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Scientific summary 
The world’s urban population has rapidly grown during the last decennia, leading to a 

phenomenon called urban heat islands (UHIs). These UHIs are characterized by higher air 

temperatures in city centers compared to their rural surroundings and negatively affect human 

health and well-being. The creation and enhancement of urban green infrastructure (UGI) are 

one of the most promising solutions for mitigating urban heat through evaporation and shading. 

These cooling benefits are however highly affected by the composition and configuration of 

urban green. Since cities generally only have limited space available for urban green, an optimal 

spatial configuration of UGI would help city managers and decision makers to plan and manage 

their urban green in order to maximize their cooling effect.  
 

In this research we therefore studied the urban heat island in Leuven and evaluated the effects 

of UGI composition and configuration on urban air temperatures and the Thom’s discomfort 

index. We firstly investigated the spatio-temporal variations of urban air temperatures and 

human discomfort using a newly implemented in situ weather station network. Subsequently 

we examined how the composition and configuration of different urban green types can impact 

these urban air temperatures and discomfort indices on multiple spatial and temporal extents. 

The composition and configuration of the different urban green types were measured by a series 

of landscape metrics, which were calculated based on a high-resolution green map with an 

overall accuracy of 91%. 
 

The results show that both the composition and the configuration of high and low green matter 

in the mitigation of urban heat islands. This mitigating impact of different urban green types, 

high and low green, does however vary for different spatial and temporal scales. At night, the 

composition and spatial configuration of low green was found to be the most important 

mitigating factor along all spatial extents. Increasing low green’s percentage cover by 50%, 

lowers night-time temperature with 4°C. During daytime, high green was more effective in 

reducing urban air temperatures and human discomfort. The resulting temperature decrease was 

however smaller, a 50% increase in high green’s percentage cover decreased air temperature 

with 2°C. 
 

This research may provide important insights for urban green planning and design. We have 

shown that different urban green types, shapes and sizes at multiple spatial scales are needed to 

improve thermal comfort of citizens during both night and day.  
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1 Introduction 

1.1  Context 
The world’s urban population has grown rapidly from 751 million in 1950 to 4.2 billion in 

2018. (UN, 2018). This means that today more than 50% of the global population lives in urban 

areas. Projections show that this urbanization together with an increasing overall world’s 

population could add another 2.5 billion people to urban areas by 2050. In 2018, 74% of the 

European population was living in cities, making it the third most urbanized region in the world 

(UN, 2018). The urban population in Belgium has shown a steady increase from 92% in 1960 

to 98% in 2017 (The World Bank Group, 2017). 

  

This worldwide urbanization has led to the phenomenon of urban heat islands (UHIs), which 

are characterized by higher air temperatures in cities compared to their rural surroundings, 

during both day- and night-time (Arnfield, 2003; Marando et al., 2019). These temperature 

differences are typically due to surface modifications in which soil and vegetation are replaced 

by impervious soil layers like asphalt and concrete. Such modifications result in a different 

albedo, thermal emissivity and heat capacity of the urban landscape in comparison to its natural 

and rural environment. Additionally, heat released from anthropogenic sources will affect urban 

temperatures (Marando et al., 2019; Zhou et al., 2011).  

 

Increased temperatures due to UHIs lead to increased water and energy consumption and can 

affect the composition and distribution of local biotic communities (Marando et al., 2019). 

Increased urban temperatures also directly affect human health and well-being, shown by 

increased health risks and mortality rates during heat waves in cities worldwide (Marando et 

al., 2019). Furthermore, increased temperatures will have a negative effect on air quality, due 

to an increased production of ozone in combination with a limited horizontal air dispersion 

(Marando et al., 2019; Zhou et al., 2017).  

 

One of the most effective solutions for cooling UHIs is the creation and enhancement of Urban 

Green Infrastructure (UGI) (Marando et al., 2019). UGI can be defined as “a strategically 

planned network of natural and semi-natural areas with other environmental features designed 

and managed to deliver a wide range of ecosystem services” (European Commission, 2013).  
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UGI and especially trees have been identified as a promising factor to mitigate urban air 

temperatures. This reduction in air temperature can be explained by several mechanisms. The 

first and most important mechanism reported by previous studies is evapotranspiration 

(Marando et al., 2019). Water is transpired trough the stomata of leaves by absorbing energy 

from solar radiation, resulting in an increased latent rather than sensible heat flux 

(Gunawardena et al., 2017; Marando et al., 2019; Mohammed & Salman, 2018; Qian et al., 

2018). Evapotranspiration additionally increases the air humidity, which will help relieve the 

UHI effect (Xiao et al., 2018). Secondly, leaves and branches intercept incoming shortwave 

solar radiation, hereby reducing the amount of radiation that reaches the underlying surface. 

This process is known as the shading effect (Marando et al., 2019; Mohammed & Salman, 

2018; Qian et al., 2018). The green infrastructures will also absorb less heat due to their lower 

specific heat capacity in comparison with their impervious surroundings. Lastly, vegetation has 

a higher albedo than its non-natural environment, resulting in larger amount of reflected energy 

(Mohammed & Salman, 2018).  

 

1.2  Problem statement and objectives 
The benefits of urban green described above are highly affected by their composition and 

configuration (Qian et al., 2018; Zhou et al., 2011, 2017). The composition refers to the 

abundance and variability of urban green infrastructure, while the configuration refers to the 

spatial arrangement or distribution of urban green infrastructure (Zhou et al., 2011).  

 

Previous UHI research has examined the spatial and temporal variations of UHIs (dos Santos 

et al., 2017) and have primarily focused on urban green’s composition, especially expressed as 

the percentage of greenspace, as a possible solution towards urban cooling (Weng et al., 2004; 

Zhou et al., 2011, 2017). These studies have shown that an increasing percentage cover of urban 

green will negatively affect urban air temperatures and land surface temperatures. In addition 

to the total amount of vegetation, few studies have examined the effects of shape and size of 

vegetation patches on air temperatures, mostly in urban parks (Cao et al., 2010; Marando et al., 

2019; Xiao et al., 2018). These studies however neglect the spatial configuration of these 

vegetation patches within the total landscape matrix and generally consider the isolated impact 

of a single urban green patch, such as a park.  
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Recent studies on UHI mitigation have included the effect of spatial configuration of urban 

green in the landscape pattern (Fan et al., 2015; Qian et al., 2018; Zhou et al., 2011, 2017). 

Since cities generally only have limited space available for urban green, an optimal spatial 

configuration of UGI would help managers and decision makers to plan and manage their urban 

green infrastructure in order to maximize their cooling effect (Zhou et al., 2017). These studies 

use landscape metrics to measure the spatial patterns of urban green. Mean patch size, edge 

density, patch density, largest patch index and mean shape index are examples of such 

configuration metrics. All these could potentially affect air temperature (Fan et al., 2015; Qian 

et al., 2018; Zhou et al., 2011, 2017). Yet, a comprehensive understanding of how the 

heterogeneity of urban green affects temperature variations on multiple temporal and spatial 

scales is still lacking (Qian et al., 2018; Yan et al., 2014).  

 

Most of the previous studies focused on the effect of UGI on land surface temperature (LST) 

(Fan et al., 2015; Zhou et al., 2011, 2017), while only a few paid particular attention to urban 

air temperatures (Qian et al., 2018). A study of Arnfield (2003) however explains that there is 

no consistent relationship between the two. Especially under calm conditions, LST are more 

dependent on microscale site characterizations. The overabundance of studies based on LST 

can be easily explained by the rather simple extraction method of LST from thermal remote 

sensing satellite data, which deliver spatially continuous data over large geographical extents 

(Arnfield, 2003; Qian et al., 2018). It is however proven that, opposed to LST, urban air 

temperatures are more closely related to human health and comfort, and thus deserve at least 

an equal amount of attention (Qian et al., 2018; Yan et al., 2014). 

 

In this thesis we will therefore examine the effect of composition and more importantly 

configuration of UGI on urban air temperatures and the Thom’s discomfort index using 

different landscape metrics. More specifically, we will study the spatio-temporal variations of 

the urban air temperatures and the discomfort index in and around the city of Leuven, Belgium. 

Subsequently, we will determine how the composition and configuration of the urban green 

infrastructure impact these urban air temperatures and discomfort index. This will be done by 

(1) characterizing Leuven’s urban heat island on different temporal and spatial scales using a 

newly implemented in-situ weather station network, (2) producing a detailed green map of 

Leuven using both high resolution Pleiades satellite images and LiDAR imagery and an object 

based classification method, (3) performing a GIS analysis to examine the urban green’s 

composition and configuration using multiple landscape metrices and lastly (4) using a 
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correlation index and simple regression models to measure the effect, cooling distance and 

contribution of different urban green classes to mitigate urban air temperatures.  
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2 Literature review 

2.1  Urbanisation 
Urbanisation is a complex process referring to the population shift from dispersed rural 

settlements towards densely populated urban areas. As a consequence, urban settlements will 

expand rapidly at the expanse of undeveloped rural areas, a phenomenon known as urban sprawl 

(UN, 2019).  

 

The world’s urban population has grown rapidly from 751 million in 1950 to 4.2 billion in 2018 

as can be seen in figure 2.1. This means that today more than 50% of the global population lives 

in urban areas. Projections show that this urbanization together with an increasing overall 

world’s population could add another 2.5 billion people to urban areas by 2050 (UN, 2018). In 

2018, almost three quarters of the European population was living in cities, making it the third 

most urbanized region in the world (UN, 2018). This percentage is expected to rise to just over 

80% by 2050 (Vidal-Abarca et al., 2016). Within Europe, urbanization has shown a positive 

relation with income, labor productivity, technological adaptation and competitiveness levels, 

resulting in a lower urbanization growth for the developing Europe compared to the more 

advanced Europe (Vidal-Abarca et al., 2016). The urban population in Belgium has shown a 

steady increase from 92% in 1960 to 98% in 2017 (The World Bank Group, 2017). With a 

population density of 376 inhabitants/km2, Belgium is one of the smallest and most densely 

populated countries in western Europe (The World Bank Group, 2018).  

 

 
Figure 2.1: Urban and rural population growth from 1950 to 2015 UN, 2019). 
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2.2  Urban Heat Island (UHI) effect 

2.2.1 Definition 
The increased urbanisation in the last decennia has led to a phenomenon called urban heat 

islands (UHIs). These UHIs, characterized by higher temperatures in the city centres compared 

to their rural and more natural surroundings, were first measured and described by Lake Howard 

during the 19th century (Howard, 1833). Oke (1995) later clarifies the “island” term by 

comparing the isotherm air temperature patterns with the contours of an island located within 

the sea of the cooler rural surroundings. The UHI intensity is defined as “the difference in 

temperature between the urban areas and rural surroundings” (Roth et al., 1989; van Hove et 

al., 2015). 

 

During the 20th century the need to define several types of heat islands according to various 

surfaces and different layers within the urban atmosphere became more important (Oke, 1995; 

Roth et al., 1989). Two broad types of UHIs were recognised: surface UHIs (SUHI) and 

atmospheric UHIs (AUHIs). Just like the name suggests, surface UHIs describe the difference 

in land surface temperature between the city center and their rural environment, while 

atmospheric UHIs focus on the difference in air temperatures between both locations (U.S. 

EPA, 2008). Previous research has shown that surface heat islands are often greater by day, 

while the reverse is true for atmospheric heat islands (Oke, 1995; Roth et al., 1989; Zhou et al., 

2011). Figure 2.2 partly confirms his theory. The transect shows a higher variation in surface 

temperatures compared to air temperatures during daytime. During night time, however, both 

temperatures show similar values (U.S. EPA, 2008).  

 
Figure 2.2: Variations in surface and air temperatures during day- and night-time. “The temperatures displayed above do not 
represent absolute temperature values or any one particular measured heat island” (U.S. EPA, 2008). 
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The surface urban heat island is generally measured by aircraft-borne thermal remote sensors. 

These techniques allow to obtain continuous data over large geographical extents (Roth et al., 

1989; U.S. EPA, 2008; Voogt & Oke, 2003).  

 

When studying the atmospheric UHI, Oke (1976) stated that the urban atmosphere has to be 

divided into two layers: the urban canopy layer (UCL) and the urban boundary layer (UBL). 

Both layers are closely coupled but differ in magnitude and underlying generation processes 

(Arnfield, 2003). The UCL is that layer of the atmosphere going from the land surface upwards 

until the mean building height in which processes of airflow are controlled by microscale site-

specific characteristics. The UBL is situated above the UCL and is that part of the planetary 

boundary layer (PBL) whose characteristics are still influenced by the urban landscape below 

(Arnfield, 2003; Oke, 1976; Roth et al., 1989; U.S. EPA, 2008; Voogt & Oke, 2003). Figure 

2.3 shows that the UBL has a varying vertical scale, going from 100 meters at nighttime up to 

1500 meters during the day (Bassett et al., 2016).  

 

The UBL is often described as a mesoscale or local concept controlled by processes at large 

spatial and temporal scale. The UCL, on the contrary, is a microscale concept that measures the 

local climate only. This local climate is influenced by the immediate building geometry and 

materials within the urban landscape, also denoted as the “urban roughness” (Arnfield, 2003; 

Oke, 1976). Since this layer is occupied by people, it is of great importance in human health 

and comfort studies. For this reason, the more general term UHI is often used to describe the 

canopy layer UHI, the same will be done in this thesis (Bassett et al., 2016; Gunawardena et 

al., 2017).  
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Figure 2.3: Canopy and boundary layers over a city and its rural environment (based on Oke (1987), edited from Gunawardena 
et al. (2017)) 

Canopy layer UHIs are generally measured by in-situ sensors at a standard height either fixed 

on a certain location or mounted on mobile devices, while boundary layer measurements are 

made using more specializes sensor platforms or aircraft-mounted instruments (Voogt & Oke, 

2003).  

 

2.2.2 Causes 
An UHI develops through the absorption of solar radiance during the day and the subsequent 

release during night time. Anthropogenic changes to this surface energy balance greatly 

influence the intensity of UHIs. These anthropogenic changes include urban morphology, 

impervious and artificial construction materials and human activities (Bassett et al., 2016; 

Marando et al., 2019; U.S. EPA, 2008; Zhou et al., 2011).  

 

The increased urbanisation in the last decennia has significantly altered the urban morphology 

of cities worldwide. The height and density of buildings has increased resulting into a reduced 

sky view factor (SVF). This SVF is the fraction of visible sky from the ground and is closely 

related to narrow canyon streets (U.S. EPA, 2008). Within these canyons both short and long 

wave radiation are entrapped hereby reducing the amount of longwave radiation loss during the 

night. The more densely built up areas have increased the surface roughness, hereby 

diminishing wind flow and preventing heat evacuation (Bassett et al., 2016).  

 

The higher fraction of impervious materials in cities greatly diminishes the possible 

evapotranspiration, which will lead to increased surface and air temperatures (Bassett et al., 

2016; U.S. EPA, 2008). Additionally, these impervious and artificial construction materials 

have different reflective properties, thermal emissivity’s and heat capacity’s than the natural 

materials present in the surrounding rural areas. The typical dark-coloured materials used in 
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cities have a lower solar reflectance or albedo, leading to a greater absorbance of the sun’s 

energy. Also the thermal emissivity of materials play a role. A higher thermal emissivity will 

cause a material to emit more longwave infrared radiation, which can increase UHI intensities. 

Lastly the heat capacity, a measure for the ability of a material to store heat, will influence the 

UHI development. Most construction materials, like steel and concrete have greater heat 

capacities in comparison with the more natural materials, including soil and sand. As a result 

more heat is absorbed by cities, hereby contributing to the formation of UHIs (U.S. EPA, 2008; 

Zhou et al., 2011). 

 

Lastly, anthropogenic heat will further contribute to the development of UHIs. This heat, 

released by human activities, has a wide variety of sources including transport, cooling and 

heating processes and industries (Bassett et al., 2016; Marando et al., 2019; U.S. EPA, 2008).  

 

2.2.3 Diurnal and seasonal variations 
UHI intensities have both diurnal and seasonal variations (Bassett et al., 2016; Roth et al., 1989; 

U.S. EPA, 2008; van Hove et al., 2015). Atmospheric UHIs are often weak in the morning but 

further develop during the day as the build environment absorbs solar radiance (Bassett et al., 

2016; van Hove et al., 2015). During night-time subsequent heat release takes place (Bassett et 

al., 2016; van Hove et al., 2015). Because the urban environment is characterized by a reduced 

longwave radiation loss and lower albedo, the cooling of cities will be delayed compared to 

their rural surroundings, resulting in a maximum UHI intensity at night (Bassett et al., 2016; 

Hamdi & Schayes, 2008; Nichol et al., 2009; U.S. EPA, 2008). The specific timing of this 

maximum UHI intensity depends on season, prevailing weather conditions and the surface 

properties (U.S. EPA, 2008). Atmospheric UHIs are typically more intense in wintertime (Roth 

et al., 1989; U.S. EPA, 2008). Roth et al. (1989) explains that these seasonal variations are 

related to cyclical changes of solar radiation, synoptic weather type, plant phenology, moisture 

availability or fuel use.  

 

2.2.4 Consequences 
Increased temperatures due to UHIs will lead to an intensified water and energy consumption 

needed for summer building cooling (Marando et al., 2019; U.S. EPA, 2008; Zhou et al., 2011, 

2017). Santamouris et al. (2015) found that the potential increase in peak electricity demands 
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per degree of temperature rise can escalate from 0.45% to 4.6%. This demands are influenced 

by the building’s structures, climate zone and general city form (Santamouris et al., 2015).  

 

If the increased energy demand explained above is produced by the combustion of fossil fuels, 

higher levels of air pollution and greenhouse gas emissions can be expected (U.S. EPA, 2008). 

In addition, higher temperatures within the city centre will accelerate the formation of ground 

level ozone. This tropospheric ozone is created by the chemical reaction between nitrogen (NOx 

gases) and volatile organic compounds (VOCs) in the presence of sunlight. Higher temperatures 

and more solar radiation will shift the equilibrium to the right, hereby creating direct 

consequences for human health (U.S. EPA, 2008; Zhou et al., 2011, 2017). 

 

Also heat excess present in cities will affect human health and wellbeing, shown by increased 

mortality rates during heat waves worldwide (Marando et al., 2019; U.S. EPA, 2008; Zhou et 

al., 2017). In the EU, heat related mortalities are expected to increase by 1% to 4% for every 

one-degree rise in temperature (Sajani et al., 2016). The Discomfort Index (DI) proposed by 

Thom (1959) is one of the most used indexes to calculate the discomfort on a specific day and 

time and can be used in the development of heat risk alert systems (Georgi & Zafiriadis, 2006). 

The DI is defined as “a measure of the reaction of the human body to a combination of heat and 

humidity” (Thom, 1959). 

 

Lastly, the composition, distribution and phenology of species will be affected as a consequence 

of the UHI (Marando et al., 2019; Zhou et al., 2011, 2017). A 10 yearlong study from White et 

al. (2002) revealed that the length of the growing season in urban areas is expanded by 8 days 

in comparison with the rural environment. Reductions in fractional cover and greenness 

amplitude on the other hand suggest a lower productivity within the urban areas (White et al., 

2002).  

 

2.2.5 Solutions 
Projections show that heat waves and higher summer temperatures will become increasingly 

regular by the end of the century due to global climate change (Bassett et al., 2016; Solecki et 

al., 2005). In combination with the increasing urbanisation, well-developed strategies will be 

needed to secure to healthy quality of life within our cities (Bassett et al., 2016). 
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Two possible reactions to the UHI exist: adaptation or mitigation. In UHI adaptation strategies 

a person tries to deal with the consequences of UHIs, mostly increased night temperatures, 

while UHI mitigation strategies try to prevent or reduce these consequences (Solecki et al., 

2005).  

 

Adaptation strategies include wearing light clothes, prevent inside cooking and try to find 

locations to sleep outside. Using air conditioners is an adaptation strategy as well but has major 

drawbacks (Solecki et al., 2005). Their high energy demands will generally lead to increased 

emissions of greenhouse gases, who further contribute to the formation of UHI (U.S. EPA, 

2008). 

 

Because of these limitations, mitigation strategies are becoming more and more important. The 

two most promising mitigations strategies are an increased vegetation cover and the 

implementation of higher albedo surfaces. Since the mitigating factors of urban green are a 

central topic in this thesis, they will be discussed in more detail below (section 2.3). Next to a 

low vegetation cover, cities contain a high amount of non-reflecting impervious surfaces 

characterized by a low albedo and high heat capacity. They absorb great amounts of solar 

radiation during the day and re-emit this radiation at night. Altering these surfaces both at 

ground and roof level into lighter-colored materials, also called cool pavements and cool roofs, 

can greatly reduce the UHI effect (Solecki et al., 2005). Additionally, reducing anthropogenic 

heat releases or optimizing the SVF in new developments can help in mitigating the UHI effect 

(Lee et al., 2014).  

 

2.3 Urban green infrastructure (UGI) as a solution for UHIs  
The enhancement of sustainable cities can be achieved through the realisation of Nature-Based 

solutions, which are defined as “inspired by, supported by or copied from nature; both using 

and enhancing existing solutions to challenges, as well as exploring more novel solutions” 

(European Commission, 2015). In other words, nature-based solutions try to use natural 

processes within the built environment to address and ultimately solve environmental and 

socio-economic problems (Marando et al., 2019). 

 

One of the most effective Nature-Based solutions is the creation and enhancement of the urban 

green infrastructure (UGI), such as urban forests, parks, individual street trees, verges, private 
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gardens, transport corridors and vegetated roofs and façades (Gunawardena et al., 2017; 

Marando et al., 2019). The UGI can be defined as a strategically planned interconnected 

network of natural and semi-natural areas designed and managed to deliver a wide range of 

ecosystem services, hereby offering ecological, social and economic benefits (European 

Commission, 2013; Gunawardena et al., 2017; Marando et al., 2019). These ecosystem services 

include the mitigation of the UHI effect, the improvement of air quality, the reduction of runoff 

and the reduction of energy use.  

 

Urban green will mitigate the UHI effect through a combination of several mechanisms. The 

first and most important mechanism reported by previous studies is evapotranspiration, known 

as the combined process of transpiration from the plants itself and evaporation from the soils 

underneath (Gunawardena et al., 2017; Marando et al., 2019; Mohammed & Salman, 2018). 

This process is positively influenced by the availability of moisture and wind flow 

(Gunawardena et al., 2017). During evapotranspiration water is transpired through the stomata 

of leaves by absorbing energy from solar radiation, resulting in an increased latent rather than 

sensible heat flux. As a consequence both canopy and surrounding air temperatures will 

decrease (Gunawardena et al., 2017; Marando et al., 2019; Qian et al., 2018). 

Evapotranspiration additionally increases the air humidity, which will help relieve the UHI 

effect (Xiao et al., 2018). Secondly, leaves and branches will intercept incoming shortwave 

radiation hereby reducing the amount of radiation that reaches the underlying surface, a process 

known as the shading effect (Gunawardena et al., 2017; Marando et al., 2019; Mohammed & 

Salman, 2018; Qian et al., 2018; Solecki et al., 2005). The green infrastructures will also absorb 

less heat due to their lower specific heat capacity in comparison with their impervious 

surroundings. Lastly, vegetation has a higher albedo than its non-natural environment, resulting 

in larger amount of reflected energy (Mohammed & Salman, 2018). 

 

Additionally, vegetation will improve air quality and reduce runoff in cities. Two processes 

which will indirectly help mitigate high temperatures. An improved air quality is obtained by 

both the direct dry deposition of pollutant molecules on the vegetation surface and the 

absorption of small gaseous pollutants by the leaves (Gunawardena et al., 2017). Through urban 

cooling vegetation can also mitigate the formation of ground level ozone (Solecki et al., 2005). 

The reduction of these emissions will minimize atmospheric scattering and the absorption of 

long- and short-wave radiation, resulting in a cooler city climate. Besides improving air quality, 

the urban green canopy will intercept precipitation and assist absorption, hereby reducing the 
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amount of run-off. This reduced run-off will lead to a higher available moisture content, which 

positively influences evapotranspiration (Gunawardena et al., 2017).  

 

Lastly, a higher and well-situated vegetation cover in cities can help reduce energy use during 

both summer and winter. During summer, trees located on the east, south or west of a building 

can intercept the incoming solar radiation and provide shade, hereby reducing the need for air-

conditioning. In winter time vegetation can be used as isolation to shield buildings from cold 

winds. Since broadleaved trees will lose their leaves, they lose their ability to block incoming 

radiation, which will in turn reduce heating costs (Solecki et al., 2005).  

 

2.4  Remote sensing of vegetation 

2.4.1 Theoretical background 
Remote sensing is a technique used to detect and monitor the physical characteristics of an 

object of interest using instruments that are not in direct contact with this object. These 

instruments, or specifically sensors, can be mounted on a satellite, manned airplane, remotely 

piloted aerial system or simply carried by hand. The sensors measure the electromagnetic 

radiation (EMR) that is reflected from or emitted by vegetation present on the earth’s surface 

(Jones & Vaughan, 2010).  

 

Electromagnetic radiation is a form of energy consisting of electric and magnetic fields. Within 

these fields the magnitude and direction of the electric and magnetic vector change in time, 

oscillating in phase at right angles to each other. The resulting electromagnetic wave does not 

need a medium to travel and its characteristic velocity equals 2.99 x 108 m s-1 in vacuum, also 

known as the speed of light. The continuum of all electromagnetic waves with different 

frequencies and wavelengths is defined as the electromagnetic spectrum. This spectrum can be 

divided into multiple regions. The visible (VIS) region, ranging from 400 to 700 nm, comprises 

only a small part of the spectrum corresponding with the photosynthetically active region 

(PAR). This is the only part visible through the human eye. The ultraviolet (UV) region, found 

left of the VIS region, has smaller wavelengths ranging from 10 to 400 nm. Wavelengths 

smaller than 10 nm belong to the high-energetic X-rays and γ-rays. On the right side of the VIS 

region, the longer wavelengths of the infrared are found. They are split up into the near infrared 

(NIR) ranging from 700 nm to 1 μm, the short-wave infrared (SWIR) with wavelengths up to 

3 μm, the mid-infrared (MIR) up to 8 μm, the thermal infrared (TIR) up to 15 μm and lastly the 



 14 

far infrared with 100 μm as upper boundary. The least energetic microwaves and radio waves 

can reach a length of several meters (Jones & Vaughan, 2010). 

 

There are several wavelength dependent interactions possible between the EMR and the target 

surface, here vegetation. A part of the EMR will be transmitted through the plant canopies, 

hereby not interacting with the surface material. A second type of interaction is the absorption 

of the incoming solar radiation. In plants, the most dominant absorption is performed by 

chlorophyll and other pigments within the visible part of the spectrum. These pigments mainly 

absorb red and blue wavelengths, the green part of the spectrum is less strongly absorbed, 

explaining the green appearance of vegetation. Solar radiation that is not transmitted or 

absorbed by the surface material is directly reflected back to space. Depending on the roughness 

of the surface, smooth or rough, both specular and diffuse reflection are possible. In the first 

case a ray of light is reflected at an angle equal to the incidence angle, in the second case 

scattering occurs, in which the rays are reflected at different angles. It is this reflection that is 

measured by remote sensors and will give insights into the plant’s physical characteristics 

(Jones & Vaughan, 2010).  

 

2.4.2 Leaf radiative properties 
The amount of radiation that is reflected, absorbed and transmitted by the plant is directly 

influenced by its characteristics, such as leaf structure, leaf maturity and moisture content. 

Understanding the interaction between EMR and plant tissues is crucial in order to derive 

correct conclusions (Jones & Vaughan, 2010). 

 

In the longer wavelength UV region, most of the incoming radiation is absorbed by the cuticular 

wax of the plants. Radiation below 300 nm falls outside the atmospheric window and won’t 

reach the earth’s surface. In the VIS region 85 to 90% of the PAR is absorbed by pigments and 

will be used as energy for photosynthesis. Since chlorophyll is the most dominant pigment, the 

vegetation spectra show greater absorption in the blue and red parts of the spectra. The NIR 

regions is known as the absorptive no man’s land because no strong absorptions occur. Because 

of the chaotic internal leaf structure radiation is diffused and scattered in all directions leading 

to ½ transmittance and ½ reflectance. Within the SWIR region strong water absorption bands 

occur. Additionally, absorption by cellulose and lignin take place (Jones & Vaughan, 2010).  
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A more complex leaf structure or older well-developed leaf with more pronounced 

sponsparenchym will encounter higher internal scattering and higher reflectance in the NIR. 

When the leaves become too old, their tissue will break down resulting in a decreased number 

of intracellular cavities, hereby lowering the NIR reflectance. The translocation of nutrients and 

pigments to the stem, will result in a higher VIS reflectance. Dehydrated leaves can be detected 

by less extreme water absorption bands. When the dehydration continues a chlorophyll and 

structural breakdown can follow (Jones & Vaughan, 2010). 

 

2.4.3 Object Based Image Analysis 
Image classification is a method used to quantify discrete or categorical indicators of land cover 

features. Three broad classification techniques exist: pixel-based, sub-pixel-based and object-

based classification (Jones & Vaughan, 2010). Sub-pixel classification methods are needed for 

low resolution images where the pixels are significantly larger than the objects you want to 

classify. For medium resolution images where the pixels and objects size are of the same order, 

pixel-based classification methods are appropriate. High resolution images, where the pixels 

are significantly smaller than the objects you want to classify require an object-based 

classification methods (Blaschke, 2010). Because an object-based classification will be used in 

this thesis, we further focus on this classification method. 

 

An object-based image analysis (OBIA) uses both the signatures of the individual pixels and 

the spatial measurements to characterize the shape of a region. OBIA follows a two-step process 

involving (1) the segmentation of the imagery into discrete objects based on spectral and shape 

(dis)similarities, followed by (2) the classification of those objects using a supervised classifier 

(Blaschke, 2010).  

 
2.4.3.1 Criteria for image segmentation  
The image segmentation algorithm will divide the image into relatively homogeneous and 

semantically significant groups of pixels. Using this method will help overcome the problem 

of salt and pepper images often acquired through common pixel-based classification methods 

(Blaschke, 2010; Myint et al., 2014).  

 

A multi-resolution segmentation (MRS) algorithm is a good first step to delineate the objects’ 

boundaries (Myint et al., 2014; Yan et al., 2018). MRS is a bottom-up segmentation, starting 
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with one-pixel objects, that consecutively merges pixels or existing image objects into bigger 

objects based on a relative heterogeneity criterion (Benz et al., 2004; Yan et al., 2018). In each 

step, those pixels or image objects are merged which give the smallest growth in heterogeneity 

(Benz et al., 2004). 

 

This heterogeneity is controlled by three key parameters: scale, shape and colour. The scale 

parameter is the stop criterium for the segmentation process. If the resulting increase in 

heterogeneity exceeds the threshold value set by the scale parameter, no fusion takes place. 

Larger scale parameters will result in larger objects. The shape and colour criteria are part of 

the general segmentation function shown below.  

!" = 	%&'(')*	. ℎ&'(')* +	%./012	. ℎ./012	 

%ℎ343	%&'(')* +	%./012 = 1	678	%&'(')*, %./012 	∈ [0,1] 

The weight parameters allow the user to place greater emphasis on the spectral characteristics 

(%&'(')*) or the spatial characteristics (%./012). The spectral heterogeneity (ℎ&'(')*) is related 

to the pixel value while the shape heterogeneity (ℎ./012) describes the smoothness and 

compactness of an image object (Benz et al., 2004).  

 

2.4.3.2 Classifiers for object classification 
The objects created in step 1 are classified using supervised classification algorithms. 

Supervised classification starts from a training dataset, consisting of areas or pixels that are 

known to be representative for a certain land cover type. From these training areas spectral 

signatures are distracted, which are used by a supervised classifier to classify the entire image 

accordingly (Jones & Vaughan, 2010).  

 

Many supervised classifiers, methods used to assign pixels within an image to one of the 

training classes, can be used. Below some examples are given, ordered from simple easy-

understandable classifiers to more complex ones which are hard to interpret.  

 

The minimum distance to mean classifier calculates the distances between the centroids of the 

training classes and an unclassified pixel (or object), this pixel will be assigned to the nearest 

training class. The maximum likelihood classifier uses the training data to calculate means and 

variances of each training class in order to provide the probability of any pixel belonging to a 

given class. Support vector machines (SMV) in a non-parametric method that makes no 
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assumptions about the data structures. SMV try to find the best hyperplane within the 

multidimensional feature space that forms the optimal separation between different training 

classes. This approach differs from minimum distance or maximum likelihood because only 

the spectral boundaries of the different classes is taken into account, without looking at the 

centroids of each class. Decision tree classifiers are the mostly used supervised classifiers 

which use a series of binary decisions to classify a pixel into a certain class. Lastly, a random 

forest (RF) model consists of a large collection of uncorrelated decision trees, which are fit on 

different subsets of the data (Jones & Vaughan, 2010). 

 

2.5 Landscape metrics 
The composition and configuration of the urban green infrastructure in Leuven will be assessed 

using multiple landscape metrics. The usage of landscape metrics became very common by the 

end of the 1980s within the field of landscape ecology and they are mostly defined as indexes 

developed to quantitatively describe landscape patterns. Landscape metrics can be divided into 

several groups based on their spatial characteristics and patterns they measure or based on the 

level (patch, class or landscape) for which they are calculated (McGarigal et al., 2002; Uuemaa 

et al., 2009; Van Eetvelde, 2007).  

 

The most complete set of landscape metrics are gathered by FRAGSTAT, the program that will 

be used for this analysis. The first group defined by FRAGSTAT consists of area/density/edge 

metrics, which describe the number and size of patches in combination with the amount of edge 

created by these patches. The diversity metrics tell something about the diversity within the 

landscape, important components are richness and evenness. The two groups mentioned above 

are composition metrics (McGarigal et al., 2002; Van Eetvelde, 2007). 

 

A third group composes the shape metrics which describe the shape and complexity of the 

patches, often describe by the circumference-area ratio. Core metrics are defined by the core 

area of a patch, which is the area inside a patch not influenced by the edge-effects. 

Isolation/proximity metrics describe the spatial and temporal context of the patches rather than 

their spatial character. They mostly focus on the degree of fragmentation. A fifth group includes 

the contrast metrics which describe the contrast between neighboring patches, these contrasts 

will influence the edge effects. Contagion/interspersion metrics both describe the landscape 

texture and are indicators for the adjacency of patches. Contagion describes the spatial 
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distribution and intermixing of patches while interspersion focuses on the level of variation of 

patches within the landscape. Lastly, connectivity metrics reflect the degree of 

interconnectedness between different patch types. Both physical and ecological connectivity 

can be calculated. The metrics described in this paragraph are configuration metrics (McGarigal 

et al., 2002; Van Eetvelde, 2007).  
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3 Materials and methods 

3.1  Study area 

3.1.1 Location 
The municipality of Leuven (50°52’39” N 4°42’16” E) is situated in the province Flemish 

Brabant in Belgium, located 25 kilometres east of Brussels, the capital of Belgium (figure 3.1). 

The municipality includes Leuven, Heverlee, Kessel-Lo, Wilsele, Wijgmaal, Korbeek-Lo and 

Haasrode, covering an area 5663 ha.  

 
Figure 3.1: Location of the study area. Upper left corner: map of Flanders with location of Brussels (white) and Leuven (blue) 
highlighted. Right: Detailed map of the municipality of Leuven. Edited from shapefiles obtained from Agentschap Informatie 
Vlaanderen ( 2019) and Stad Leuven (2018). 

 

3.1.2 Climate 
Since Belgium is a small country almost no variation in climate is seen across different regions. 

The Köppen Climate Classification describes the climate of Belgium as a warm temperate 

climate with no dry season and a warm summer (Cfb). Figure 3.2 shows that the mean annual 

temperature equals to 9.8°C and the mean annual precipitation amounts to 821 mm, also the 

mean monthly precipitation and temperatures are presented (KMI, 2019).  
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Figure 3.2 Climatological data from official station in Uccle (Belgium). The graph shows the mean monthly precipitation in 
mm (left) and the mean monthly temperature in °C (right) over the time period 1961-1990. Also the mean annual precipitation 
and temperature are presented (KMI, 2019).  

 

3.1.3 Urbanization  
The total population in the municipality of Leuven has grown from 84.857 in 1990 to 101.702 

in 2020. This population growth is mostly explained by a population increase in sub-

municipalities Leuven and Kessel-Lo, equal to an increase of 7184 and 7039 people 

respectively. The highest increase in population occurred between 2000 and 2010. During this 

period also the population density of Leuven has increased from 1.498 inhabitants/km2 in 1990 

to 1.796 inhabitants/km2 in 2019. The sub-municipality Leuven knows the highest increase 

from 4.115 inhabitants/km2 to 5.360 inhabitants/km2 over the same time period. In 2019, 

Kessel-Lo has a population density of 2.187 inhabitants/km2, followed by Wilsele and Heverlee 

with 1.101 and 1.088 inhabitants/km2 respectively. Wijgmaal has the lowest population density, 

equal to 838 inhabitants/km2 (Bevolkingsregister Stad Leuven, 2020).  
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3.2  Data collection 

3.2.1 Sampling design 
Weather stations are installed in both private gardens and (semi-)public locations according to 

a stratified sampling design. The stratification is based on the concept of Local Climate Zones 

(LCZ). This Local Climate Zone classification was originally used as an objective protocol for 

measuring UHI intensity and thus captures important urban morphological characteristics 

(Verdonck et al., 2018). Stewart & Oke (2012) formally define these zones as “regions of 

uniform surface cover, structure, material, and human activity that span hundreds of meters to 

several kilometers in horizontal scale”.  

 

In practice the LCZs are separated based on (i) building height, (ii) building density and (iii) 

vegetation cover. Using airborne LiDAR data and high-resolution Pleiades satellite imagery 

(for technical details of the remote sensing data see section 3.2.3.2) we could calculate the 

building height, building density and vegetation cover for each 100x100m grid cell within our 

study area and assign a LCZ class to each location in Leuven according the Steward & Oke 

(2012) LCZ typology (figure 3.3). By setting threshold values, two building height classes, two 

building density classes and three vegetation cover classes were obtained, ultimately resulting 

in 12 LCZ classes. The criteria for each of these parameters can be found in table 3.1. The aim 

is to divide the weather stations equally among these land cover classes. 

 
Table 3.1 The criteria for the parameters building height, building density and vegetation cover in combination with related 
LCZ class ID.  

Building height Building density Vegetation cover LCZ class 
ID 

High building [> 8 m] High density [> 25%] High vegetation cover [> 67 %] 111 
  Medium vegetation cover [> 34 %] 112 
  Low vegetation cover [< 34 %] 113 
 Low density [< 25%] High vegetation cover [> 67 %] 121 
  Medium vegetation cover [> 34 %] 122 
  Low vegetation cover [< 34 %] 123 
Low building [< 8 m] High density [> 25%] High vegetation cover [> 67 %] 211 
  Medium vegetation cover [> 34 %] 212 
  Low vegetation cover [< 34 %] 213 
 Low density [< 25%] High vegetation cover [> 67 %] 221 
  Medium vegetation cover [> 34 %] 222 
  Low vegetation cover [< 34 %] 223 
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Figure 3.3: The 100x100 m grid layer shown above a satellite image of Leuven, used to derive the LCZ class IDs.  

Through articles in local newspapers (Putseys, 2019b, 2019a) published in June 2019 and online 

(social) media platforms (Leuven 2030, 2019; ROB-TV, 2019), citizens of Leuven were invited 

to participate in this research. We were looking for inhabitants willing to open their gardens for 

(1) an inventory of the composition of their garden and/or (2) the installation of a small low-

cost weather station inside their garden. The LCZ classification, explained above, was used to 

select the most optimal locations. In collaboration with the city of Leuven and Leuven 2030, 

additional semi-public locations were selected. The aim was to obtain a good spatial distribution 

of the weather stations and equal representation of all possible LCZ classes.  

 

The search for suitable locations followed the following procedure: (1) possible suitable 

locations were identified based on their class ID and spatial distribution, (2) these sites were 

further examined using satellite imagery from Google Maps, gardens with an open exposure 

were marked, (3) the marked locations were visited, where their suitability could be assessed 

in the field and lastly (4) permission from the owners for installation was asked.  

 

3.2.2 Urban air temperature (UAT)  
The urban temperatures are measured using low-cost internet weather stations developed by 

Renkforce©, the Renkforce WH2600 wireless digital weather station to be precise (figure 3.4). 

The specifications of this station can be found in appendix 8.1 (Renkforce, n.d.).  
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The weather station consists of an indoor (WH25) and outdoor unit (WH24) measuring indoor 

and outdoor temperature, indoor and outdoor humidity, (indoor) air pressure, precipitation, 

wind speed, wind direction, solar radiation and UV every 16 seconds, respectively. Both units 

transmit their measured data wirelessly, through radiofrequency, to a base station. This base 

station must be connected to a router and subsequently sends its data to a server via a LAN-

connection. The data is later visualized using the Weather Observations Website - Belgium 

(WOW-BE), a crowdsourcing platform from the RMI (Royal Meteorological Institute). The 

outdoor unit contains three rechargeable batteries that are recharged by a solar panel. The 

temperature and humidity sensors are protected by a radiation shield that serves as protection 

to extreme weather conditions and prevents the direct exposure to solar radiation by allowing 

surrounding air to ventilate through (Conrad, 2019; Renkforce, n.d.).  

 
Figure 3.4: Renkforce WH2600 wireless digital weather station. From left to right: outdoor unit, base station and indoor unit 
(Conrad, 2019). 

In private gardens the weather stations with dimensions 20x40 cm were installed at a height of 

2 meters, using a 2.70 m steel pole which was anchored in the soil to a depth of 70 cm. To make 

sure the pole would stay perfectly vertical some dry concrete was added. Within the gardens 

the stations were preferably placed on an open location, at least 1 meter from interfering object, 

such as walls and trees (figure 3.5 left). Following the station’s guidelines, the solar panel was 

directed towards the south to maximize the amount of solar radiation that can be captured and 

to obtain correct measurements of wind direction. 



 24 

 

Figure 3.5: Example of installed weather stations in a private garden (left) and a semi-public playground (right).  

The weather stations installed on a (semi-)public terrain could not follow the same procedure 

as explained above. In most cases stations were installed on available light poles using specially 

designed L-structures to avoid direct effect contact with the pole. For security reasons an 

installation height between 3-4 meters was used (figure 3.5 right).  

 

3.2.3 Urban green infrastructure (UGI) 

3.2.3.1 Inventory data  
During the scouting of possible suitable locations for the installation of a weather station, 183 

inventories were performed. Using Google Maps satellite images as a reference, a map of each 

garden was drawn on which the composition of its vegetation, impervious surfaces and water 

features were identified using a classification code presented in appendix 8.2. When possible, 

tree species were identified. These hand-drawn maps were digitalized in QGIS (version 3.2) 

(QGIS Development Team, 2019) using recent winter and summer orthophotos as a reference, 

obtained from Geopunt. The inventory data will be used to get more insight into the 

composition of the green infrastructure in Leuven and to verify the green map obtained from 

satellite imagery during an accuracy assessment.  

 

3.2.3.2 Remote sensing data 
Urban green is highly heterogeneous and hard to classify using low or medium resolution 

images. In this thesis we will use a combination of the methodologies proposed by Degerickx 
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et al. (2018) and Yan et al. (2018), in which high resolution satellite imagery is combined with 

airborne LiDAR data to precisely classify the urban landscape. 

 

The high resolution Pleiades satellite image has a panchromatic band with a spatial resolution 

of 0.5m and has 4 multispectral bands (blue, green, red and NIR) with a spatial resolution of 

2m (table 3.2) (Airbus Defence & Space Intelligence, 2013). The Pleiades image was acquired 

on April 7th, 2019. The goal was to acquire new images over the summer of 2019 but due to 

suboptimal weather conditions all attempts were rejected.  

 
Table 3.2: The spectral and spatial resolution of the Pléiades imagery.  

Spectral band Wavelength Spatial resolution 
Blue 430 – 550 nm 2 m 
Green 500 – 620 nm 2 m  
Red 590 – 710 nm 2 m 
NIR 740 – 940 nm 2 m  
Pan 470 – 830 nm 0.5 m  

 
The Pléiades mission is a combination of two sun-synchronous satellites, Pléiades 1A and 1B, 

operating in the same orbit, phased at 180° from each other. The Pléiades 1A was launched on 

December 16, 2011 from the European spaceport in French Guinea, its twin brother Pléiades 

1B was launched almost 1 year later on December 2, 2012. The combined use of both satellites 

ensures daily revisits to any location on earth (Airbus Defence & Space Intelligence, 2013, 

2019; Astrium, 2012).  

 

The optical imagery are orthographic calibration-ready standard products obtained under 

cloudless conditions (cloud cover < 5%). A series of preprocessing steps, including internal 

sensor geometry correction, removal of optical distortions, scan distortions and line-rate 

variations, and band registration, were performed by the vendor (Airbus Defence & Space 

Intelligence). Afterwards we applied the Gramm-Schmidt (GS) algorithm (Laben & Brower, 

1998) in ENVI 5.3 to pan-sharpening the multispectral bands, this GS algorithm produces better 

spectral quality, while maintaining the original spectrum of imagery (Yuhendra et al., 2012). 

 

The airborne LiDAR dataset used in this thesis was collected in the summer of 2015 by 

Aerodata Surveys Nederland BV (GeoBusiness Nederland, 2016) and has an average point 

density of 15 points/m2. The LiDAR data is used to derive a canopy height model (CHM; height 

of objects to ground surface) which enables us to identify the height and 3-dimensional structure 
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of urban green. The processing procedure, explained in Degerickx et al. (2018), include the 

detection and removal of noisy returns, the detection of ground returns, the creation of a DTM 

through interpolation, the derivation of all non-ground returns and lastly the creation of a CHM 

by extracting the maximum height for each cell. 

 

3.2.3.3 Green map of Flanders 
Because the extent of the used image does not cover the entire study area, the green map of 

Flanders (2015) was used to get info on urban green’s composition and configuration for the 

12 weather stations located outside the imagery extent. The green map of Flanders has a 

resolution of 1m and divides the landscape into four landcover classes; high green, low green, 

agriculture and others. For our purpose we only used high and low green (Agentschap voor 

Natuur en Bos, 2013).  

 

3.3  Data analysis 

3.3.1 Urban air temperature (UAT) 
All data analysis regarding urban air temperatures are performed using RStudio version 1.1.463 

(RStudio Team, 2016). 

 

3.3.1.1 Data quality analysis 
Because the observations are made using low cost digital weather station, a data quality analysis 

should be performed before the data can be used to draw any conclusions.  

 

To this end, four low-cost WH2600 digital weather station were installed next to the official 

and more professional equipment of the RMI in both Uccle and Diepenbeek. Since these 

stations will serve as a reference, they were defined as GarmonR01, GarmonR02, GarmonR03 

and GarmonR04. The specifics of each station can be found in table 3.3. A simple comparison 

between GarmonR01 and GarmonR02 is included in the appendix 8.3 (figure 8.1 and 8.2). 

 
Table 3.3: The characteristics of the four reference station placed in the near vicinity of the official stations from the RMI. 

Name Location Installation date 
GarmonR01 Uccle  10/09/2018 
GarmonR02 Uccle 02/09/2019 
GarmonR03 Diepenbeek 06/11/2019 
GarmonR04 Diepenbeek 06/11/2019 



 27 

By identifying the climatic variables mostly correlated with the temperature bias between our 

low-cost reference stations and the official RMI station in Uccle, a predictor for temperature 

bias is created. This prediction model can then be applied to the whole weather station network 

in Leuven, hereby calculating corrected temperatures for each station in function of its local 

climatic conditions.  

 

During the search for a predictor model, the dataset was split in training (0.60) and test (0.40) 

data. The training data was used to train simple regression models, multiple regression models 

and a random forest model. Because a previous study by Bell et al. (2015) already suggested 

that both radiation and windspeed were highly correlated with the temperature bias, we mostly 

focussed on these variables. This previous research also learned us that taking past radiation 

measurements into account, using an exponential weighting, can further improve this 

correlation, resulting in an advanced correction model (Bell et al., 2015). The potential predictor 

models are validated using the test data. The resulting coefficient of determination (R2) and root 

mean square error (RMSE) help us decide the most optimal prediction model for the 

temperature bias. 

 

To ensure that the predictor bias model, designed for Uccle, is applicable for stations located 

on a different location, two extra stations in Diepenbeek were installed. Using the predictor bias 

model, corrected temperatures for these stations will be calculated and can subsequently be 

compared to the official RMI station located in Diepenbeek.  

 

3.3.1.2 Spatio-temporal maps of Leuven’s UHI 
The summer and winter UHI in Leuven will be characterized on different temporal scales and 

with the help of different quantitative variables. 

 

Because the weather stations were continuously installed during the summer of 2019 and not 

all stations record and send their observations flawlessly to the server, we were forced to look 

at small temporal scales, making sure that only stations continuously recording during these 

timeframes were taken into account. To accomplish this, a gap analysis was performed for each 

temporal scale separately in which stations that did not record any measurement for at least 30 

minutes were removed. For the summer UHI, the temporal scales include (1) one extreme 

heatwave day, (2) a complete heatwave week and (3) the five hottest days during the measuring 
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period. All these temporal scales are split up in night- (radiation ≤ 0) and daytime (radiation > 

0) ranging from 00h00 until 05h50 and 06h00 until 18h00 respectively. For the winter UHI we 

looked at (a) one morning following an extreme clear night with a mean cloud cover percentage 

equal to 0 % and (b) five mornings following the five most extreme clear nights of the 

measuring period with a mean cloud cover below 25 %. These morning timeframes range from 

04h until 09h. We expected to see the same patterns for the different temporal scales. If this 

was not the case, the observed patterns could be incidental rather than suggesting a general 

pattern.  

 

For the summer UHI, the quantitative variables include (1) absolute minimum temperatures 

during night-time, (2) absolute maximum temperatures during daytime, (3) changing 

temperature differences during night and day and (4) lastly the Thom’s discomfort index for 

both night- and daytime. For the winter UHI, we will calculate both (a) minimum temperatures 

and (b) changing temperature differences during early mornings.  

 

The minimum temperatures are a good way to visualize the UHI since they focus on the fact 

that urban environments are characterized by a reduced longwave radiation loss during night-

time (Bassett et al., 2016).The changing temperature differences are calculated as the difference 

between the temperature of a specific station and the mean temperature of all stations for every 

timestep (ever 10 minutes) and show over which timeframes the highest temperature 

differences occur. To compare this changing temperature difference for all stations, we summed 

these differences over all timesteps and divided this sum by the number of timesteps. Hereby 

you obtain a mean temperature difference between a specific station and the mean of all stations. 

Stations having a negative value will be cooler than the mean station, while stations obtaining 

a positive value will generally be hotter than the mean station. The Thom’s discomfort, based 

on both mean temperature and mean humidity measurements, gives more insight into the 

thermal discomfort people encounter within the city centre. Thom’s discomfort index is 

calculated using the following formula. The discomfort index values and their discomfort 

feeling scale are expressed in table 3.4 (Georgi & Zafiriadis, 2006). 

 
>? = @AB − 0.55(1 − 0.01	FGB)(@AB − 14.5)	°K 

%ℎ343	>? = 8LMNOPQO4R	L783S	[°K], @AB = 6L4R3PT346RU43	[°K], 
	FGB = 43V6RLW3	ℎUPL8LRX	[%] 
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Table 3.4: Discomfort index (DI) values and their relative discomfort feeling scale (Georgi & Zafiriadis, 2006).  

Feeling of discomfort DI [°C] 
No discomfort < 21 
Discomfort expressed by < 50% of the population 21 -24 
Discomfort expressed by > 50% of the population 24 - 27 
Discomfort expressed by the majority of the population 27 - 29 
Discomfort expressed by all 29 - 32 
Stages of medical alarm > 32 

 

The calculation of minimum temperatures for one day is straightforward. When this variable is 

calculated for an entire week or combination of days, we first calculated the minimum 

temperature for each day, afterwards the mean of these minimum temperatures is calculated. 

For only one night or morning, the changing temperature difference is calculated as a difference 

between the mean night/morning temperature of all stations and the night/morning temperature 

of a specific station. For an entire week or combination of days, first the mean temperatures 

over these timeframes are calculated, after which a difference between both is made. The 

Thom’s discomfort index is simply calculated using mean temperature and humidity over one 

night, week or combination of days. These temperature and relative humidity variables are 

presented on a map of Leuven and its surrounding sub-municipalities. The background cover 

represents a 1m resolution landcover image acquired from Geopunt (Agentschap Informatie 

Vlaanderen, 2019a). 

 

3.3.2 Urban green infrastructure (UGI) 

3.3.2.1 Object-based image analysis (OBIA) 
In section 2.3.3 we stated that an OBIA uses both the signatures of the individual pixels and the 

spatial measurements to characterize the shape of a region. OBIA follows a two-step process 

involving (1) the segmentation of the imagery into discrete objects based on spectral and shape 

(dis)similarities, followed by (2) the classification of those objects. Here we will use OBIA to 

classify the urban green infrastructure into two classes: high and low green. This process is 

performed by dr. Jingli Yan (Division Forest, Nature & Landscape, KU Leuven) using the 

eCognition Developer 9.0 software. 

 

During the (1) image segmentation process we applied a multi-resolution segmentation (MRS) 

algorithm, which is embedded in eCognition Developer. MRS is a bottom-up segmentation, 

starting with one-pixel objects, that consecutively merges pixels or existing image objects into 
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bigger objects based on a relative heterogeneity criterion (Benz et al., 2004; Yan et al., 2018). 

In each step, those pixels or image objects are merged which give the smallest growth in 

heterogeneity (Benz et al., 2004). This heterogeneity is controlled by three key parameters: 

scale, shape and colour. The scale parameter is the stop criterium for the segmentation process. 

Because visual inspection of this scale parameter is subjective, we used an automated process 

created by Drǎguţ et al. (2014); estimation of scale parameter (ESP). The ESP automatically 

segments the image using fixed increments of the scale parameter. For each object level 

obtained though segmentation, ESP calculates the Local Variance (LV) as the mean Standard 

Deviation (SD) of the objects. The dynamics of LV are assessed using a measure called Rate 

of Change (ROC). The peaks in the ROC-LV graph (figure 3.6) indicate the object level at 

which the image can be segmented in the most appropriate manner (Drǎguţ et al., 2014). The 

values for shape and color determine the weight placed on these parameters when generating 

segmented objects. A relatively small value is generally recommended for shape (Zhou et al., 

2009) so that more weight can be put on color and spectrum. Finally, we generated an object 

layer using optimal scale parameters as suggested by ESP (25, 55) and assigning a higher 

weight to the color parameter (0.9) than the shape parameter (0.1). An equal weight was given 

to compactness and smoothness (0.05), two subsets of shape. 

 

 
Figure 3.6: The ROC-LV graph (left) and segmented examples using the scale parameters indicated by ESP.  

After establishing the image objects, (2) these objects are classified using a rule-set approach. 

First, we separated spectrally and texturally different shaded and unshaded objects using 

thresholds for mean brightness and mean red. Next, vegetated objects, indicated by NDVI and 

mean blue, were extracted from unshaded objects (see table 3.5). Subsequently high and low 

green were separated from unshaded vegetation by average height of vegetated objects (CHM). 

The vegetated objects higher than 3m were classified as high green, other objects as low green. 

For shaded areas, we first separated shadow objects into tree shadow (shadow caused by trees) 

and building shadow (shadow caused by buildings). This was necessary because the two types 

of shadow are too distinct in spectrum and shape characteristics to apply the same thresholds 
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for identifying shaded greenspace, e.g. building shadows are generally much darker and bigger 

than tree shadows. Therefore, the shaded objects with an area greater than 400 pixels (100 m2) 

and brightness lower than 24 were classified into building shadows, the others were classified 

as tree shadows. Additionally, the more boundaries of an object shared with greenspace, the 

higher possibility of the object belonging to greenspace. Then shaded greenspace was extracted 

from the two shadow types with a combinative use of NDVI (0.11 for tree shadow, 0.08 for 

building shadow), brightness (24) and relative border to greenspace (0.5). Afterwards the 

shaded greenspace was separated into two green functional types using the same features (3m 

of CHM) as for unshaded vegetation. 

 
Table 3.5: Features and threshold values used during the classification. 

Class name 
(object level) 

Feature (threshold) Class name 
(object level) 

Feature (threshold) 

Unshaded area 
(25) 

Brightness (33); 
Mean Red (372) 

Shaded area 
(25) 

Brightness (33); 
Mean Red (372) 

- - Tree + building 
shadow (55) 

Area (100 m2);  
Brightness (24); 
Relative border to green (0.5) 

Unshaded green 
(25) 

NDVI (0.22); 
Mean Blue (435) 

Shaded green 
(55) 

NDVI (0.11) in tree shadow; 
NDVI (0.08) in building shadow 

High & Low green 
(55) CHM (3m) High & Low green 

(55) CHM (3m) 

 
3.3.2.2 Accuracy assessment 
We randomly collected more than 3900 ground samples from 30 plots of 100x100 m2 in public 

space in 2015, additionally 183 private gardens throughout the Leuven city were collected in 

2019 for the classifier training and classification validations. After the field campaigns, all the 

plots and gardens were digitalized to land cover patches (3916 patches) based on the 25 cm 

spatial resolution orthophotos mentioned in section 3.2.3. For classification validations, we first 

removed the digitalized patches used or partially used as training samples (1500 patches), then 

we converted all the left patches into points (2416 points). The majority of samples locate in 

central region of Leuven city, which leads to an aggregation of validation samples in central 

Leuven. In addition, 800 validation points are enough considering the size of the study area. 

Next, we divided the points in terms of classified land cover classes and stratified selected one 

of three points for each classified class. Finally, we obtained 800 validation points to generate 

the confusion matrixes in ERDAS Image 2020 (Hexagon, 2020). 
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Accuracy parameters used to validate the accuracy of the image include the overall accuracy, 

producer’s accuracy, user’s accuracy and kappa head and can be computed from the confusion 

matrix (Stehman & Wickham, 2011). The overall accuracy is the overall proportion of pixels 

classified correctly (Stehman, 1997). User’s accuracy for a cover type i is the probability that a 

pixel classified as category i by the map is classified as category i by the reference data. 

Producer’s accuracy for a cover type j is the conditional probability that a pixel classified as 

category j by the reference data is classified as category j by the map. The kappa head tells how 

accurate the map is in comparison with a total random map (Stehman, 1997). 

 

3.3.2.3 Describing the spatial patterns of Leuven’s UGI using landscape metrics 
The composition and configuration of the urban green infrastructure in Leuven will be assessed 

using multiple landscape metrics. The composition refers to the abundance and variability of 

urban green, while the configuration refers to the spatial arrangement or distribution of urban 

green (Zhou et al., 2011). 

 

The most complete set of landscape metrics is gathered by FRAGSTAT, the program that will 

be used for this analysis (McGarigal et al., 2002). During this analysis we will neglect the non-

urban green landscape classes and focus on both low and high green within Leuven. Percentage 

cover (PLAND) will be calculated for each urban green class to quantify the effect of urban’s 

green composition. To assess the effect of urban green’s configuration multiple configuration 

metrics of the UGI are calculated; largest patch index (LPI), patch density (PD), edge density 

(ED), mean patch size (AREA_MN) and mean shape index (SHAPE_MN). The definition and 

equation of these landscape metrics are listed in table 3.6 (McGarigal et al., 2002). Previous 

studies have shown that these metrics could potentially affect urban air temperatures (Fan et 

al., 2015; Xiao et al., 2018; Zhou et al., 2011, 2017).  

 
 
Table 3.6: The landscape metrics used in this analysis (McGarigal et al., 2002).  

Metrics Description [units] Equation 
Percentage cover 
(PLAND) 

sum of the areas (m2) of all patches of the corresponding 
patch type i, divided by total landscape area (m2), 
multiplied by 100 (to convert to a percentage)  
[%] 
 

100
Z
	S	[6\]

^

]_`
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Largest patch index 
(LPI) 

the area (m2) of the largest patch of the corresponding 
patch type i divided by total landscape area (m2), 
multiplied by 100 (to convert to a percentage)  
[%] 
 

Max(6\)
Z

S	100 

 

Patch density (PD) the number of patches of the corresponding patch type i 
divided by total landscape area (m2), multiplied by 10,000 
and 100 (to convert to 100 hectares)  
 [n/100ha] 
 

7\
Z
	S	10d 

Edge density (ED) sum of the lengths (m) of all edge segments involving the 
corresponding patch type, divided by the total landscape 
area (m2), multiplied by 10,000 (to convert to hectares)  
[m/ha] 
 

10000
Z

	S	[3\e

^

e_`

 

Mean patch size 
(AREA_MN) 

mean value of the area, which equals the area (m2) of the 
patch, divided by 10,000 (to convert to hectares) 
[ha] 

1
10000	S	7

	S	[6\]

^

]_`

 

   
Mean shape index 
(SHAPE_MN) 

mean value of the shape index, which equals patch 
perimeter (m) divided by the square root of patch area 
(m2), adjusted by a constant to adjust for a square 
standard.  
[-] 

1
7
	S	[

f. 25S3\e
h6\]

^

]_`

 

6\] = area of patch ij, 3\e= total length of edge in landscape involving patch type i, A = total landscape 
area [m2], n = number of patches in the landscape of patch type i 

 

3.3.3 Relationship between UAT and UGI 

3.3.3.1 Spatial patterns of UGI around weather station 
The relationship between urban air temperatures and the urban green infrastructure is examined 

for different spatial scales. By looking at only the garden, the neighbouring surroundings or the 

bigger building block the cooling distance of urban green can be assessed. In practice, ten 

circular buffers around each weather station are drawn with a radius of 10m, 20m, 30m, 50m, 

80m, 100m, 130m, 180m, 250m and 500m. Within each of these buffer regions the landscape 

metrics described in table 3.6 are calculated for each urban green class and each weather station 

separately.  

 

Each of these buffers can be seen as a landscape of its own, made up of patches of different 

landcover classes. The landscape metrics used in this thesis are defined as class metrics. Class 

metrics are computed for every patch type or class within the landscape. A class is defined as a 

set of patches of the same landcover type within a single buffer. The green map produced in 

section 3.3.2.1 counts two classes; high green and low green. There are two basic types of 
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metrics at class level: (1) class metrics that simply calculate the amount and spatial 

configuration of a certain class (e.g. PLAND, LPI, PD, ED), and (2) class distribution statistics 

which measure aggregate properties of all the patches belonging to a single class. Here we only 

use the mean (MN) statistic, which calculates the mean of the patch metrics for the patches that 

comprises each class (e.g. AREA_MN, SHAPE_MN). 

 

3.3.3.2 The weather station’s micro-environment 
Because we believe that not only urban green but also the station’s micro-environment will 

influence the air temperatures, the statistical analyses described below are used to find a 

relationship between the air temperatures and both the landscape metrices of urban green and 

the station’s environment. The four environmental variables, used to describe the station’s 

micro-environment, are explained below. 

 

Firstly, the station’s environment is characterized by the garden’s or public space’s (1) 

enclosure, quantified using the sky view factor (SVF). The SVF is defined as the fraction of 

visible sky from the ground and equals a number between 0 and 1. An increased height and 

density of buildings will decrease the SVF, resulting in a number close to zero. An open lawn 

on the other hand has a high SVF, quantified by a number close to one. This SVF is calculated 

using LiDAR data described in section 3.2.3.2 and the Sky view factor SAGA tool in QGIS 

(Conrad, 2008). Following the recommendations of Dirksen et al. (2019), we used a maximum 

search distance of 100m and set the number of search directions equal to 16. The number of 

directions (or sky hemisphere sectors) equals the number of sectors in which the sky hemisphere 

is divided for calculation purposes. When the number of search directions is too low, not all 

obstacles will be detected, the same is true for the search distance (Dirksen et al., 2019).  

 

Also the garden’s or public space’s (2) area and (3) perimeter are included, these values are 

derived from the inventory data described in section 3.2.3.1. Lastly the garden’s or public 

space’s (4) compactness is used to describe the station’s micro-environment. The compactness 

is calculated using the Polsby-Popper (PP) measure which computes the ratio of the area of the 

garden/public space (A) to the area of a circle whose circumference is equal to the perimeter of 

the garden/public space (P) (Polsby & Popper, 1991). The formula of the PP measure is given 

below. 

ii = 4π 
Z
ij
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A Polsby-Popper score falls within the range of [0,1], here a score closer to 1 indicates a more 

compact garden/public space. 

 

3.3.3.3 Correlation matrix 
A Pearson correlation matrix is calculated to examine the strength of the bivariate associations 

between urban air temperatures/discomfort indexes and both the variables of composition and 

configuration of the urban green classes within each of the buffers and the station’s 

environment.  

 

The Pearson correlation test, also known as a parametric correlation test, can be used only when 

(1) the covariation between the two variables (x, y) is linear and (2) the data from each of the 

two variables follows a normal distribution. The formula for the Pearson correlation test can be 

found below.  

4 = 	
∑(S − Pl)(X − Pm)

h∑(S − Pl)j ∑(X − Pm)j
 

%ℎ343	Pl = P367	OQ	S	W64L6nV3M,Pm = P367	OQ	X	W64L6nV3M 
 
When these assumptions are not met, a non-parametric correlation test (e.g. Spearman rank 

correlation) should be used. The Spearman rank correlation method computes the correlation 

between the ranks of the x and y variables. The formula of the Spearman correlation test is 

given below. 

4ℎO = 	
∑(S′ − Plp)(X′ − Pmq)

r∑(S′ − Plq)j ∑(X′ − Pmq)j
 

%ℎ343	Sq = 467s(S),Plq = P367	467s(S), Xq = 467s(X),Pmq = P367	467s(X) 
 
Practically, the correlation coefficients between the minimum temperature, maximum 

temperature, mean temperature, sum of the temperature difference, discomfort index and the 

landscape metrics for urban green are calculated for both night and day. Additionally, the 

correlations between minimum temperature, maximum temperature, mean temperature, sum of 

the temperature difference, discomfort index and the variables of the station’s environment are 

calculated. Such correlation matrixes are only show for the summer UHI, this because we only 

have a summer green map created with images acquired during the spring/summer of 2019. 

Finding correlations between winter temperatures and summer green would not make a lot 

sense. For the calculation of the correlation matrix we used the R studio package stats v3.6.2, 
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which deletes missing values in pairs rather than deleting all rows of x containing any missing 

values. The results are plotted using the R studio package corrplot.  

 

3.3.3.4 Simple linear regression model 
Simple linear regressions are calculated to determine the relationship between urban air 

temperatures/discomfort indexes and the composition and configuration metrics of high and 

low green. By calculating these regressions for multiple spatial and temporal scales, we can 

assess the cooling distance and cooling efficiency of different urban green types for the different 

temporal scales.  

 

Practically, a simple regression model is computed between the minimum temperature, 

maximum temperature, mean temperature, sum of the temperature difference, discomfort index 

and the landscape metrics of low and high green for day and night within each of the 10 buffer 

zones. For the calculation and presentation of the regression model we used the R studio ggmisc 

extension to the ggplot2 package. 
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4 Results 

4.1 Sampling design 
In total 280 private gardens were made available for our research. Roughly 180 gardens were 

visited in order to assess their suitability within the field. In 2019, 82 weather stations were 

installed, the distribution pattern is presented in figure 4.1. The 82 stations are divided among 

60 private gardens and 22 (semi-)public terrains. A more detailed overview of the Garmon 

network can be found in appendix 8.4. 

 
Figure 4.1: Current distribution of the weather stations. Red points represent the installed weather stations. 

Table 4.1 shows the distribution of the installed weather stations according to their LCZ class 

ID. The empty LCZ classes (111, 121, 211) were almost absent within the study area, as a 

consequence no suitable locations were found. 
Table 4.1: Distribution of weather stations among LCZ classes.  

LCZ class ID # of stations LCZ class ID # of stations 
111 0 211 0 
112 8 212 7 
113 14 213 8 
121 0 221 9 
122 13 222 10 
123 5 223 8 
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4.2 Urban air temperature (UAT) 

4.2.1 Data quality analysis 

4.2.1.1 The temperature bias 
The temperature bias between the oldest reference station GarmonR01 and the official RMI 

station in Uccle is calculated using a 1.5 yearlong dataset for both stations ranging from 

September 2018 until January 2020. Histograms of this temperature bias are shown in figure 

4.2  

 
Figure 4.2: Histograms of the temperature bias between reference station GarmonR01 and the official RMI station in Uccle 
for day and night (top panel), daytime defined by a radiation > 0 (bottom left panel) and nighttime defined by a radiation ≤ 0 
(bottom right panel). Mean biases and their standard deviations are given above the graphs.  

The temperature bias between the oldest reference station GarmonR01 and the official RMI 

station in Uccle has a mean value of 0.08°C and a standard deviation of 0.61°C. When this 

temperature bias is split up for day night, we obtain a positive mean temperature bias during 

daytime (0.36°C) and a negative mean temperature bias during night-time (-0.17°C). Figure 4.1 

also indicates a higher standard deviation during daytime (0.66 °C) than nighttime (0.44 °C).  



 39 

To better understand the temperature bias, figure 4.3 shows the mean temperature bias in 

function of month and ‘hour of the day’. This figure shows clear diurnal and seasonal patterns 

and confirms the positive temperature bias during daytime and negative temperature bias during 

nighttime seen in figure 4.1. In general, we see a positive bias that peaks around midday and is 

more pronounced during the summer months, lasting for more hours of the day. The night-time 

temperatures bias is low for all months. It should be mentioned that a temperature bias of 0°C 

is reached for every month, at which hour of the day this minimal temperature bias occurs, 

depends on the season.  

 
Figure 4.3: The mean temperature bias at different hours of the day (UTC) and months of the year. The values written in each 
cell are the mean bias of each cell.  

Figure 4.4 shows the mean temperature bias in function of windspeed and radiation measured 

by the GarmonR01 station. The positive temperature bias for high solar radiation increases 

when the windspeed is low. Related figure 8.4 in the appendix shows the sample size of each 

cell.  

 
Figure 4.4: The mean temperature bias as function of windspeed and radiation measured by the GarmonR01 station. The 
values written in each cell are the mean bias of each cell.  
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4.2.1.2 Building a predictor for the temperature bias 
To understand which meteorological observations measured by the low-cost weather station 

mostly influence the temperature bias, a correlation matrix between this temperature bias and 

the variables is calculated. This correlation matrix is presented in table 4.2.  

 
Table 4.2: Correlation matrix of temperature bias with meteorological variables measured by the low-cost station. 

Temperature  
[°C] 

Dew point 
temperature [°C] 

Humidity  
[%] 

Radiation  
[W/m2] 

Wind speed  
[m/s] 

Radiation60 
[W/m2] 

0.43 0.20 -0.53 0.61 0.09 0.67 
 

The most correlated variable is radiation (0.61) followed by humidity (-0.53), temperature 

(0.43), dew point temperature (0.20) and wind speed (0.09). Pressure measurements are not 

included because they were measured inconsistently. When past radiation measurements are 

taken into account the correlation is further improved, and it reaches a maximum value when 

considering the last 60 minutes (0.67). We used an exponential weighting, giving a higher 

importance to the radiation measurements closer to the temperature measurement. This variable 

is further denoted as Radiation60 (Rad60). 

 

Using these variables, we tried to build a predictor for the temperature bias. For this purpose, 

multiple models were calibrated in which the temperature bias is described as a function of only 

one or multiple meteorological variables. Below (table 4.3 and figure 4.5) an overview of only 

the most promising models is shown. Figure 4.5 shows the uncorrected temperature bias (a) as 

well as the corrected temperature biases after validation with five different models; a simple 

linear regression with the past radiation (b), a multiple linear regression with the past radiation 

and windspeed (c), with the past radiation and humidity (d), with the past radiation, windspeed 

and humidity (e) and a random forest model including temperature, dew point temperature, 

humidity, radiation, radiation60, windspeed, month and hour (f). Their coefficient of 

determination (R2) and root mean square error (RMSE) are summarized in table 4.3. 

 
Table 4.3: The coefficient of determination (R2) and root mean square error (RMSE) of the different models.  

Model R2 RMSE 
Rad60 (b) 0.432 0.462 
Rad60 & windspeed (c) 0.457 0.451 
Rad60 & humidity (d) 0.465 0.448 
Rad60 & humidity & windspeed 0.485 0.440 
Random forest  0.761 0.286 
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Figure 4.5: The uncorrected temperature bias (a) and the corrected temperature bias after validation with a simple linear 
regression with the past radiations (b), a multiple linear regression with the past radiations and windspeed (c), a multiple 
linear regression with the past radiations and humidity (d), a multiple linear regression with the past radiations, humidity and 
windspeed (e) and a random forest model including temperature, dew point temperature, humidity, radiation, radiation60, 
windspeed, month and hour (f). Mean biases and their standard deviations are given above the graphs. 

Using a simple linear regression using the past radiations is already sufficient to suppress the 

mean temperature bias. Adding additional variables to the model, such as wind speed, humidity 

or both is statistically significant but only decreases the RMSE by one percentage. The random 

forest model results in an RMSE of 0.2868 and R2 of 0.7614, indicating a better precision and 

more robust model.  
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4.2.1.3 Validating the random forest predictor for temperature bias 
The random forest prediction of temperature bias showed decent results. When these results are 

presented for day and night separately (figure 4.6), we obtain a smaller standard deviation of 

the bias during nighttime (0.26) than daytime (0.31). The statistical details of the random forest 

model are summarized in table 4.4.  

 

 
Figure 4.6: The corrected temperature bias (Tbias) after validation with the random forest model for day and night (left), for 
daytime (center) and for nighttime (right). Mean biases and their standard deviations are given above the graphs. 

Table 4.4: Statistical details of the random forest prediction model for temperature bias.  

Formula Tbias ~ Temperature + Humidity + Dew point temperature + Radiation 

+ Radiation60 + Windspeed + Month + Hour 

Number of trees 500 
Number of variables tried at each split 2 
Mean of squared residuals 0.089 
% variance explained 76.14 
RMSE 0.287 

 
To check whether this prediction model, designed for Uccle, is applicable for stations located 

on a different location we applied this model to the other reference stations. The results are 

illustrated in figure 4.7. On the left side the uncorrected temperature biases, the differences 

between the uncorrected temperature measured by the reference stations and the temperature 

measured by the official RMI stations in Uccle and Diepenbeek, are shown. On the right side 

you can find the corrected temperature biases, calculated as the differences between the 

corrected temperatures given by the predictor model and the temperatures measured by the 

official RMI stations. For GarmonR02 we see a reduction of the standard deviation from 0.41 

to 0.28. The mean bias has however shifted from 0.09 to 0.15. The standard deviation of both 

GarmonR03 and GarmonR04 has increased from 0.25 to 0.28. The mean bias of GarmonR03 
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shifted from 0.12 to 0.17, while the mean bias of GarmonR04 show a small decrease from            

-0.08 to -0.03. 

  

 
Figure 4.7: The uncorrected (left) and corrected temperature biases (right) of the reference stations GarmonR02, GarmonR03 
and GarmonR04. Mean biases and their standard deviations are given above the graphs. 

The random forest correction model is used to predict the temperature bias of every low-cost 

weather station located in Leuven. After adding this temperature bias to the measured 

temperature, you obtain a corrected temperature for every station in function of its local climatic 

conditions. These corrected temperatures are used for further analyses. 
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4.2.2 Spatio-temporal maps of Leuven’s UHI 
After performing the gap analysis, in which stations that did not record any measurements for 

at least 30 minutes were removed, only a limited number of weather stations remained. Since 

stations were continuously installed during the summer of 2019, this number differs for 

different temporal scales. Table 4.5 summarizes the number of stations for each temporal scale.  

 
Table 4.5: The number of stations remaining after the gap analysis for multiple temporal scales: two heatwave days, two 
heatwave weeks, the five hottest nights/days and the most extreme and five most extreme clear nights during the measuring 
period. 

Temporal scale Date # of stations  Date # of stations 
SUMMER URBAN HEAT ISLAND 

Heatwave day  August 28th night 54 August 28th day  55 
Heatwave week August 23th -28th nights 41 August 23th -28th days 40 
5 hottest days  July 24th, 25th, 26th and 

August 27th, 28th nights 
32 July 24th, 25th, 26th and 

August 27th, 28th days 
27 

WINTER URBAN HEAT ISLAND 
1 clear night  February 7th morning   68 
5 clearest nights January 16th, 19th, February 7th, 21th and March 3rd mornings 61 

 
Because stations were continuously installed during the summer and autumn of 2019, we see 

an increase in number of stations from July to March. Looking at an entire week or combination 

of days decreases the number of active weather stations.  

 

4.2.2.1 Absolute minimum temperatures 
The absolute minimum temperatures observed during a heatwave night, a heatwave week 

(nights) and the five hottest nights during the measuring period are illustrated in figure 4.8. 

Figure 4.9 shows the minimum temperatures observed during the morning(s) followed by the 

clearest night and five most clear nights of the measuring period.  
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Figure 4.8: Minimum temperatures observed during August 28th (left), the week of August 23th – 28th (center) and the five 
hottest nights during the measuring periods (right).  

 
Figure 4.9: Minimum temperatures observed during the morning of February 7th (left) and during the mornings the five clearest 
nights during the measuring periods (right). 

As, expected the highest minimum temperatures occur in the city centre of Leuven as well as 

in the densely built-up neighbourhoods of Kessel-Lo, while the lowest temperatures occur in 

the suburban municipalities surrounding the city centre. During summer we see the same 

temperature range of 5°C for all temporal scales, but the minima and maxima temperatures vary 

in between them. During winter the same temperature range of 5°C is noticed for 1 morning, 

when looking at a combination of mornings a temperature range of 3°C is noted. The gradual 

decrease in minimum temperature from the urban region towards to suburban and more natural 

surroundings is more clearly visible during winter.  

 



 46 

4.2.2.2 Absolute maximum temperatures 
Figure 4.10 presents the absolute maximum temperatures observed during a heatwave day, a 

heatwave week (days) and the five hottest days during the measuring period. 

 
Figure 4.10: Maximum temperatures observed during August 28th (left), the week of August 23th – 28th (center) and the five 
hottest days during the measuring periods (right). 

 

The maximum temperature range equals 2.3°C, which is only half as wide as the temperature 

range observed for minimum temperatures during night-time (figure 4.8). The distribution of 

cooler and warmer stations shows a more random pattern compared to figure 4.8, lacking the 

gradual decrease in temperature from the urban environment to the rural surroundings.  

 

4.2.2.3 Changing temperature difference 
A temperature profile, showing the corrected temperatures of a rural station (Garmon030) and 

urban station (Garmon049) as well as the mean temperature of all stations during August 27-

28th is illustrated in figure 4.11.  

 
Figure 4.11: Temperature profile of two Garmon stations, a rural station (blue dots) and an urban station (red dots), next to 
the mean (black line) temperature of all stations active during August 28th. 
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After sunrise, around 06h00, air temperatures start to increase. They reach their maximum value 

around 14h00. This peak is followed by a decrease in temperature, just before sunrise (around 

05h00) minimum temperatures are obtained. During daytime (06u00 - 17h50) no clear 

difference between the two weather stations is found, during night-time (18h00 - 05h50) the 

opposite is true. After 18h00 the rural station shows a steeper decrease in temperature compared 

to the urban station, the temperature difference between both stations reaches a maximum value 

just before sunrise.  

 

For each station, the difference between its temperature and mean temperature is calculated at 

every timestep (every 10 minutes). To summarize these results for all stations, the differences 

are summed up for all timesteps and divided by the number of timesteps. This gives the mean 

temperature difference between a certain station and the mean of all stations. The mean 

temperature differences overnight during a heatwave night, a heatwave week (nights) and the 

five hottest nights during the measuring period are illustrated in figure 4.12. The graphs 

presenting this difference during daytime are given in figure 4.13. In figure 4.14 the mean 

temperature difference in winter are presented. 

 

 
Figure 4.12: Mean temperature difference (night) observed during August 28th (left), the week of August 23th – 28th (center) 
and the five hottest nights during the measuring periods (right). 
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Figure 4.13: Mean temperature difference (day) observed during August 28th (left), the week of August 23th – 28th (center) and 
the five hottest days during the measuring periods (right). 

 
Figure 4.14: Mean temperature difference observed during the morning of February 7th (left) and during the mornings the five 
clearest nights during the measuring periods (right). 

Weather stations with a negative value observe lower temperatures compared to the mean 

temperature of all stations, a positive value indicates stations observing higher temperatures 

than the mean temperature of all stations. Figures 4.12 and 4.14 are in concordance with figures 

4.8 and 4.9, they show positive values in the city centre of Leuven and in Kessel-Lo, while the 

negative values are situated in the less densely populated municipalities Oud-Heverlee, 

Bierbeek, Wijgmaal and Wilsele. Neutral values are located in between both of these extremes. 

During daytime (figure 4.13) a different and more random patterns occurs.  
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4.2.2.4 Thom’s discomfort index 
The Thom’s discomfort index calculated using mean night temperatures and relative humidity’s 

observed during one heatwave night, a heatwave week (nights) and the five hottest nights are 

illustrated in figure 4.15.  

 

 
Figure 4.15: The Thom’s discomfort index calculated using mean night temperatures and humidity’s observed during August 
28th (left), the week of August 23th – 28th (center) and the five hottest nights during the measuring periods (right). 

The discomfort indexes reach their maximum values within the city centre, lower values occur 

towards the surrounding suburban regions. The highest discomfort indexes are noted when 

using observations from the five hottest nights, looking at an entire heatwave week lowers the 

discomfort indexes. All temporal scales show a similar range of discomfort indexes around 4.  

 

Figure 4.16 illustrates the mean temperature and relative humidity observed during August 28th 

(night) followed by the resulting Thom’s discomfort index. Higher mean temperatures are 

observed in the city centre and northern sub-urban municipalities, while lower temperatures are 

registered in the southern sub-urban municipalities. The opposite is true for the mean humidity 

measurements. We can even confirm that the station with the highest mean temperature has the 

lowest mean relative humidity and vice versa.  

 

Figure 4.17 represents the Thom’s discomfort index calculated using the mean day temperatures 

and relative humidity’s for the three temporal scales; one heatwave day, a heatwave week (days) 

and the five hottest days during the measuring period.  
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Figure 4.16: The observed mean temperature (left) and mean humidity (center), followed by the calculated Thom’s discomfort 
index during the night of August 28th.  

 
Figure 4.17: The Thom’s discomfort index calculated using mean day temperatures and humidity’s observed during August 
28th (left), the week of August 23th – 28th (center) and the five hottest nights during the measuring periods (right). 

The decrease in discomfort index from the urban centre towards the suburban regions is less 

clear during day time (figure 4.17) compared to night time (figure 4.15). The highest discomfort 

indexes are noted when looking at the five hottest days, looking at an entire heatwave week 

again lowers the discomfort indexes. The range of discomfort indexes during daytime (figure 

4.17) is much smaller compared to night time (figure 4.15) and differs for different timescales. 

When observations of the five hottest day or one heatwave day are taken into account, the 

indexes only range over 0.7 and 0.8 respectively. The discomfort index over an entire heatwave 

week range show a range of 1.  
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4.3  Urban green infrastructure (UGI) 

4.3.1 Green map of Leuven’s UGI 
A detailed green map of Leuven is created using an object-based image analysis, hereby 

classifying the urban green in both high and low green. The resulting green map is presented in 

appendix 8.4.  

 

The confusion matrix is presented in table 4.6. The overall, producer’s and user’s accuracy as 

well as the Kappa head are calculated from the confusion matrix. High green shows the highest 

producer’s and user’s accuracy followed by low green and others. The green map has an overall 

accuracy 91.25% and a Kappa head equal to 0.862.  

 
Table 4.6: The error matrix of the green map using a minimum distance algorithm.  

  Reference User accuracy 
  High Low Other  

Classified 
High 511 29 17 91.74 % 
Low 35 465 11 91.01 % 
Other 10 13 223 90.65 % 

Producer accuracy  91.91 % 91.72 % 88.84 %  
 
 

4.3.2  Spatial patterns of Leuven’s UGI 
The mean values and kernel probability densities of the calculated landscape metrics for August 

28th in each buffer region are illustrated in figure 4.18. More detailed tables, including the 

minimum, maximum, mean and standard deviation values of each landscape metric for every 

buffer are included in appendix 8.6 (table 8.4 to table 8.9). 
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Figure 4.18: The mean values and kernel probability density of the landscape metrics, PLAND, LPI, PD, ED, AREA_MN and 
SHAPE_MN, for both high and low green in the 10 buffer zones.  

The mean percentage cover (PLAND) of low green clearly decreases along the buffers, while 

the cover of high green only slightly increases. Low green shows an equal data distribution, 

high green shows a right-skewed distribution. For low green, the mean largest patch index (LPI) 

shows similar results, while this landscape metric remains almost constant for high green. High 

green’s largest patch index has a right-skewed distribution for all buffers, for low green this is 

only the case for the larger buffer zones. The mean edge density (ED) shows similar patterns 

as the largest patch index, a decrease for low green while high green remains almost constant. 

The data distribution of high green is right-skewed for the smallest buffer but looks symmetrical 

for the larger buffer zones. The data distribution of low green is however symmetrical for the 

smallest and largest buffers but becomes left-skewed for the medium buffers.  The mean patch 

densities (PD) of both high and low green decrease for bigger buffer regions. Both green types 

seem to have a right-skewed distribution for the smaller buffers, afterwards more symmetrical 

data distributions occur. The mean patch size (AREA_MN) slightly increases along the buffers 

for both high and low green but obtains its maximum value for low green in the 30m buffer. 

The distributions for both green types are highly right-skewed. The mean shape index 

(SHAPE_MN) shows only a slight increase for both urban green types between the 10m and 

20m buffers, for larger buffer regions the values remain constant. The distributions of both low 

and high green remain symmetrical along all buffers, in the smaller buffers there are some big 

outliers present.  
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4.4 Relation between UAT and UGI 

4.4.1 Spearman correlation matrix 
Because the assumptions for a parametric correlation test mentioned in section 3.3.3.3 did not 

hold, a spearman correlation test is used to calculate the correlations between the temperature 

variables and urban green’s composition and configuration.  

 

4.4.1.1 Temperature variables vs landscape metrics 
In figure 4.19 the pairwise correlations between the night (left) and day (right) air temperature 

variables of August 28th (one heatwave day) and the landscape metrics for high and low green 

are illustrated. The temperature variables include minimum temperature (a), maximum 

temperature (b), mean temperature (c) and the sum of the temperature differences (d).  

 

 
 

 

(a) Min temp – August 28th night (a) Min temp – August 28th day 
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Figure 4.19: The pairwise correlations between the night (left) and day (right) minimum temperature (a), maximum 
temperature (b), mean temperature (c) or the sum of the temperature difference (d) of August 28th and the landscape metrics 
of high and low green. The colored cells indicate significant correlation (significance level = 0.05). 

(c) Mean temp – August 28th night (c) Mean temp – August 28th day 

(d) Sum temp diff – August 28th night (d) Sum temp diff – August 28th day 

(b) Max temp – August 28th night (b) Max temp – August 28th day 
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Minimum temperatures give the most significant results, followed by the mean temperature and 

sum of the temperature difference which give similar results. The maximum temperature returns 

the most insignificant results, especially during daytime. The minimum temperature shows 

more extreme correlations during night time compared to daytime. We obtain negative 

correlations between minimum temperatures and the PLAND, LPI, ED, AREA_MN and 

SHAPE_MN of low green for almost all buffer regions. For PD almost no significant 

correlations are found. Negative correlations for high green are only found at larger buffer 

regions (≥ 80m). The mean temperature and sum of the temperature difference show similar 

but less extreme results compared to the minimum temperature during night time, during 

daytime a completely different pattern is found. Here negative correlations for PLAND, LPI 

and AREA_MN for high green and SHAPE_MN for both low and high green are present in the 

buffer zones larger or equal to 50m. For all temperature variables, the most extreme correlation 

between air temperature and urban green’s composition and configuration are found in the 20m 

and 80m buffer.  

 

Figure 4.20 shows the pairwise correlations between the night (left) and day (right) mean 

minimum temperature (a), mean maximum temperature (b), mean temperature (c), sum of the 

temperature differences (d) of August 23th – 28th (one heatwave week) and the landscape metrics 

for high and low green.  

 (a) Min temp – August 23-28th nights (a) Min temp – August 23-28th days 
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Figure 4.20: The pairwise correlations between the night (left) and day (right) minimum temperature of August 23th – 28th and 
the landscape metrics of high and low green. The colored cells indicate significant correlation (significance level = 0.05). 

(b) Max temp – August 23-28th nights (b) Max temp – August 23-28th days 

(c) Mean temp – August 23-28th nights (c) Mean temp – August 23-28th days 

(d) Sum temp diff – August 23-28th nights (d) Sum temp diff – August 23-28th days 



 58 

The night- and daytime correlations are very similar to the results we obtained for just one 

heatwave. Generally, we can see the temperature variables for one week result in more extreme 

correlations. During night time PLAND, LPI, ED, AREA_MN and SHAPE_MN of low green 

are highly negatively correlated with all temperature variables. In contradiction with the results 

for one day, here negative correlations of high green are only found at buffer zones ≥ 130m and 

only for AREA_MN and SHAPE_MN. During daytime more significant correlations for high 

green are obtained, especially for the mean temperature and the sum of the temperature 

differences. Negative correlations for high green’s PLAND, LPI and AREA_MN are found for 

all buffer zones between 20m and 180m. For low green figure 4.20 shows negative correlations 

for AREA_MN and SHAPE_MN in the larger buffer regions (≥ 80m). 

 
4.4.1.2 Thom’s discomfort index vs landscape metrics 
The pairwise correlation coefficients between the night (left) and day (right) thermal discomfort 

indexes for one heatwave day (August 28th) and one heatwave week (August 23th-28th) and the 

landscape metrics for high and low green are graphically presented in figure 4.21. 

 (a) Discomfort index – August 28th night (a) Discomfort index – August 28th day 
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Figure 4.21: The pairwise correlations between the night (left) and day (right) discomfort indexes of August 28th (a) and August 
23th – 28th (b) and the landscape metrics of high and low green. The colored cells indicate significant correlation (significance 
level = 0.05). 

The correlation coefficients for one heatwave day or a complete heatwave week are quite 

similar. During nighttime more extreme correlation coefficients are obtained for a heatwave 

week compared to a heatwave day, during daytime we see a shift in significant buffers when 

the two timeframes are compared. For one day the 80m to 250m buffer are the dominant buffers, 

for one week this range is enlarged from the 30m to 250m buffer. In general, we can see more 

negative correlations for low green during nighttime and more negative correlations for high 

green during daytime. The values for the DI index resemble those of the mean temperature and 

sum of the temperature differences in figures 4.19 (c)/(d) and 4.20 (c)/(d). 

 

 

 

 

 

 

 

 

(b) Discomfort index – August 23-28th nights (b) Discomfort index – August 23-28th days 
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4.4.1.3 Temperature variables and discomfort index vs environmental factors 
Figure 4.22 shows the pairwise correlation between the night (left) and day (right) temperature 

variables and discomfort indexes of August 28th (one heatwave day) and August 23th-28th (one 

heatwave week) and the station’s environmental factors. The station’s environmental factors 

include the area, perimeter, compactness and SVF. Since these variables do not differ between 

different buffers, they can be shown in one matrix for day or night.  

 
 

 
 

Figure 4.22: The pairwise correlations between the night (left) and day (right) minimum temperature, maximum temperature, 
mean temperature, sum of the temperature difference and discomfort index of August 28th and August 23th – 28th and the 
station’s environmental factors. 

During night-time we do not notice any significant correlations. During daytime no significant 

correlations for minimum temperatures are found. The other temperature variables show 

negative correlations with area and perimeter. The same is true for the discomfort indexes. Even 

though the correlation between temperature and both compactness and SVF are not significant, 

we still notice positive and negative correlation coefficients for the environmental variables 

respectively. For one week only the maximum day temperature shows significant correlations.  

 

(a) August 28th night (a) August 28th day 

(b) August 23-28th days (b) August 23-28th nights 
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4.4.2 Simple linear regression model 
Figures 8.5 to 8.34 in appendix 8.7 show scatterplots between a specific temperature variable 

and landscape metric of high and low green for multiple spatial and temporal scales. The plots 

can easily be used to compare different spatial extents for one temporal scale or vice versa. 

Additionally, they show the range of each landscape metric for the different green types and 

the 10 spatial extents. Just as the correlation coefficients, one heatwave day or a complete 

heatwave week generally give the same results. 

 

In figure 4.23 the scatterplots between the minimum and mean temperature and PLAND, 

AREA_MN and SHAPE_MN are shown, they present the most important patterns described 

below.  

 

Figures 8.8, 8.14, 8.18, 8.26 and 8.32 show only a small range for PD values. As a consequence, 

no clear relationship between PD and urban green is found, this is in concordance with the 

insignificant correlation coefficients obtained before. An in-depth investigation of the other 

scatterplots shows that all T/RH variables have the same patterns for night-time. During the 

night low green’s PLAND has a negative relation with the T/RH variables for all extents, high 

green only in the 500m buffer. The same patterns are visible for LPI. ED shows for both green 

types only negative relations within the median buffer zones. For low green both AREA_MN 

and SHAPE_MN show negative relationships for all extents, for high green this relationship in 

only visible in the larger buffer zones. Differences in low green’s landscape metrics results in 

a maximum temperature difference of 3-4.5°C. Within the 500m buffer differences in high 

green’s landscape metrics result in a maximum temperature difference of 2.5-3°C at night. 

 

The minimum temperature gives similar day and night results for all landscape metrics. The 

other variables (max, mean, sum temperature and DI) have however a different pattern for 

daytime, this daytime pattern is nonetheless the same for all. During daytime low green’s 

PLAND is neutral for all extents, while high green shows negative relationships for buffers ≥ 

50/80m. These patterns are again true for LPI. ED shows neutral relationships with T/RH 

variables both low ang high green. The AREA_MN shows the same results as PLAND, this 

landscape metrics is neutral for all extents of low green and shows negative relationships for 

buffers ≥ 50/80m for high green. SHAPE_MN shows small negative relationships for both low 



 62 

and high green at buffers ≥ 80m. During the day, differences in high green’s landscape metrics 

give a maximum temperature difference of 1-2°C. 

 

 
Figure 4.23: Scatterplots between minimum (left) and mean temperature (right) and the percentage cover, mean patch size and 
mean shape index of high and low green for two spatial (80m and 500m) and two temporal scales (August 23-28th nights/days). 
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5 Discussion 

5.1 Sampling design 
The sampling design has no optimal distribution among the LCZ classes, stations are especially 

lacking in areas defined by a high building height (1xx) and/or a high building density (x1x) in 

combination with a high vegetation cover (xx1). Quite logically, these classes were uncommon 

within the study area. To ensure that enough stations are installed within the vicinity of a high 

vegetation cover, we should have installed an additional amount of stations within the low 

building height, low building density and high vegetation cover (221) LCZ class. If the 

sampling design can be updated for further research, this needs to be taken into account.  

 

We mentioned before that public stations are installed at a height of 3-4m compared to the 2m 

standard height in private gardens. No direct effects of this height difference were noticed but 

additional research is needed to confirm that the difference creates no offset in observed 

meteorological parameters. 

 

5.2 Urban air temperature (UAT) 

5.2.1 Data quality analysis 
Basic statistics show that the reference station GarmonR01 on average overestimates the 

temperature, shown by a mean temperature bias of 0.08°C. The measurements show a weak 

accuracy, indicated by a standard deviation of 0.61°C (figure 4.2 top). The temperature bias 

between GarmonR01 and the official RMI station (figure 4.2 bottom) shows a positive bias 

(0.36°C) during daytime and a negative bias (-0.17°C) during night-time. This indicates that 

the low-cost weather station has a tendency to overestimate temperatures by an average 0.36°C 

during daytime and underestimate temperatures by an average -0.17°C during night-time. We 

further know that the uncertainty of the measurements is higher during daytime (0.66°C) than 

nighttime (0.44°C) (figure 4.2 bottom). The positive temperature bias during daytime can be 

explained by the lack of active ventilation in the low-cost weather stations (Conrad, 2019; 

Renkforce, n.d.). The weather stations have a radiation shield which should guard the 

thermometer from direct sunlight (Conrad, 2019; Renkforce, n.d.), but previous research has 

shown that not all shields are equally effective (Bell et al., 2015). Under sunny conditions this 
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radiation shield is prone to overheating, hereby warming up the air inside, which will result in 

higher sensed temperatures.  

 

We could apply a simple regression technique to correct the temperature measurements of 

GarmonR01 with the reference values of the official RMI station. This would shift the mean 

temperature bias to zero, but the standard deviation of the error would remain high. However, 

a simple regression does not fit our needs since the bias between both stations is not constant 

(figure 4.3, day/night factor) and seems to vary according to other variables (figure 4.4, 

radiation and windspeed).These fluctuations of the bias indicate that the station is not just 

incorrectly calibrated, poor ventilation and siting will probably play a major role (Bell et al., 

2013). The higher positive temperature biases during daytime and summer are intuitively 

related with extended hours of solar radiation (figure 4.3). This hypothesis is confirmed when 

the impacts of radiation and windspeed are taken into account (figure 4.4), the highest 

temperature biases occur under intense solar radiation in combination with low wind speed. 

These findings are confirmed by previous research (Bell et al., 2015; Jenkins, 2014).  

 

To maximally reduce the standard deviation error and ultimately build a predictor for the 

temperature bias, we correlated the bias with other observations from the GarmonR01 station 

(table 4.2). This analysis indicates that high observations of past radiations and temperature will 

positively influence the temperature bias, while high humidity observations will have a negative 

effect on the temperature bias. Intuitively we would expect a negative correlation coefficient 

for wind speed, the slightly positive correlation coefficient could be explained by the limited 

number of observations for high windspeed (figure 8.4). Using a simple linear regression with 

the past radiations only is already sufficient to suppress the mean temperature bias and results 

in an RMSE of 0.46 (figure 4.5 b). Adding additional variables to the model, such as wind 

speed, humidity or both is statistically significant but only decreases the RMSE by one 

percentage (figure 4.5 c/d/e). These simple multivariate regression models using past radiation 

observations were previously mentioned in the literature as correction models (Bell et al., 

2015). The random forest model including temperature, dew point temperature, humidity, 

radiation, radiation60, windspeed, month and hour results in an RMSE of 0.29 and R2 of 0.76 

(figure 4.5 f), indicating a better precision and more robust model. As a disadvantage, this 

model has a longer computation time and lacks interpretability at the end, additional tests are 

needed to determine the most important variables.  
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When validating the transferability of the random forest model to other Garmon stations and 

thus other locations the results are not optimal. For GarmonR02 we see a reduction of the 

standard deviation from 0.41 to 0.28, indicating a higher accuracy for the corrected 

temperatures. The mean temperature bias has however increased from 0.09 to 0.15, which could 

be explained by the offset in meteorological observations between both stations. Even though 

GarmonR01 and GarmonR02 are installed on the same location with a distance of only one 

meter, a shift in the measured variables is noticed (figure 8.1 and 8.2). The fact that the stations 

were bought one year from each other and are probably from a different production batch could 

be a potential explanation. The unexpected results for GarmonR03 and GarmonR04 can be 

explained by the small dataset, both stations were only installed in November 2019 and have 

yet to experience the warmer summer months. A possible solution would be to incorporate the 

data of all four reference stations into the random forest model, the expected results would be 

worse for GarmonR01 but better for the other stations within the Garmon network. Or if you 

are only interested in heatwaves, you could build a random forest model solely trained for 

heatwave data. Additional research is needs to investigate these hypotheses. If you would only 

be interested in night temperatures, you could consider using the original (uncorrected) night 

time temperature measurements which show only small temperature biases. Because we wanted 

to look at both the day and night UHIs, we used to random forest predictor model to calculate 

corrected temperatures for each station in function of its local climatic conditions. 

 

5.2.2 Spatio-temporal maps of Leuven’s UHI 
Since all temporal scales – i.e. one heatwave day, a complete heatwave week and the five hottest 

days during the measuring period - show similar patterns for the different quantitative 

temperature (and humidity) variables, we may conclude that the observed patterns are not just 

incidental and can be trusted as general patterns. Future research using a larger and more 

complete dataset, including additional summer months and associated heatwaves, can confirm 

this theory.  

 

Diurnal variations of UHIs 

When the absolute minimum (figure 4.8) and absolute maximum temperatures (figure 4.10) in 

summer time are compared, we notice a higher UHI intensity for minimum temperatures 

compared to maximum temperatures. The minimum temperatures show a UHI intensity ranging 

over 5°C between the hottest and coolest station and indicate a gradual decrease in minimum 
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temperature from the urban region towards their suburban and more natural surroundings. The 

maximum temperatures show a range of only 2.3°C and do not show the same gradual decrease, 

both the hottest and coolest station are located within the city centre. The literature generally 

confirms our findings by reporting higher UHI intensities during the solar off-peak time (i.e. 

when solar radiation is not the dominant source of heating; night-time or early morning) 

(Memon et al., 2009; U.S. EPA, 2008). The U.S. EPA (2008) describes daytime UHI intensities 

between -1 to 3°C, while night-time intensities can range between 7 to 12°C. These values are 

in concordance with previous studies in Europe showing UHI intensities fluctuating between 

2.6 and 12 °C (Memon et al. , 2009). When comparing urban locations to a rural reference site 

in Rotterdam, The Netherlands, van Hove et al. (2015) found a larger temperature difference 

between both sites for minimum temperatures (0.5 to 2.6 °C) compared to maximum 

temperatures (-0.1 to 1.3 °C). A similar study in Basel, Switzerland from 2002 reported a 

difference of 5°C at night, during the day the UHI intensity reached a maximum of only 2°C 

(Hamdi & Schayes, 2008).  

 

When these absolute minimum (figure 4.8) and maximum temperatures (figure 4.10) are related 

to night and day temperatures respectively, these findings can be explained by the diurnal 

variations of UHIs. Previous research has shown that the UHI is often weak in the morning but 

further develops during the day as the build environment absorbs solar radiance (Bassett et al., 

2016; van Hove et al., 2015). During night-time subsequent heat release takes place. Because 

the urban environment is characterized by a reduced longwave radiation loss and lower albedo, 

the cooling of cities will be delayed compared to their rural surroundings, resulting in a 

maximum UHI intensity at night (Bassett et al., 2016; Hamdi & Schayes, 2008; Nichol et al., 

2009; U.S. EPA, 2008). As previously stated, this phenomenon is typical for atmospheric UHIs, 

while the opposite is true for surface UHIs (Oke, 1995; Roth et al., 1989; Zhou et al., 2011). 

The temporal temperature profile (figure 4.11), which compares a rural and urban station with 

the mean temperature of all stations, follows this diurnal pattern. The profile shows a weak UHI 

in the morning and during the day, only after sunrise a clear temperature difference between 

the city and its rural surroundings is obtained.  

 

To summarize the results of the temporal temperature profiles for all stations, we calculated the 

differences between the temperature of a specific station and the mean temperature of all 

stations for every timestep (every 10 minutes). By summing this difference over all timesteps 

and dividing this sum with the number of timesteps, you obtain a mean temperature difference 



 67 

between a specific station and the mean of all stations. The mean temperature differences over 

day- (figure 4.13) and night-time (figure 4.12) in summer further confirm our previous 

statement that the maximum UHI intensity is reached at night. At daytime the mean difference 

between the coldest and hottest station only covers 1.8°C, while a range of 5.2°C is found for 

one night. Also the distribution of the cooler and hotter stations seems more random during the 

day (figure 4.13) than night (figure 4.12).  

 

Seasonal variations of UHIs 

The minimum temperatures in wintertime (figure 4.9) show a similar UHI intensity compared 

to those in summertime (figure 4.8) indicated by a range of 4.7°C and 5.5°C between the hottest 

and coldest station respectively. For the mean temperature difference, summer time (figure 

4.12) shows a higher UHI intensity (5.2°C) than winter (4.0°C) (figure 4.14). In contradiction 

with our results, Sheng et al., (2017) found more extreme UHI intensities in winter compared 

to summer when comparing the hottest and coldest station. The gradual decrease in 

temperatures starting in the city centre towards the sub-urban regions is however very clear 

during winter (figure 4.9 and figure 4.14). Only the city centre of Leuven has minimum 

temperatures above freezing point, outside the ring road no values above zero are measured. 

This can be explained by the installation of extra stations within the city centre during autumn 

2019. The fact that such a UHI can also be observed during wintertime is however confirmed 

by the literature. Some studies even suggest that atmospheric UHIs are more intense during 

wintertime, while surface UHIs are more severe during summer time (Roth et al., 1989; Sheng 

et al., 2017; U.S. EPA, 2008).We cannot confirm this theory at this time due to the different 

number of installed weather stations and limited number of observations, but it would be an 

interesting focus for future research.  

 

Diurnal variations of Thom’s discomfort index 

The Thom’s discomfort index is based on both temperature and relative humidity measurements 

and gives an idea of the thermal discomfort people encounter (Thom, 1959). The mean 

temperature and mean relative humidity used to calculate the discomfort index (figure 4.15) 

tells us that high discomfort indexes are related to high temperature and low humidity 

measurements. The formula of the Thom’s discomfort index however indicates that both 

temperature and relative humidity will have a positive effect on the resulting DI values. Since 

a station with a high temperature, but low relative humidity value gives a high discomfort index, 

we can conclude that the resulting DI values in and around Leuven are mainly driven by the 
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temperature values. The inverse pattern of temperature and humidity observations is quite 

intuitively. Since relative humidity measures the amount of water vapor in the air relative to the 

air temperature, the humidity will decrease as the air temperature increases while the amount 

of water vapour stays constant (Britannica Online Academic Edition, 2020).  

 

The DI values for one heatwave day or a complete heatwave week found during night-time 

(figure 4.15 left/center) all remain below 21, indicating people do not encounter any discomfort. 

The DI values in the city centre are however higher, indicating relative more discomfort within 

the city centre compared to sub-urban regions. For the five hottest days, three urban stations do 

obtain values above 21, indicating discomfort expressed by <50% of the population. During 

daytime (figure 4.17) more discomfort is present. For one heatwave day or a complete heatwave 

discomfort is expressed by < 50% of the population. For the five hottest days during the 

measuring period discomfort is expressed by > 50% of the population. More extreme values 

were found during the period 2001-2010 in Athens. During all heatwave days no values below 

27 were found, indicating that most of the population suffered discomfort. For 54% of the 

heatwave days, the citizens even felt severe heatwave stress, indicated by DI values between 

29 and 32 (Papanastasiou et al., 2015). Because both urban and sub-urban regions in Leuven 

fall within the same range of discomfort feelings, no clear conclusion between different 

locations can be made. In concordance with the temperature variables discussed in the previous 

paragraphs, a larger range of DI and clearer decrease in DI from urban to sub-urban regions is 

found during night-time compared to daytime. Again, leading us to conclude that the UHI 

intensity is higher during night time.  

 

Limitations and suggestions for further research 

In this thesis no statistical tests were performed to confirm the existence of an urban heat island 

in Leuven, the UHI maps (figure 4.9 – 4.17) do however suggest such a phenomenon. Future 

research can use the predefined local climate zone classes to check whether a significant 

difference in air temperatures exists for weather stations installed in a high/low building height, 

high/low building density and high/medium/low vegetation cover context.  
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5.3 Urban green infrastructure (UGI) 

5.3.1 Green map of Leuven’s UGI 
The confusion matrix (table 4.6) of the urban green map indicates a high overall accuracy of 

91.25% and Kappa head of 0.862. High green is the best classified landcover indicated by the 

highest producer’s (91.91%) and user’s accuracy (91.74%) but is closely followed by low green 

(91.72% and 91.01%) and other (88.84% and 90.65%). These values are in accordance with the 

literature (Myint et al., 2014; Zhou et al. , 2009). Zhou et al. (2009) compared three methods to 

classify the landcover in Baltimore County. Their first method mostly resembles our 

methodology. They first segment the image into objects of homogeneous pixels using a scale 

parameter of 20, color and shape weight of 0.9/0.1 and equal weights for compactness and 

smoothness (0.05), the following image classification first separates shaded from non-shaded 

objects, eventually resulting in an overall accuracy of 81.5% and Kappa head of 0.74. High 

green resulted in the best producer’s and second-best user’s accuracy. 

 

Previous papers have stated the importance of separating the classification of shaded and non-

shaded areas. This is needed because high spatial resolution imagery is frequently affected by 

shadows, especially in urban environments with variations in surface elevation (Zhou et al., 

2009). Apart from classifying the shaded areas using spatial information, you could use 

multisource data fusion to aid the classification of shaded areas which has shown promising 

results in the past (Zhou et al., 2009). The fact that the spectral images and LiDAR data used in 

the creation of the urban green map are acquired in different years (2019 and 2015) could result 

in sub-optimal classification results. Our accuracy assessment however indicates that this does 

not cause too much problems.  

 

5.3.2 Spatial patterns of Leuven’s UGI 
Even though the green map has a high overall accuracy (91.25%), we should note that this 

accuracy is calculated for the entire green map, which covers an extent of 6556m to 10790m. 

Needless to say the overall accuracy will decrease when looking at the smallest buffer region 

and further increase for larger buffer zones. We can thus state that the resulting values of the 

landscape metrics within the smallest buffer will probably be less accurate compared to those 

in the larger buffer zones. A possible solution could be to directly calculate the metrics from 

the inventory data collected around each weather station. This possibility was examined but 
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excluded from this thesis due to insufficient quantity of the inventory data. Because the 

inventories were digitalized using low resolution orthophotos, only landcover patches that 

could be identified correctly were included. This methodology resulted in smaller patches not 

covering the entire 10m buffer around every station. Further research is thus needed to confirm 

this hypothesis.  

 

Following the station’s guidelines, weather stations were never installed underneath or in the 

near vicinity of trees, which probably explains the low percentage (PLAND) of high green in 

the smallest buffers (figure 4.18). Additionally, the LCZ classes with a high vegetation cover 

were highly under sampled (see table 4.1 and section 5.1). As the buffers increase, more high 

green is found. The right skewed data distribution indicates that only a few stations are 

surrounded by a high green cover > 50%, the majority is not. The highest percentage cover 

(PLAND) of low green in the 10m buffer can be explained by the fact that most stations are 

installed in gardens, as the buffers increase respectively more sealed surfaces (housing, road 

infrastructure, …) appear. The largest patch index (LPI) gives the percentage cover of only the 

largest patch and is thus a measure of dominance (McGarigal et al., 2002). The LPI is always 

smaller or equal to the PLAND. When these metrics equals percentage cover of a certain land 

cover type, we know that the landscape only contains one patch of this land cover type 

(McGarigal et al., 2002). The growing LPI for high green and declining one for low green for 

increasing buffers have the same explanation as above. The patch density (PD) equals the 

number of patches of a certain patch type divided by the total landscape area and is thus 

constraint by cell size of the green map (McGarigal et al., 2002), in our case 1mx1m. There can 

only be as many patches as there are cells within the raster image. The high PD in the 10m 

buffer indicates a fragmented landscape, which seems logical for individual gardens. As the 

buffers increase the number of patches decreases while the area increases, resulting in a strong 

decrease in PD. Looking at larger buffers will thus result in a less fragmented landscape. The 

edge density (ED) presents the sum of lengths of all edge segments divided by the total 

landscape area and can grow without limit. ED can be zero when there is no class edge in the 

landscape (McGarigal et al., 2002). Just as for PD, the large ED in the smaller buffer zones 

indicate a fragmented landscape. Based on both PD and ED, we can say that low green is more 

fragmented compared to high green in all buffer zones. Within the smaller buffers (10m- 50m) 

the mean patch size (AREA_MN) of high green is lower than low green, for larger buffers 

(80m-500m) the opposite is true. These results are in concordance with those for the percentage 

cover and largest patch index. The mean shape index (SHAPE_MN) shows irregular results for 
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the 10m-80m buffers, indicating both irregular and complex (SHAPE_MN > 1) and square-like 

simple (SHAPE_MN = 1) patches for low and high green, above 80m a constant value is kept. 

The mean shape index is related to the edge density, since more irregular patches will have 

larger edge densities, this relation is visible in figure 4.18. 

 

5.4 Relation between UAT and UGI 

5.4.1 Spearman correlation matrix and simple linear regression models 
Generally speaking, we can see that the impacts of the urban green infrastructure on urban air 

temperatures follow the same patterns for one heatwave day (figure 4.19) or one heatwave week 

(figure 4.20), indicating that the results are not incidental but rather show a general pattern. The 

same is true for the discomfort index (figure 4.21). The scatterplots in figures 8.5 to 8.34 further 

confirm this hypothesis.  

 

Mitigating effects of urban green’s composition and configuration 

The correlation matrices (figures 4.19 - 4.21) and the scatterplots (figures 8.5 - 8.34) presenting 

the relationship between temperature/humidity variables and landscape metrics of urban green 

indicate that both composition and configuration of urban green matter in the mitigation of 

urban heat islands. Not only a bigger percentage cover of urban green but also a larger size and 

more complex shape of urban green patches will significantly lower urban air temperatures and 

subsequently mitigate heat stress. This can be explained by the fact that an increased edge 

density and shape complexity of urban green will increase shade and enhance the interaction 

between urban green and the build-up area, hereby influencing the flow of energy between these 

land cover features (Zhou et al, 2011). The negative correlations obtained over multiple extents 

suggest that increasing the percentage cover (PLAND), largest patch index (LPI), edge density 

(ED), mean patch size (AREA_MN) and mean shape index (SHAPE_MN) of urban green will 

all result in lower air temperatures and discomfort indexes. The correlations show that 

percentage cover (-0.30 to -0.76) is the most important landscape metrics but is closely followed 

by mean patch size (-0.27 to -0.77) and largest patch index (-0.28 to 0.74) (figures 4.19 - 4.21). 

The insignificant and positive correlations for patch density (PD) could be due to the small 

range of possible PD values found around the stations. 

 

The fact that not only the composition but also the configuration of urban green matters in the 

mitigation of heat was already regularly found for studies focussing on the effect of UGI on 
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LST (e.g. Connors et al., 2013; Li et al., 2013; Zhou et al., 2011, 2017) but only more recently 

a study focussing on air temperatures (e.g. Qian et al., 2018) obtained the same conclusion. 

Also the relative importance of different landscape metrics found here is consistent with the 

literature (Li et al., 2013; Rhee et al., 2014; Zhou et al., 2011; Zhou et al., 2017). Li et al. (2013) 

found negative correlation coefficients between LST and PLAND, AREA_MN and 

SHAPE_MN ranging between -0.70 and -0.41. Zhou et al. (2011, 2017) obtained negative 

correlations between LST and all landscape metrics except for PD. The correlations between 

air temperatures and landscape metrics found in the past are however less significant and no 

correlations for PD and SHAPE_MN were found (Qian et al.,2018). 

 

Multiple studies state that configuration metrics can be highly correlated with composition 

metrics or the percentage cover of urban green (Qian et al., 2018; Zhou et al., 2011). To make 

sure no incorrect relationships are found, it is important to control for the effects of urban 

green’s percentage cover when quantifying the effects of the spatial configuration of urban 

green on air temperatures (Qian et al., 2018; Zhou et al., 2011, 2017). In the future the 

correlation between all landscape metrics should be checked. If needed, a partial correlation 

analysis, using PLAND as the controlled variable, should be performed to make sure no 

spurious relationships are found (Qian et al., 2018). 

 

Different effects of urban green for different T/RH variables 

During night-time all temperature and relative humidity variables - minimum temperature, 

maximum temperature, mean temperature, temperature sum and the discomfort index - show 

the same relations between T/RH variables and the landscape metrics of high and low green. 

During daytime both minimum and maximum temperatures show different results compared to 

the similar patterns of the mean temperature, temperature sum and discomfort index (figures 

4.19 - 4.20 right). This can be explained by the fact that minimum day temperatures are highly 

affected by the definition of daytime. Because no absolute minimum temperature is reached 

during the day, new minimum variables are found when this timeframe is extended, which 

makes these results not easy to interpret. The high amount of insignificant correlations for the 

maximum day temperature can be linked to section 5.1.2. Here we discussed that absolute 

maximum temperatures show only a limited temperature range, not indicating a clear UHI. 

These similar air temperatures would not able to explain the variations in urban green.  
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Diurnal variations of the effects of low and high green on T/RH variables 

During night-time the percentage cover, largest patch index, mean patch size and mean shape 

index of low green show a negative relation with all T/RH variables for all extents, indicating 

that an increased relative and absolute patch size as well as a more irregular shaped patch of 

low green will decrease urban air temperatures. To illustrate, an increase in percentage cover 

of 50% will lower minimum and mean temperature by 4°C (figure 4.23). The negative 

correlations between low green’s landscape metrics and air temperature range from -0.4 to -

0.76 (figures 4.19 and 4.20). For high green these negative relationships are only found within 

the largest extent (500m) and they are less extreme. An increase of high green’s percentage of 

50% cover will reduce minimum and mean temperatures by only 2°C (figure 4.23), correlations 

ranges from -0.27 to -0.52 (figures 4.19 and 4.20). The other buffer zones result in a neutral 

relationship. During daytime a different pattern is found. Now high green shows negative 

relations between percentage cover, largest patch index, mean patch size and mean shape index 

and the maximum temperature, mean temperature, temperature sum and the discomfort index 

for buffers ≥ 50/80m, while low green shows a neutral relationship for all extents. The same 

increase in percentage cover (50%), gives a temperature decrease of only 1.5°C during daytime 

(figure 4.23). Correlations between high green’s landscape metrics range from -0.28 to -0.50 

(figures 4.19 and 4.20). Based on these results we can conclude that high and low green have 

different mitigating effects during day and night. The differences in spatial extents will be 

discussed further on. 

 

These findings were also confirmed by the literature (Yan & Dong, 2015; Yan et al., 2014). 

Yan et al. (2014) obtained no significant correlations for the percentage cover of low green 

during daytime, while negative correlations (-0.604 to -0.401) for high green were found in 

buffers ≤ 50m and ≥ 150m. Yan & Dong (2015) used simple regressions to present the relation 

between air temperature and tree and lawn cover at day and night. During the day, tree cover 

showed a small negative relation (-0.026) with air temperature, while lawn cover resulted in a 

neutral relationship. The opposite pattern was true for night-time (-0.056 for lawn cover) (Yan 

& Dong 2015).  

 

Hamada & Ohta (2010) have previously suggested that the cooling processes can differ for day 

and night. During night-time differences in the sky view factor and thermal properties regarding 

heat storage are important factors in the cooling process, while differences in radiation and 

evapotranspiration cause the differences in cooling during the day (Hamada et al., 2010). These 
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suggestions are line with our results. Low green has a high albedo, low specific heat capacity 

and high sky view factor, leading to an effortless heat loss at night. High green, on the other 

hand, also has a high albedo and low specific heat capacity but has a limited sky view factor 

which reduces the longwave radiation loss at night. Because of this low green could potentially 

be more effective in mitigating heat at night. During the day the canopy of high green will 

intercept the incoming solar radiation, a process known as the shading effect, hereby directly 

cooling its environment. Because of its smaller volume, the shading effect of low green is 

however smaller, as a consequence these areas are constantly exposed to higher solar radiation. 

We additionally know that trees show a higher evaporation efficiency than grass, especially 

during summer (Satchithanantham et al., 2017; Stan et al., 2014). High green could thus be the 

more effective tool for heat mitigation during daytime. The literature confirms that both 

individual trees (Georgi & Zafiriadis, 2006) and clusters of trees (Cohen et al., 2012; Streiling 

& Matzarakis, 2003) will lower air temperatures during the day, here the specific amount of 

shading was an important cooling factor (Shashua-Bar & Hoffman, 2000). Other studies 

however demonstrate that tree canopies can retain heat at night (Bowler et al., 2010; Huang et 

al., 2008).  

 

Both the correlation matrices as the scatterplots indicate that low green has a higher mitigating 

effect than high green. This is shown by the more negative correlation coefficients (figure 4.19 

- 4.21) and higher R2 values (figure 4.23) for night-time low green compared to daytime high 

green. This result is however contradicted by the literature (Rushayati et al., 2018; Yan et al., 

2014). A possible explanation for this result could be the relatively smaller range of high green’s 

landscape metrics, due to the under sampling in the high vegetation cover LCZ classes (see 

section 5.1). Especially in the smaller buffer zones, where the direct cooling effects of shading 

and evapotranspiration of high green are most important (Yan et al., 2014), we see an under 

sampling of locations with lots of high green. This is due to the fact that stations were never 

installed underneath or in the near vicinity of trees (see section 5.3.2). 

 

As stated in the materials and methods section, no relation between winter air temperatures and 

urban green’s composition and configuration is presented here. This would however be an 

interesting perspective for further research since other studies have shown that both the 

effective radii at which UGI patterns affect air temperatures (Qian et al., 2018) and the relative 

importance of high and low green (Cohen et al., 2012; Yan et al., 2014) vary by season . 
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Spatial variations of the effects of low and high green on T/RH variables 

At night the mitigation impact of low green is highest within the 20m and the 50m to 180m 

buffer zones (figure 4.20). Yang (2014) found a contrasting result, here the 300m buffer showed 

the highest mitigating effects. During night-time high green shows negative relations with 

temperature variables and discomfort index for the 500m buffer only (figure 4.20). This leads 

to the suspicion that high green could potentially be more significant at larger scales (> 500m). 

High green at larger extents could consist of more closed dense forests ecosystems instead of 

solitary street trees. This should be visible by a high percentage cover, high largest patch index, 

high mean patch size and low patch density within the large extents. Such a dense forest cover 

has a high albedo and low specific heat capacity, lowering the amount of solar radiation 

captured during daytime, which will in turn result in a more efficient heat loss and lower air 

temperatures at night. Previous research has also shown that there is a positive relation between 

the area of a greenspace and its cooling effect into the surrounding areas (Shashua-Bar & 

Hoffman, 2000; Yan et al., 2014), studies have shown that these cooling effects can extend for 

several hundred meters (Hamada & Ohta, 2010). When these forest ecosystems have an 

irregular shape (high mean shape index), these cooling effects are even further extended (Zhou 

et al, 2011). We should highlight that this is just a hypothesis, further research using larger 

buffer zones is needed to confirm this theory.  

 

During the day, the 50m to 130m buffers show the highest mitigating impacts of high green, 

the mitigating impacts of low green are minimal for all extents. These findings are partly 

contradicted by the literature. We already stated that low green has no significant impact during 

the day (Yan & Dong, 2015; Yan et al., 2014), but the most significant buffers for high green 

obtained here are not as easy to interpret. Since the influence of tree canopy shading and 

evapotranspiration are the most important factors during daytime (Hamada & Ohta, 2010), we 

would expect the highest relation between air temperature and high green within the smallest 

buffer zone. A possible explanation is again the fact that stations were not installed in the near 

vicinity of trees, resulting in a low range of possible landscape metric values for the smaller 

extents.  

 

Importance of environmental variables 

Even though our temperature bias correction model is used to correct for incorrect calibrations, 

poor ventilation and siting in general, we still expect that environmental variables could 

influence the air temperature measurements.  
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During daytime, area and perimeter are crucial environmental factors for the maximum 

temperature, mean temperature, temperature sum and discomfort index (figure 4.22). A bigger 

area and larger perimeter will lower air temperatures and decrease human heat stress. The 

insignificant results for minimum temperatures could be due to the fact that minimum day 

temperatures are highly affected by the definition of daytime, as explained before. The 

insignificant results for the sky view factor (SVF) are however unexpected and not as easy to 

interpret. SVF is closely related to both the incoming solar radiation during the day and the long 

wave radiation loss at night and could thus have sincere impacts on day and night air 

temperatures. 

 

The fact that the environmental variables are crucial parameters during daytime rather than 

night-time is a bit surprising. Area, perimeter, compactness and SVF all say something about 

the enclosure of the weather stations, which has important consequences for the longwave 

radiation loss at night-time. This suggest that other factors are at stake. Previous research 

mentions orientation as an important factor which could affect air temperatures, solar exposure 

and ventilations conditions (Oliveira et al., 2011). The importance of considering such 

confounding variables, either by correcting the temperature measurements or by incorporating 

them into the model, has been stated by the literature (Bowler et al., 2010; Oliveira et al., 2011). 

Not incorporating these variables could bias the result of the cooling potential of urban green 

(Bowler et al., 2010).  

 

Limitations and suggestions for further research  

The correlation matrices and simple regression models used to estimate the relationship 

between air temperatures and the composition and configuration of urban green only portray 

the bivariate relation between air temperature and a specific composition or configuration 

metric.The use of a stepwise multiple regression analysis (Yan et al., 2014) or multiple linear 

regression incorporating different combinations of only composition/configuration metrics or a 

combination of both (Zhou et al., 2011) is recommended for further research. These models can 

be used to describe air temperature as a combination of different landscape metrics at different 

temporal and spatial scales.  

 

In this thesis the relation between urban green and air temperatures was investigated for all 

weather stations together. We now have a general idea of the amount, shape and type of urban 

green needed to lower urban air temperatures and mitigate heat stress. We did not make a 
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distinction between urban or rural stations and can thus not answer questions regarding the ideal 

composition and configuration of urban green needed to mitigate heat in an urban or rural 

context. Further research can use the predefined local climate zone classes to assess the 

mitigating impacts of urban green for these contexts separately.  
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6 Conclusion 
This thesis studied the spatio-temporal variations of urban air temperature and the Thom’s 

discomfort index in and around Leuven. Subsequently, the impact of urban green’s composition 

and configuration on air temperature and human discomfort were examined for multiple spatial 

and temporal scales.  

 

The urban heat island and related human discomfort during the 2019 heatwaves showed clear 

diurnal variations for multiple temporal scales. At night, higher urban heat island intensities, 

defined as the temperature difference between the hottest and coldest stations, and larger ranges 

in discomfort index values were found than during daytime. 

 

We additionally found that both composition and configuration of high and low green matter 

in the mitigation of urban heat islands. Not only a bigger percentage cover of high and low 

green but also a larger size and more complex shape of these urban green patches will 

significantly lower urban air temperatures and subsequently mitigate heat stress. This 

mitigating impact of different urban green types, high and low green, did however vary for 

different spatial and temporal scales. At night, the composition and spatial configuration of low 

green was found to be the most important mitigating factor along all spatial extents. This can 

be explained by its thermal properties and high sky view factor, which both favour longwave 

radiation loss at night. Increasing low green’s percentage cover by 50%, lowers night-time 

temperatures with 4°C. During daytime, high green was more effective in reducing urban air 

temperatures and human discomfort through direct shading and evapotranspiration. The 

resulting temperature decrease was however smaller, a 50% increase in high green’s percentage 

cover decreased air temperature with only 2°C. 

 

These outcomes have important implications for urban green planning and design. In order to 

ameliorate the outdoor thermal environment within urban centres, planners and designers must 

consider both the composition and the spatial configuration of the urban green infrastructure. 

Different urban green types, shapes and sizes at multiple spatial scales are needed to improve 

thermal comfort of citizens during both night and day. 
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8 Appendix 

8.1 Specifications of the WH2600 digital weather station 
Table 8.1: Specifications of the Renkforce digital weather station WH2600 

OUTDOOR DATA  

Transmission distance in open field 100m(330 feet) 

Frequency 433 MHz / 868 MHz / 915 MHz (option)  

Temperature range -40 °C - 60 °C  

Accuracy +/- 1 °C  

Resolution 0.1 °C  

Relative humidity range 1% - 99%  

Accuracy  +/- 5%  

Rain volume display  0 – 9999mm 

Accuracy  +/- 10%  

Resolution 0.3mm (if rain volume < 1000mm)  

1mm (if rain volume > 1000mm)  

Windspeed 0-50m/s (0-100mph)  

Accuracy +/- 1m/s (wind speed< 5m/s) 

+/-10% (wind speed > 5m/s)  

Light 0-400k Lux  

Accuracy +/-15%  

Measuring interval outdoor sensor WH24  

 

16 sec  

INDOOR DATA  

Indoor temperature range -40 °C - 60 °C  

Resolution 0.1 °C  

Relative humidity range 1% - 99% 

Resolution 1% 

Air pressure range 300-1100hPa  

Accuracy +/-3hpa under 700-1100hPa  

Resolution 0.1hPa  

Alarm duration 120 sec 
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8.2 Classification code garden inventories 
Table 8.2: Classification code for digitizing the garden inventories. 

 
Green Roof 

 
Walls & facades 

1.1 extensive Green Roof/grass 7.1 vertical green (gevelgroen) 
1.2 intensive Green Roof/woods 7.2 plants on fence (begroeide omheining) 
1.3 others and specify 7.3 other and specify     
 

Sealed/impervious surfaces 
 

Grass 
2.1 pavement - terrace 8.1 lawn (mowed regularly) 
2.2 sand surface 8.2 meadow (not mowed regularly) 
2.3 rock surface 8.3 others and specify 
2.4 others and specify 8.4 high grass 
2.5 wooden terrace 

  

2.6 gravel    
2.7 fake lawn (fake grass)    
    
 Water  Low green (shrubs. flowers <1m) 
3.1 swimming pool (artificial) 9.1 production garden (moestuin) 
3.2 pond (natural) 9.2 bedding plants (perkplanten/plantenborder) 
3.3 others and specify 9.3 flower meadow   

9.4 brushwood/tall herb vegetation (ruigte) 
  9.5 others and specify 
     

Soil/pervious surface 
 

Mid green (shrubs and trees at 1-5m) 
4.1 bare soil  10.1 mixture of shrubs and trees (< 1m) 

4.2 wood chips 10.2 decidious tree (solitairy) 
4.3 others and specify 10.3 conifer tree (solitairy) 
  10.4 fruit tree (solitairy) 
  10.5 group/row of woods 
  10.6 others and specify 
     

Manmade constructions 
 

High green (shrubs and trees >5m) 
5.1 buildings 11.1 decidious tree (solitairy) 
5.2 trampoline 11.2 conifer tree (solitairy) 
5.3 playground 11.3 fruit tree (solitairy) 
5.4 others and specify 11.4 group/row of woods   

11.5 others and specify 
     

Fences 
  

6.1 wall fence 
  

6.2 wood fence 
  

6.3 iron fence 
  

6.4 others and specify 
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8.3 GarmonR01 vs GarmonR02 

 
Figure 8.1: Scatterplots comparing temperature, dew point temperature, humidity, radiation and windspeed measured by both 
GarmonR01 and GarmonR02. The color scale indicates the density of the observations, yellow indicating the highest. 

 

 
Figure 8.2: Histograms of temperature bias between GarmonR01 and GarmonR02 split up for day (radiation > 0) and night 
time (radiation ≤ 0). Mean biases and their standard deviations are given above the graphs.  
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8.4 Garmon network 

 
Figure 8.3: Overview of complete Garmon network (2019), each red dot represents a weather station, their labels refer to their 
specific Garmon ID. The background image presents the green map of Leuven (green=high green, yellow=low green, 
grey=others). 
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Table 8.3: Overview table of stations in the Garmon network (2019), after each Garmon ID the LCZ class is mentioned as well 
whether the station is installed in a private garden or on a (semi-) public terrain. 

Station ID LCZ class ID Station type Station ID LCZ class ID Station type 
Garmon002 223 Private Garmon053 113 Private 
Garmon003 122 Private Garmon054 212 Private 
Garmon004 212 Private Garmon056 112 Private 
Garmon005 113 Private Garmon057 221 Private 
Garmon006 213 Private Garmon059 221 Private 
Garmon007 122 Private Garmon060 222 Private 
Garmon008 222 Private Garmon061 213 Private 
Garmon009 123 Private Garmon062 221 Private 
Garmon010 223 Private Garmon064 122 Private 
Garmon011 112 Private Garmon065 113 Private 
Garmon012 122 Private Garmon066 221 (Semi-)public 
Garmon013 223 Private Garmon067 113 (Semi-)public 
Garmon014 112 Private Garmon068 113 (Semi-)public 
Garmon016 222 Private Garmon069 123 (Semi-)public 
Garmon019 222 Private Garmon070 122 (Semi-)public 
Garmon021 122 Private Garmon071 213 Private 
Garmon022 222 Private Garmon072 212 Private 
Garmon023 213 Private Garmon073 123 (Semi-)public 
Garmon028 222 Private Garmon074 221 Private 
Garmon029 213 Private Garmon075 212 Private 
Garmon030 222 Private Garmon076 122 (Semi-)public 
Garmon031 223 Private Garmon077 212 Private 
Garmon032 113 Private Garmon078 223 Private 
Garmon033 213 Private Garmon080 221 Private 
Garmon034 213 Private Garmon081 221 Private 
Garmon036 222 (Semi-)public Garmon082 213 Private 
Garmon037 113 (Semi-)public Garmon084 212 Private 
Garmon038 113 (Semi-)public Garmon085 112 Private 
Garmon039 112 (Semi-)public Garmon086 122 (Semi-)public 
Garmon040 222 Private Garmon087 113 (Semi-)public 
Garmon041 122 Private Garmon088 223 Private 
Garmon042 112 Private Garmon089 222 Private 
Garmon043 221 Private Garmon090 122 Private 
Garmon044 112 Private Garmon091 113 (Semi-)public 
Garmon045 223 Private Garmon092 123 (Semi-)public 
Garmon046 122 Private Garmon093 123 (Semi-)public 
Garmon047 212 Private Garmon094 113 (Semi-)public 
Garmon048 122 (Semi-)public Garmon096 122 (Semi-)public 
Garmon049 113 (Semi-)public Garmon097 221 Private 
Garmon051 223 Private Garmon098 113 (Semi-)public 
Garmon052 112 Private Garmon099 113 (Semi-)public 
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8.5 Temperature bias as function of windspeed and radiation 
 

 
Figure 8.4: The mean temperature bias as function of windspeed and radiation measured by the GarmonR01 station. The 
values written in each cell signify the sample size. 

 

8.6 Summary tables of landscape metrics 
Table 8.4: The minimum, maximum, mean and standard deviation values of PLAND for all Garmon station active during 
August 28th night (53 stations) and those active during August 23th-28th nights (40 stations).  

  High green  Low green 

 

 

Min Max Mean 

Std 

dev  Min Max Mean 

Std 

dev 

10m Aug 28th 0.00 55.99 10.57 13.52   0.00 100.00 61.62 22.68 

 Aug 23-28th 0.00 55.99 11.22 14.56   0.00 95.77 57.68 23.63 

20m Aug 28th 0.00 54.85 16.47 14.08  1.78 82.00 44.56 19.18 

 Aug 23-28th 0.00 54.85 16.62 14.37  1.78 82.00 42.31 19.47 

30m Aug 28th 0.00 53.88 17.68 13.9   2.29 74.78 37.58 16.53 

 Aug 23-28th 0.00 53.88 17.5 14.3   2.29 74.78 35.75 16.67 

50m Aug 28th 0.00 50.21 17.43 12.48  0.94 51.63 28.36 12.33 

 Aug 23-28th 0.00 46.91 16.87 11.76  0.94 51.63 27.01 12.21 

80m Aug 28th 0.31 55.86 17.9 11.16   1.97 50.79 24.90 10.57 

 Aug 23-28th 0.31 41.01 16.45 10.09   1.97 50.79 24.29 10.97 

100m Aug 28th 0.57 54.83 18.52 10.71  1.59 54.6 24.2 10.71 
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 Aug 23-28th 0.57 51.32 16.91 9.71  1.59 54.6 23.80 11.20 

130m Aug 28th 1.13 56.10 18.47 10.59   1.68 57.80 23.55 10.88 

 Aug 23-28th 1.13 55.37 16.82 9.47   1.68 57.80 23.59 11.44 

180m Aug 28th 2.02 55.98 18.28 10.46  2.47 59.42 22.83 10.59 

 Aug 23-28th 2.02 55.98 16.98 9.49  2.47 59.42 23.12 11.04 

250m Aug 28th 3.82 57.55 18.00 10.22   6.26 68.41 22.75 11.21 

 Aug 23-28th 3.82 57.55 17.00 9.54   6.94 68.41 23.22 11.50 

500m Aug 28th 5.12 58.22 19.40 9.08  7.56 67.42 22.83 11.55 

 Aug 23-28th 6.83 58.22 18.95 8.84   7.56 67.42 23.34 12.06 

 
Table 8.5 The minimum, maximum, mean and standard deviation values of LPI for all Garmon station active during August 
28th night (53 stations) and those active during August 23th-28th nights (40 stations).  

  High green  Low green 

 

 

Min Max Mean 

Std 

dev  Min Max Mean 

Std 

dev 

10m Aug 28th 0.00 55.99 9.59 13.10   0.00 100.00 59.76 24.17 

 Aug 23-28th 0.00 55.99 10.24 14.17   0.00 95.77 55.36 25.19 

20m Aug 28th 0.00 51.62 12.94 12.69  0.97 82.00 39.62 20.95 

 Aug 23-28th 0.00 51.62 13.33 13.35  0.97 82.00 37.17 21.05 

30m Aug 28th 0.00 53.56 13.97 12.86   1.00 74.71 30.64 18.69 

 Aug 23-28th 0.00 53.56 14.11 13.46   1.00 74.71 28.81 18.81 

50m Aug 28th 0.00 47.65 12.26 11.62  0.36 48.67 20.76 13.24 

 Aug 23-28th 0.00 42.98 12.03 11.05  0.36 48.67 18.95 12.93 

80m Aug 28th 0.11 55.65 10.64 10.03   0.92 36.97 13.78 9.50 

 Aug 23-28th 0.11 34.62 9.48 8.02   0.95 36.97 12.84 9.50 

100m Aug 28th 0.11 53.86 10.12 9.28  0.62 33.63 11.47 8.26 

 Aug 23-28th 0.11 34.22 8.63 7.00  0.64 33.63 10.85 8.30 

130m Aug 28th 0.33 53.8 9.26 10.46   0.57 30.22 9.08 7.13 

 Aug 23-28th 0.33 50.16 7.90 9.09   0.57 30.22 8.89 7.32 

180m Aug 28th 0.19 52.16 8.26 9.93  0.51 26.76 6.40 5.56 

 Aug 23-28th 0.19 52.16 7.48 8.98  0.51 26.76 6.51 5.76 

250m Aug 28th 0.30 52.94 7.29 9.55   0.38 27.54 5.24 5.10 

 Aug 23-28th 0.30 52.94 6.89 9.01   0.38 27.54 5.32 5.14 

500m Aug 28th 0.41 50.86 6.69 8.03  0.25 20.46 4.14 5.09 

 Aug 23-28th 0.7 50.86 6.79 8.43   0.25 20.46 4.35 5.48 
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Table 8.6 The minimum, maximum, mean and standard deviation values of ED for all Garmon station active during August 
28th night (53 stations) and those active during August 23th-28th nights (40 stations). 

  High green  Low green 

 

 

Min Max Mean 

Std 

dev  Min Max Mean 

Std 

dev 

10m Aug 28th 0.00 2419.35 565.79 565.81  0.00 3215.43 1629.84 686.99 

 Aug 23-28th 0.00 2419.35 577.56 590.65  0.00 3215.43 1615.96 702.08 

20m Aug 28th 0.00 1653.16 625.90 399.27  202.27 2394.48 1431.35 412.13 

 Aug 23-28th 0.00 1356.21 608.70 395.00  202.27 2394.48 1396.91 422.09 

30m Aug 28th 0.00 1367.22 608.59 337.68  253.57 2044.40 1269.54 317.28 

 Aug 23-28th 0.00 1367.22 587.56 338.15  253.57 2044.40 1264.00 323.38 

50m Aug 28th 0.00 1167.03 528.51 238.07  107.42 1657.82 1091.73 328.37 

 Aug 23-28th 0.00 1167.03 516.24 250.75  107.42 1657.82 1081.42 346.12 

80m Aug 28th 39.48 1059.08 503.72 184.74  199.42 1488.60 985.73 302.02 

 Aug 23-28th 39.48 1059.08 482.73 196.75  199.42 1488.60 967.72 313.08 

100m Aug 28th 62.40 1017.49 489.42 163.51  168.54 1462.82 953.09 296.88 

 Aug 23-28th 62.40 1017.49 472.89 176.47  168.54 1462.82 941.50 310.90 

130m Aug 28th 87.63 929.02 470.60 145.53  143.38 1411.59 919.35 287.54 

 Aug 23-28th 87.63 929.02 458.43 153.37  143.38 1411.59 913.84 303.68 

180m Aug 28th 147.23 854.27 453.37 135.49  187.90 1388.90 879.32 268.36 

 Aug 23-28th 147.23 854.27 448.60 140.55  187.90 1388.90 881.15 281.53 

250m Aug 28th 210.77 709.20 438.42 123.80  298.29 1377.64 841.31 251.37 

 Aug 23-28th 217.41 709.20 430.95 121.31  298.29 1377.64 851.06 250.46 

500m Aug 28th 206.78 620.80 417.86 95.73  384.23 1200.15 777.97 204.64 

 Aug 23-28th 244.92 620.80 409.03 82.98  384.23 1200.15 783.78 201.09 

 
Table 8.7: The minimum, maximum, mean and standard deviation values of ED for all Garmon station active during August 
28th night (53 stations) and those active during August 23th-28th nights (40 stations). 

  High green  Low green 

  Min Max Mean Std dev  Min Max Mean Std dev 

10m Aug 28th 0.00 12861.74 3537.75 3369.83  0.00 12861.74 4820.32 2579.88 

 Aug 23-28th 0.00 9771.99 3561.82 3181.49  0.00 12861.74 5019.53 2733.57 

20m Aug 28th 0.00 4874.09 1968.46 1263.69  804.51 6467.26 2213.66 1350.32 

 Aug 23-28th 0.00 4874.09 1961.97 1306.75  804.51 6467.26 2407.90 1416.54 

30m Aug 28th 0.00 2862.25 1409.53 722.56  357.65 4652.83 1672.67 937.48 

 Aug 23-28th 0.00 2862.25 1465.63 753.39  357.65 4652.83 1787.47 936.95 

50m Aug 28th 0.00 2204.93 989.12 412.80  388.10 2717.04 1335.83 552.39 
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 Aug 23-28th 0.00 1811.59 928.68 380.95  388.10 2717.04 1384.94 569.28 

80m Aug 28th 149.94 1649.51 867.69 354.13  549.75 2000.20 1182.72 400.04 

 Aug 23-28th 149.94 1649.51 857.27 348.77  549.78 2000.20 1187.21 394.26 

100m Aug 28th 129.40 1423.76 776.56 285.92  582.86 1878.18 1108.69 315.56 

 Aug 23-28th 129.40 1423.76 775.74 274.93  582.86 1878.18 1140.59 328.57 

130m Aug 28th 134.00 1148.57 720.38 218.72  478.59 2049.14 1022.05 306.96 

 Aug 23-28th 134.00 1148.57 729.54 217.02  478.59 2049.14 1036.87 320.03 

180m Aug 28th 256.03 1043.64 651.08 189.29  452.98 1634.86 953.39 248.85 

 Aug 23-28th 256.05 1043.64 659.81 193.92  521.96 1634.86 970.02 257.30 

250m Aug 28th 222.63 1004.67 618.12 179.53  403.84 1393.13 895.47 241.33 

 Aug 23-28th 269.22 1004.67 623.29 181.31  460.93 1393.13 914.16 252.82 

500m Aug 28th 169.56 818.15 531.58 142.00  302.93 1166.21 816.92 194.31 

 Aug 23-28th 226.55 818.15 530.24 140.06  302.93 1166.21 823.43 198.56 

 
Table 8.8: The minimum, maximum, mean and standard deviation values of AREA_MN for all Garmon station active during 
August 28th night (53 stations) and those active during August 23th-28th nights (40 stations). 

  High green  Low green 

 

 

Min Max Mean 

Std 

dev  Min Max Mean 

Std 

dev 

10m Aug 28th 0.00 0.02 0.00 0.00  0.00 0.03 0.02 0.01 

 Aug 23-28th 0.00 0.02 0.00 0.00  0.00 0.03 0.01 0.01 

20m Aug 28th 0.00 0.05 0.01 0.01  0.00 0.10 0.03 0.03 

 Aug 23-28th 0.00 0.05 0.01 0.01  0.00 0.10 0.03 0.03 

30m Aug 28th 0.00 0.08 0.02 0.02  0.00 0.18 0.04 0.04 

 Aug 23-28th 0.00 0.06 0.01 0.01  0.00 0.16 0.03 0.04 

50m Aug 28th 0.00 0.08 0.02 0.02  0.00 0.12 0.03 0.03 

 Aug 23-28th 0.00 0.07 0.02 0.02  0.00 0.12 0.03 0.03 

80m Aug 28th 0.00 0.19 0.03 0.03  0.00 0.06 0.02 0.02 

 Aug 23-28th 0.00 0.08 0.02 0.02  0.00 0.06 0.02 0.01 

100m Aug 28th 0.00 0.15 0.03 0.03  0.00 0.06 0.02 0.01 

 Aug 23-28th 0.00 0.10 0.03 0.02  0.00 0.06 0.02 0.01 

130m Aug 28th 0.00 0.13 0.03 0.03  0.00 0.07 0.02 0.01 

 Aug 23-28th 0.00 0.13 0.03 0.02  0.00 0.07 0.02 0.01 

180m Aug 28th 0.00 0.15 0.03 0.03  0.00 0.09 0.03 0.01 

 Aug 23-28th 0.00 0.15 0.03 0.02  0.00 0.09 0.02 0.01 

250m Aug 28th 0.01 0.13 0.03 0.03  0.01 0.15 0.03 0.02 

 Aug 23-28th 0.01 0.13 0.03 0.02  0.01 0.15 0.03 0.02 
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500m Aug 28th 0.01 0.18 0.04 0.03  0.01 0.22 0.03 0.03 

 Aug 23-28th 0.01 0.18 0.04 0.03  0.01 0.22 0.03 0.03 

 
Table 8.9: The minimum, maximum, mean and standard deviation values of SHAPE_MN for all Garmon station active during 
August 28th night (53 stations) and those active during August 23th-28th nights (40 stations). 

  High green  Low green 

 

 

Min Max Mean 

Std 

dev  Min Max Mean 

Std 

dev 

10m Aug 28th 0,00 2.00 0.90 0.66  0.00 2.44 1.46 0.36 

 Aug 23-28th 0.00 2.00 0.93 0.66  0.00 2.19 1.41 0.34 

20m Aug 28th 0.00 2.53 1.28 0.50  1.05 3.61 1.77 0.51 

 Aug 23-28th 0.00 2.04 1.21 0.51  1.05 3.61 1.72 0.54 

30m Aug 28th 0.00 2.33 1.35 0.35  1.00 4.10 1.76 0.53 

 Aug 23-28th 0.00 1.95 1.29 0.34  1.00 4.10 1.73 0.57 

50m Aug 28th 0.00 1.88 1.38 0.25  1.03 2.67 1.66 0.30 

 Aug 23-28th 0.00 1.88 1.38 0.28  1.03 2.67 1.65 0.32 

80m Aug 28th 1.10 1.65 1.40 0.12  1.33 2.01 1.61 0.16 

 Aug 23-28th 1.10 1.65 1.39 0.12  1.36 2.01 1.59 0.15 

100m Aug 28th 1.14 1.84 1.40 0.12  1.27 1.85 1.59 0.13 

 Aug 23-28th 1.14 1.65 1.39 0.10  1.27 1.85 1.57 0.12 

130m Aug 28th 1.24 1.59 1.39 0.07  1.31 1.94 1.60 0.13 

 Aug 23-28th 1.24 1.55 1.39 0.07  1.31 1.80 1.59 0.12 

180m Aug 28th 1.23 1.58 1.40 0.07  1.39 1.88 1.61 0.10 

 Aug 23-28th 1.23 1.58 1.40 0.08  1.39 1.88 1.60 0.10 

250m Aug 28th 1.25 1.55 1.40 0.07  1.45 1.82 1.61 0.08 

 Aug 23-28th 1.26 1.55 1.40 0.07  1.45 1.82 1.60 0.08 

500m Aug 28th 1.30 1.52 1.41 0.05  1.47 1.81 1.60 0.07 

 Aug 23-28th 1.30 1.51 1.41 0.05  1.47 1.75 1.60 0.06 
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8.7 Scatterplots of temperature variable vs landscape metric 

8.7.1 Minimum temperature 

 
Figure 8.5: Scatterplots between minimum temperature and the percentage cover of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.6: Scatterplots between minimum temperature and the largest patch index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.7: Scatterplots between minimum temperature and the edge density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 
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Figure 8.8: Scatterplots between minimum temperature and the patch density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 
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Figure 8.9: Scatterplots between minimum temperature and the mean patch size of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.10: Scatterplots between minimum temperature and the mean shape index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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8.7.2 Maximum temperature 

 

Figure 8.11: Scatterplots between maximum temperature and the percentage cover of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.12: Scatterplots between maximum temperature and the largest patch index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.13: Scatterplots between maximum temperature and the edge density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 
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Figure 8.14: Scatterplots between maximum temperature and the patch density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 

 



 106 

 
Figure 8.15: Scatterplots between maximum temperature and the mean shape index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.16: Scatterplots between maximum temperature and the mean shape index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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8.7.3 Mean temperature 

 
Figure 8.17: Scatterplots between mean temperature and the percentage cover of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 
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Figure 8.18: Scatterplots between mean temperature and the largest patch index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.19: Scatterplots between mean temperature and the edge density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 

 



 111 

 
Figure 8.20: Scatterplots between mean temperature and the patch density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 
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Figure 8.21: Scatterplots between mean temperature and the mean shape index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.22: Scatterplots between mean temperature and the mean shape index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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8.7.4 Sum of temperature difference 

 
Figure 8.23: Scatterplots between the temperature sum and the percentage cover of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.24: Scatterplots between the temperature sum and the largest patch index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.25: Scatterplots between the temperature sum and the edge density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 
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Figure 8.26: Scatterplots between the temperature sum and the patch density of high and low green for multiple spatial (10m, 
20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 
nights/days). 
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Figure 8.27: Scatterplots between the temperature sum and the mean patch size of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.28: Scatterplots between the temperature sum and the mean shape index of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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8.7.5 Discomfort index 

 
Figure 8.29: Scatterplots between the discomfort index and the percentage cover of high and low green for multiple spatial 
(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-
28th nights/days). 
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Figure 8.30: Scatterplots between the discomfort index and largest patch index of high and low green for multiple spatial (10m, 

20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 

nights/days). 
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Figure 8.31: Scatterplots between the discomfort index and the edge density of high and low green for multiple spatial (10m, 

20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 

nights/days). 
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Figure 8.32: Scatterplots between the discomfort index and the patch density of high and low green for multiple spatial (10m, 

20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 

nights/days). 
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Figure 8.33: Scatterplots between the discomfort index and mean patch size of high and low green for multiple spatial (10m, 

20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-28th 

nights/days). 
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Figure 8.34: Scatterplots between the discomfort index and the mean shape index of high and low green for multiple spatial 

(10m, 20m, 30m, 50m, 80m, 100, 130m, 180m, 250m and 500m) and temporal scales (August 28th night/day and August 23-

28th nights/days). 
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9 Summary for dissemination 
Today more than 50% of the world’s population lives in urban areas and predictions show that 

this number will only rise in the upcoming decennia. During this urbanization process natural 

surfaces like soil and vegetation are replaced by impervious surfaces like asphalt and concrete. 

These surfaces tend to capture and store heat more easily, resulting in a phenomenon called 

urban heat islands (UHIs). UHIs are defined by higher air temperatures in city centers compared 

to their rural surroundings, something you may have noticed on a warm day with clear-sky 

conditions. Especially during heatwaves, these UHIs are highly sensible and have a negative 

effect on human health and well-being. The presence of vegetation or urban green is one of the 

most promising solutions for mitigating urban heat through evaporation and shading, hereby 

decreasing human discomfort. These cooling benefits are however highly affected by the 

abundance and variability (composition) and the spatial distribution (configuration) of urban 

green patches. Knowing the optimal spatial configuration of urban green would help city 

managers and decision makers to plan and manage their urban green in order to maximize their 

cooling effect.  

 

In this research we therefore studied the urban heat island in Leuven by measuring air 

temperatures using a dense network of local weather stations. Next, we evaluated the cooling 

benefits of the composition and configuration of two types of urban green; high and low green.  
 

The results show that both the composition and the configuration of high and low green matter 

in the mitigation of urban heat islands. Not only increasing the percentage cover of high and 

low green but also larger vegetation blocks with more complex shapes will significantly lower 

urban air temperatures and subsequently mitigate heat stress. The cooling effect of the two 

urban green types, high and low green, does however vary for different spatial and temporal 

scales. At night, low green was found to be the most important mitigating factor along all spatial 

extents. During daytime, high green was more effective in reducing urban air temperatures and 

human discomfort.  

 

This research can thus provide important insights for urban green planning and design. We have 

shown that different urban green types, shapes and sizes at multiple spatial scales are needed to 

improve thermal comfort of citizens during both night and day. 


