data as soon as the machine starts
learning. Active learning on the other hand assumes the existence of an oracle. This
oracle then has to label any data given by the learner. The type of question is also
important: the oracle can be proposed an item and asked to improve it [7] or the
oracle can be shown a set of items and asked to select the best one [6]. Based on
the responses, the current knowledge is updated and the process continues until the
result is good enough or a specified amount of iterations is exceeded. The advantage
of active learning is that the learner may select objects based on how informative it
is. Examples of query selection strategies include uncertainty sampling and query by

6



2.3. Recommender Systems

disagreement [21]. In uncertainty sampling, the learner will choose the sample that
is the closest to the decision boundary. Query by disagreement keeps track of the
version space. Whenever two hypotheses disagree on an instance, this instance can
not be inferred and is therefore considered to be very informative.

2.3 Recommender Systems
As is shown by Felfernig et al. [9], preferences can be learned by inspecting previous
behaviour of the user or by querying the user. The Content Based Filtering method
is used in a passive learning setting and attempts to find similar objects to those
previously consumed by the user. All objects are described by a set of labels. The
recommender system can then propose items that have similar labels to the labels of
consumed items. Consider the example where travel destinations are described by
the following binary labels [9]:

• Beach

• City tours

• Nature

• Entertainment

The intuition is then that if a user likes travel destinations with Nature and Enter-
tainment, the recommender system should make sure these categories occur in the
proposed travel destination. It is important to note that the preferred categories
may be explicitly given by the user as well, they do not have to be inferred by the
recommender. The downside with this approach is that the recommendations may
get stuck in a local optimum. Consider the case where a traveller went on trips that
did not include a beach. This means that the recommender will propose other trips
that do not include a beach, even though the traveller may love going to the beach.

Another passive learner that learns preferences from previous behaviour is Collab-
orative Filtering. The underlying assumption here is that people with similar tastes
will buy similar products. With this technique, the ranking of objects according to a
specific user is estimated by the behaviour of himself and his peers. For example,
if one person bought similar items to the ones you bought, you possibly have a
similar preference. As a result, any item this other person bought might be useful
for you too. The similarity of the user preferences can for example be estimated
with the k-nearest neighbours algorithm given some distance measure between users.
A popular distance measure is the Pearson Correlation Coefficient, which requires
the users to rate items they consumed. Customers usually do not take the time to
rate all the items they bought, which can be solved by estimating the ratings. An
example of such an estimation technique is matrix factorization.

The last technique is Critiquing Based Recommendation. Felfernig et al. [9]
describes this as a recommendation system in which the user is not an expert in
the field, but is able to distinguish good recommendations from bad ones. Based on

7



2. Background Knowledge

these critiques, the recommender system will continue proposing items while keeping
into account the current learned preference combined with the critique given on the
previously proposed item. Critiquing based recommendation can be used both in
active and passive learning. This is also discussed by Dragone et al. [7, 6] with a
more concrete setting.

2.4 Group Recommender Systems

2.4.1 Voting Mechanisms

When facing with the task of extending a recommender system to the group setting,
Felfernig et al. [9] considers two main strategies: aggregate the objects recommended
to each individual user or aggregate the user profiles to create a group profile and
then recommending an object based on that global profile. The first one is dubbed
Aggregated models and the latter Aggregated predictions.

Aggregated predictions have three flavours [9]:

• Majority based voting: These type of voting mechanisms recommend the item
that would be recommended to the most users. Examples of this are Plurality
vote and Borda Count.

• Consensus based voting: Some sort of average between the individually rec-
ommended objects is chosen. Assuming a numerical representation of objects
is possible, example operators include the average, the sum, the minimum,
the maximum and the product. It is important to note that the product is
more robust for large groups when compared to the average or the sum since a
small factor for one individual will result in a small product, thus ensuring an
individual opinion is not ignored.

• Borderline Functions: Important examples here are Least Misery, Most Pleasure
and Most Respected Person. Least misery searches for the highest of all lowest
evaluations, meaning that an object will be recommended so that the user
that dislikes it the most will be happier when compared to the unhappiest
user for any other recommendation. So this means that in Table 2.1, object
2 would be considered the best item since the lowest individual rank is 3. As
is stated by O’Connor et al. [17], the Least Misery approach assumes that
groups are usually small and as a consequence the group happiness is equal to
the happiness of its least satisfied member. Most Pleasure does the opposite
of Least Misery: the aim is to make the happiest person as happy as possible
now. This will probably result in very few happy people though. This would
mean for Table 2.1, the optimal object is object 3, which essentially discards
the opinion of user 2. Finally, the Most Respected Person approach assumes
the group appointed the most important individual of the group. The group
recommendation will then be reduced to recommending an object to this most
respected person. This approach makes the most sense in a group where a
predetermined hierarchy is present e.g. in the context of a company, the CEO

8



2.4. Group Recommender Systems

user 1 rank user 2 rank user 3 rank borda rank
object 1 2 1 4 2+1+4

3 = 2.33
object 2 3 3 2 3+3+2

3 = 2.67
object 3 1 4 1 1+4+1

3 = 2
object 4 4 2 3 4+2+3

3 = 3

Table 2.1: Example of the calculation of the Borda Ranking of an object. Object 3
is considered to be the best object.

has more influence than a regular employee. Instead of ignoring less important
people, one could also group certain people together such as elderly, children
and adults [3]. These subgroups are then given a weight denoting how much
influence they have on the recommendation.

As stated before, aggregated models attempt to combine all user profiles in a
group profile. For a collaborative filtering recommender system, groups can be
treated as if they were single users. A distance measure is defined between groups so
that similar groups can be clustered and recommendations can be made to a group
by using the k-nearest neighbour algorithm. In the content based filtering setting,
the categories of the group profile could merely use the union of all categories of
every individual user.

2.4.2 Cons of Voting Mechanisms

A voting mechanism uses individual recommender systems to recommend items to
each user and some predefined function that will eventually determine which of these
items has the most potential to please the group. The most intuitive example of this
is the majority vote, which will recommend the item that was recommended to the
most users. However, this approach does not take into account the tradeoffs some
people are willing to make and is subject to the density of the objects surrounding the
preference. Other examples include the Borda Count [9] and the Copeland Rule [20].
The borda count assumes a ranking of items, assigns scores to the items based on
that ranking and then recommends the one with the best overall score. An example
of how Borda Count works can be found in Table 2.1. The copeland rule uses the
majority vote to determine group ratings of an item. This rating is determined by
the amount of times the item beats another item using the majority approach minus
the amount of times the object loses to other items. An example can be found in
Table 2.2. Object 1 is preferred over two objects (object 2 and object 4) according
to majority vote and loses to one other object (object 3). Therefore, its rating will
be 2− 1 = 1.

To illustrate why this approach is dependant of the object density, consider the
example given by Figure 2.1. Every dot represents a bar, and their colour represent
the drinks they serve. Fifteen bars serve beer, three serve white wine, two serve red
wine and two serve champagne. If some user likes beer, all the beers will be assigned
the ranks ranging from one to fifteen and the highest rated non-beer bar will have

9



2. Background Knowledge

user 1 rank user 2 rank user 3 rank global rating
object 1 2 1 4 2− 1 = 1
object 2 3 3 2 1− 2 = −1
object 3 1 4 1 3− 0 = 3
object 4 4 2 3 0− 3 = −− 3

Table 2.2: Example of the calculation of Copeland Rule. Object 3 is considered to
be the best object.

Figure 2.1: Example of bias in voting mechanisms. Beer will have a higher average
rank due to the density of beer objects. This may lead to problems if you have a
person that likes beer, but does not care that much when the group would prefer to

go to another bar.

at most rank sixteen. In the worst case for bars that server beer, the non-beer bars
will occupy the ranks from one to seven and the lowest possible rank for a beer bar
is eight. This clearly results in a bias towards beer. Just because some people like
beer more does not necessarily mean that they are not willing to go to some other
bar given that someone else really dislikes beer. An example of where voting can
potentially go wrong is Jukola [18], where a group of users has to decide what song
to play next at a bar. The visitors of the bar can only vote for one song and the
winner is determined by majority vote. It should be clear by now that this does not
take into account the tradeoffs that the different individuals are willing to make and
will consequently dissatisfy some users and oversatisfy others.

10



2.5. Aggregation

2.5 Aggregation
What exactly is aggregation and how does it relate to group recommender systems?

"The idea of aggregation functions is rather simple - they aim to sum-
marise the information contained in an n-tuple of input values by means
of a single representative value."[13]

The Aggregated models and Aggregated predictions approaches introduced in the
previous section satisfy this idea. The former will provide an n-tuple of user profiles
as an input and yield a global user profile as its representative value. The latter will
have as input n objects and return one aggregated object, hoping it will meet the
needs of the group.

Aggregation functions always have one of three characteristics [13, 16]. An
aggregation function is conjunctive if the aggregated value is smaller than or equal
to the smallest value in the input, disjunctive if it is greater than or equal to the
largest value in the input and mixed if it is neither.

As discussed by Melnikov et al. [16], triangular norms are an important class of
conjunctive aggregation functions as they generalise the logical conjunction.

"A t-norm T is a monotone increasing, associative and commutative
[0, 1]2 → [0, 1] mapping with neutral element 1 and absorbing element
0."[16]

Important examples of triangular norms are the minimum and the product. T-norms
have the property that they remain unchanged when adding the highest value to the
set of inputs. More concrete:

T (y1, ..., yn) = T (y1, ..., yn, yn+1) for yn+1 = 1

where T is a t-norm and the yi are the inputs over which the function needs to
aggregate. This means that t-norms are fully non-compensatory, since the occurrence
of low values cannot be counterbalanced by adding high values. Dual to these
triangular norms are the triangular conorms, which are disjunctive.

"A t-conorm S is a monotone increasing, associative and commutative
mapping [0, 1]2 → [0, 1] with neutral element 0 and absorbing element
1."[16]

Two examples here are the maximum and the algebraic sum of natural numbers.
T-conorms remain unchanged when adding the smallest value to the set of inputs.
They are also fully compensatory, since adding high values indeed increases the
aggregated output.

11





Chapter 3

Methods

3.1 Problem Statement
Given m users with acceptance regions Ui ⊆ X, i = 1, ...,m and who can answer
individual questions about whether or not a proposed object satisfies them, find the
object satisfying all users if it exists.

3.2 Terminology and Concepts

3.2.1 Objects

To begin with, a set of objects X is given. These objects are used to recommend items
to the group of users. Every object also has n features, which are given by a mapping
φ : X → Rn. The actual object space X can then be described by the cartesian
product of these n features. To give an example, consider the features of a car. If the
features were the engine capacity, top speed and weight, a Mercedes Benz G Klasse
would have a feature vector that looks like this: φ(”Mercedes Benz G Klasse”) =
[capacity : 1600cc, topspeed : 218km/h,weight : 2580kg]. It is important to note
that only numerical attributes are dealt with. To include categorical attributes, one
could encode them as numerical values or even use a feature per category. An often
used translation from categorical to numerical attributes is one-hot encoding. For
the sake of simplicity, it is assumed that the features can be rescaled to the interval
[0, 1].

3.2.2 Users

Next, we have a group of m users. Different users like (and may be satisfied by)
different subsets of items in X. The objects that satisfy user i is a subset of all
objects Ui ⊆ X. This Ui is called the acceptance region of user i and the goal of the
recommender system is now to find at least one x ∈ U where U =

⋂
Ui. In other

words, it should find where the acceptance regions of the users overlap. An example
of what such a group of users might look like can be found in Figure 3.2. It may
however be possible that U = ∅ which means that there are no objects that satisfy

13



3. Methods

Figure 3.1: An illustration of indifference. The value of the attribute on the x-axis
is of no importance as long as the attribute represented by the y-axis is somewhere

in [0.3, 0.5]

all users at once. In that case, there are several possible approaches that will be
discussed later.

An important assumption that is made here, is that the acceptance regions can be
approximated by a hypersphere or an axis-aligned hyperrectangle. The idea behind
hyperspherical acceptance regions is that the user has some object that he or she
considers to be optimal. The further objects deviate from that object, the less that
user likes it to the point that the object is classified as unacceptable. In comparison
to spheres, axis-aligned hyperrectangles are able to capture indifference. When a
user is indifferent with respect to a feature this means that they do not care about
its value. To continue with the example of buying cars, someone might be interested
in cars that have an engine capacity ranging from 1200 to 1500 while they do not
care about the colour. In this case, the hyperrectangular acceptance region would
encompass the entire axis that represents the colour of the car. Figure 3.1 illustrates
this.

14



3.2. Terminology and Concepts

Figure 3.2: Example of what a group of users might look like. There are five users,
each assigned to a different colour. The circles represent their acceptance regions.

3.2.3 Queries

Type of Query

Another important aspect about users is that the recommender has to communicate
with them in order to explore towards the overlapping area of the acceptance regions.
The recommender system is allowed to ask questions to the users. This type of
setting is better known as active learning, where the learner can ask questions to
some oracle. In this case, the oracle is the user. Since we are dealing with human
users, it is advised to keep the questions simple and to keep the amount of questions
to a minimum. Single user recommender systems build a ranking by asking the
user to compare objects. Essentially they pose the question: "Is object A better
than object B?" or "Which of these objects is the best?". While this does provide
information about the size and location of the acceptance region, it is potentially a
difficult question when presented with two similar objects. Imagine the case where a
group of people wants to travel abroad. It is not always easy to say if one destination
is better than the other. An easier question might be: "Would you personally be
satisfied if the group decided to go to destination A?". The query has been reduced to
a simple closed question. Angluin [1, 2] refers to this type of question as a membership
query. When combined with the notion of spherical acceptance regions, this means

15



3. Methods

that when querying user i for object x, the recommender system gains information
telling it whether x lies within or outside of their acceptance region.

Angluin [1] considers the problem of identifying the correct hypothesis L∗ from
a finite or countable hypothesis space of subsets of a set of objects U . In order to
find this target L∗, the oracle is asked to identify the relation between a proposed
hypothesis L and the target hypothesis L∗. Examples of relations between the
input/proposed hypothesis L and the target hypothesis L∗ include:

• Equivalence query. The output is yes if L = L∗ and no if L 6= L∗. If the answer
is no, a counterexample is also returned. This counterexample is a random
element x which is in L or in L∗ but not in both.

• Subset query. The output is yes if L ⊆ L∗ and no if otherwise. If the answer is
no, a counterexample x returned having x ∈ L\L∗.

• Superset query. This is similar to the query type above where the difference
is that the roles of L and L∗ are reversed. So L ⊆ L∗ becomes L ⊇ L∗ and
x ∈ L\L∗ becomes x ∈ L∗\L.

• Disjointness query. The output indicates whether L ∩ L∗ is empty. If it is not
empty, an example x ∈ L ∩ L∗ is returned.

• Exhaustiveness query. The output is yes if L ∪ L∗ = U and no otherwise. If
the answer is no, a counterexample x is again provided having x /∈ L ∪ L∗

When translated to our setting, L∗ ⊆ X is the actual acceptance region of a user
and L ⊆ X is the estimate of the acceptance region according to the recommender.
It should be clear that the equivalence, superset and exhaustiveness queries are not
feasible here since the users themselves must know exactly what objects are in L∗
. However, the problem here is that the user does not know this. The subset and
disjointness queries could make sense in this context. For the subset queries, the
user would have to present the recommender an object x ∈ L that they do not find
satisfying. For the disjointness queries, the user would have to return an object
x ∈ L that they do find satisfying.

Types of Query Strategies

Queries are directed to user i and revolve around object x. Object x should be
chosen to be as informative as possible. There is a multitude of ways to achieve this.
What follows is a classification of query strategies.

Query strategies can be group-oriented or individual-oriented. Group-oriented
strategies pose the same query to the entire group. This means that if user 1 is
asked whether or not he is satisfied with object A, user 2 will also be shown object
A. The advantage of this approach is that the system will likely converge to the
common ground of the group very swiftly. A disadvantage of this approach is that it
is less likely to discover the entire acceptance regions of the different group members.
An individual-oriented strategy will propose different objects to different users and

16



3.3. Structure

Figure 3.3: The circles represent the current estimate of the acceptance region and
the blue dot is a query point. On the left: the query is exploring. On the right: the

query is exploiting.

therefore do not give groupwise information. This means that user 1 may be asked
whether or not he is satisfied with object A, while user 2 will be shown object B. Its
advantages and disadvantages are complementary to the ones of the group-oriented
strategies.

Exploration and exploitation are two very important concepts in interactive
learning. When exploring, the goal is to discover areas of the search space that
have not been considered before. When exploiting, the system will use the current
information to make a guess towards the optimal point. As is often the case in
machine learning, a strategy almost never solely explores or solely exploits. Purely
exploiting leads to myopic behaviour. Consider the case of going on a restaurant.
When people would only stick to the restaurants they know, they might be missing
out on better restaurants. However, if these people would only exploit then they
would always go to different restaurants without ever returning to the restaurants
they liked the most. Examples of the difference between exploitation and exploration
are given in Figure 3.3.

3.3 Structure

The overall procedure consists of a number of iterations. Each iteration, a question is
asked to the entire group or to a subgroup of users. A high-level view of this can be
found in Algorithm 3.1 which establishes three major steps in each iteration. First
the recommender must decide which users are to be queried. The second step will
calculate the optimal query to pose to this subgroup of users. Notice how this query
is the same for every user which means that only group-oriented query strategies
are used. This is because of the fact that this type of query strategy converges to

17



3. Methods

the group preference faster than individual-oriented strategies, which is exactly the
goal here. In the final step the knowledge about the users is updated. This includes
updating the underlying estimations of acceptance regions and the bookkeeping of
the current found optimal objects.

procedure recommender (users)
whi l e not s t opp ing_c r i t e r i on ( u s e r s )

s e l e c t ed_use r s = s e l e c t_us e r s ( u s e r s )
re sponse = query_users ( s e l e c t ed_use r s )
update_knowledge ( s e l e c t ed_use r s , r e sponse )

Algorithm 3.1: A high-level view of the actual preference elicitation algorithm.

3.4 Query Strategies

This section will describe four query strategies which are exclusively group-oriented
since the goal of the strategy is to converge to the most satisfying object of the
group. These strategies will be tested and discussed later. In Algorithm 3.1, this
corresponds with the second step in the while-loop. At every point in time, user
i has a set of objects Pi of which the recommender system knows that the user is
satisfied and another set Ni of which it knows that the user is not satisfied. These
sets will be referred to as respectively the positive and the negative examples of user
i.

The first strategy is the Smallest Group Sphere strategy (SGS strategy) which
assumes that if two users are satisfied with respectively object A and object B, any
item that is liked by both users is most likely somewhere between object A and B.
It searches for new objects by querying the users for the points inside the smallest
enclosing sphere of A and B. The advantage of this approach is that if either of
the users responds positively to a proposed object C, then the enclosing sphere may
shrink to include only A and C or C and B depending on which user responded
positively to C. The disadvantage of this approach is that it is not resistant to noise.

Another possible query strategy is the Uncertain Tree Exploration strategy
(UTER strategy). Here the uncertainties produced by decision trees are used in
order to explore the most interesting items to the group. For every user, a decision
tree is built separating the positive examples from the negative ones. To explore
in a decision tree, one could query for the item of which the probability of being a
positive example is as close as possible to 0.5. The exploiting variant of this strategy,
named Uncertain Tree Exploitation (UTET strategy), will query for items whose
probability of being positive is closest to one. Extending this to the entire group,
the probabilities mentioned above are averaged across users. The advantage when
compared to the SGS strategy is that it relies on an actual ordering, the guess
towards good query points is more substantiated. However, this strategy may suffer
from the low amount of queries posed per user.

A final exploitation strategy is the Max Overlap strategy (MO strategy). The
acceptance regions are actually modelled by a hyperrectangle or a hypersphere and

18



3.4. Query Strategies

Figure 3.4: The red and green circles are the actual acceptance regions of two
users and are unknown to the recommender system. The points in their respective
colours are positive examples of these users, they are known by the recommender.

The grey area is the smallest enclosing sphere of two random points.

the point that occurs in the most acceptance regions is considered the best query
point.

3.4.1 Smallest Group Sphere Strategy

This strategy explores the acceptance regions of users. However, as this strategy
is group-oriented, the exploration is biased towards the overlapping parts of the
acceptance regions. Based on the positive examples, it is possible to accurately
estimate where in the object space the most satisfying item of the group is located.
For each user i, a positive example is sampled from Pi.

xi ∼ U(Pi) and C = {x1, x1, ..., xm}

So for three users with P1 = {A,B}, P2 = {C,D} and P3 = {A,E} an example of
a valid set of points C is {A, D, A}. The closer the points in C are to each other,
the closer they are to the overlapping area. Because of this, it is reasonable to guess
that the overlapping area is somewhere in the smallest enclosing sphere of C. This is
illustrated in Figure 3.4.

19



3. Methods

Acquiring the best set of points

The question of how to get the best possible set C remains. If the points in C are
sampled at random, it will be very unlikely that this sphere is useful since the sphere
may be very large. If this is the case, the probability of sampling an informative
point is very small. This is why it is important to choose the points in such a way
that the enclosing sphere of C is as small as possible since this would mean that the
satisfying objects of the users lie very close to each other. The closer these points
are, the more likely it will be that there is an item in this area that satisfies all
users. To achieve this, consider the algorithm given in Algorithm 3.2. It relies on
a function SEB(P ) that calculates the smallest enclosing ball of the set of points
P . At each iteration, a positive example of one user is replaced by another positive
example of that same user. Whenever the smallest enclosing ball shrinks, this sphere
is considered to be the new optimum.

procedure overall_SEB (P1 , . . . , Pm )
C := sample one po int from Pi f o r i =1, . . . , m
best_sphere := SEB(C)

f o r i in 1 . .m
new_points := C

f o r po int in Pi
new_points [ i ] := po int
new_sphere := SEB( new_points )

i f rad iusOf ( new_sphere ) < radiusOf ( best_sphere ) :
C := new_points
best_sphere := new_sphere

re turn best_sphere

Algorithm 3.2: A procedure approximating the smallest group sphere for the
SGS strategy. The input consists of m− 1 sets of points which denote the positive

examples of each user.

It is important to note that this technique does not necessarily yield the smallest
possible sphere. To explain why this is, consider the example in Figure 3.5. The
leftmost image calculated the SEB of the leftmost red, leftmost green and the blue
point. When the green user appears first in the user ordering, his point will not be
replaced. In the next iteration however, the algorithm notices the sphere shrinks
when replacing the leftmost red point by the rightmost red point. After that the
algorithm ends, but the sphere could be smaller by picking the rightmost green point
instead of the leftmost one. To solve this, one could repeat the algorithm until the
set of points does not change anymore. However, this would be a very expensive
operation.

20



3.4. Query Strategies

Sampling

The next problem that arises is how to sample in this sphere. In Monte Carlo
sampling, the sphere is enclosed by a cuboid. Points are sampled from the bounding
cuboid and those that are also within the sphere will be kept. This technique is bad
when dealing with a high dimensional object space. As the amount of dimensions
increases, the probability of the cuboid sample being inside the sphere decreases
because the ratio between the volume of the cuboid and that of the sphere increases.
This can be shown by looking at the volume of a sphere with n dimensions and
radius r:

Vn(r) = π
n
2

Γ(n2 + 1)r
n

In the formula above, Γ is Euler’s gamma function, which is a strictly increasing
function in [2,∞]. A sphere with radius r can be enclosed by a cuboid with edges
having a length of 2r. Consequently, this enclosing cuboid has a volume of (2r)n.
When the probability of having a sample in the sphere decreases in higher dimensions,
this means that the ratio between the volume of a hypersphere and its enclosing
cuboid decreases as well. This amounts to:

Vn(r)
2nrn >

Vn+1(r)
2n+1rn+1

which gives the following:

π
n
2

Γ(n2 + 1)rn2n r
n >

π
n+1

2

Γ(n+1
2 + 1)rn+12n+1 r

n+1

⇔ π
n
2

Γ(n2 + 1)2n >
π

n+1
2

Γ(n+1
2 + 1)2n+1

⇔ π
n
2

Γ(n2 + 1)2n >
π

n
2
√
π

Γ(n+1
2 + 1)2n2

⇔ 1
Γ(n2 + 1) >

√
π

Γ(n+1
2 + 1)2

This must be true since 1 >
√
π

2 and 1
Γ( n

2 +1) >
1

Γ( n+1
2 +1) .

Another possibility is to sample the sphere by generating random a vector ~v.
After generating this random vector, a random radius r is generated between zero
and the radius rsphere of the sphere. The vector is then rescaled so that it has length
r. Given that the center of the sphere is c, the actual sample is then s = c+ ~v

||~v||r.
The samples generated with this technique are not uniformly spread in the sphere
since the length r of the random vector is sampled from a normal distribution.

21



3. Methods

Figure 3.5: To the left: the initial smallest group sphere of the random set of
points C. In the middle: the output of Algorithm 3.2 (depending on user and point

ordering). To the right: the smallest possible circle.

Limitations

This technique can only be used in groups of which you are certain that they have
some common ground. When dealing with disjunct groups, consider the case where
two completely separated subgroups of people are given. The gap between these
groups will be contained by the enclosing sphere, which will result in useless queries.
This calls for a mechanism that avoids querying entire groups of people when it is
impossible to satisfy them all with one object.

Variants

Instead of using the enclosing sphere of the set of points C, it is also possible to
use the enclosing hyperrectangle or ellipsoid. However, these might not work as
well as spheres. Consider the example given in Figure 3.6. It should be clear that
the enclosing ellipsoid and enclosing hyperrectangle are bad choices, as they are
unable to produce queries to which one of the users provides a satisfied answer. The
enclosing volumes would therefore not be able to shrink. In contrast, a sphere would
include points that could yield positive examples and because of this is able to shrink
in volume until the overlapping area is found. Only the rectangular variant will be
used in the experiments.

Calculation of the Smallest Group Sphere

The Smallest Enclosing Ball (SEB) Problem is a famous problem that knows lots
of applications in practise. A well-known example of this is the placement of a
warehouse near delivery points. The warehouse should be located in such a way
that the travel time to the delivery points is minimal. To guarantee fairness, the
maximum travel time (not the average travel time) should be as small as possible.
This corresponds to finding the smallest enclosing circle containing the delivery
points and building the warehouse in the center of that circle. A visual example of
this can be found in Figure 3.7.

22



3.4. Query Strategies

Figure 3.6: The green and red figures are acceptance regions of two users. The
black figures represent the smallest enclosing hyperrectangle as created by the SGS

strategy.

Figure 3.7: Example of the smallest enclosing ball problem for a warehouse and its
delivery points.

23



3. Methods

Given a set of points P ⊂ Rn, the goal is to find the hypersphere with center
c ∈ Rn and radius r such that r is as small as possible:

c = argminc max{d(c, p)|p ∈ P}

where d is the euclidian distance between two points. As is proven by Welzl [22],
this hypersphere is unique. Indeed, assume the enclosing sphere is not unique, then
you have spheres D1 and D2 with an equal radius r and centers c1 and c2. Since
all points P lie within the two spheres, they will also be in the intersection of these
spheres P ⊂ D1 ∩D2. D1 ∩D2 is now enclosed in the sphere with center c1+c2

2 and
radius

√
r2 − a2 where a equals half of the distance between c1 and c2. If a > 0 then

the radius of this new sphere is smaller r which contradicts the assumption that D1
and D2 were the smallest enclosing balls. Therefore, a = 0 which means that c1 and
c2 coincide so D1 = D2.

Another important property is that in an n-dimensional space, the smallest
enclosing ball of a set of points P is defined by at most n + 1 points in P . In
other words, the SEB of a set of points P is equal to the SEB of some S ⊆ P with
|S| 6 n+ 1. Notice how this subset S is not necessarily unique.

There are several approaches to solve this problem and either of them can be used
in the SGS strategy. A first possibility is to use the minidisk algorithm proposed by
Welzl [22]. The idea is to incrementally compute the enclosing sphere by starting
from the empty set of points and randomly adding points from P . The algorithm
boils down to the identification of the points that have to be located on the border of
the bounding sphere. Finding a sphere based on some points that must occur on the
border of said sphere is a complex problem as well. For this reason, this algorithm is
not used here.

Fischer et al. [10] provides a procedure that successfully converges to the minimal
bounding sphere. An important property introduced by Gärtner et al. [12] used here
is the following: If T is a set of points on the boundary of some ball with center c,
then that ball is the SEB of T if and only if c ∈ conv(T ). In the property described
here, conv(T ) is a convex combination of T . This means:

conv(T ) =
∑
ti∈T

αiti, where αi > 0 and
∑
αi

αi = 0

The affine hull aff(T ) of a set of points T is the same as conv(T ) except for the fact
that the αi do not have to be greater or equal to zero.

The actual algorithm iteratively updates the pair (T, c) where T is the set of
points on the border of the sphere with center c. Each iteration consists of a dropping
phase and a walking phase.

• Dropping phase: If c /∈ conv(T ), calculate the affine combination of c according
to T (i.e. find the αi). Find the point ti ∈ T for which αi < 0 and update
the pair from (T, c) to (T{ti}, c). An example of what the result of this phase
looks like is given in Figure 3.8.

24



3.4. Query Strategies

Figure 3.8: Example of the dropping phase in Gärtner’s Approach. (Image taken
from [10]). The αi of s is negative in the affine combination. Therefore, it must be

dropped.

Figure 3.9: Example of the walking phase in Gärtner’s Approach. (Image taken
from [10]). Notice how c /∈ aff({s1, s2}. Because of this, the sphere must move

towards the circumcenter of {s1, s2}.

• Walking phase: Now it is possible that c /∈ aff(T ) due to the dropping of a
point. In that case, move the center of the ball towards the circumcenter of
T until some new point p p ∈ P and p /∈ T hits the boundary of the moving
sphere. The pair (T, c) is then updated to (T ∪ {s}, c′) where c′ is the center
where the ball stopped moving. It can be proven that during this process, the
sphere will shrink. An example of this phase can be found in Figure 3.9.

Expansion Heuristic (EH)

In the case of hyperrectangular acceptance regions, the SGS strategy can be improved.
The Expansion Heuristic does so by imposing a partial ordering among the samples

25



3. Methods

Figure 3.10: Illustration of the Expansion Heuristic. If there were a positive (green)
example in the grey area, then the minimal enclosing bounding box would include

the negative (red) example.

within the smallest group sphere. Consider the case of one user. Based on the
negative examples of that user, some points are no longer interesting to query since
the recommender system is certain that these points are negative. Some query points
within the sphere can then be eliminated. To extend this to a group setting the
sampled objects are given a score. This score is based on the amount of users that
would have a valid minimal enclosing bounding box after adding the sample to the
positive examples. A valid minimal enclosing bounding box does not contain any
negative examples. An example of this can be found in Figure 3.10.

This can not be used for hyperspherical acceptance regions since a valid set of
samples from the ground truth can result in a smallest enclosing ball that exceeds
the boundaries of the ground truth. Figure 3.11 illustrates this. This extra heuristic
is not used in the experiments.

3.4.2 Max Overlap Strategy (MO Strategy)

This strategy focuses on exploration. Under the assumption that the acceptance
regions could be modelled by a hyperrectangle or a hypersphere, it is possible
to estimate them accordingly when given the positive examples of a user. For
hyperrectangles, this is nothing more than calculating the bounding box that contains

26



3.4. Query Strategies

Figure 3.11: Valid samples of the ground truth (dashed circle) may cause the
smallest enclosing ball of the positives (full circle) to contain false negatives.

all positive examples. In the case of hyperspheres, one could opt to use the smallest
enclosing ball of all positive points.

To exploit these modelled acceptance regions, all that needs to be done is to
query for the item that is contained in the most amount of estimated acceptance
regions. More formally, given the set E of enclosing volumes, find:

argmaxp |{e|e ∈ E, p ∈ e}|

Instead of exploring towards the overlapping region (as is the case in the SGS
strategy), this extra mechanism actively searches for points in the overlapping area.

3.4.3 Uncertain Tree Explore Strategy (UTER Strategy)

Instead of trying to model the acceptance regions with actual shapes, it is also
possible to use decision trees for this. In this context, the decision tree will have to
make a distinction between two classes of objects: objects that satisfy the user and
objects that do not satisfy the user. As training data, the decision tree is given the
previously queried objects of a user. This means that at each iteration, the training
data grows and the tree should be more accurate. Decision trees allow to predict the
probability that an unseen object belongs to some class. In other words, it can yield
the probability that the user finds that object satisfying.

27



3. Methods

For this strategy, it is exactly this probability that will be exploited. Assume
that, according to the decision tree, the probability that user i is satisfied with
object x ∈ X is P (xsati). Since the classification problem is binary, the uncertainty
of the tree about x can be captured by calculating the difference between 0.5 and
P (xsati). The closer P (xsati) is to 0.5, the more uncertain the tree is about that
object. In order to explore the search space, this is the most interesting object to
inspect. Propagating this logic to the entire group, the uncertainty of item x in the
group is then: ∑

i |P (xsati)− 0.5|
# users

The goal of the query strategy is then to find

argminx

∑
i |P (xsati)− 0.5|

# users

3.4.4 Uncertain Tree Exploit Strategy (UTET Strategy)

The UTER strategy is solely based on exploration, as it tends to query for the
most uncertain points across the group. However, it is also possible to exploit the
probabilities P (xsati) to estimate where the overlap between the acceptance regions
may be. This corresponds to finding the object x that has the highest probability of
satisfying all users. The formula used in the UTER strategy is reworked to look as
follows:

argmaxx
∏
i

P (xsati)

As was mentioned earlier, it is usually advised to find a tradeoff between exploration
and exploitation. This is why at every iteration, a balanced query strategy would
switch between the UTER strategy and the UTET strategy. Usually it is advised
to explore at the beginning and exploit as the system gains more knowledge. This
may be achieved by implementing a monotonically decreasing function between zero
and one. This function receives the current amount of iterations as an input and its
output represents the probability of using the UTER strategy. So at each iteration,
the query strategy is nondeterministically chosen between UTER and UTET. A
possible example of such a function is f(x) = 1

x .
Notice how the UTER and UTET strategies are subject to the size of the object

space. For instance, when dealing with continuous attributes, considering all points
to find the best query is impossible. In this case samples must be taken from the
object space and the best object will be chosen from these samples. As will be shown
in the results, high dimensional problems will suffer from this.

3.5 Detecting Subgroups
The techniques discussed in the previous section rely on the assumption that the
intersection of all acceptance regions is not empty. This is not necessarily true,
especially in large groups. In that case, the recommender system must find an

28



3.5. Detecting Subgroups

acceptable way to split up the group. The technique that will be explained next
influences the first and third lines in the while-loop of Algorithm 3.1.

3.5.1 Bottom-up Clustering

The idea behind bottom-up clustering is to merge two similar clusters into one cluster
until some stopping criterion is reached. All items that have to be clustered start
in their own separate cluster. Translated into the group recommender problem, all
users start separated in their own subgroup. Two subgroups are then merged if an
object is found that satisfies all users in these subgroups. However, this may not
always be possible, which results in the following two questions:

• How can the recommender determine that two subgroups have a high probability
of being merged?

• When should the recommender system give up on merging two subgroups?

The answer to the first question can again be answered by looking at clustering
algorithms. There are a large amount of possible measures such as complete-link,
single-link and average-link that capture the difference or similarity between clusters
or subgroups. The average-link measure will be used and it is defined as the average
pairwise distance between two points, one of each cluster. At every point in time,
every subgroup has a collection of objects of which the recommender system knows
that the entire subgroup is satisfied. Using the average-link measure, these collections
of objects can then be used to calculate the distance between subgroups. To give an
example, assume that there are three groups each with their discovered satisfying
objects: group 1 has {A,B}, group 2 has {C} and group 3 has {D}. More formally,
given distance measure d as described in table 3.1 this would mean that:

d(group1, group2) = d(A,C) + d(B,C)
2 = 2

d(group1, group3) = d(A,D) + d(B,D)
2 = 4

d(group2, group3) = d(C,D)
1 = 3

Since the distance between group 1 and group 2 is the smallest, the group recom-
mender system should attempt to merge them.

Now that two subgroups can be selected to merge, the question of when the
recommender should stop trying still remains. A couple of approaches are possible:

• Stop trying after a predetermined amount of queries. This is the approach that
will also be used in the experiments.

• In the case of Smallest Group Sphere queries, one could stop when the smallest
group sphere did not shrink for a couple of iterations.

• For the Uncertain Tree query strategy, it is possible to stop when the uncertainty
(i.e. the difference between P (xsati) and 0.5) is too low for all points.

29



3. Methods

d(A,B) 5
d(A,C) 3
d(A,D) 6
d(B,C) 1
d(B,D) 2
d(C,D) 3

Table 3.1: Example of a distance measure between objects

3.5.2 Top-down Clustering

Top-down clustering will not be used in the experiments. In top-down clustering,
the objects start in one large group. This group is then split up into smaller groups
until some stopping criterion is met. When propagated to a group recommender
system, this means that all users are considered to be one group. After a while, the
system may give up on trying to find a satisfying object for the group and split them
up. However, this split is hard to determine since it is not based on any evidence. It
is not certain that the group is indeed not satisfiable. In contrast, the bottom-up
clustering method will have evidence to merge two groups. Whenever two groups
are merged, it is certain that they have common ground. For this reason, top-down
clustering methods are not considered here.

3.6 Adjusted Strategies

It is possible that a user already answered the query that is proposed by some query
strategy. Also note how in the subgroup detection approach, not all users will have
answered the same questions. There are two possibilities then: the user may be
skipped or a new query is proposed. It is better to still ask this user a question and
gain some information, even though it may not be the optimal question according
to the query strategy. In the query strategies that were shown, answering an extra
question potentially has an influence on the query in the next iteration for example
the smallest group sphere might shrink in the SGS strategy. The query strategies
must be provided with a mechanism that allows posing alternative queries in case
the optimal query has already been answered.

An intuitive, low quality mechanism is to just choose a completely random object.
The probability of selecting an informative object would be too low. It would be
better to use some sort of heuristic or even reuse the same heuristic on which the
main query strategy relies.

Smallest Group Sphere Adjustment

The adjustment that is made here is rather straightforward. Since the enclosing
sphere of the set of points C is already known, all there is to do is to sample another
point in that sphere. The heuristic that the overlapping area is located in this sphere

30



3.7. Conclusion

is reused. It is also important that there is no way of determining which point is
more informative than another point (according to the heuristic).

Max Overlap Adjustment

An ordering of queries has to be introduced here. The items in the object space
are sampled and sorted according to the amount of estimated acceptance regions in
which they occur. Whenever an item was already queried to some user, it suffices to
simply choose the next item in the ordering. Notice how that next item might occur
in less overlapping regions than the most preferred item, which means that a portion
of the query quality is given up.

Uncertain Tree Explore / Exploit Adjustment

This strategy will have to give up some of the quality of its queries as well. The
formula that is maximised to find the optimal object in UTER and UTET can also
be used to create an ordering of queries. So for the UTER strategy, the queries are
sampled from the object space and ordered so that the overall most uncertain object
is used first. The UTET strategy on the other hand will sample and order queries so
that the object with the highest likelihood of being accepted by all users is chosen
first.

3.7 Conclusion
In this chapter, four query strategies were introduced. The SGS approach relies on
the heuristic that positive examples across users that are close to each other are also
close to the overlapping area of their acceptance regions. In MO, the acceptance
regions are modelled as hyperspheres or hyperrectangles. MO then models the
acceptance regions based on the positive examples and tries to find the point(s)
that occur in as many acceptance regions as possible. In the UTER approach, the
queries are focused on the exploration of the acceptance regions by looking at the
uncertainties of a decision tree model when presented with an unseen instance. UTET
is similar to UTER since it also uses these uncertainties. The difference between
UTER and UTET is that UTET will actively search for the optimal point, while
UTER attempts to explore the acceptance regions.

To see which people can agree and which people can not agree, similar strategies
as in clustering are used. The group of people will be divided into subgroups, initially
they are all populated by exactly one user. Subgroups are portions of the group that
are known to agree on at least one item. The recommender system shall attempt to
merge these subgroups by asking the users in two selected groups the same question.
An important mechanism here is the selection of two subgroups that have to be
merged. This is done by defining a distance measure between groups, an example of
which is the distance between the previously queried positive examples of the two
groups.

31





Chapter 4

Data

The algorithms are evaluated using both synthetic and real-world datasets. These
datasets shall be discussed in turn in this chapter.

4.1 Synthetic Datasets
The goal of this section is to provide a way to generate synthetic datasets with
varying complexities and varying sizes. These datasets will then be used to measure
the performance of the algorithms.

4.1.1 Spherical Acceptance Regions

In order to generate different datasets of different complexities, the first thing to do
is to generate a dataset of which all acceptance regions overlap with each other. It
is important to note that the object space of the synthetic datasets are a cuboid
with an edge length of 1. This means that the possible values for every feature of an
object lie between zero and one.

Overlapping Spheres

First, consider the case where all people in the group can be satisfied at once with
at least one object. For hyperspherical acceptance regions, this means that all the
hyperspheres must overlap. To generate overlapping spheres, it must be ensured that
all spheres have at least one point in common. At the beginning of the procedure,
this point p = (p1, ..., pn) is chosen at random from the n-dimensional object space.
The goal is now to generate spheres that contain p. For every sphere that has to be
generated, a vector ~v = (v1, ..., vn) is randomly created and rescaled such that p+ ~v
is on the border of the object space (i.e. the cuboid). The rescaling factor t can be
calculated as follows:

t = min
i

(max{−pi
vi
,
1− pi
vi
})

The center of the new sphere will now have to be somewhere along the line described
by p+~v. This can be achieved by sampling another random value s from [0, 1]. As a

33



4. Data

Figure 4.1: Generating two acceptance regions that overlap in at least one point.

result, the center c of the new sphere will be

c = p+ ts~v

Next, a radius is generated for the sphere. It should be clear that the minimum
radius of the sphere should be the euclidian distance between c and p so that the
sphere includes p. The maximum distance should be greater than this, but it should
not be too small or too large. The largest possible radius any sphere can get is

√
n in

n dimensions, which can easily be derived by looking at the boundaries of the object
space (0, 0, ..., 0) and (1, 1, ..., 1). However, if only this radius is used, the generated
spheres would sometimes be too large and therefore too easy to solve. This is why
the maximum radius is set to be the minimum of

√
n and k times the minimum

radius. For the experiments, k will be set to 1.5. An example of the procedure in two
dimensions can be found in Figure 4.1. It is also important to note that the spheres
may be partially outside the object space when s > 0.5. This is a desirable trait,
since it allows the spheres to include the corner points of the object space as well.

Every time an extra user is generated, the overlapping region can only become
smaller. In configurations with many users, this may continue to the point that the
overlapping area only consists of one point. To avoid this, the minimum radius can
be enlarged by some number rmin. Instead of having at least the point p in every
generated sphere, all acceptance regions will now include the sphere with p as its
center and radius rmin. This allows to choose the complexity of the search, since the
problem should not be too hard to solve.

Subgroups of Spheres

The goal here is to generate separated groups of spheres. This can be achieved by
dividing the object space in multiple parts and generating overlapping spheres in
each part. In reality, these groups have some people that will overlap with other
groups. This is because, as explained above, the generated spheres may cross the
boundaries of the space in which they are generated and therefore they may cross
the boundaries of the subdivisions of the object space. In Figure 4.2, the leftmost
image has two individuals whose acceptance regions overlap across subgroups, a case

34



4.1. Synthetic Datasets

Figure 4.2: Example of subgroups in data generation.

that will often happen in large groups. The image on the right shows two disjunct
subgroups.

4.1.2 Hyperrectangular Acceptance Regions

An axis-aligned hyperrectangle can be described by exactly two points. For example,
there is only one axis-aligned hyperrectangle that has both (0, 0, ..., 0) and (2, 2, ..., 2)
as vertices. The first point (Minpoint) contains the minimal values for every dimen-
sion, while the last point (Maxpoint) contains the maximal values for each dimension.
As is the case with hyperspherical acceptance regions, it is possible to simply pick
a random point and enforce every acceptance region to include this point. The
two points that describe the hyperrectangles are then nothing more than samples
from two other hyperrectangles. Assume that the common point is p and the object
space is described by the hypercube with vertices (0, 0, ..., 0) and (1, 1, ..., 1). The
Minpoint is sampled from the hyperrectangle that has (0, 0, ..., 0) and p as vertices.
The Maxpoint will have to be a sample from the hyperrectangle with vertices p and
(1, 1, ..., 1). This is illustrated in Figure 4.3. The red point represents p and the
grey areas to the left and to the right represent the sample areas of respectively the
Minpoint and the Maxpoint.

As was the case with the hyperspherical acceptance regions, it is possible to
guarantee a certain size of the overlapping area. Instead of sampling a point in the
object space, one could also make a hyperrectangle and enforce every acceptance
region to enclose it. Suppose that the hyperrectangle described by p1 and p2 is
used to represent the overlapping area. Every acceptance region will then have a
Minpoint that is a sample from the hyperrectangle that has (0, 0, ..., 0) and p1 as
vertices. The Maxpoint on the other hand will be a sample from the hyperrectangle
with vertices p2 and (1, 1, ..., 1). This is illustrated in Figure 4.4. The red point and
green point are respectively p1 and p2. The grey area to the left is the area in which

35



4. Data

Figure 4.3: Illustration of how hyperrectangles can be generated with one common
point.

the Minpoint will be sampled and the grey area to the right represents the sample
area of the Maxpoint.

4.1.3 Rarity of Overlapping Area

As briefly mentioned before, the overlapping area should not be too rare. This is why
the common point was extended to the common hypersphere and common bounding
box. The dilemma that now arises is the choice of the size of this common area.
For hyperrectangles the solution to this problem can be solved relatively easy. One
could define a ratio 1

k which denotes the volume of the common area divided by the
volume of the object space. When assuming a cuboid shaped object space with a
volume of one, this means that the volume of the common area should be 1

k . In n
dimensions, this means that the length of a side of the common area should be n

√
1
k

which is always smaller than one for k > 1.
For hyperspherical acceptance regions, enforcing this 1

k ratio is not always possible.
Recall that the volume of an n-dimensional hypersphere is:

Vn(R) = π
n
2

Γ(n2 + 1)R
n

The largest possible radius is 1
2 if the sphere is required to be inside the object space.

36



4.2. Real Datasets

Figure 4.4: Illustration of how hyperrectangles can be generated with a common
hyperrectangle.

In that case, the largest possible volume of such a sphere is equal to

π
n
2

Γ(n2 + 1)2n

This is again a decreasing function for n ∈ [2,∞]:

π
n
2

Γ(n2 + 1)2n >
π

n+1
2

Γ(n+1
2 + 1)2n+1

1
Γ(n2 + 1) >

√
π

2Γ(n+1
2 + 1)

Which must again be true since 1 >
√
π

2 and 1
Γ( n

2 +1) >
1

Γ( n+1
2 +1) . This means that

the overlapping area will become more and more difficult to find for hyperspherical
acceptance regions.

4.2 Real Datasets

4.2.1 Description

The two real world datasets are also used by Abbasnejad et al. [8] 1. They contain
pairwise preference information about cars. The first dataset consists of the pref-

1Link to the dataset: https://users.cecs.anu.edu.au/~u4940058/CarPreferences.html

37

https://users.cecs.anu.edu.au/~u4940058/CarPreferences.html


4. Data

erences of sixty customers about ten different car models. Every user was offered
every possible combination of two cars and then had to indicate which one he or she
preferred. The cars have the following possible attributes:

• Body type: Sedan, SUV

• Transmission: Manual, Automatic

• Engine capacity: 2.5L, 3.5L, 4.5L, 5.5L, 6.2L

• Fuel consumed: Hybrid, Non-Hybrid

The only ordinal attribute is the engine capacity. All the others are binary categorical
attributes.

The second dataset is similar to the first one, but this time there are twenty cars
present and they are given more attributes and attribute values:

• Body type: Sedan, SUV, Hatchback

• Transmission: Manual, Automatic

• Engine capacity: 2.5L, 3.5L, 4.5L, 5.5L, 6.2L

• Fuel consumed: Hybrid, Non-Hybrid

• Engine/Transmission layout: All-wheel-drive, Forward-wheel-drive

This time, the body type attribute must be split up. The reason for this is because
the dataset no longer satisfies the assumptions about the acceptance regions. If the
ordering of attribute values in the object space is Sedan-SUV-Hatchback, then there
is no possible way of representing people that like Sedans and Hatchbacks under the
assumption that acceptance regions are hyperspherical or hyperrectangular. The new
attributes now include Body_is_Sedan, Body_is_SUV and Body_is_Hatchback
each with two possible values: true or false. However, this would cause a large part
of the search space to be invalid since exactly one of these three variables should be
true for every object. This dataset also differs from the previous dataset in the fact
that it does not contain all possible pairs of cars per user. The users are presented
only thirty eight possible pairs of cars instead of all possible combinations.

4.2.2 Translation to Acceptance Regions

The datasets do not say anything about acceptance regions as they define no boundary
on what a specific user considers to be a good car. They only contain pairwise ranking
information describing that one car is preferred to the other. This can be translated
to an acceptance region. Since the datasets are small enough, the acceptance regions
will be represented as a collection of cars that are considered good. To get these cars,
all that needs to be done is to define a threshold for what is ’good’ per user. If the
fraction of entries where car k is preferred to another car is larger than a certain

38



4.2. Real Datasets

User ID Preferred car ID Other car ID
1 3 1
1 6 3
1 6 4
1 2 6
1 3 6
1 6 5
1 4 5

Table 4.1: Example of what the car preference data set looks like. The second
column contains identifiers of the car that is preferred to the car in the third column

according to the user identified by the first column.

threshold, car k is considered to be acceptable. So for user i, cars = {c1, .., cc},
threshold t and preference relation A � B where A is preferred to B:

Ui = {ck|
{ck � cj |cj ∈ cars}|

|{ck � cj |cj ∈ cars} ∪ {cj � ck|cj ∈ cars}|
≥ t}

This threshold could be equal for every user. However, it is more realistic to choose
different thresholds for every user. When compared to hyperspheres, the choice of
this threshold would be similar to the choice of a radius. In the experiments, this
threshold will be set to 0.2 since this ensures that all users in the larger dataset have
at least one object that they find satisfying.

An example of this translation is reported in Table 4.1. If the threshold for
acceptance is 0.5, the accepted cars would be {2, 3, 6} since their fraction of winning
entries are respectively 1.0, 0.67 and 0.6.

39





Chapter 5

Experiments

This chapter will put the query strategies to the test. Both synthetic and real datasets
are used. The real dataset should provide an image on how well real world situations
can be handled by the strategies. The synthetic datasets allow to investigate problems
of different complexities and sizes. As was discussed earlier, the overall process is
described by a number of iterations. Every iteration, the query strategy selects a
question and then proposes it to the group or optionally only a part of the group.
The metrics that are monitored per iteration are the rand index and the satisfaction
rate which will be discussed in this chapter.

To avoid lucky runs, the same experiment is rerun fifty times. In the case of
synthetic data, the fifty runs use newly generated data. The rand index and the
satisfaction rate are then averaged per iteration and plotted on a graph together
with the standard deviation which is represented by the coloured area.

Parameters

The synthetic datasets allow to choose the number of users and the number of
features very easily. What follows is a list of the parameters and all possible values:

• Users: 2, 5, 10, 25

• Group type: Fully-overlapping, separate-groups

• Features: 2, 5, 10, 25

• Acceptance region: Hyperspherical, hyperrectangular

• Clustering: Yes, No

• Strategy: SGS + MO, UTER + UTET

• Number of iterations: 200

• Maximum number of queries per user: 50

• Samples used in strategy: 5000

41



5. Experiments

For the number of users, twenty five seems sufficient as an upper boundary. To
continue with the example of going on a holiday with friends or buying a shared car,
usually these groups are not larger than twenty five. The number of features must
take into consideration that they are usually selected manually and therefore objects
do not have extremely large feature vectors. To continue the example of cars, a car
dealer will not present the customer with all the statistics about the car. Only the
most important properties are given such as the engine capacity, the weight or the
top speed.

As was briefly mentioned in the previous chapter, datasets can have different
complexities. In the fully overlapping case, all the generated acceptance regions will
have a non-empty overlapping area. The same is done for the separate groups, except
for the fact that there are two main subgroups now. This means that the group
as a whole can not be satisfied with one object. For each of these two separated
subgroups however, the recommender can to find a suitable object.

When the clustering parameter is disabled, the recommender system will assume
that the group is satisfiable and therefore it will not divide the population into
groups. This allows to inspect the ability of the clustering approach to recognise
groups as well as the difference in performance between clustering and non-clustering
in the fully-overlapping group type.

For the number of iterations, it is important to note that iterations does not
equal queries answered per user. The bottom-up clustering approach of groups will
only query a subgroup of users. When clustering is disabled the entire group will
be queried in every iteration. This means that the clustering approach will ask
fewer questions to the users when compared to the non-clustering approach. For
this reason, an upper bound on the number of queries per user is also used. This
upper bound is set to fifty while the maximum number of iterations is set to two
hundred. To ensure complete fairness, one could also set the upper bound on the
number of iterations to fifty times the number of users. However, the plots would
become unreadable when comparing the clustering strategy with its counterpart
since the latter would stop querying after fifty iterations.

The last parameter only affects the MO, UTET and UTER strategies. As was
extensively discussed, these strategies define an ordering of items according to what
their notion of a qualitative query constitutes. In large search spaces, it is impossible
to consider every possible item. This is why the space should be sampled, the amount
of which is denoted by the last parameter in the list above.

5.1 Metrics

The metris are used to measure some important properties of the query strategies,
namely the convergence speed of query strategies towards the largest satisfiable group
and the ability to detect subgroups of people. If the users do share a satisfiable item,
then the target solution is simple: find the object x ∈ X such that ∀i : x ∈ Ui. Now,
what is considered to be a good solution in the case that the group does not have
such an object? One possibility is to recommend one object that satisfies the most

42



5.1. Metrics

Figure 5.1: There are multiple ways to divide this group. You could combine the
red circle with the black and the gold ones or with the other four circles.

people. Depending on the complexity and size of the group, this will leave a lot
of people unsatisfied. Another possible approach is to propose the group to split
up. For example, the recommender system may notice that one subgroup wants to
travel to Italy and the other wants to travel to Germany. In that case, the system
should inform the users that these subgroups exist. However, this raises some other
questions on what exactly is considered important. Should the largest subgroup be
as large as possible or should there be as few subgroups as possible? Examples of
how to split groups can be found in Figure 5.1.

5.1.1 Satisfaction Rate

The satisfaction rate is the most important measure when inspecting a single group.
As was mentioned above, there are multiple ways of splitting a group if not all group
members manage to agree. The intuitive goal is to make the subgroups as large as
possible. It is usually desirable to please as many people as possible, since the group
will often choose only one object. As an example, when buying a car, the group
would not buy multiple cars. This is why that car should please as many group
members as possible.

Given the largest possible group, the performance of a query strategy can be
measured by comparing it with the largest possible group that is found. Suppose

43



5. Experiments

the largest possible group is a set of people G while the recommender system found
a group denoted by the set G̃. The satisfaction rate of that subdivision is then |G̃||G| .

5.1.2 Rand Index

The satisfaction rate does not contain any information on how well the recommender
was able to detect subgroups of people. When using the clustering approach, the
algorithm yields the subgroups of users for which a satisfying object was found. For
the ground truth, the original subdivision of group members is used. This means
that in the case of the separate-groups group type for ten users, the ground truth
will consist of two clusters of five users. The performance measure is now reduced to
the similarity between two clusterings which can be calculated by the rand index.
Given a set of n elements E = {e1, ..., en} and two partitions X = {X1, ..., Xr} and
Y = {Y1, ..., Ys} of E into subsets, this index yields a value between zero and one
where values closer to zero indicate low similarity between clustering X and clustering
Y and values closer to one indicate a high similarity. Informally, the rand index can
be described as the number of pairs of two elements in E that either cooccur in some
Xk and some Yl or do not cooccur in any Xk or Yl. This count is then divided by
the total number of pairs that occur in all the Xk and Yl. Formally, the rand index
is calculated as follows:

R = a+ b(n
2
)

having
a = |{Pair(ei, ej)|i 6= j,∃Xk, Yl : ei, ej ∈ Xk, ei, ej ∈ Yl}|

b = |{Pair(ei, ej)|i 6= j,∀Xk, Yl : ei, ej /∈ Xk, ei, ej /∈ Yl}|

Notice how Pair(ei, ej) is used to stress the fact that the pair only counts as one
element.

5.2 Synthetic datasets

5.2.1 Research questions

What follows is a list of questions to be answered by the experiments.

• What is the influence of enabling user clustering on a group of users that have
at least one object that satisfies the entire group?

• What is the influence of enabling user clustering on a group of users that do
not have an object that satisfies the entire group?

• How does the combination of the SGS and MO strategies perform when
compared to the combination of UTER and UTET?

• Does the rectangular variant of the SGS strategy described in section 3.4.1
improve the performance under hyperrectangular acceptance regions?

44



5.2. Synthetic datasets

5.2.2 Discussion of Research Questions

What is the influence of enabling user clustering on a group of users
that have at least one object that satisfies the entire group?

In Figures A.1 and A.2 it can be seen that the case where no clustering techniques are
used converges faster to a high satisfaction rate and a higher rand index. However,
eventually the clustering approach does catch up and even outperforms the non-
clustering approach in both metrics. It should also be noted that the clustering
approach does not query the entire group at every iteration only the members of the
two subgroups it is trying to merge which explains the slower convergence. After a
couple of iterations, the algorithm gets a benefit from focusing on a subset of the
group members at a time. This is most likely because the smallest enclosing ball, as
specified by the SGS strategy, will be smaller and therefore more precise if only a
subgroup of people is queried.

What is the influence of enabling user clustering on a group of users
that do not have an object that satisfies the entire group?

Now consider the experiments of which the group-type is separate-groups. As can
be seen in Figures A.3 and A.4, the scores achieved when clustering is disabled are
horrible. Notice how groups of two users are not interesting because they are nothing
more than two non-overlapping acceptance regions. As was speculated before, the
smallest sphere in the SGS strategy will contain the gap between the two separated
groups and therefore it will most likely query for a lot of useless objects. In the
red part of the plot, clustering is enabled which results in higher satisfaction rates.
An important observation is that after a couple of iterations the algorithm has
converged to a local optimum and fails to identify groups larger than the one(s) that
are currently found. This can be explained by keeping in mind that the two synthetic
disjunct groups are not completely disjunct and the fact that the merging of groups
is rather naive. To visualise this, if the red circle and the green circle are merged
together in Figure 4.2, there is no way to split them up again. This eliminates the
possibility of finding the group that consists of the two blue circles and the green
circle.

How does the combination of the SGS and MO strategies perform when
compared to the combination of UTER and UTET?

Figures A.5 and A.6 show that the SGS+MO strategies outperform the UTER+UTET
strategies by a large margin when using hyperspherical acceptance regions. After
closer inspection of the decision trees produced throughout the query strategies, a
huge class imbalance was observed. The strategy was unable to detect any new
positive example apart from the one positive example that was initially given by the
user. As a result, the probabilities produced by the decision tree were inaccurate
as well. An important factor here is that decision trees are not suitable to capture
spherical concepts in high dimensions with few examples.

45



5. Experiments

An observation that also catches the eye is that the satisfaction rates and the
rand index are sometimes a straight line for the UTER+UTET strategies. This can
be explained by inspecting the way in which they are calculated. Given m users,
the satisfaction rate is always at least 1

m since the recommender has an example
of a satisfying object of every user. Due to the inability of UTER+UTET to find
objects satisfying multiple people, the satisfaction rate will remain constant. For
the partially overlapping groups on the other hand, the rand index always forms
a straight line around half of the y-axis. This is because of the way the clustering
of users works combined with the definition of the rand index. Because of the way
the synthetic data is generated, the ground truth consists two separated groups of
users. Suppose that these groups are structured as follows: A = {user1, user2} and
B = {user3, user4}. In the calculation of the rand index R = a+b

(n
2)
, the b is equal to

the number of pairs between one element from A and one element from B. According
to the clustering approach all users start in their own separate clusters. This means
that every combination of two users from the separated groups in A and B will
also appear in the initial clustering of users since at the start, users all populate a
separate cluster.

For hyperrectangular acceptance regions in Figures A.7 and A.8, the SGS+MO
strategies again outperform the UTER+UTET strategies by a large margin. When
comparing the SGS+MO strategies, the performance seems to drop drastically when
using hyperrectangular acceptance regions instead of hyperspherical acceptance
regions. The reason for this is because hyperrectangles can have large edges with
respect to one dimension and short edges with respect to another dimension. Consider
the example given in Figure 5.2. Due to the height of the acceptance regions and the
unlucky position of the currently seen objects, the radius of the smallest enclosing
ball containing the red and the green point will have a large radius. The probability
of generating a query that lies within either of the two acceptance regions is therefore
small. This will only get worse when adding more dimensions to the object space.

Does the rectangular variant of the SGS strategy described in section
3.4.1 improve the performance under hyperrectangular acceptance
regions?

As can be seen in Figures A.9 and A.10 there is barely any difference in performance
between the vanilla SGS strategy and its variant. However, sometimes the variant
outperforms the standard implementation. To explain this, consider again Figure
5.2. Notice how the rectangular variant would not suffer from this in contrast to the
standard SGS implementation.

5.2.3 Reported Runtimes

Since users should not wait for too long in between questions, it is important to
report these runtimes as well. The time measurements given here are grouped per
experiment, which means that all 200 iterations are included. The reason why the
runtimes are not reported per iteration is because this might distort the image of

46



5.3. Real Datasets

Figure 5.2: Two acceptance regions and their positive examples.

what the user might actually experience. For example, if the reported runtime per
iteration is 5 seconds, one might think that a user needs to wait 5 seconds between
questions. Due to the clustering of users, this is not the case since that user might
not be queried for several iterations. The results in Table 5.1 do not show anything
unexpected: the UTER+UTET strategy is faster than the SGS+MO strategy since
the latter requires solving the Smallest Enclosing Ball problem which is expensive.
This table suggests that the duration of an experiment is most likely limited to the
ability of the human users to answer the questions.

5.3 Real Datasets

5.3.1 Research questions

What follows is a list of questions to be answered by the experiments.

• How much benefit do the SGS+MO and the UTER+UTET strategies provide
when compared to a random query strategy (partially satisfiable groups, with
clustering)?

47



5. Experiments

users features acceptance region group type strategy runtime
5 2 hyperspherical fully overlapping SGS+MO 2.4
25 25 hyperspherical fully overlapping SGS+MO 49.2
5 2 hyperspherical separate groups SGS+MO 12
25 25 hyperspherical separate groups SGS+MO 73.2
5 2 hyperrectangular fully overlapping SGS+MO 4.8
25 25 hyperrectangular fully overlapping SGS+MO 62.4
5 2 hyperrectangular separate groups SGS+MO 10.8
25 25 hyperrectangular separate groups SGS+MO 52.8
5 2 hyperspherical fully overlapping UTER+UTET 4.8
25 25 hyperspherical fully overlapping UTER+UTET 15.6
5 2 hyperspherical separate groups UTER+UTET 8.4
25 25 hyperspherical separate groups UTER+UTET 11.7
5 2 hyperrectangular fully overlapping UTER+UTET 3.6
25 25 hyperrectangular fully overlapping UTER+UTET 22.8
5 2 hyperrectangular separate groups UTER+UTET 8.3
25 25 hyperrectangular separate groups UTER+UTET 24

Table 5.1: Runtimes (in seconds) per main experiment setting.

• What is the influence of enabling user clustering on a group of users that do
not have an object that satisfies the entire group (using SGS+MO)?

• What is the influence of enabling user clustering on a group of users that have
an object that satisfies the entire group (using SGS+MO)?

5.3.2 Discussion of Research Questions

How much benefit do the SGS+MO and the UTER+UTET strategies
provide when compared to a random query strategy (partially
satisfiable groups, with clustering)?

Figure A.11 suggests that SGS+MO again outperforms the other strategies when
looking at the satisfaction rates. There is barely any difference between the random
strategy and the UTER+UTET strategy. The reason for this is due to the charac-
teristics of the used dataset. Since there are only a few objects, the decision tree still
has a hard time to represent the latent acceptance region of the users.

Another important observation is that the satisfaction rates start rather high for
all strategies. This again shows the flaws of the used dataset. The dataset already
consists of a small number of cars and on top of that, the acceptance regions will be
even smaller. As a consequence, the initial satisfying object that is given by the user
is likely to be an object that satisfies other people as well.

48



5.4. Conclusion

What is the influence of enabling user clustering on a group of users
that do not have an object that satisfies the entire group (using
SGS+MO)?

In Figure A.12 it can be observed that the clustering approach converges faster to
the optimal satisfaction rate. However, the rand index shows that the clustering
approach is inferior to the non-clustering approach. This does not correspond to the
observations made in the experiments with synthetic data. The size of the dataset is
again to blame here. While the clustering approach can get stuck in a local optimum
when greedily forming its groups, the non-clustering approach gains information
about all the objects and as a consequence is able to construct better groups. It
is important to note that this group construction is not based on any clustering
algorithm. Instead, the groups are made to be as large as possible. For example,
consider four users having P1 = {A,B}, P2 = {A,C}, P3 = {A,D} and P4 = {C,D}
then the first group will consist of user 1, 2 and 3 since this is the largest group
possible. The second group will then consist of only user 4. It is important to note
that if the non-clustering recommender later discovers that user 1 also likes D, the
first group will consist of user 1, 3 and 4 and user 2 will have its own group. This is
not possible in the clustering approach. Whenever two users are grouped together,
they are never separated afterwards.

What is the influence of enabling user clustering on a group of users
that have an object that satisfies the entire group (using SGS+MO)?

The experiments on the real world data as shown in Figure A.13 show the same signs
as the synthetic data experiments, namely that the case where clustering is enabled
performs better in the long run.

5.3.3 Reported Runtimes

An extensive list of runtimes is not necessary here since all experiments need less
than 1 second of processing time per experiment. As a result, potential differences
between the query strategies are barely visible. The bottleneck will again be the
response time of the human users.

5.4 Conclusion

Two major types of datasets were used in this chapter to test the proposed query
strategies. For the synthetic data, the SGS and MO strategy are a good combination
for finding an item that satisfies as many people as possible, given that these people
have hyperspherical acceptance regions. When using hyperrectangular acceptance
regions however, the performance goes down quick as the number of features and
users increases due to the fact that hyperrectangles can be large in a subset of
dimensions while a sphere can not. Clustering users seems to be beneficial since
the recommender is able to make its questions more precise towards a subgroup of

49



5. Experiments

people. The decision tree inspired strategies are unable to find any positive examples
of any users due to the large class imbalance between satisfying and dissatisfying
examples. Even for hyperrectangular acceptance regions, the decision trees suffer
from the little positive examples they acquire.

The real world dataset is sadly very small, which caused a high satisfaction rate
and fast convergence throughout the experiments. It can still be seen that SGS+MO
perform better than the UTER+UTET and the random strategies. Clustering again
benefits the recommender in terms of satisfaction rate, but not always in terms of
rand index.

50



Chapter 6

Related Work

Some existing group recommenders will be discussed in this chapter as well as what
the similarities and differences are with the recommender proposed by this thesis.
The interested reader is directed to the work of Boratto et al. [4] and Kompan et al.
[14]

6.1 Jukola

Jukola [18] is a group recommender system that selects songs to play in a bar. The
list of songs to be played on some day is not created beforehand. Collaborative
filtering is used to create a pool of songs in order to attract different people at
different times of the day or week. A touchscreen display is located at a public place
in the bar on which this pool of songs is presented. People can then nominate music
to be played that evening. While the current number is playing, every user is shown
four random tracks on a pocket device. These tracks are potential next numbers and
are randomly selected from the list of nominated songs. The people can then vote
for one of these four options using their pocket device and the winner is determined
by majority vote.

A major difference between Jukola and the algorithms proposed in this work
is the fact that Jukola will actually recommend objects multiple times in rapid
succession and these items will have to be consumed. Jukola is allowed to make more
mistakes since one less favoured song does not ruin the evening. When compared to
recommending travel destinations or cars, it should be clear that the recommendations
should not be consumed immediately. The groups of people are also considerably
different since these people do not know all of the others in the bar. This type of
group is better known as a random group [4], which can be described as a group
of people that share an environment during a particular moment. The group type
considered in this work is rather an established group or occasional group [4]. An
established group is defined as a group that is explicitly formed by its members
because they share longterm interests while an occasional group consists of people
who are occasionally together due to a common aim.

51



6. Related Work

6.2 Domain-independent GRS
Garcia et al. [11] introduce a passive learning recommender system with the possibility
of post-recommendation feedback from the users. Using a hybrid of single user
recommendation techniques such as collaborative filtering and content-based filtering,
the individual user profiles are constructed. These individual profiles are then
aggregated into a group profile using techniques including the average and the
average without misery. The average without misery aggregates predicted ratings
of the individual group members, but a penalty is subtracted from the aggregated
prediction when the predicted rating of an individual falls below a threshold [5].
Based on this group profile, the recommender is now able to present a list of items
to the group. Only after the actual recommendation and consumption of such an
item in the list, the users can provide the recommender with feedback. This feedback
influences the individual user profile and consequently influences the aggregated
group profile the next time the recommender is used.

A noticeable difference is that this recommender is used in a passive learning
context since user feedback is given after the recommendation and consumption step.
The similarity lies in the fact that the goal is to go for user satisfaction instead of
high predicted ratings:

"Our aim is to come up with a model that weighs the preferences of all the
individuals to the same extent in such a way that no member in the group
is particularly satisfied or dissatisfied with the final recommendations."[11]

6.3 TV Recommendation
Yu [23] discusses TV program recommendation strategies for groups of people
watching TV. Three major strategies are identified:

• Group agent: Users log in on the TV with a common account and the recom-
mender observes the programs watched by the entire group. Group recommen-
dations are then based on individual recommendation techniques.

• Merging recommendations: The individual behaviours of the group members
are observed and based on these observations, the recommender is able to
construct an individual profile for every user. The recommender then proposes
a list of possible TV programs for every individual and then merges these lists
into one group recommendation list. This was introduced in Chapter 2 as an
Aggregated predictions [9] approach.

• Merging user profiles: The system will merge all user profiles and then rec-
ommend a list of items to this aggregated profile. This type of approach was
also introduced in Chapter 2 and is categorised as an Aggregated models [9]
approach.

The group agent strategy is limited by the fact that the entire group must be present
at once. If the group splits up or grows later on, then a new profile has to be created

52



6.3. TV Recommendation

for the newly formed group. Another problem that has to be addressed is how the
recommender knows which group members are currently watching the TV. This can
be achieved by a camera that can recognise the different group members.

The main contribution by Yu [23] is a specific strategy that merges user profiles.
Users are assumed to have a vector of features and weights associated with them,
examples of such features are the genre of TV programs and the actors that play a role
in the show. These weights can be computed using classical data mining techniques.
To merge the individual profiles into one group profile, the most important features
are selected. This is done based on some distance measure between user profiles.
The individual weights of the selected features are then normalised and aggregated
into one group profile.

There is a noticeable similarity between the domain-independant GRS introduced
by Garcia et al. [11] and this technique since they are both examples of Aggregated
models approaches. However, the domain-independant GRS uses ratings where the
TV recommender assumes that the recommender possesses feature weights that are
in [−1, 1]. Each feature weight is then rounded to aversion, neutral and desire if
the weight is respectively -1, 0 and 1. This closely relates to the acceptance regions
introduced in this work. The acceptance regions also define the so called aversion
and desire, but they do not specify neutral.

53





Chapter 7

Conclusion

This work described an active learning problem concerning group recommendation.
The solution can be broken down in several parts: representing user preferences,
devising a query strategy and detecting groups of users. Preferences were represented
as a binary concept where a group member can either be satisfied or dissatisfied.
This lead to the introduction of an acceptance region, which can be described as
the boundary between satisfaction and dissatisfaction. These acceptance regions are
unknown to the recommender and the goal is to find the parts where the acceptance
regions of users overlap. Since the acceptance region itself may be a small and
rare concept, the recommender assumes that it possesses for each user at least one
example of an object that they find satisfying. An assumption that is made here is
that these acceptance regions can either be hyperrectangles or hyperspheres.

Every iteration, a subgroup of the entire group of people is posed a question
on whether or not they find an object satisfying. The questions themselves are
membership queries such as "Are you satisfied with object A?" while the query
strategies will determine what object A will be proposed. In reality, a combination
of strategies will be used in order to both explore the acceptance regions and exploit
the currently collected data about the users. Initially, it is advised to choose the
exploring strategy nondeterministically with a high probability, while after some
iterations, the probability of using the exploiting strategy should be increased. The
first exploring strategy was the Smallest Group Sphere strategy (SGS strategy) which
relies on the heuristic that if two positive examples of two users are similar to each
other, then the objects similar those two items are likely to be liked by both users.
Since the SGS strategy is more of an exploring strategy, this is then combined with
the exploiting Max Overlap strategy (MO strategy). The MO strategy simply models
the acceptance regions of the group members and searches for the points that occur
inside the most acceptance regions. These strategies proved effective on the synthetic
data as well as on the real world dataset. When using a high number of features and
hyperrectangular acceptance regions for the synthetic data however, the performance
goes down very quickly due to the possibility of hyperrectangles being very large in
one dimension and very small in another dimension, a property that hyperspheres
do not possess.

55



7. Conclusion

Two strategies based on decision trees were also introduced, namely the Uncertain
Tree Exploration strategy (UTER strategy) and the Uncertain Tree Exploitation
strategy (UTET strategy). As the name suggests, the first one is a strategy that
focuses on exploration while the latter focuses on exploitation. Both of these strategies
model the acceptance region based on the answers given by the users and then exploit
the probabilities a decision tree can yield when given an unseen instance. If now
for one user the probability of an unseen object satisfying a user is close to 0.5, the
decision tree is uncertain about this object and asking the user to classify this item is
considered to be an exploring query. The exploiting variant (UTET) will do roughly
the same, except this time it searches for objects who are likely to be satisfying
according to the tree. Now the recommender is given these probabilities per user and
averages them. This is a classic example of a Query By Committee approach. The
experiments show that the UTER and UTET strategies do not perform very well.
After close inspection of the generated decision trees, this makes sense since these
trees are unable to detect any satisfying objects due to the huge class imbalance
between satisfying and dissatisfying items.

Finally, a technique to detect subgroups of users was proposed, finding its origin in
bottom-up clustering. The users are separated into individual clusters or subgroups.
Every question round, the recommender selects two subgroups and attempts to merge
them. Whenever the recommender finds an object with which both subgroups are
unanimously satisfied, these two subgroups are merged together. If the recommender
fails to find such an object after a couple of attempts, it assumes that these two
subgroups do not have any commonly liked objects. The experiments show that this
approach accurately identifies the subgroups of users and even outperforms the case
where clustering of users is disabled due to the fact that the recommender is able to
finetune its queries to a specific subgroup of users.

Future Work

As the experiments show, the SGS and MO strategies do not perform very well
in settings with high dimensional hyperrectangular acceptance regions. It may
be interesting to test variants of the SGS strategy by using ellipsoids instead of
hyperspheres as an attempt to improve for these hyperrectangles. Even different
shapes of acceptance regions can be used such as ellipsoids or any convex shape at
all. The synthetic data also assumed the absence of noise in the answers of users.
Since human users are likely to give wrong answers at some point, this is important
to experiment with.

56



Appendix A

Results

Plots of experiments can be found here.

57



A. Results

Figure A.1: Satisfaction rates for SGS+MO under fully overlapping, hyperspherical
acceptance regions. The two-user case is not shown since both configurations are

able to find the common satisfying object after approximately ten iterations.

58



Figure A.2: Rand index for SGS+MO under fully overlapping, hyperspherical
acceptance regions. The two-user case is not shown since both configurations are

able to find the common satisfying object after approximately ten iterations.

59



A. Results

Figure A.3: Satisfaction rates for SGS+MO under partially overlapping, hyper-
spherical acceptance regions.

60



Figure A.4: Rand index for SGS+MO under partially overlapping, hyperspherical
acceptance regions.

61



A. Results

Figure A.5: Satisfaction rates for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperspherical acceptance
regions. Increasing the number of features from ten to twenty barely changes the

reported performance.

62



Figure A.6: Rand index for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperspherical acceptance
regions. Increasing the number of features from ten to twenty barely changes the

reported performance.

63



A. Results

Figure A.7: Satisfaction rates for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperrectangular acceptance
regions. Increasing the number of features from ten to twenty barely changes the

reported performance.

64



Figure A.8: Rand index for SGS+MO and UTER+UTET under both partially
overlapping (partitioned) and fully overlapping (full) hyperrectangular acceptance
regions. Increasing the number of features from ten to twenty barely changes the

reported performance.

65



A. Results

Figure A.9: Satisfaction rates for SGS+MO under both partially overlapping
(partitioned) and fully overlapping (full) hyperspherical acceptance regions. The
keyword variant in the legend is used to indicate that instead of using a hypersphere
in the SGS strategy, a hyperrectangle is used. Objects of 25 features are excluded

since all configurations score very low here.

66



Figure A.10: Rand index for SGS+MO under both partially overlapping (partial)
and fully overlapping (full) hyperspherical acceptance regions. The keyword variant
in the legend is used to indicate that instead of using a hypersphere in the SGS
strategy, a hyperrectangle is used. Objects of 25 features are excluded since all

configurations score very low here.

67



A. Results

Figure A.11: Rand index and satisfaction rates for SGS+MO under fully satisfiable
groups of users and using real world data.

68



Figure A.12: Rand index and satisfaction rates for SGS+MO under partially
satisfiable groups of users and using real world data.

69



A. Results

Figure A.13: Rand index and satisfaction rates for SGS+MO under fully satisfiable
groups of users and using real world data.

70



Appendix B

Thesis Poster

71



Preference elicitation in group recommender systems 
Student: Sam Mylle        Supervisor: Stefano Teso        Promotor: Luc De Raedt        Academic year: 2018-2019

Acceptance regions
Collection of items with which the 
user is satisfied. Satisfaction is 
based on their own definition
⇒ Find overlapping area

Challenges
● High dimensionality

● Human users ⇒ limited amount of questions

● Exploit the fact that you are dealing with a 
group in order to converge quickly

Assumptions
● Space of objects is a hypercube

● Acceptance regions of users can be 
approximated by hyperspheres, 
hyperrectangles or ellipsoids

Problem statement
Given:

● A space of objects X (feature vectors)
● Per user 1 example x ∈ X that satisfies 

that user
Learn / find: The object(s) that satisfies the 
group.

Introductory examples
● Going on a holiday trip with friends or family

● Buying a shared car

● Watching a movie together

⇒ Learning the preference of a group

Results

Smallest 
Sphere scores

Hybrid scores

● Score
● Precision/recall

Query Strategy

● Smallest Sphere

● Uncertain Tree



Bibliography

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,
Apr 1988.

[2] D. Angluin. Queries revisited. In N. Abe, R. Khardon, and T. Zeugmann,
editors, Algorithmic Learning Theory, pages 12–31, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[3] L. Ardissono, A. Goy, G. Petrone, M. Segnan, and P. Torasso. Intrigue: Person-
alized recommendation of tourist attractions for desktop and hand held devices.
Applied Artificial Intelligence, 17(8-9):687–714, 2003.

[4] L. Boratto and S. Carta. State-of-the-Art in Group Recommendation and New
Approaches for Automatic Identification of Groups, pages 1–20. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[5] T. De Pessemier, S. Dooms, and L. Martens. Comparison of group recommen-
dation algorithms. Multimedia Tools and Applications, 72(3):2497–2541, Oct
2014.

[6] P. Dragone, S. Teso, and A. Passerini. Constructive preference elicitation over
hybrid combinatorial spaces. CoRR, abs/1711.07875, 2017.

[7] P. Dragone, S. Teso, and A. Passerini. Constructive preference elicitation.
Frontiers in Robotics and AI, 4, 01 2018.

[8] E. V. B. P. P. E. Abbasnejad, S. Sanner. Learning community-based preferences
via dirichlet process mixtures of gaussian processes. In In Proceedings of the
23rd International Joint Conference on Artificial Intelligence (IJCAI), 2013.

[9] A. Felfernig, L. Boratto, M. Stettinger, and M. Tkalčič. Group Recommender
Systems: An Introduction. SpringerBriefs in Electrical and Computer Engineer-
ing. Springer International Publishing, Cham, 2018.

[10] K. Fischer, B. Gärtner, and M. Kutz. Fast smallest-enclosing-ball computation
in high dimensions. In G. Di Battista and U. Zwick, editors, Algorithms - ESA
2003, pages 630–641, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

73



Bibliography

[11] I. Garcia, S. Pajares, L. Sebastia, and E. Onaindia. Preference elicitation
techniques for group recommender systems. Information Sciences, 189:155 –
175, 2012.

[12] B. Gärtner and S. Schönherr. An efficient, exact, and generic quadratic pro-
gramming solver for geometric optimization. In Proceedings of the sixteenth
annual symposium on computational geometry, SCG ’00, pages 110–118. ACM,
2000.

[13] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap. Aggregation functions:
Means. Information Sciences, 181(1):1–22, 2011.

[14] M. Kompan and M. Bielikova. Group recommendations: Survey and perspectives.
COMPUTING AND INFORMATICS, 33(2), 2014.

[15] J. Leino and K. jouko Räihä". Case amazon: ratings and reviews as part of
recommendations. In In RecSys ’07: Proceedings of the 2007 ACM conference
on Recommender systems, pages 137–140. ACM, 2007.

[16] V. Melnikov and E. Hüllermeier. Learning to aggregate using uninorms. volume
9852, pages 756–771. Springer Verlag, 2016.

[17] M. O’Connor, D. Cosley, J. A. Konstan, and J. Riedl. Polylens: A recommender
system for groups of users. In ECSCW’01: Proceedings of the seventh conference
on European Conference on Computer Supported Cooperative Work, pages 199–
218, Norwell, MA, USA, 2001. Kluwer Academic Publishers.

[18] K. O’Hara, M. Lipson, M. Jansen, A. Unger, H. Jeffries, and P. Macer. Jukola:
Democratic music choice in a public space. In Proceedings of the 5th Conference
on Designing Interactive Systems: Processes, Practices, Methods, and Techniques,
DIS ’04, pages 145–154, New York, NY, USA, 2004. ACM.

[19] G. Pigozzi, A. Tsoukiàs, and P. Viappiani. Preferences in artificial intelligence.
Annals of Mathematics and Artificial Intelligence, 77(3):361–401, Aug 2016.

[20] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor. Recommender Systems
Handbook. Springer-Verlag, Berlin, Heidelberg, 2011.

[21] B. Settles. Active learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 18:1–111, 2012.

[22] E. Welzl. Smallest enclosing disks (balls and ellipsoids). In H. Maurer, editor,
New Results and New Trends in Computer Science, pages 359–370, Berlin,
Heidelberg, 1991. Springer Berlin Heidelberg.

[23] Z. Yu, X. Zhou, Y. Hao, and J. Gu. Tv program recommendation for multi-
ple viewers based on user profile merging. User Modeling and User-Adapted
Interaction, 16(1):63–82, Mar 2006.

74



KU Leuven Faculteit Ingenieurswetenschappen 2018 – 2019

Fiche masterproef

Student: Sam Mylle r0712394

Titel: Preference Elicitation in Group Recommender Systems

Nederlandse titel: Ontdekken van Voorkeuren in Aanbevelingssystemen voor Groepen

UDC : 681.3

Korte inhoud:
Aanbevelingssystemen zijn alomtegenwoordig in het dagelijks leven. Deze systemen
helpen hun gebruiker bij het kiezen van producten uit een gigantisch aanbod. De
huidige technieken maken gebruik van een kiessysteem of een operator die een
gemiddelde berekent wanneer deze systemen met een groep van gebruikers moeten
omgaan in de plaats van slechts een persoon. Deze kiessystemen en operatoren zijn
echter niet gebaseerd op de toegevingen die een groepslid bereid is om te maken.
Daarom ligt de focus in dit werk op het binaire concept van tevredenheid. Het
aanbevelingssysteem zal een poging doen om de objecten te zoeken waarmee elk
groepslid tevreden is door middel van vragen te stellen aan de gebruikers. De
contributies van dit werk bestaan hoofdzakelijk uit enkele methodes om dynamische
vragenlijsten samen te stellen evenals een techniek om groepen van gebruikers te
herkennen indien er geen product bestaat waarmee de hele groep tevreden is. Tijdens
de experimenten worden deze technieken uitvoerig getest op zowel synthetische als
bestaande data.

Thesis voorgedragen tot het behalen van de graad van Master of Science in de
ingenieurswetenschappen: computerwetenschappen, hoofdoptie Artificiële
intelligentie
Promotor : Prof. dr. L. De Raedt
Assessor : Dr. Y. Dauxais, Prof. dr. A. Simeone
Begeleider : Dr. S. Teso


	Preface
	Abstract
	Samenvatting
	List of Figures
	List of Abbreviations
	Introduction
	Problem and Relevance
	Goal
	Overview

	Background Knowledge
	Preferences
	Active and Passive Learning
	Recommender Systems
	Group Recommender Systems
	Aggregation

	Methods
	Problem Statement
	Terminology and Concepts
	Structure
	Query Strategies
	Detecting Subgroups
	Adjusted Strategies
	Conclusion

	Data
	Synthetic Datasets
	Real Datasets

	Experiments
	Metrics
	Synthetic datasets
	Real Datasets
	Conclusion

	Related Work
	Jukola
	Domain-independent GRS
	TV Recommendation

	Conclusion
	Results
	Thesis Poster
	Bibliography

